51单片机串口工作方式0和1解析

合集下载

51单片机I0解析

51单片机I0解析

IO口解析MCS-51单片机通常有4个8位I/O端口, 向各端口的写数据均写入到对应端口的锁存器中, 但对各端口的读操作却有两个方式:读锁存器和读引脚1 读-修改-写操作Pn(指P0,P1,P2,P3)在51汇编语言中是特殊的标识符,既代表Pn端口引脚,又代表Pn锁存器(Pn SFR)。

在MCS-51指令系统中有些指令读锁存器的值, 有些指令则读引脚上的值。

读锁存器指令是从锁存器中读取一个值并进行处理, 把处理后的值(原值或已修改后的值)重新写入锁存器中。

这类指令称为读-修改-写指令, 表1列举了有该功能的指令当目的操作数是Pn端口或Pn端口的某一位时. 该指令读取锁存器的值.这些指令的一个共同特点, 就是要先并行读入Pn锁存器(非Pn端口引脚)中的值,作一定的修改,然后再写入谚端口的锁存器。

表1中晶后三条指令读-修改-写关系不够明显。

实际上它们的执行过程序是:先将Pn 的8位锁存器内容一起读人,再对指定位进行修改, 然后又8位一起写入锁存器。

对于读-修改-写指令。

直接读锁存器而不是读端口引脚, 是因为从引脚上读出的数据不一定能真正反映锁存器的状态例如:若用Pn的某一位引脚直接驱动一个NPN三极管的基极,当向此端口写“1” 时, 三极管导通并把端口引脚的电平钳位约0.7 V (对于硅管) 这时,CPU若从此引脚读取数据. 会把该数据(应为1)错读为0;若直接从锁存器读取, 则读出正确的数据。

理解了Pn的特殊性及读-修改-写指令后, 就不难理解指令PUSH Pn的含义了。

它的执行过程是:读Pn 引脚(非读Pn 嫫?的值, 然后将此数值压入堆栈以下是一段测试程序:ORG 1000H1000 75A07F MOV P2,#7FH1003 7900 MOV R1,#00H1005 74FF MOV A,#0FFH1007 COA0 PUSH P21009 D0A0 POP P2100B F3 MOVX @R1,A100C 22 RET这段程序原意是将FFH立即数存人外部RAM地址为7F00的单元中, 但具体的运行结果与这段程序是在片内或片外被执行有密切关系。

51单片机串口工作方式0和1解析

51单片机串口工作方式0和1解析

方式 0 用于扩展并行 I/O口 例2:用 8031 的串口外接 1 个并入串出移位寄存器 芯片 CD4014 扩展为 8 位并行输入口,并口 接 8 个开关量输入,开关 K 闭合时有效。
• 电路图
8031
RXD TXD P1.1 DATA CLK P//S
CD4014
K
P1.0
方式 0 用于扩展并行 I/O口
• 电路图
8031
RXD TXD P1.0 DATA CLK
CD4094
TBS
方式 0 用于扩展并行 I/O口
• 编程
ORG 0000H LJMP MAIN ORG 0023H LJMP SBR MAIN: MOV SCON,#00H; 方式 0,TI = 0 SETB EA SETB ES MOV A,#80H ; 初值,左边 LED 亮 CLR P1.0 ; CD4094 输出并口关闭 MOV SBUF,A ; 数据传出,产生中断 LOOP: SJMP $
RXD
7.1.1 串行口控制寄存器SCON b7 b6 b5 b4 b3 b2 b1 TI b0 RI
SM0 SM1 SM2 REN TB8 RB8
9FH 9EH 9DH 9CH 9BH 9AH 99H 98H
SM0、SM1 —— 串行接口工作方式定义位
• SM0、SM1 = 00 —— 方式 0,8位同步移位寄存器 • SM0、SM1 = 01 —— 方式 1,10 位异步接收发送 • SM0、SM1 = 10 —— 方式 2,11 位异步接收发送 • SM0、SM1 = 11 —— 方式 3,11 位异步接收发送 注意: 方式 0 的特点,方式 2、方式 3 的差异
写入SBUF后自动开始发 送

51单片机串行通信接口

51单片机串行通信接口

工 作 方 式 选 择 位
多允 机许 通接 信收 控控 制制 位位
发 接发接 送 收送收 数 数中中 据 据断断 第 第标标 九 九志志 位位
北京交通大学
18
各位功能说明如下: SM0 SM1:串口工作方式选择位
00 方式0: 同步移位寄存器 波特率=主振频率/12
01 方式1: 8位异步,波特率可变
⑵在双机通信中,该位作为奇偶校验位; ⑶在多机通信中用来表示D7-D0是地址帧或数据帧
即:
D8=0:表示数据帧; D8=1:表示地址帧
北京交通大学
20位是接收到的第9位数据。 方式1,SM2=0,停止位。方式0,不用。
⑵在多机通信中是地址帧(RB8=1)和数据帧 (RB8=0)的标识位。
北京交通大学
34
方式2、3的区别是:波特率设置不同 方式2的波特率是固定的。即:
波特率=fosc/32或fosc/64 方式3的波特率是可变的。即:
波特率 2smod
fosc
32 12 (256 X )
X
256
fosc (2s mod ) 384 波特率
北京交通大学
35
表1 波特率与时间常数
第6章 串行通信接口
本章主要内容 • 串行数据通信基本原理 • MCS-51单片机串行口 • 串行口应用举例
北京交通大学
1
一、串行数据通信基本原理
计算机的两种方式数据传送:并行和串行
并行传送的特点:
各数据位同时传送,传送速度快、效率高。
但需要的数据线多,因此传送成本高。并行数据
传送的距离通常小于30米。
3.直到停止位到来之后把它送入到RB8中,并 置位RI,通知CPU从SBUF取走接收到的一个字符。

MCS-51串行口的工作方式

MCS-51串行口的工作方式

方ห้องสมุดไป่ตู้0——同步移位寄存器
时序
1.2 方式1——8位UART
数据在TxD发送,接收使用RxD 帧格式固定,每一帧数据共有10位,包括1个起始位、8个数据
位(最低有效位在前)、1个停止位 接收到的停止位保存到SCON的RB8中 波特率可变取决于T1或T2的溢出率、和PCON中的SMOD位 波特率因子为16
单片机原理与应用
MCS-51串行口的工作方式
方式0——同步移位寄存器 方式1——8位UART 方式2和3——9位UART
1.1 方式0——同步移位寄存器
串行数据通过RxD引脚输入或输出 TxD输出移位时钟 发送和接收不可同时进行 发送或接收的均为8位数据,最低有效位在前 波特率固定为单片机振荡频率的1/12
方式1——8位UART
时序
1.3 方式2和3——9位UART
数据在TxD发送,接收使用RxD 帧格式固定,每一帧数据共有11位,包括1个起始位、8个数据
位(最低有效位在前)、1个可编程的第9位数据、1个停止位。第 9位数据在发送时通过TB8赋值为0或1 接收时将第9位数据存入RB8中 波特率
方式2:只能为振荡器频率的1/32或1/64 方式3:与方式1时相同
方式2和3——9位UART
时序
单片机原理与应用

51单片机串口通信

51单片机串口通信

一、串口通信原理串口通讯对单片机而言意义重大,不但可以实现将单片机的数据传输到计算机端,而且也能实现计算机对单片机的控制。

由于其所需电缆线少,接线简单,所以在较远距离传输中,得到了广泛的运用。

串口通信的工作原理请同学们参看教科书。

以下对串口通信中一些需要同学们注意的地方作一点说明:1、波特率选择波特率(Boud Rate)就是在串口通信中每秒能够发送的位数(bits/second)。

MSC-51串行端口在四种工作模式下有不同的波特率计算方法。

其中,模式0和模式2波特率计算很简单,请同学们参看教科书;模式1和模式3的波特率选择相同,故在此仅以工作模式1为例来说明串口通信波特率的选择。

在串行端口工作于模式1,其波特率将由计时/计数器1来产生,通常设置定时器工作于模式2(自动再加模式)。

在此模式下波特率计算公式为:波特率=(1+SMOD)*晶振频率/(384*(256-TH1))其中,SMOD——寄存器PCON的第7位,称为波特率倍增位;TH1——定时器的重载值。

在选择波特率的时候需要考虑两点:首先,系统需要的通信速率。

这要根据系统的运作特点,确定通信的频率范围。

然后考虑通信时钟误差。

使用同一晶振频率在选择不同的通信速率时通信时钟误差会有很大差别。

为了通信的稳定,我们应该尽量选择时钟误差最小的频率进行通信。

下面举例说明波特率选择过程:假设系统要求的通信频率在20000bit/s以下,晶振频率为12MHz,设置SMOD=1(即波特率倍增)。

则TH1=256-62500/波特率根据波特率取值表,我们知道可以选取的波特率有:1200,2400,4800,9600,19200。

列计数器重载值,通信误差如下表:因此,在通信中,最好选用波特率为1200,2400,4800中的一个。

2、通信协议的使用通信协议是通信设备在通信前的约定。

单片机、计算机有了协议这种约定,通信双方才能明白对方的意图,以进行下一步动作。

假定我们需要在PC机与单片机之间进行通信,在双方程式设计过程中,有如下约定:0xA1:单片机读取P0端口数据,并将读取数据返回PC机;0xA2:单片机从PC机接收一段控制数据;0xA3:单片机操作成功信息。

串口的工作方式---51系列单片机

串口的工作方式---51系列单片机

串口的工作方式---51系列单片机串口的工作方式---51系列单片机串行口分四种工作方式,由SCON中的SMO、SM1二位选择决定。

1.方式0(1)特点1.用作串行口扩展,具有固定的波特率,为Fosf/12。

2.同步发送/接收,由TXD提供移位脉冲,RXD用作数据输入/输出通道。

3.发送/接收8位数据,低位在先。

(2)发送操作当执行一条“MOV SBUF,A”指令时,启动发送操作,由TXD 输出移位脉冲,由RXD串行发送SBUF中的数据。

发送完8位数据后自动置TI=1,请求中断。

要继续发送时,T1必须有指令清零。

(3)接收操作在RI=0条件下,置REN=1,启动一帧数据的接收,由TXD输出移位脉冲,由RXD接收串行数据到A中。

接收完一帧自动置位RI,请求中断。

想继续接收时,要用指令清零RI。

2.方式1(1)特点1.8位UART接口。

2.帧结构为10位,包括起始位(为0),8位数据位,1位停止位。

3.波特率由指令设定,由T1的溢出率决定。

(2)发送操作当执行一条“MOV SBUF,A”指令时,启动发送操作,A中的数据从TXD端实现异步发送。

发送完一帧数据后自动置TI=1,请求中断。

要继续发送时,TI必须由指令清零。

(3)接收操作当置REN=1时,串行口采样RXD,当采样到1至0的跳变时,确认串行数据帧的起始位,开始接收一帧数据,直到停止位到来时,把停止位送入RB8中。

置位RI请求中断。

CPU取走数据后用指令清零RI。

3.方式2和方式3方式2和方式3具有多机通信功能,这两种方式除了波特率不同以外,其余完全相同。

(1)特点1.9位UART接口。

2.帧结构为11位,包括起始位(为0)、8位数据位、1位可编程位TB8/RB8和停止位(为1)。

3.波特率在方式2时为固定FOSC/32或FOSC/64,由SMOD位决定,当SMOD=1时,波特率为FOSC/32;当SMOD=0 时,波特率为FOSC/64。

方式3的溢出率由T1的溢出率决定。

51单片机-串行口ppt课件

51单片机-串行口ppt课件

为发送时CPU是主动的,不会产生重叠错误。
最新课件
21
8.2.2 80C51串行口的控制寄存器
SCON 是一个特殊功能寄存器,用以设定串行口的工 作方式、接收/发送控制以及设置状态标志:
SM0和SM1为工作方式选择位,可选择四种工作方式:
最新课件
22
●SM2,多机通信控制位,主要用于方式2和方式3。 当接收机的SM2=1时可以利用收到的RB8来控制是否 激活RI(RB8=0时不激活RI,收到的信息丢弃; RB8=1时收到的数据进入SBUF,并激活RI,进而在 中断服务中将数据从SBUF读走)。当SM2=0时,不 论收到的RB8为0和1,均可以使收到的数据进入 SBUF,并激活RI(即此时RB8不具有控制RI激活的 功能)。通过控制SM2,可以实现多机通信。
起 空始 闲位
一个字符帧 数据位
校停 验止 位位
空 下一字符 闲 起始位
LSB
MSB
异步通信的特点:不要求收发双方时钟的
严格一致,实现容易,设备开销较小,但 每个字符要附加2~3位用于起止位,各帧 之间还有间隔,因此传输效率不高。
最新课件
9
2、同步通信
同步通信时要建立发送方时钟对接收方时钟的直接控制, 使双方达到完全同步。此时,传输数据的位之间的距离均 为“位间隔”的整数倍,同时传送的字符间不留间隙,即 保持位同步关系,也保持字符同步关系。发送方对接收方 的同步可以通过两种方法实现。
波特率=2SMOD/32×T1的溢出率 = 2SMOD × fosc/[ 32 × 12×(2K-初值)]
最新课件
19
回目录 上页 下页
3、传输距离与传输速率的关系
串行接口或终端直接传送串行信息位流的

51单片机串口多机通信的实现和编程

51单片机串口多机通信的实现和编程

51 单片机串口多机通信的实现和编程
一、51 单片机的主从模式,首先要设定工作方式3:(主从模式+波特率可变)
SCON 串口功能寄存器:SM0=1;SM1=1(工作方式3)
注:主机和从机都要为工作方式3。

【工作方式2 (SM0 SM1 :1 0):串行口为11 位异步通信接口。

发送或接收
一帧信息包括1 位起始位0、8 位数据位、1 位可编程位、1 位停止位1。


送数据:发送前,先根据通信协议由软件设置TB8 为奇偶校验位或数据标识位,然后将要发送的数据写入SBUF,即能启动发送器。

发送过程是由执行任何一条以SBUF 为目的寄存器的指令而启动的,把8 位数据装入SBUF,
同时还把TB8 装到发送移位寄存器的第9 位上,然后从TXD(P3.1)端口输出
一帧数据。

接收数据:先置REN=1,使串行口为允许接收状态,同时还要将RI 清0。

然后再根据SM2 的状态和所接收到的RB8 的状态决定此串行口在
信息到来后是否置R1=1,并申请中断,通知CPU 接收数据。

当SM2=0 时,
不管RB8 为0 还是为1,都置RI=1,此串行口将接收发送来的信息。


SM2=1 时,且RB8=1,表示在多机通信情况下,接收的信息为地址帧, 此时
置RI=1,串行口将接收发来的地址。

当SM2=1 时,且RB8=0,表示在多机通
信情况下,接收的信息为数据帧, 但不是发给本从机的,此时RI 不置为1,。

MCS-51的定时计数器

MCS-51的定时计数器

第六章MCS-51的定时/计数器1.如果采用晶振的频率为3MHz,定时器/计数器工作方式0、1、2下,其最大的定时时间为多少?解答:因为机器周期,所以定时器/计数器工作方式0下,其最大定时时间为;同样可以求得方式1下的最大定时时间为262.144ms;方式2下的最大定时时间为1024ms。

2.定时/计数器用作定时器时,其计数脉冲由谁提供?定时时间与哪些因素有关?答:定时/计数器作定时时,其计数脉冲由系统振荡器产生的内部时钟信号12分频后提供。

定时时间与时钟频率和定时初值有关。

3.定时/计数器用作定时器时,对外界计数频率有何限制?答:由于确认1次负跳变要花2个机器周期,即24个振荡周期,因此外部输入的计数脉冲的最高频率为系统振荡器频率的1/24。

4.采用定时器/计数器T0对外部脉冲进行计数,每计数100个脉冲后,T0转为定时工作方式。

定时1ms后,又转为计数方式,如此循环不止。

假定MCS-51单片机的晶体振荡器的频率为6MHz,请使用方式1实现,要求编写出程序。

解答:定时器/计数器T0在计数和定时工作完成后,均采用中断方式工作。

除了第一次计数工作方式设置在主程序完成外,后面的定时或计数工作方式分别在中断程序完成,用一标志位识别下一轮定时器/计数器T0的工作方式。

编写程序如下:ORG 0000HLJMP MAINORG 000BHLJMP IT0PMAIN: MOV TMOD,#06H ;定时器/计数器T0为计数方式2MOV TL0,#156 ;计数100个脉冲的初值赋值MOV TH0,#156SETB GATE ;打开计数门SETB TR0 ;启动T0,开始计数SETB ET0 ;允许T0中断SETB EA ;CPU开中断CLR F0 ;设置下一轮为定时方式的标志位WAIT: AJMP WAITIT0P: CLR EA ;关中断JB F0,COUNT ;F0=1,转计数方式设置MOV TMOD,#00H ;定时器/计数器T0为定时方式0MOV TH0,#0FEH ;定时1ms初值赋值MOV TL0,#0CHSETB EARETICOUNT: MOV TMOD,#06HMOV TL0,#156SETB EARETI5. 定时器/计数器的工作方式2有什么特点?适用于哪些应用场合?答:定时器/计数器的工作方式2具有自动恢复初值的特点,适用于精确定时,比如波特率的产生。

51单片机串行口的工作方式

51单片机串行口的工作方式
☞再比如要显示“3” 须令a b c d g 为“0” 电平,e f h为“1”电平。
hgfedcba
a
fg b
e
c
dh
共阳极
累加器 A hgfedcba
0C0H = “0”
0B0H = “3”
例:利用串行口工作方式0扩展出8位并行I/O 口,驱动共阳LED数码管显示0—9。
VCC TxD RxD
☞方式2的波特率 = fosc 2SMOD/64 即: fosc 1/32 或 fosc 1/64 两种
☞奇偶校验是检验串行通信双方传输的数据正确与 否的一个措施,并不能保证通信数据的传输一定正 确。
换言之:如果奇偶校验发生错误,表明数据传输 一定出错了;如果奇偶校验没有出错,绝不等于数 据传输完全正确。
☞ REN:串行口接收允许位。 REN=1 允许接收
☞ TB8,RB8,TI,RI等位由运行中间的情况 决定,可先写成 “0”
三、工作方式2: 9位UART(1+8+1+1位)两种波特率
☞由于波特率固定,常用于单片机间通讯。 数据由8+1位组成,通常附加的一位 (TB8/RB8)用于“奇偶校验”。
☞ 溢出率:T1溢出的频繁程度 即:T1溢出一次所需时间的倒数。
☞ 波特率 =
2SMOD fosc 32 12(2n - X)
其中:X 是定时器初值
☞ 初值 X = 2n -
2SMOD fosc 32 波特率 12
常用波特率和T1初值查表
☞表格有多种, 晶振也不止一种
串口波特率 (方式1,3)
74LS164
hgfedcba
A B
CLK
CLR
74LS164

MCS51的串行口PPT

MCS51的串行口PPT
其他工作方式,串行接受到停止位时,该位置“1”。 RI=1,表达一帧数据接受完毕,并申请中断, CPU从 接受SBUF取走数据。该位状态也可软件查询。RI必 须由软件清“0”。
6.1.2 特殊功能寄存器PCON
字节地址为87H,没有位寻址功能。
SMOD:波特率选择位。 例如:方式1旳波特率旳计算公式为: 方式1波特率=(2SMOD/32)×定时器T1旳溢出率
图6-14 流水灯显示电路图
ORG 0000H LJMP MAIN ORG 2023H MAIN: MOV SCON,#00H ;置串行口工作方式0 MOV A,#80H :最高位灯先亮 CLR P1.1 ;关闭并行输出(避象传播过程中,各 LED旳“暗红”现象) OUT0: MOV SBUF,A ;开始串行输出 OUT1: JNB TI,OUT1 ;输出完否? CLR TI ;完了,清TI标志,以备下次发送 SETB P1.1 ;打开并行口输出 ACALL DELAY ;延时一段时间 RR A ;循环右移 CLR P1.1;关闭并行输出 SJMP OUT0;循环 DELAY: …………;延时子程序,不再反复
假如SM2=0,则不论第9位数据是“1”还是“0”,都 将 前8位数据送入SBUF中,并置“1” RI,产生 中断祈求。
在方式1时,假如SM2=1,则只有收到停止位时才会激 活RI。
在方式0时,SM2必须为0。
(3)REN——允许串行接受位
由软件置“1”或清“0”。
REN=1 允许串行口接受数据。 REN=0 禁止串行口接受数据。 (4)TB8——发送旳第9位数据 方式2和3时,TB8是要发送旳第9位数据,可作为奇偶 校验位使用,也可作为地址帧或数据帧旳标志。 =1为地址帧, =0为数据帧 (5)RB8——接受到旳第9位数据 方式2和3时,RB8存储接受到旳第9位数据。在方式1 ,假如SM2=0,RB8是接受到旳停止位。在方式0, 不使用RB8。 (6)TI——发送中断标志位

简述mcs-51单片机中定时器方式0、方式1和方式2的工作特点。

简述mcs-51单片机中定时器方式0、方式1和方式2的工作特点。

MCS-51单片机中定时器的方式0、方式1和方式2具有不同的工作特点。

方式0是一个13位的定时器/计数器,其使用了16位寄存器(TH0和TL0)中的13位,包括TL0的低5位和TH0的8位,而TL0的高3位并未使用。

方式1是一个16位的定时器/计数器,TH0和TL0对应的16位全部参与计数运算。

当TH0和TL0计数满溢出时,硬件会自动将TF0置位并申请中断,同时16位加1计数器会从0开始继续计数。

在定时工作方式下,定时时间t对应的初值为X=216–t×fosc/12。

在计数工作方式下,计数长度最大为216=65536(个外部脉冲)。

方式2的特点是初值只需设置一次,每次溢出后,初值会自动从TH0加载到TL0或从TH1加载到TL1,但计数范围比方式1小。

在方式2中,只有TL0用作8位计数器参与脉冲计数工作,TH0不参与计数,只用来保存初值。

以上信息仅供参考,建议咨询专业计算机技术人员或者查阅专业书籍了解更多详细信息。

第7章AT89S51单片机的串行口

第7章AT89S51单片机的串行口

PCONSMOD — — — GF1 GF0 PD IDL
GF1,GF0:用户可自行定义使用的通用标志位 GF1: General purpose Flag bit. GF0 :General purpose Fபைடு நூலகம்ag bit.
PD:掉电方式控制位 Power Down bit. =0:常规工作方式. =1:进入掉电方式:振荡器停振片内RAM和SRF的
例如:120字符/秒,1个字符10位, 波特率为:120×10=1200bps 平均每一位传送占用时间:Td=1/1200=0.833ms
常用的波特率有:(离散) 19200/9600/4800/2400/1200/600/300/150/100
/50, 还有10M/100M
7.1.1 与串行通信有关的寄存器
TB8:在串行工作方式2和方式3中,是要发送的第9位数据。 The 9th bit that will be transmitted in modes 2&3. Set/Cleared
by software 多机通信中: TB8=0 表示发送的是数据;
TB8=1 表示发送的是地址.
RB8:在串行工作方式2和方式3中,是收到的第9位数据.该数据来自发
REN:串行口接收允许控制位 Set/Cleared by software to Enable/Disable reception
=1 允许接收; (SETB REN) =0 禁止接收.
系统复位后,REN=0,不允许接受
SM0 SM1 SM2 REN TB8 RB8 TI RI
模式选择 多机通讯位 允许接收位 发送、接收第9位 发送、接收标志
1
1
3 Split timer mode (Timer 0) TL0 is an 8-bit Timer/Counter controlled by the

MCS-51单片机IO口详解

MCS-51单片机IO口详解

MCS-51单片机IO口详解单片机I O口结构及上拉电阻MCS-51有4组8位I/O口:P0、P1、P2和P3口,P1、P2和P3为准双向口,P0口则为双向三态输入输出口,下面我们分别介绍这几个口线。

一、P0口和P2口图1和图2为P0口和P2口其中一位的电路图。

由图可见,电路中包含一个数据输出锁存器(D触发器)和两个三态数据输入缓冲器,另外还有一个数据输出的驱动(T1和T2)和控制电路。

这两组口线用来作为CPU与外部数据存储器、外部程序存储器和I/O扩展口,而不能象P1、P3直接用作输出口。

它们一起可以作为外部地址总线,P0口身兼两职,既可作为地址总线,也可作为数据总线。

图1单片机P0口内部一位结构图图2 单片机P0口内部一位结构图P2口作为外部数据存储器或程序存储器的地址总线的高8位输出口AB8-AB15,P0口由ALE 选通作为地址总线的低8位输出口AB0-AB7。

外部的程序存储器由PSEN信号选通,数据存储器则由WR和RD 读写信号选通,因为2^16=64k,所以MCS-51最大可外接64kB的程序存储器和数据存储器。

二、P1口图3为P1口其中一位的电路图,P1口为8位准双向口,每一位均可单独定义为输入或输出口,当作为输入口时,1写入锁存器,Q(非)=0,T2截止,内上拉电阻将电位拉至"1",此时该口输出为1,当0写入锁存器,Q(非)=1,T2导通,输出则为0。

Newbuff图3 单片机P2口内部一位结构图作为输入口时,锁存器置1,Q(非)=0,T2截止,此时该位既可以把外部电路拉成低电平,也可由内部上拉电阻拉成高电平,正因为这个原因,所以P1口常称为准双向口。

需要说明的是,作为输入口使用时,有两种情况:1.首先是读锁存器的内容,进行处理后再写到锁存器中,这种操作即读—修改—写操作,象JBC(逻辑判断)、CPL(取反)、INC(递增)、DEC(递减)、ANL(与逻辑)和ORL(逻辑或)指令均属于这类操作。

51单片机串行口的工作方式解析

51单片机串行口的工作方式解析

51单片机串行口的工作方式解析方式0是外接串行移位寄存器方式。

工作时,数据从RXD串行地输入/输出,TXD输出移位脉冲,使外部的移位寄存器移位。

波特率固定为fosc/12(即,TXD 每机器周期输出一个同位脉冲时,RXD接收或发送一位数据)。

每当发送或接收完一个字节,硬件置TI=1或RI=1,申请中断,但必须用软件清除中断标志。

实际应用在串行I/O口与并行I/O口之间的转换。

2)方式1方式1是点对点的通信方式。

8位异步串行通信口,TXD为发送端,RXD为接收端。

一帧为10位,1位起始位、8位数据位(先低后高)、1位停止位。

波特率由T1或T2的溢出率确定。

在发送或接收到一帧数据后,硬件置TI=1或RI=1,向CPU申请中断;但必须用软件清除中断标志,否则,下一帧数据无法发送或接收。

(1)发送:CPU执行一条写SBUF指令,启动了串行口发送,同时将1写入输出移位寄存器的第9位。

发送起始位后,在每个移位脉冲的作用下,输出移位寄存器右移一位,左边移入0,在数据最高位移到输出位时,原写入的第9位1的左边全是0,检测电路检测到这一条件后,使控制电路作最后一次移位,/SEND和DATA 无效,发送停止位,一帧结束,置TI=1。

(2)接收:REN=1后,允许接收。

接收器以所选波特率的16倍速率采样RXD端电平,当检测到一个负跳变时,启动接收器,同时把1FFH写入输入移位寄存器(9位)。

由于接、发双方时钟频率有少许误差,为此接收控制器把一位传送时间16等分采样RXD,以其中7、8、9三次采样中至少2次相同的值为接收值。

接收位从移位寄存器右边进入,1左移出,当最左边是起始位0时,说明已接收8位数据,再作最后一次移位,接收停止位。

此后:A、若RI=0、SM2=0,则8位数据装入SBUF,停止位入RB8,置RI=1。

B、若RI=0、SM2=1,则只有停止位为1时,才有上述结果。

C、若RI=0、SM2=1,且停止位为0,则所接数据丢失。

51单片机IO口应用详解

51单片机IO口应用详解

51单片机IO口应用详解MCS-51是标准的40引脚双列直插式集成电路芯片,引脚分布请参照单片机引脚图:这4个I/O口具有不完全相同的功能,大家可得学好了,其它书本里虽然有,但写的太深,对于初学者来说很难理解的,我这里都是按我自已的表达方式来写的,相信你也能够理解的。

P0口有三个功能:1、外部扩展存储器时,当做数据总线(如图1中的D0~D7为数据总线接口)2、外部扩展存储器时,当作地址总线(如图1中的A0~A7为地址总线接口)3、不扩展时,可做一般的I/O使用,但内部无上拉电阻,作为输入或输出时应在外部接上拉电阻。

P1口只做I/O口使用:其内部有上拉电阻。

P2口有两个功能:1、扩展外部存储器时,当作地址总线使用2、做一般I/O口使用,其内部有上拉电阻;P3口有两个功能:除了作为I/O使用外(其内部有上拉电阻),还有一些特殊功能,由特殊寄存器来设置,具体功能请参考我们后面的引脚说明。

有内部EPROM的单片机芯片(例如8751),为写入程序需提供专门的编程脉冲和编程电源,这些信号也是由信号引脚的形式提供的,即:编程脉冲:30脚(ALE/PROG)编程电压(25V):31脚(EA/Vpp)在介绍这四个I/O口时提到了一个“上拉电阻”那么上拉电阻又是一个什么东东呢?他起什么作用呢?都说了是电阻那当然就是一个电阻啦,当作为输入时,上拉电阻将其电位拉高,若输入为低电平则可提供电流源;所以如果P0口如果作为输入时,处在高阻抗状态,只有外接一个上拉电阻才能有效。

ALE 地址锁存控制信号:在系统扩展时,ALE用于控制把P0口的输出低8位地址送锁存器锁存起来,以实现低位地址和数据的隔离。

参见图2(8051扩展2KB EEPROM电路,在图中ALE与4LS373锁存器的G相连接,当CPU对外部进行存取时,用以锁住地址的低位地址,即P0口输出。

由于ALE是以晶振六分之一的固定频率输出的正脉冲,当系统中未使用外部存储器时,ALE脚也会有六分之一的固定频率输出,因此可作为外部时钟或外部定时脉冲使用。

STC15系列51增强版单片机串行通信实现方法串行口1模式1,T2定时器

STC15系列51增强版单片机串行通信实现方法串行口1模式1,T2定时器

IAP15W4K58S4单片机串行通信实现方法串行口1模式1,T2定时器01基础知识当软件设置SCON的SM0和SM1为“01”时,串行口1则以模式1工作。

此模式为8为UART格式,一帧信息为10位;1位起始位,8位数据位(低位在先)和1位停止位。

TxD/P3.1位发送信息,RxD/P3.0位接收信息,串口全双工。

串行口涉及的相关寄存器如下表,串行通信模式1,其波特率可变,当串行口1用定时器T2作为波特率发生器时,串行口1的波特率=(定时器T2的溢出率)/4。

(此时波特率与SMOD无关)当T2工作在1T模式(AUXR.2/T2x12=1)时,定时器T2的溢出率=SYSclk/(65536-[RL_TH2,RL_TL2])。

02设置步骤(1)设置串口1的工作模式,SCON寄存器的SM0和SM1两位决定了串口1的4中工作方式,本文选用方式1,故SMON=0x50。

(2)设置串口1的波特率,使用定时器2寄存器T2H及T2L。

(3)设置寄存器AUXR中的T2x12/AUXR.2,确定定时器2速度是1T还是2T(4)启动定时器2,让T2R位为1,T2H/T2L定时器2寄存器立即开始计数。

(5)设置串口1的中断优先级,及打开中断相应的控制位是PS、ES、EA(6)如要串口1接收,先将SCON寄存器的REN位置1,若串口1发送,将数据送入SBUF即可,接收完的标志位RI,发送完成标志位TI,都要软件清0。

当串口1工作在模式1时,需要计算相应波特率设置的T2重装的初值(用Reload表示),送入T2H/T2L。

计算公式如下:Reload=65536-INT(SYSclk/Baud0/4+0.5)SYSclk=晶振频率,Baud0=标准波特率,INT()表示取整和运算,+0.5四舍五入。

设置时,T2x12/AUXR.2=1,1T工作模式,重新核算用Reload产生的波特率,Baud= SYSclk/(65536-Reload)/4。

51单片机C语言应用开发实例精讲8结构实例6:单片机的串口通信

51单片机C语言应用开发实例精讲8结构实例6:单片机的串口通信

8. 结构实例6:单片机串口通信虽然那个流水灯游戏的可玩性和按键手感问题还值得再好好提升一下,但小月更希望调剂一下,转而开始了对手头烧写板上关于RS-232转换部分的学习。

小月的做法并不难以理解,毕竟与RS-232转换的相关电路在原理图中还是相当显眼的,甚至于他手头编程器的别名就是RS-232转换器。

图8.1 单片机中负责RS-232通讯的电路在烧写器一端与电脑连接的两个接头中,9针的RS-232接口就是串口通信线,而另一个USB口仅接通了+5V和GND,只有给烧写器供电的作用。

这样就可以知道,电脑可以通过RS-232对单片机的内部程序进行改写。

那么,这就意味着单片机与电脑间必然可以进行数据的交换,这种交换,就叫做通信。

所谓串口通信,就是指这种基于RS-232串口的通信方式。

RS-232(ANSI/EIA-232标准)是IBM-PC及其兼容机上的串行连接标准。

最早是为使电脑通过电话线系统相互通信的调制解调器上而是设计的。

后来发展到连接鼠标或打印机上,目前已经被支持设备的即插即用和热插拔功能的USB所替代,但仍广泛的用于工业仪器仪表中,同时也是单片机最基础和最常见的通信方式。

不过要把“最基础和最常见”这两个最拆开来说,就要在后面加上“之一”了。

虽然目前的通信技术日新月异,但这种说法在今后很长一段时期内都是成立的,也正因为这样的特点,STC的51系列单片机都是默认通过RS-232方式进行烧写的。

作为两台设备之间进行的通信,必然需要共同遵守某种规定或规则,包括交流什么、怎样交流及何时交流。

这个规则就是通信协议。

RS-232通信中通信协议的原则就是串口按位(bit)发送和接收数据。

线路上,RS-232通信使用3根线完成,分别是地线、发送、接收。

端口能够在一根线上发送数据的同时在另一根线上接收数据,即全双工传输。

全双工传输是传输制式的一种分类方式中的一类,除此还有单工传输和半双工传输。

单工传输,是指消息只能单方向传输的工作方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RXD
7.1.1 串行口控制寄存器SCON b7 b6 b5 b4 b3 b2 b1 TI b0 RI
SM0 SM1 SM2 REN TB8 RB8
9FH 9EH 9DH 9CH 9BH 9AH 99H 98H
SM0、SM1 —— 串行接口工作方式定义位
• SM0、SM1 = 00 —— 方式 0,8位同步移位寄存器 • SM0、SM1 = 01 —— 方式 1,10 位异步接收发送 • SM0、SM1 = 10 —— 方式 2,11 位异步接收发送 • SM0、SM1 = 11 —— 方式 3,11 位异步接收发送 注意: 方式 0 的特点,方式 2、方式 3 的差异
寄存器 SCON、PCON、SBUF
寄存器 IE、IP
• MCS-51 单片机串Fra bibliotek接口工作方式 方式 0 方式 2 方式 1 方式 3
有两个数据缓冲寄存器 SBUF,一个输入移位寄存器,一个 串行控制寄存器SCON和一个特殊功能寄存器PCON等组成。 8 位SBUF是全双工串行接口寄存器, 它是特殊功能寄存器, 地址为 99H,不可位寻址;串行输出时为发送数据缓冲器,发送
时钟振荡频率为6MHz或12 MHz时,产生的比特率偏差较大, 故用到串口通信时通常选用11.0592MHZ晶体振荡器。
串行口的结构
• MCS-51 单片机串行接口的硬件
P3.0 位的第二功能 —— 收端 RXD P3.1 位的第二功能 —— 发端 TXD
• MCS-51 单片机串行接口的控制
比特率 比特率
= /12
P.110
=
/32 计1次 计3次 计3次 计6次 计12次 计24次
=
/12/计次/16
9600bps
1200bps
9.6kbit/s 实际10.416 = 6MHz/12/计次/16 1.2kbit/s 实际1.302 = 6MHz/12/计次/32
1 0
0 0
2 2
FDH F4H
写入SBUF后自动开始发 送
请求中断
图5-1
CPU响应中断后:CLR TI
5.2 用AT89C51的串行口扩展并行口 5.2.2 用74LS164扩展并行输出口
74LS164:8位串入并出移位寄存器。
图是利用74LS164扩展二个8位并行输出口的接口电路。 . 每当新数据写入SBUF,即把SBUF中的8位数据以串行移 出
并行锁存 串行口工作于方式0: 同步移位寄存器方式 接收
fosc/12
图9-21
5.2.2
方式1 :8位异步收发,比特率可变(由定时器控制)
SM0、SM1=01 方式1一帧数据为10位,1个起始位(0),8个数据位,1个停止 位(1),先发送或接收最低位。帧格式如图7-7:
图7-7 方式1比特率=(2SMOD/32)×定时器T1的溢出率 SMOD为PCON寄存器的最高位的值(0或1)。
P.105
1.方式1发送
写入SBUF后自动开始发 送
图7-8 2.方式1接收
请求中断 可写下一个要发送的数据
图7-9
请求中断 可从SBUF读取新接收的数据
P.109 5.3.1 比特率的制定方法 方式 0、方式2的比特率是固定的;方式 1、方式3比特率由定时器 T1的 溢出率来确定。 5.3.2 定时器T1产生比特率的计算 (1)方式0波特率=时钟频率fosc×1/12,不受SMOD位的值的影响。若 fosc=12MHz,比特率为fosc/12即1Mb/s。 (2)方式2波特率=(2SMOD/64)×fosc 若fosc=12MHz: SMOD=0 比特率=187.5kb/s; SMOD=1 比特率=375kb/s (3)方式1或方式3时,比特率为: 比特率= (2SMOD/32)×T1的溢出率 = fosc/12/(T1计数次数) × (2SMOD/32) 实际设定比特率时,T1常设置为方式2定时(自动装初值)这种方式不仅操 作方便,也可避免因软件重装初值而带来的定时误差。
串口工作方式
5.1 方式0 同步移位寄存器方式,比特率固定为fosc/12。 常用于外接移位寄存器,以扩展并行I/O口,SM2位必须为0 。 1.方式0发送: 当CPU执行写入发送缓冲器SBUF的指令时,串行口即把SBUF 中的8位数据以fosc/12的固定比特率从RXD引脚串行输出,低 位在先,TXD引脚输出同步移位脉冲,发送完8位数据置“1” 中断标志位TI
串行口控制寄存器SCON
b7
b6
b5
b4
b3
b2
b1 TI
b0 RI
SM0 SM1 SM2 REN TB8 RB8
9FH 9EH 9DH 9CH 9BH 9AH 99H 98H
SM2 —— 多机通信控制位(方式2和3)
• SM2 = 0,无多机通信
• SM2 = 1,允许多机通信
REN —— 串行口接收数据控制位
寄存器只写不读,数据从

发送端TXD(P3.1)输出; 串行输入时为接收数 据缓冲器,接收寄存 器只读不写,数据从
CPU
波 特 率 发 生 器 T1
SBUF
发送控制器 串行口中断
TXD TI

接收端 RXD(P3.0)
输入;由指令确定是对发 送寄存器或接收寄存器作用。
接收控制器 RI
SBUF
移位寄存器
收到8位数据时置“1” RI。表示一帧数据接收完,时序如下:
RI=‘0’时
其中REN=‘1’
请求中断
图5-2
CPU响应中断后:CLR RI
P.159-160
5.2.1
用74LS165扩展并行输入口
74LS165:8位并入串出移位寄存器。 图9-22是利用74LS164扩展二个8位并行输入口的接口电路。 每当向SCON写入控制字为方式0且 REN=“1” ,即串行移入8位数据到SBUF
RXD/ TXD/
清0 串行口工作于方式0: 同步移位寄存器方式 发送
fosc/12
图5-2-1
74HC595: 8位串入并出移位寄存器,带锁存及三态输出功能。 (相当于74LS164+273+244)
2.方式0接收
写入SBUF后自动开始发 送
向串口的 SCON 写入控制字(置为方式 0 ,并置“ 1 ” REN 位, 同时RI=0)时,串行口即开始接收数据。RXD为数据输入端, TXD 为移位脉冲信号输出端,也以 fosc/12 的固定比特率,当
相关文档
最新文档