运筹学——.整数规划与分配问题
运筹学-12分配问题
具体求解过程(6)
• 4.没有找到m个独立的 “0”:
• (1)找最小直线覆盖所有 “0”
• 对没有打的行画横线; • 所有打的列画上垂线. • 找到了覆盖矩阵所有零
元素的最小直线数.
(0) 8 2 5 11 (0) 5 4 2 3 (0) 0 0 11 4 5
O3 26 17 16 19 0
增加一个虚拟工作T5
O4 19 21 23 17 0 O5 17 18 19 17 0
每一个工人干 这项工作需 要的时间比其他工作所需时 间要多的多,为什么?
O2下岗,
O1T1, T5 , O3T3 , O4T4 , O5T2 ,93-27=66
人员少,工作岗位多的情况P.125/4.5
• 如该列没有零元素或有 两个以上零元素(划去的不 计在内),则专下一列,直到 最后一列为止.
0 8 2 5 11 0 5 4 2 3 0 0 0 11 4 5
(0) 8 2 5 11 (0) 5 4 2 3 0 0 0 11 4 5 .
具体求解过程(4)
乙
总时间:101
丙
•加一个虚拟人员戊,
39 34
38 27
26 28
20 40
33 32
其效率为55(最大) 丁 24 42 36 23 45
甲B;乙D;丙C;丁A;戊E 戊 0 0
0
0
0
总时间:165-55=101
人员少,工作岗位多的情况P.125/4.5
25 29 31 42 37 25 0 4 6 17 12 0 4 5 17 7
• 即做2.找到m个独立
“0”
运筹学中的整数规划问题分析
运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。
其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。
本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。
一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。
通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。
整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。
与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。
二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。
具体使用哪种方法需要根据问题的规模和特点来确定。
1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。
然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。
2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。
通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。
3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。
通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。
运筹学复习考点
整理课件
59
• (4)动态规划的基本方程是将一个多阶段的决策问题转化为一系列具 有递推关系的单阶段决策问题。
• 正确。 • (5)建立动态规划模型时,阶段的划分是最关键和最重要的一步。 • 错误。 • (6)动态规划是用于求解多阶段优化决策的模型和方法,这里多阶段
• 错误。
• 唯一最优解时,最优解是可行域顶点,对应基本可行解;无穷多最优 解时,除了其中的可行域顶点对应基本可行解外,其余最优解不是可 行域的顶点。
• (12)若线性规划问题具有可行解,且其可行域有界,则该线性规划 问题最多具有有限个数的最优解。
• 错误。
• 如果在不止一个可行解上达到最优,它们的凸组合仍然是最优解,
结束时间不允许有任何延迟。 • 正确。 • (10)网络关键路线上的所有作业,其总时差和自由时差均为零。 • 正确。 • (11)任何非关键路线上的作业,其总时差和自由时差均不为零。 • 错误。
整理课件
57
• (12)若一项作业的总时差为零,则其自由时差一定为零。 • 正确。 • (13)若一项作业的自由时差为零,则其总时差比为零。 • 错误。 • (14)当作业时间用a,m,b三点估计时,m等于完成该项作业的期
既可以是时间顺序的自然分段,也可以是根据问题性质人为地将决策 过程划分成先后顺序的阶段。
• 正确。
整理课件
60
•
整理课件
61
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
整理课件
62
5 3 6 -6 0
0
801001
5
14 1 2 0 0 0
-6
4 0 1 -1 1 0
运筹第四章整数规划与分配问题
i=1,2
则问题可以表示为
4 用以表示含固定费用的函数 总费用
K j + c j x j ( x j > 0) Cj(xj ) = ( x j = 0) 0
则上述条件可以表示成
r n ∑ aij x j ≤ ∑ b; y + ... + y = 1 m 2 1
3、 两组条件中满足其中的一组 、
若 x1 ≤ 4, 则 x2 ≥ 1
若 x1 > 4, 则 x2 ≤ 3
定义
1 第i组条件不起作用 yi = 0 第i 组 条件 起作 用
0 0 X = 1 0 0 0 1 1 0 0 0 0 0 0 1 0
用矩阵形式表示为: 用矩阵形式表示为: 解矩阵
一般分配问题 设有n项任务 需有n个人去完成 项任务, 个人去完成, 设有 项任务,需有 个人去完成,每个人只能完成一 项任务,每项任务只能由一个人去完成,设第i人完成 项任务,每项任务只能由一个人去完成,设第 人完成 项任务需要的时间是a 第j 项任务需要的时间是 ij , 问如何分配才能使完成任 务的总时间最少? 务的总时间最少? 设
2. 整数规划问题的特征与性质
特征—变 特征 变量整数性要求 来源 问题本身的要求 引入的逻辑变量的需要 性质—可 性质—可行域是离散集合
3. 整数规划的分类
纯整数规划 要求全部决策变量的取值都为整数, 要求全部决策变量的取值都为整数 则称为纯整数规划 (All IP); ; 混合整数规划 仅要求部分决策变量的取值为整数,则称为混合整数规 仅要求部分决策变量的取值为整数, 划(Mixed IP); ; 0-1整数规划 整数规划 要求决策变量只能取0或 值 则称为0-1规划 规划(0-1 要求决策变量只能取 或1值,则称为 规划 Programming)。 。
运筹学基础及应用第4章-整数规划与分配问题
整数规划的特点及应用
解:对每个投资项目都有被选择和不被选择两种可能,因此 分别用0和1表示,令xj表示第j个项目的决策选择,记为:
j投 资 1 对 项 目 xj ( j 1,2,..., n) j不 投 资 0 对 项 目
投资问题可以表示为:
max z
c
j 1
n
j
xj
n a j x j B j 1 x2 x1 s .t x 3 x4 1 x5 x6 x7 2 ) x j 0或者1 (j 1, 2, L n
B1 B2 B3 B4 年生产能力
A1
A2 A3 A4 年需求量
2
8 7 4 350
9
3 6 5 400
3
5 1 2 300
4
7 2 5 150
400
600 200 200
工厂A3或A4开工后,每年的生产费用估计分别为1200万或1500万元。 现要决定应该建设工厂A3还是A4,才能使今后每年的总费用最少。
0-1型整数线性规划:决策变量只能取值0或1的整数线性 规划。
整数规划的特点及应用
整数规划的典型例子
例4.1 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要 再建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地 有B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各 需求地的单位物资运费cij,见下表:
例4.3 设整数规划问题如下
max Z x1 x 2 14x1 9 x 2 51 6 x1 3 x 2 1 x , x 0且 为 整 数 1 2
首先不考虑整数约束,得到线性规划问题(一般称为松弛问 题)。
运筹学基础-整数规划(2)
【例 2 】求解 0-1 规划最优解
minZ= 4x1+3x2 +2x3 2x1 -5x2+3x3 ≤4 (1) 4x1 + x2+3x3 ≥3 (2) x2+x3 ≥1 (3) x1 , x2 , x3 =0或 1
解: 先将问题化为如下的标准问题
minZ= 4x1+3x2 +2x3 2x1 - 5x2+3x3 ≤4 (1) - 4x1 - x2 - 3x3 ≤-3 (2) (3) - x2 - x3 ≤ - 1 x1 , x2 , x3 =0或 1
0 13 aij-列min 6 (0) 0 (0) 5 0 0 1 (0) 7 0 6 9 3 2 0 (0) 0 2 15 10 4 9 14 7 8 13 14 16 11 4 15 13 9
(a)从行开始,对只有一个的零元素,打上(),用直线划去所在列 (b)再从列开始,对只有一个的零元素,打上(),用直线划去所在行
∑ ∑
指派问题的解法--匈牙利法 指派问题的解法--匈牙利法 --
从时间表(效率表)出发构建效率矩阵 效率矩阵。 效率矩阵
时间表
任务 人员 甲 乙 丙 丁 E 2 10 9 7 J 15 4 14 8 G 13 14 16 11 R 4 15 13 9
2 15 10 4 9 14 7 8
13 14 16 11
分配表
任务 人员 甲 乙 丙 丁
合计
E x11 x21 x31 x41 1
i
J x12 x22 x32 x42 1
G x13 x23 x33 x43 1
ij x ij
R x14 x24 x34 x44 1
合计
1 1 1 1
运筹学基础及应用_(第四章_整数规划与分配问题)
(d) 8
(e)1号、
4号、6号、9号开采时不能超过两个,试表示上
述约束条件。
Next
基础教研室
(a)当x8=1 当x8=0 ∴ x8 x6
x6=1,x6≠0 x6=1,x6=0
(b)当x5 =1 当x5 =0 ∴ x5 + x3 1
x3=0, x3 ≠1 x3=0, x3 =1
基础教研室
【例1】求下述整数规划的最优解
Max z= 3x1 + 2x2 st . 2x1 + 3x2 14 x1 + 0.5x2 4.5 x10,x20,且为整数
基础教研室
x2 x1+0.5x2=4.5
4
(3.25, 2.5) 2 2x1+3x2=14
2
4
6
x1
3x1+2x2=6
二、整数规划的求解方法
1 -选择电网供应 设 y1 0 -不选择电网供应
10 d j x j f (1 y1 ) M j 1 10 0.3d j x j p (1 y2 ) M j 1 y1 y2 1 y1 , y2 0或1
基础教研室
【例3】投资决策问题 某公司准备1000万元资金在10个地点中选择若干个建立 工厂(工厂名称用地点名来命名),有关数据如下:
由于各个工厂之间有配套和协作关系,因此必须满足条件: 1、 建工厂1就必须同时建工厂2; 2、 若建工厂2就不允许建工厂3; 3、 工厂4和工厂5至少建一个; 4、 工厂6,7,8恰好建2个; 5、 工厂8,9,10最多建2个; 6、 建工厂4或者建工厂6,就不能建工厂8,反过来也一样; 7、 条件2,3,5最多满足2个。 问选择哪几个地点建厂最有利? Next
运筹学 第4章 整数规划与分配问题
匈牙利法思路:若能在 [Cij] 中找出 n 个位于
不同行不同列的0元素(称为独立0元素),则
令解矩阵[xij]中对应这n个独立0元素的元素
取值为 1 ,其他元素取值为 0 ,则它对应目
标函数zb=0是最小的。这就是以[Cij]为系数
矩阵分配问题的最优解,也得原问题的最
优解。
定理1 若从分配问题效率矩阵[cij]的每一行元素中分别减去 (或加上)一个常数ui(称为该行的位势),从每一列分别减去 (或加上)一个常数vj(称为该列的位势),得到一个新效率矩阵 [bij],若其中bij=cij-ui-vj,则[bij]的最优解等价于[cij]的最优解
第1步:找出效率矩阵每行的最小元素,并分别从每行
中减去。
第2步:再找出矩阵每列的最小元素,并分别从各列中 减去。
2 10 9 7 2 15 4 14 8 4 13 14 16 11 11 4 15 13 9 4
0 8 7 5 11 0 10 4 0 3 5 0 0 11 9 5
表明m个约束条件中有(m-k)个的右端项为( bi+M ),不起约 束作用,因而,只有k个约束条件起作用。 ② 约束条件的右端项可能是r个值b1 , b2 ,, br 中的某一个 即: 定义:
n
aij x j b1 或b2或或br
j 1
1 假定约束右端项为 bi yi 否则 0
现用下例来说明: max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数 ① ② ③ ④ ⑤
解:先不考虑条件⑤,即解相应的线性规划B,①~④(见图5-2), 得最优解x1=4.81,x2=1.82,z0=356
运筹学习题解答(chap4 整数规划与分配问题)
第四章 整数规划与分配问题一、建立下列问题的数学模型1、P143, 4.1 利用0-1变量对下列各题分别表示成一般线性约束条件 (a) 221≤+x x 或53221≥+x x ; (b) x 取值0,3,5,7中的一个; (c) 变量x 或等于0,或50≥; (d) 若21≤x ,则12≥x ,否则42≤x ; (e) 以下四个约束条件中至少满足两个:6225433121≥+≥≤≤+x x x x x x ,,,。
解:(a) 设⎩⎨⎧=否则。
,个条件起作用;第1i ,0y i (i=1,2),M 为任意大正数。
则有 ⎪⎩⎪⎨⎧=+≥++≤+1y y My -5x 3x 2My 2x x 21221121(b) 设⎩⎨⎧=≠=ix i x y i ,1,0,7,5,3,0=i ,则原条件可表示为⎩⎨⎧=++++++=1753075307530y y y y y y y y x(c) 设⎩⎨⎧≥==50,10,0x x y ,则原条件可表示为⎪⎩⎪⎨⎧≥--≥≤0)1(50x M y x yM x(d)⎩⎨⎧=否则。
,组条件起作用;第1i ,0y i (i=1,2),M 为任意大正数。
则有⎪⎪⎪⎩⎪⎪⎪⎨⎧=++≤->-≥+≤.1,4,2,1,22122211211y y My x My x My x My x (e)设⎩⎨⎧=个条件不成立第个条件成立第i ,1i ,0y i ,4,3,2,1i =,则原条件可表示为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤+++-≥+-≥+≤+≤+2y y y y My 6x x My 2x M y 2x M y 5x x 43214433321121 2、P143, 4.2 某钻井队要从以下10个可供选择的井位确定5个钻井探油,目的是使得总的钻探费用最小。
若10个井位代号为101S ,...,S ,相应的钻探费用为101C ,...,C ,并且井位的选择要满足下列条件:(1)或选择1S 和7S ,或选择8S ;(2)选择了3S 或4S 就不能选择5S ,反过来也一样; (3)在10962S ,S ,S ,S 中最多只能选两个。
第四章整数规划与分配问题习题
1
0
X1 32/7 1 0 0 1/7 -1/7 0
X3 11/7 0 0 1 1/7 -22/7 0
S1 -4/7 0 0 0 [-1/7] -6/7 1
Cj—Zj
0 0 0 -1
-8
0
X2 3
0
00
1
0
X1 4 1 0 0 0
-1 1
X3 1 0 0 1 0
-4 1
X4 4 Cj—Zj
0001 0000
解:
(1)
LP(1)
1 x1 = 39
7 x2 = 29
5 Z1 = 329
z = 32 5 9
z = 28
x1≤3 LP(4) x1 = 3 x2 = 2 z4 = 28
剪去
x2≤2
x2≥3
LP(2) 1
x1 = 32 x2 = 2
z2 = 31
LP(3) 2
x1 = 25
x2 = 3 4
z3= 315
x3* = (1,2)T , z * = 3 由于表 3(b)中一非基变量x5的检验数为 0,故让x5进量,用单纯形法迭代一次,得另一最优解
(见表 4):
x3* = (2,1)T , z * = 3
8、 用完全枚举法求解 0—1 规划问题.
max z = 3x1 − 2x2 + 5x3 s.t. x1 + 2x2 − x3 ≤ 2
变换效益矩阵:
⎛0 1 2 3⎞⎛0 ⎞ ⎛0 1 2 3⎞ ⎛ⓞ Ø 2 3 ⎞
Ci'j
=
⎜ ⎜ ⎜
7 8
6 9
5 9
4 8
⎟ ⎟ ⎟
⎜ ⎜ ⎜
−4 −8
运筹学-第三章-整数规划
于是,对原问题增加两个新约束条件,将原问题分为两个 子问题,即有
max z 40x1 90x2
max z 40x1 90x2
9x1 7x2 56
s.t
7 x1
20 x2
70
x1 4
x1, x2 0
(LP1)
9x1 7x2 56
和
s.t
7
x1
20
x2
70
(LP2)
x1 5
表 3.1
货物 体积(米 3/箱) 重量(百公斤/箱) 利润(百元/箱)
甲
5
2
20
乙
4
5
10
托运限制 24 米 3
13 百公斤
解: 设x1,x2 分别为甲、乙两种货物的托运箱数,则数 学模型可以表示为:
max z 20x1 10x2
5x1 4x2 24 2x1 5x2 13 x1, x2 0, x1, x2整数
其中,目标函数表示追求最大的卫星实验价值;第1,2个约
束条件表示体积和重量的限制;第3-5个约束条件表示特定的卫
星装载要求,该问题的决策变量是0-1整数变量。
3.2.3隐枚举法 从上面两个例子可以看出,此类型问题是整数规划中的特
殊情形,其中决策变量 xi 的取值只能为0或1,此时变量 xi 称 为0-1变量,这类问题被称为0-1整数规划。对于 xi 的取值的 0-1约束,可以转化成下述整数约束条件:xi 1, xi 0, xi Z
目前对于整数规划问题的求解主要有两种方法:分支 定解法和割平面法。本章仅介绍分枝定界法,该方法在上 世纪60年代由Land Doig和Dakin等人提出,其具有灵活 且便于计算机求解的优点,所以现在已成为解决整数规划 问题的重要方法。下面通过例子说明分支定界方法的算法 思想和步骤。
运筹学习题精选
运筹学习题精选第一章线性规划及单纯形法选择1.在线性规划模型中,没有非负约束的变量称为……………………………………………………( C )A.多余变量 B.松弛变量 C.自由变量 D.人工变量2.约束条件为0AX的线性规划问题的可行解集b,≥=X 是………………………………………( B )A.补集 B.凸集 C.交集 D.凹集3.线性规划问题若有最优解,则一定可以在可行域的( C)上达到。
A.内点 B.外点 C.顶点 D.几何点4.线性规划标准型中bi(i=1,2,……m)必须是…………………………………………………( B)A.正数 B.非负数 C.无约束 D.非零的5.线性规划问题的基本可行解X对应于可行域D 的………………………………………………( D)A.外点 B.所有点 C.内点 D.极点6.基本可行解中的非零变量的个数小于约束条件数时,该问题可求得……………………………( B ) A.基本解 B.退化解 C.多重解 D.无解7.满足线性规划问题全部约束条件的解称为…………………………………………………( C )A.最优解 B.基本解 C.可行解 D.多重解8.线性规划一般模型中,自由变量可以用两个非负变量的(B )代换。
A.和 B.差 C.积 D.商9.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得………………………( A )A .多重解B .无解C .正则解D .退化解 10.若线性规划问题有最优解,则必定存在一个( D )是最优解。
A .无穷多解 B. 基解 C. 可行解 D. 基可行解 填空计算 1. 某厂生产甲、乙、丙三种产品,已知有关数据如下表所示,求使该厂获利最大的生产计划。
2. 目标函数为max Z =28x4+x5+2x6,约束形式为“≤”,且x1,x2,x3为松弛变量,表中的解代入目标函数中得Z=14,求出a~g 的值,并判断是否→j c 0 0 0 28 1 2B C 基 b 1x 2x 3x 4x5x 6x 2 6x A 3 0 -14/3 0 1 1 0 2x 5 6 D 2 0 5/2 0 28 4x 0 0 E F 1 0 0 j j z c - B C 0 0 -1 G3. 某工厂生产A 、B 两种产品,已知生产A 每公斤要用煤6吨、电4度、劳动力3个;生产B 每公斤要用煤4吨、电5度、劳动力10个。
运筹学 第四章 整数规划与分配问题
第四章 整数规划与分配问题
冯大光制作
(4)
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
第二节 分配问题与匈牙利法
在实际中经常会遇到这样的问题,有n 项不同 的任务,需要n 个人分别完成其中的一项,但由 于任务的性质和各人的专长不同,因此各人去 完成不同的任务的效率(或花费的时间或费用) 也就不同。于是产生了一个问题,应指派哪个 人去完成哪项任务,使完成 n 项任务的总效率 最高(或所需时间最少),这类问题称为指派 问题或分配问题。
种下料方式可以得到各种零件的毛坯数以及每种
零件的需要量,如表所示。问怎样安排下料方式, 使得即满足需要,所用的原材料又最少?
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
设:xj 表示用Bj (j=1.2…n) 种方式下料根数模型:
x1 … xn
零件 方 个数 式 零件
A1 b1 Am am1 amn bm
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
逻辑变量的应用
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
(3)两组条件满足其中一组
若 x1 4,则 x2 1 ;否则(即 x1 4 时) 2 3 x
列的零元素,则只要令这些零元素位置的 xij 1 ,其 n n 余的 xij 0 ,则 z aij xij 就是问题的最优解.
i 1 j 1
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
如效率 矩阵为
运筹与优化— 整数规划建模方法
j 1
n
s.t
i1
xij
1,
j V
(2)
xij S 1,
S V , 2 S n 1
(3)
iS jS
xij 0, 1
二、典型整数规划问题建模方法
3、指派问题
混合游泳接力接力队的选拔
甲
乙
丙
蝶泳 仰泳 蛙泳 自由泳
1’06”8 1’15”6 1’27” 58”6
57”2 1’06” 1’06”4 53”
14
二、典型整数规划问题建模方法
Page 15
• 记为赋权图G=(V,E),V为顶点集,E为边集,各顶点间的距 离dij已知。设
xij
1 , 0,
若i, j 在回路路径上
其他
则经典的TSP可写为如下的数学规划模型:
nn
min Z
dij xij
i 1 j 1
n
xij 1,
i V
(1)
5
应用统计 微积分;线性代数
6
计算机模拟
计算机编程
7
计算机编程
8
预测理论
应用统计
9
数学实验 微积分;线性代数
模型求解:
最优解: x1 = x2 = x3 = x6 = x7 = x9 =1, 其它为0;6门 课程,总学分21(注意:最优解可能不唯一!)
约束条件:先修课程要求 x3=1必有x1 = x2 =1
Page 3
max z 20x1 10x2
5x1 4x2 24 2x1 5x2 13 x1, x2 0, x1, x2整数
• 用单纯形法解得:x1 4.8, x2 0, z 96
一、概述
Page 4
整数规划与分配问题
整数规划与分配问题第四章整数规划与分配问题§4.1整数规划的特点及作⽤⽤单纯形法求解线性规划的结果往往得到分数或⼩数解。
但在很多实际问题中,全部或部分变量的取值必须是整数,如⼈或者机器设备不可分割。
此外还有⼀些问题,如要不要在某地建设⼯⼚,可选⽤⼀个逻辑变量x ,令1x =表⽰在该地建⼚,0x =表⽰不在该地建⼚,逻辑变量也只允许取整数值的⼀类变量。
在⼀个整数规划中要求全部变量取整数值的,称纯整数线性规划或纯整数规划;只要求⼀部分变量取整数值的,称为混合整数(线性)规划;在纯整数规划问题中,若所有变量只允许取0,1两个值,则称其为0-1规划。
有⼈认为,对整数规划问题的求解可以先不考虑对变量的整数约束,作为⼀般线性规划问题来求解,当解为⾮整数时可⽤四舍五⼊或凑整数寻找最优解,其实这种⽅法是不可⾏的,原因有以下两点:⼀、⽤凑整的⽅法计算量很⼤,⽽况还不⼀定能找到最优解。
如某线性规划问题的最优解为()()12 4.6 5.5x x =,⽤凑整数的⽅法时需⽐较与12,x x 的上述数值最接近的四种组合:(4,5),(5,5),(4,6),(5,6)如果问题中有10个变量,就要⽐较1021024=个整数解组合,⽽且最优解还不⼀定在这些组合中。
⼆、放松约束也⽆法求出其最优解例12121212max 322314.0.5 4.5,0,z x x x x s t x x x x =++≤??+≤??≥?整数如果不考虑整数约束,称为上述线性规划问题的松弛问题,松弛问题的最优解为:123.25, 2.5x x ==取整以后123,2x x ==是可⾏解,但1212123,3;4,2;4,3x x x x x x ======都不是可⾏解,⽽123,2x x ==对应的⽬标函数值123213z x x =+=却不是最优解,然⽽最优解是12124,1,max 3214x x z x x ===+=。
直接对松弛问题进⾏求解都⽆法求得整数规划问题的最优解,这就需要对整数线性规划问题有特殊的求解⽅法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、整数规划的特点及作用
1.2 0-1整数规划
某公司拟在市东、西、南三区建立门市部。拟 议中有7个位置(点)Ai供选择。规定
在东区,由A1,A2,A3三个点中至多选两个; 在西区,由A4,A5两个点中至少选一个; 在南区,由A6,A7两个点中至少选一个。
如选用Ai点,设备投资估计为bi元,每年可获利 润估计为ci元,但投资总额不能超过B元。 问:应如何选址,可使年利润为最大?
第三步:从第一列开始,若该列只有一个零元素,对零元 素打上()括号(同样不考虑已划去的零元素),再用直线划 去其所在行;若该列没有零元素或有两个零元素,则转下 一列,依次进行到最后一列为止。
二、分配问题与匈牙利法
2.4 匈牙利法实例(5)
1. 效率矩阵每行都有一个打() 的零元素, 这些零元素都位于不同行不同列,令对 应打() 零元素的 xij=1 就得到最优解; 2. 矩阵中所有零元素或被划去,或被打上 () ,但打() 的零元素少于m个,这时转 第四步。 3. 打()的零元素小于m,但未被划去的零元 素之间存在闭回路。
i 1 j 1 某项任务只能由1人完成; m 某人只能完成1项任务。 xij 1 (i 1,, m)
j 1 建立整数规划模型 m 分配问题是0-1整数规划的 xij 1 ( j 1,, m) i 1 特例,也是运输问题的特 xij 0 或 1 (i 1,, m; j 1,, m) 例; n = m, aj = bj = 1。
例:某线性规划问题最优解为(x1, x2) = (4.6, 5.5),用凑整法需要比较与上述数据最接近的 几种组合:(4, 5), (4, 6), (5, 5), (5, 6), 共四种组合。若问题中有10个整数变量,则解 组合达到210 = 1024个整数组合。且最优解未 必在这些组合中。
例:求整数规划问题的最优解 max z 3 x1 2 x2 2 x1 3 x2 14 x1 0.5 x2 4.5 x , x 0, 且均取整数值 1 2
二、分配问题与匈牙利法
2.2 分配问题实例(1)
例:有一份中文说明书,需要译成英、日、德、 俄四种文字。现有甲、乙、丙、丁四人,他们 将中文说明书译成不同语种的说明书所需时间 如下,问应指派何人去完成工作,使所需总时 间最少? 人员
任务 译成英文 译成日文 译成德文 译成俄文 甲 乙 丙 丁 7 8 11 9 2 15 13 4 10 4 14 15 9 14 16 13
二、分配问题与匈牙利法
2.3 匈牙利法的基本思想
如果效率矩阵的所有元素aij≥0, 而其中存在一组位于不 同行不同列的零元素,则只要令对应于这些零元素位 置的xij = 1,其余的xij= 0,则所得到的可行解就是问 题的最优解。
0 9 23 7
14 20 0 12
9 0 3 14
二、分配问题与匈牙利法
2.4 匈牙利法实例(6)
顺着闭回路的走向,对每个间隔的零元素打 (),然后对 所有打()的零元素或所在行或所在列画一条直线,同样得 到最优解。
二、分配问题与匈牙利法
2.4 匈牙利法实例(7)
第四步:继续按照定理1,对矩阵进行变换。
从矩阵未被直线覆盖的数字中找出一个最小的数k;对矩 阵的每行,当该行有直线覆盖时,令ui=0,无直线覆盖的, 令ui=k;对矩阵中有直线覆盖的列,令vj= -k,对无直线覆 盖的列,令vj=0。 只有一条直线 覆盖的元素保 持不变
2.4 匈牙利法实例(2)
第二步:找出矩阵每列的最小元素,再分别从各列中减去。
必定满足:bij = aij–ui–vj
0 11 2 0 0
8 0 3 11 0
7 5 0 11 10 4 2 5 0 9 5 0 5 0
8 2 5 0 5 4 3 0 0 11 4 5
二、分配问题与匈牙利法
2.3 匈牙利法
分配问题可以用单纯形法或运输表求解。 库恩(W.W.Kuhn)于1955年提出了指派问题的解 法,他引用了匈牙利数学家康尼格(D.Kö nig)一 个关于矩阵中零元素的定理:系数矩阵中独立0 元素的最多个数等于能覆盖所有0元素的最少直 线数。这个解法称为匈牙利法。
第四章 整数规划及分配问题
第二节 分配问题与匈牙利法
二、分配问题与匈牙利法
2.1 分配问题(1)
指派n个人去完成n项任务,使完成 n项任 务的总效率最高(或所需总时间最少),这 类问题称为指派问题或分配问题。
安排工作(派工):有n项加工任务,怎样 指派到n台机床上完成; 有n条航线,怎样指定n艘船去航行的; ……
这时,分数或小数的解就不合要求,我们称这
样的问题为整数规划。
例:某厂拟用集装箱托运甲乙两种货物,每箱的体积、 重量、可获利润以及托运所受限制如下表: 问两种货物各托运多少箱,可使获得的利润为最大?
货物
甲 乙 托运 限制 体积 米3/箱 重量 利润 百斤/箱 百元/箱
MaxZ 20x1 10x 2 ST : 5 x1 4 x 2 24 2 x1 5 x 2 13 x ,x 0,且为整数 1 2
二、分配问题与匈牙利法
2.4 匈牙利法实例(1)
人员 任务 译成英文 译成日文 译成德文 译成俄文 甲 2 15 13 4 乙 10 4 14 15 丙 9 14 16 13 丁 7 8 11 9
2 10 9 7 15 4 14 8 [aij ] 13 14 16 11 4 15 13 9
效率矩阵用[aij]表示。aij > 0 ( i,j = 1,2,…,n )表示 指派第j人去完成第i项任务时的效率(时间、成 本等)。
二、分配问题与匈牙利法
2.2 分配问题实例(3)
1,分配第 i 个人去完成第 j 项任务 xij 0,不分配第 i 个人去完成第 j 项任务 m m (i 1, , m;j 1,, m) min z aij xij
一、整数规划的特点及作用
1.2 0-1整数规划
1 解:设x j 0 选Ai 不选Ai
MaxZ c1 x1 c 2 x 2 c7 x7 b1 x1 b2 x 2 b7 x7 B x x x 2 2 3 1 ST : x 4 x5 1 x x 1 7 6 x j 1或0, ( j 1, ,7)
二、分配问题与匈牙利法
2.4 匈牙利法实例(8)
第五步:回到第三步,迭代运算,直到矩阵的每一行都有 一个打() 的零元素为止。
最优分配方案为:甲译俄文,乙译日文,丙译英文,丁译 德文。所需时间为:4 + 4 + 9 + 11 = 28h
二、分配问题与匈牙利法
2.5 人数和任务数不相等的分配问题
有四项工作分配给六个人去完成,每个人分别完成各 项工作的时间如下,依然规定每个人完成一项工作。 每项工作只交给一个人去完成。即六个人中挑选哪四 个人去完成,花费时间最少。
主要内容
一、整数规划的特点及作用 二、分配问题与匈牙利法 三、分枝定界法 四、应用举例
第四章 整数规划及分配问题
第一节 整数规划的特点及作用
一、整数规划的特点及作用
1.1 整数规划的概念
整数规划(Integer Programming) :决策变 量要求取整数的线性规划。
如果所有的决策变量、技术系数和右端项都 是非负整数,就称为纯整数规划。 如果所有的决策变量都是非负整数,技术系 数和右端项为有理数,称为全整数规划。 如果仅一部分决策变量为整数,则称为混合 整数规划。 如果变量取值仅限于0或1,称为0-1整数规划。
0-1整数规划的一般形式:
MaxZ C T X Ax b ST : x j 1或0, ( j 1, , n)
0-1整数规划一般都 是纯整数规划。
一、整数规划的特点及作用
1.3 整数规划的作用
0-1整数规划在管理领域具有重要作用
1. m个约束条件中只有k个起作用; 2. 约束条件的右端项可能是r个值(b1, b2, … br) 中的某一个; 3. 两组条件中满足一组; 4. 用以表示含固定费用的函数。
解:用图解法得最优解为(3.25 , 2.5) 如果不考虑整数约束(称为整数规划 问题的松弛问题) (4,1) 凑整法求解:比较四个点(4 , 3), (4 , 2),(3 , 3),(3 , 2),前三个 都不是可行解,第四个虽然是可行解, 但 z=13 不是最优解。
最优解为(4 , 1), z*= 14。
3 23 8 0
显然令 x11=1, x23=1, x32=1, x44=1,即 将第一项工作分配给甲,第二项给丙, 第三项给乙,第四项给丁。这时完成 总工作的时间为最少。 如何寻找这组位于不同行不同列的零 元素?
二、分配问题与匈牙利法
2.3 匈牙利法的基本定理
定理1 如果从分配问题效率矩阵[aij]的每一行 元素中分别减去(或加上)一个常数ui(被称为该 行的位势),从每一列分别减去(或加上)一个常 数vj(被称为该列的位势),得到一个新的效率矩 阵[bij],若其中bij = aij –ui–vj,则[bij]的最 优解等价于[aij]的最优解。 定理2 若矩阵A的元素可分为“0”和非“0”两 部分,则覆盖“0”元素的最少直线数等于位于 不同行不同列的“0”元素的最大个数。
5 4 24
2 5 13
20 10
能否先不考虑对变量的整数约束,作为一般线性 规划来求解,当解为非整数的时候可以用“四舍 五入”或“凑整”方法寻找最优解?
对于变量取值很大时,用上述方法得到的解 与最优解差别不大;但当变量取值较小时,得 到的解就可能与实际整数最优解差别很大。 当问题规模较大(决策变量较多)时,用 “凑整”方法来算工作量很大。