非劣效性、等效性临床试验
实用文库汇编之非劣效、等效性、优效性
**实用文库汇编之非劣效、等效和优效性检验及其适用范围摘要:在对国内临床研究报告的审评中我们经常遇到以传统的显著性检验代替非劣效等设计的检验的情况,下文探讨了二者的区别及适用范围。
关键词:非劣效试验等效性试验优效性试验一、传统检验和区间检验药品的临床试验一般要求设计为随机、盲法和对照药物比较的研究,以判断和区别其实际的疗效如何,审评中我们常见到的错误是采用如下传统的假设检验:无效假设H0: A药的疗效-B药的疗效=0备择假设H1:A药的疗效≠B药的疗效结论:如P>0.05,按α=0.05的检验水准不能拒绝H0假设,如P≤0.05,则接受H1假设。
目前已经公认这种传统的假设检验(又称显著性检验)用于临床试验判断药物的疗效是不合理的,它不能准确区分两药疗效差异的方向性和体现差异大小所揭示的临床实际意义,因此国际普遍采用非劣效、等效或优效性假设检验。
传统的假设检验之所以不合理,在于两个方面,一方面它所推断的是两个总体均数在统计学是否不相等,是纯粹的统计学意义,而未体现实际的临床意义,虽然有单双侧之分,如单侧为H0:μ1-μ2=0,H1:μ1-μ2>0(或μ1-μ2<0),但它检验的依然是样本所代表的总体均数的统计学含义,而未将实际临床意义包含进来考虑。
另一方面,对于传统检验的结论,如P>0.05,表示两药疗效的差别无统计学意义, 不拒绝H0假设,说明现有数据尚无法对两药疗效的总体均数是否不等的判断下结论,并不是当然的接受H0假设,并非认为H0假设必然成立而两药疗效的总体均数一定相等,此时有可能两药疗效的总体均数确实相似,也有可能是检验效能(把握度)不够,尚需更大样本量进行检验;如P≤0.05,两药疗效的差别有统计学意义,也就是说,两药疗效的总体均数确实不相等,但这种统计学意义的差异不一定具有实际的临床意义,也可能其临床意义却是优效、等效或非劣效的。
因此,临床试验的统计学家们提出了区间假设检验的方法,提出以临床意义的差异Δ来进行假设检验,这就是非劣效、等效和优效性检验的概念和方法。
临床试验中的非劣效性、优效性和等效性检验
临床试验中的非劣效性、优效性和等效性检验来源:医药魔方在评价临床试验的疗效时,常用的假设检验有非劣效性试验(non-inferiority trial)、等效性试验(equivalence trial)和优效性试验(superiority trial)。
非劣效性试验是检验一种药物是否不劣于另一种药物的试验,多用于有客观疗效指标的临床研究中,如抗菌药物的临床终点、心血管治疗中的不良事件、肿瘤治疗中的死亡或进展等。
非劣效性试验的原假设为试验药(T)总体疗效比对照药(C)总体疗效要差,且差值是-(非劣效性界值)或更小的负值;而备择假设为试验药总体疗效要比对照药好,或者虽然比对照药差,但其差值比-大。
拒绝了原假设即可得出试验药比对照药非劣效的结论。
等效性试验是检验一种药物是否与另一种药物疗效“相等”的试验(实际为相差不超过一个指定的界值)。
例如研究仿制药与原药的疗效是否“相等”、小剂量来替代大剂量的疗效是否“相等”、短疗程药物来替代长疗程药物的疗效是否“相等”。
其原假设为总体参数间差别超过或等于一个研究者规定的等效性界值,而备择假设为总体参数间差别小于研究者规定的等效性界值。
为了说明“等效”,需要同时进行两次非劣效检验,分别推断。
仅当既说明试验药非劣效于对照药,又说明对照药非劣效于试验药时,才能得出两药“等效”的结论。
优效性试验是检验一种药物是否优于另一种药物的试验,一般对于以安慰剂作为对照的试验常用优效性试验。
优效性试验的原假设为试验药(T)总体疗效等于对照药(C)的总体疗效,或试验药劣于对照药;而备择假设为试验药总体疗效优于对照药。
拒绝了原假设即可得出试验药比对照药优效的结论。
优效性、等效性和非劣效性试验示意图以上三种试验都是临床研究常见的研究假设,其中以非劣效性试验应用最为广泛。
在临床研究的具体应用中,研究者要明确三种试验的不同之处,并结合自身的研究设计和研究目的来选择正确的试验方法以及相对应的统计分析技术,以期得到合理的统计推断与研究结论。
非劣效等效性优效性修订稿
非劣效等效性优效性集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-非劣效、等效和优效性检验及其适用范围摘要:在对国内临床研究报告的审评中我们经常遇到以传统的显着性检验代替非劣效等设计的检验的情况,下文探讨了二者的区别及适用范围。
关键词:非劣效试验等效性试验优效性试验一、传统检验和区间检验药品的临床试验一般要求设计为随机、盲法和对照药物比较的研究,以判断和区别其实际的疗效如何,审评中我们常见到的错误是采用如下传统的假设检验:无效假设H0:A药的疗效-B药的疗效=0 备择假设H1:A药的疗效≠B药的疗效结论:如P>0.05,按α=0.05的检验水准不能拒绝H0假设,如P≤0.05,则接受H1假设。
目前已经公认这种传统的假设检验(又称显着性检验)用于临床试验判断药物的疗效是不合理的,它不能准确区分两药疗效差异的方向性和体现差异大小所揭示的临床实际意义,因此国际普遍采用非劣效、等效或优效性假设检验。
传统的假设检验之所以不合理,在于两个方面,一方面它所推断的是两个总体均数在统计学是否不相等,是纯粹的统计学意义,而未体现实际的临床意义,虽然有单双侧之分,如单侧为H0:μ1-μ2=0,H1:μ1-μ2>0(或μ1-μ2<0),但它检验的依然是样本所代表的总体均数的统计学含义,而未将实际临床意义包含进来考虑。
另一方面,对于传统检验的结论,如P>0.05,表示两药疗效的差别无统计学意义,不拒绝H0假设,说明现有数据尚无法对两药疗效的总体均数是否不等的判断下结论,并不是当然的接受H0假设,并非认为H0假设必然成立而两药疗效的总体均数一定相等,此时有可能两药疗效的总体均数确实相似,也有可能是检验效能(把握度)不够,尚需更大样本量进行检验;如P≤0.05,两药疗效的差别有统计学意义,也就是说,两药疗效的总体均数确实不相等,但这种统计学意义的差异不一定具有实际的临床意义,也可能其临床意义却是优效、等效或非劣效的。
临床非劣效性与等效性评价的统计学方法
临床非劣效性与等效性评价的统计学方法以安慰剂作为对照的随机双盲临床试验一直被视为药物开发中的金标准,它在确认新的试验药物的疗效优于安慰剂方面发挥着重要的作用。
然而,如果有现成的疗效肯定的药物,仍用安慰剂对照做临床试验,会面临伦理上的困难。
随着愈来愈多可供应用的有效药物的出现,疗效有突破的新药愈来愈少,因而药物临床研究的目的发生了转变。
在阳性对照试验中,更多的情形是探求新药与标准的有效药物相比其疗效是否不差或疗效相等(严格地说,疗效相等应该是既不比标准药差,也不比标准药好),而并不一定要知道新药是否优于标准药,由此而提出了非劣效性/等效性试验(noninfer_iority/equivalencetrials)[1]。
非劣效性/等效性试验与通常意义下的优效性试验(superioritytrials)在设计和统计分析上是有区别的。
近年来,尽管对设计和分析该类试验已给予强调,但遗憾的是,许多非劣效性/等效性临床试验的评价缺少针对性,仍仿照安慰剂对照试验的方式进行,因而导致了非劣效性/等效性试验的样本含量估计、无效假设和备选假设确定、统计学分析和结论推断等方面的不够合理,难以达到设想的目的[2]。
本文拟主要介绍有关非劣效性/等效性试验中涉及的统计学分析方面的一些具体问题,至于在设计时还必须考虑的有关对照的选定等问题可参考文献[2]及ICH文件E10:“临床试验对照的选择”[3]。
1非劣效性/等效性界值从临床上讲,一种新药的药效不比标准对照药差,到底临床上可接受的最大允许的范围是多少呢?或者说,新药比对照药最低到多大程度才能算“非劣效(noninferiority)”呢?类似地,新药和对照药的疗效相比,最低不能低于多少以及最高不能超过多少才可认为是“等效(eq uivalence)”呢?这就涉及到临床非劣效性/等效性界值(nonferiority/equivalencemargin)的问题。
为叙述方便,我们统一用δ表示界值,并以-δ表示劣侧界值,以δ表示优侧界值。
差异性、优效性、等效性和非劣效性检验的区别
差异性、优效性、等效性和非劣效性检验的区别在临床研究工作中,我想大部分临床研究者都听说过优效性、等效性和非劣效性检验等,有很多人也很明白,但也有人尚不太清楚它们之间的区别,本期我们将和大家一起来讨论这一问题。
1、什么是差异性检验?差异性检验,大家天天都在用,其实大家的论文里大部分用的都是差异性检验。
比如独立样本t检验,两个可选的假设分别是A=B 和A≠B。
这就是差异性检验,或者叫不等的检验,意思就是A和B 两组有差异、不相等。
什么意思呢?就是检验A-B=0这一公式成立与否。
比如同一批病人,我们随机分成A和B组,然后检验A组和B组患者血红蛋白水平的高低,这就是差异性检验。
即A组和B组之间有差异,什么叫有差异,就是两组间的差异不等于0。
跟上述内容相反的是,当我们将A组和B组之间的差异跟一个既定的值(Δ)比较时,就产生了一系列的检验,如优效性、等效性和非劣效性检验。
下面这个图可以先看一下:2、什么是优效性、等效性和非劣效性检验?上述三种检验在临床药物试验中应用最多,当我们研制一种新药物的时候我们总是盼着新药的疗效比较好,或者跟旧药差不多。
我想没有人会盼着研制的新药的疗效差于旧的药物,那么还研制它干嘛啊。
基于上述三种情况,就提出了三个用于新药临床试验的检验思路,分别是优效性、等效性和非劣效性检验。
下面分别说明,先假设一个例子,某研究者要研究A药与B药的关系,他能够接受的差值是Δ。
2.1 优效性检验研究目的:A药的效果好于B药。
研究假设:(1)无效假设:A-B≤Δ;(2)备择假设:A-B>Δ。
备注:用来证实新药A的效果好于旧药B,来判断新药A上市的情况。
它是一个单侧的检验。
2.2 等效性检验研究目的:A药的效果等于B药。
研究假设:(1)无效假设:A-B≤-Δ或A-B≥Δ;(2)备择假设:-Δ<A-B<Δ。
备注:常用于同一活性成分的药物之间的疗效比较,证实的是A 药和B药的疗效相当。
它可以是单侧也可以是双侧的检验。
非劣效等效和优效性检验及其适用范围
非劣效等效和优效性检验及其适用范围发布日期20061120栏目标题作者部门正文内容化药药物评价>> 临床安全性和有效性评价非劣效、等效和优效性检验及其适用范围黄钦审评四部审评八室黄钦摘要:在对国内临床研究报告的审评中我们经常遇到以传统的显著性检验代替非劣效等设计的检验的情况,下文探讨了二者的区别及适用范围。
关键词:非劣效试验等效性试验优效性试验一、传统检验和区间检验药品的临床试验一般要求设计为随机、盲法和对照药物比较的研究,以判断和区别其实际的疗效如何,审评中我们常见到的错误是采用如下传统的假设检验:无效假设H0: A药的疗效-B药的疗效=0备择假设H1 : A药的疗效MB药的疗效结论:如P>0.05,按a= 0.05的检验水准不能拒绝H0假设,如P< 0.05,则接受H1假设。
目前已经公认这种传统的假设检验(又称显著性检验)用于临床试验判断药物的疗效是不合理的,它不能准确区分两药疗效差异的方向性和体现差异大小所揭示的临床实际意义,因此国际普遍采用非劣效、等效或优效性假设检验。
传统的假设检验之所以不合理,在于两个方面,一方面它所推断的是两个总体均数在统计学是否不相等,是纯粹的统计学意义,而未体现实际的临床意义,虽然有单双侧之分,如单侧为H0: 口1- 口2=0,H1:2>0(或口1 口2<0)但它检验的依然是样本所代表的总体均数的统计学含义,而未将实际临床意义包含进来考虑。
另一方面,对于传统检验的结论,如P>0.05,表示两药疗效的差别无统计学意义,不拒绝H0假设,说明现有数据尚无法对两药疗效的总体均数是否不等的判断下结论,并不是当然的接受H0假设,并非认为H0假设必然成立而两药疗效的总体均数一定相等,此时有可能两药疗效的总体均数确实相似,也有可能是检验效能(把握度)不够,尚需更大样本量进行检验;如P< 0.05,两药疗效的差别有统计学意义,也就是说,两药疗效的总体均数确实不相等,但这种统计学意义的差异不一定具有实际的临床意义,也可能其临床意义却是优效、等效或非劣效的。
差异性、优效性、等效性和非劣效性检验的区别
差异性、优效性、等效性和非劣效性检验的区别在临床研究工作中,我想大部分临床研究者都听说过优效性、等效性和非劣效性检验等,有很多人也很明白,但也有人尚不太清楚它们之间的区别,本期我们将和大家一起来讨论这一问题。
1、什么是差异性检验?差异性检验,大家天天都在用,其实大家的论文里大部分用的都是差异性检验。
比如独立样本t检验,两个可选的假设分别是A=B和A≠B。
这就是差异性检验,或者叫不等的检验,意思就是A和B两组有差异、不相等。
什么意思呢?就是检验A-B=0这一公式成立与否。
比如同一批病人,我们随机分成A和B组,然后检验A组和B组患者血红蛋白水平的高低,这就是差异性检验。
即A组和B组之间有差异,什么叫有差异,就是两组间的差异不等于0。
跟上述内容相反的是,当我们将A组和B组之间的差异跟一个既定的值(Δ)比较时,就产生了一系列的检验,如优效性、等效性和非劣效性检验。
下面这个图可以先看一下:2、什么是优效性、等效性和非劣效性检验?上述三种检验在临床药物试验中应用最多,当我们研制一种新药物的时候我们总是盼着新药的疗效比较好,或者跟旧药差不多。
我想没有人会盼着研制的新药的疗效差于旧的药物,那么还研制它干嘛啊。
基于上述三种情况,就提出了三个用于新药临床试验的检验思路,分别是优效性、等效性和非劣效性检验。
下面分别说明,先假设一个例子,某研究者要研究A药与B药的关系,他能够接受的差值是Δ。
2.1 优效性检验研究目的:A药的效果好于B药。
研究假设:(1)无效假设:A-B≤Δ;(2)备择假设:A-B>Δ。
备注:用来证实新药A的效果好于旧药B,来判断新药A上市的情况。
它是一个单侧的检验。
2.2 等效性检验研究目的:A药的效果等于B药。
研究假设:(1)无效假设:A-B≤-Δ或A-B≥Δ;(2)备择假设:-Δ<A-B <Δ。
备注:常用于同一活性成分的药物之间的疗效比较,证实的是A药和B药的疗效相当。
它可以是单侧也可以是双侧的检验。
[2016最新精品]差异性、优效性、等效性和非劣效性检验的区别
差异性、优效性、等效性和非劣效性检验的区别在临床研究工作中,我想大部分临床研究者都听说过优效性、等效性和非劣效性检验等,有很多人也很明白,但也有人尚不太清楚它们之间的区别,本期我们将和大家一起来讨论这一问题。
1、什么是差异性检验?差异性检验,大家天天都在用,其实大家的论文里大部分用的都是差异性检验。
比如独立样本t检验,两个可选的假设分别是A=B和A≠B。
这就是差异性检验,或者叫不等的检验,意思就是A和B两组有差异、不相等。
什么意思呢?就是检验A-B=0这一公式成立与否。
比如同一批病人,我们随机分成A和B组,然后检验A组和B组患者血红蛋白水平的高低,这就是差异性检验。
即A组和B组之间有差异,什么叫有差异,就是两组间的差异不等于0。
跟上述内容相反的是,当我们将A组和B组之间的差异跟一个既定的值(Δ)比较时,就产生了一系列的检验,如优效性、等效性和非劣效性检验。
下面这个图可以先看一下:2、什么是优效性、等效性和非劣效性检验?上述三种检验在临床药物试验中应用最多,当我们研制一种新药物的时候我们总是盼着新药的疗效比较好,或者跟旧药差不多。
我想没有人会盼着研制的新药的疗效差于旧的药物,那么还研制它干嘛啊。
基于上述三种情况,就提出了三个用于新药临床试验的检验思路,分别是优效性、等效性和非劣效性检验。
下面分别说明,先假设一个例子,某研究者要研究A药与B药的关系,他能够接受的差值是Δ。
2.1 优效性检验研究目的:A药的效果好于B药。
研究假设:(1)无效假设:A-B≤Δ;(2)备择假设:A-B>Δ。
备注:用来证实新药A的效果好于旧药B,来判断新药A上市的情况。
它是一个单侧的检验。
2.2 等效性检验研究目的:A药的效果等于B药。
研究假设:(1)无效假设:A-B≤-Δ或A-B≥Δ;(2)备择假设:-Δ<A-B <Δ。
备注:常用于同一活性成分的药物之间的疗效比较,证实的是A药和B药的疗效相当。
它可以是单侧也可以是双侧的检验。
从临床试验实例看优效、等效和非劣效试验[1]
从临床试验实例看优效、等效和非劣效试验-结合一些临床试验的例子对优效、等效和非劣效试验再做一点阐述,权当加深理解吧。
让我们先看一个简单的例子(J Am Acad Dermatol 2003;48:535-41):为了证实地氯雷他定对慢性荨麻疹的疗效和安全性,研究者设计了一项地氯雷他定比照抚慰剂治疗慢性荨麻疹的随机对照双盲试验。
本试验选择的主要终点是与基线相比搔痒评分的变化。
假设标准差为 1.0分,每组需要100例病人在0.05的显著性水平上有90%的把握能检验出两组0.5分或更多的差异。
最后结果地氯雷他定与基线相比搔痒评分的变化为 1.05,抚慰剂组为0.52,p<0.001. 结论地氯雷他定可以有效治疗慢性荨麻疹。
以上这个例子就是一个最经典的优效性试验的例子,即通过抚慰剂对照试验显示试验药物优于抚慰剂,从而证实试验药物的疗效。
这种抚慰对照的优效性试验在临床试验的发展进程中起到了鼻祖的作用,以前对于某种疾病还没有治疗药物的时候,一种新药物的出现,往往会选择抚慰剂对照来证实疗效,当然随着越来越多标准药物的出现,以及出于伦理等方面的考虑,现在抚慰剂对照的试验也开始变少,但它在药物研发中的地位是决不能抹杀的。
随着医学的发展,现在各个疾病基本上都有自己有效的治疗药物,这时我们推出一种新药,往往在选择对照时,不得不选择那些已有的有效治疗药物,所以相比较抚慰剂对照试验,阳性对照试验越来越多,而阳性对照试验最理想的情况是,你的药物优于阳性对照药物,这和上文中提及的抚慰剂对照试验一样,是证实你的药物的疗效的最好的也是最有力的方法。
这种阳性对照的优效性试验在现在我们的临床试验中发挥了很重要的作用,怎么说呢,一种新药的出现,如果它有突破性的进展,最大的证明就是你的疗效优于现在这种疾病的标准治疗药物,而此时阳性对照的优效性试验就是你证明你疗效的最理想的选择。
给大家介绍一个药物研发历史上一个很著名的阳性对照优效性试验的例子-EVIDENCE研究。
戏说临床试验中的非劣效性、优效性和等效性检验_奥咨达统计部_范安_180914
戏说临床试验中的非劣效性、优效性和等效性检验药物/医疗器械临床试验中,根据试验目的不同,需采用不同检验来验证假设。
实际应用中,大家常听说非劣效、优效、等效等名词,傻傻分不清楚。
本文将从实例角度,对三者戏说漫道,以作区分,望行业内小白也能知其一二,此心甚慰!奥家有两位千金,小彤和小依,均貌美如花。
小彤稍年长,已到了谈婚论嫁的年纪,追求者甚众。
小彤也是精挑细选,终于觅得一位如意郎君,小伙长的贼精神,英俊帅气,高大威猛,身高足有一米八。
小依也到了如花似玉的年纪,看到姐姐幸福美满,十分羡慕,也希望找一个自己满意的男友。
那么问题来了,什么样条件的男友,小依才会认为满意呢?这里首先涉及到临床试验中选取主要评价指标的问题。
用帅来评价可以吗?所谓萝卜青菜,各有所爱,帅这个东西,太主观了,每个人对帅都有自己的定义,人们常说一朵鲜花插牛粪,那是外人的眼光来评价,鲜花自己可能觉得赏心悦目。
因此太主观的指标不太好量化,还是换个标准吧。
这也就是为什么临床试验中,问统计专家该采用什么主要指标评价产品性能的时候,他们总建议采用客观性评价指标(可测量可量化),而不推荐使用主观性指标。
那么该采用什么指标呢?身高(高优指标,越高越好的指标)!这也是众多女生比较喜爱的主要择偶标准之一,客观且好量化。
那好,就采用它来作为小依择男友的评价标准吧。
问题接着来了,到底多高,才是小依对男友满意的身高呢?小依听取了众多闺蜜的意见,大致分成了三类,转换成统计术语如下:(1)非劣效:可以比姐夫矮一点,但是不能矮太多。
多少不算矮太多呢?以姐姐小彤男友的身高作为阳性对照,小依认为,5厘米(非劣效界值)是她可以忍受的差距。
根据这条标准,小依找的男朋友可以比1.80m高,但最低不能低于1.75m(图1),这就是大家常说的非劣效的概念,很明显,这是个单侧的比较。
图1 非劣效图示(2)优效:比姐夫高。
也就是说,小依将来找的男朋友,一定要高于1.80m。
1)假如小依只要男友高于姐夫就好,那么将来男友的身高-姐夫的身高>0cm(优效界值1)即可(图2);2)假如小依对未来男友的身高很有信心,认为肯定可以超过1.85m,那么1.85m-1.80m=5cm(优效界值2),将来男友的身高,只有高于1.85m,才算合格(图3)。
非劣效、等效和优效性检验及其适用范围
发布日期20061120栏目化药药物评价〉>临床安全性和有效性评价标题非劣效、等效和优效性检验及其适用范围作者黄钦部门正文内容审评四部审评八室黄钦摘要:在对国内临床研究报告的审评中我们经常遇到以传统的显著性检验代替非劣效等设计的检验的情况,下文探讨了二者的区别及适用范围。
关键词:非劣效试验等效性试验优效性试验一、传统检验和区间检验药品的临床试验一般要求设计为随机、盲法和对照药物比较的研究,以判断和区别其实际的疗效如何,审评中我们常见到的错误是采用如下传统的假设检验:无效假设H0: A药的疗效—B药的疗效=0备择假设H1:A药的疗效≠B药的疗效结论:如P>0。
05,按α=0。
05的检验水准不能拒绝H0假设,如P≤0。
05,则接受H1假设。
目前已经公认这种传统的假设检验(又称显著性检验)用于临床试验判断药物的疗效是不合理的,它不能准确区分两药疗效差异的方向性和体现差异大小所揭示的临床实际意义,因此国际普遍采用非劣效、等效或优效性假设检验。
传统的假设检验之所以不合理,在于两个方面,一方面它所推断的是两个总体均数在统计学是否不相等,是纯粹的统计学意义,而未体现实际的临床意义,虽然有单双侧之分,如单侧为H0:μ1—μ2=0,H1:μ1—μ2>0(或μ1-μ2〈0),但它检验的依然是样本所代表的总体均数的统计学含义,而未将实际临床意义包含进来考虑。
另一方面,对于传统检验的结论,如P>0。
05,表示两药疗效的差别无统计学意义, 不拒绝H0假设,说明现有数据尚无法对两药疗效的总体均数是否不等的判断下结论,并不是当然的接受H0假设,并非认为H0假设必然成立而两药疗效的总体均数一定相等,此时有可能两药疗效的总体均数确实相似,也有可能是检验效能(把握度)不够,尚需更大样本量进行检验;如P≤0。
05,两药疗效的差别有统计学意义,也就是说,两药疗效的总体均数确实不相等,但这种统计学意义的差异不一定具有实际的临床意义,也可能其临床意义却是优效、等效或非劣效的。
非劣效临床试验的统计学考虑
非劣效临床试验的统计学考虑在医学研究和药物开发领域,临床试验是至关重要的环节,用于评估新疗法或新设备的有效性和安全性。
其中,非劣效临床试验旨在验证新疗法或新设备与现有标准疗法或设备的比较效果,本文将详细介绍非劣效临床试验中的统计学考虑。
非劣效临床试验是指通过比较新疗法或新设备与现有标准疗法或设备的疗效,来评估新疗法或新设备是否非劣于现有疗法或设备。
非劣效临床试验通常采用双盲、随机、对照的设计,以消除偏倚和增加试验的可靠性。
在非劣效临床试验中,统计学原理是试验设计和数据分析的基础。
通过运用随机化和对照原则,能够减少偏倚、提高试验的内部效度和外部效度,并最终得出可靠的结果。
在非劣效临床试验中,样本的选取是至关重要的。
通常,研究人员会根据研究目的、研究假设、研究人群和研究资源等因素来制定样本的选取原则。
在确定样本的选取原则后,研究人员需要选择适当的试验组和对照组。
试验组为接受新疗法或新设备的患者,对照组为接受现有标准疗法或设备的患者。
在选择试验组和对照组时,研究人员需要考虑匹配和随机化的原则,以减少偏倚对试验结果的影响。
研究人员还需要评估试验结果的置信区间。
置信区间是用于描述试验结果不确定性的指标,通常是指从样本统计量加减一定比例的抽样误差所得到的一个范围。
在非劣效临床试验中,置信区间的评估对于判断新疗法或新设备的非劣效性具有重要意义。
在非劣效临床试验中,常用的统计学方法包括但不限于以下几种:意向性分析:这是非劣效临床试验中最重要的统计学方法之一。
它按照患者的原始分组进行统计分析,从而能够充分利用所有收集到的数据。
随机化分组和盲法:这些技术有助于减少偏倚,提高试验的内部效度和外部效度。
参数估计和假设检验:这些技术用于描述和解释试验结果,以及推断新疗法或新设备是否非劣于现有疗法或设备。
结论与启示非劣效临床试验在评估新疗法或新设备的疗效方面具有重要意义。
通过运用统计学原理和方法对试验结果进行分析,研究人员可以得出可靠的结论,从而为临床医生和患者提供更多有效的治疗选择。
优效性等效性非劣性研究的区别
我们进行临床试验的目的是检验药物治疗的效果,而效果往往是需要一个参照药物治疗的;在临床试验中,研究参与人员往往对优效、等效、非劣效这三个概念不是很清晰,甚至对混用,尤其是在根据统计分析结果来推导结论时;优效性研究假设如下:H0 无效假设,Null Hypothesis:研究药物疗效—对照药物疗效<优效标准H1 备择假设,Alternative Hypothesis:研究药物疗效—对照药物疗效=>优效标准当拒绝H0时,统计结论是可以认为研究药物疗效优于对照药物;当不能拒绝H0时,统计结论是不可以认为研究药物疗效优于对照药物;非劣效性研究假设如下:H0 无效假设,Null Hypothesis:研究药物疗效—对照药物疗效<非劣效标准H1 备择假设,Alternative Hypothesis:研究药物疗效—对照药物疗效=>非劣效标准当拒绝H0时,统计结论是可以认为研究药物疗效不劣于对照药物;当不能拒绝H0时,统计结论是不可以认为研究药物疗效不劣于对照药物;等效性研究假设如下:H0 无效假设,Null Hypothesis: |研究药物疗效-对照药物疗效|>等效标准H1 备择假设,Alternative Hypothesis: |研究药物疗效-对照药物疗效|<=等效标准当拒绝H0时,统计结论是可以认为研究药物疗效与对照药物等效;当不能拒绝H0时,统计结论是不可以认为研究药物疗效与对照药物等效;而我们做的比较多是非等效研究,即当等效标准为0时,与等效性研究假设相反的研究;假设如下:H0无效假设,Null Hypothesis: |研究药物疗效-对照药物疗效|<=等效标准=0H1 备择假设,Alternative Hypothesis: |研究药物疗效-对照药物疗效|>等效标准=0当拒绝H0时,统计结论是可以认为研究药物疗效与对照药物不等效;当不能拒绝H0时,统计结论是不可以认为研究药物疗效与对照药物不等效但不是等效;在日常工作中,我们经常混淆的概念是等效和非等效,也就是常常在非等效不能被接受的情况下,就想当然地下了一个“等效”的结论;推而言之,当无效假设被拒绝时,可以下结论说:可以认为备择假设是可接受的;当无效假设不能被拒绝时,只能说:备择假设是不可接受的,不能说无效假设是可接受的;说一下个人的理解罢非劣性设计的假设是两药疗效无差异,看起来似乎比试验药比参比药物优的假设要逊色很多;但是这样的设计也是不可缺少的如果一个试验药不比现有的药物有明显的优势,但是同样也是有疗效的,非劣性设计就可以证明其疗效,而后者则不能,只能证明受试药物与参比药物相比没有明显优势;临床试验中两种药物的比较往往只比较疗效,而不能同时比较药物的其他方面,例如药物的价格,疗程等等方面;如果一个受试药物与参比药物相比,没有疗效上的优势,但是在价格或疗程上,能够更易于为病人所接受,则也是一个值得投入的新药;当然,非劣性研究由于假设所限,也只能检验出两种方案的比较是否存在差异,受试药物不比参比药物差,而不能得出甲比乙好或坏的结论;所以,如果是小规模的试验中能得出两者有优劣之分的话,一般采用优劣假设,如果两者优劣不明显的话,一般采用非劣性假设。
从临床试验实例看优效等效和非劣效试验
从临床试验实例看优效、等效与非劣效试验-结合一些临床试验的例子对优效、等效与非劣效试验再做一点阐述,权当加深理解吧。
让我们先看一个简单的例子(J Am Acad Dermatol 2003;48:535-41):为了证实地氯雷他定对慢性荨麻疹的疗效与安全性,研究者设计了一项地氯雷他定对比安慰剂治疗慢性荨麻疹的随机对照双盲试验。
本试验选择的主要终点是与基线相比搔痒评分的变化。
假设标准差为 1.0分,每组需要100例病人在0.05的显著性水平上有90%的把握能检验出两组0.5分或更多的差别。
最后结果地氯雷他定与基线相比搔痒评分的变化为 1.05,安慰剂组为0.52,p<0.001. 结论地氯雷他定可以有效治疗慢性荨麻疹。
以上这个例子就是一个最经典的优效性试验的例子,即通过安慰剂对照试验显示试验药物优于安慰剂,从而证实试验药物的疗效。
这种安慰对照的优效性试验在临床试验的发展进程中起到了鼻祖的作用,以前对于某种疾病还没有治疗药物的时候,一种新药物的出现,往往会选择安慰剂对照来证实疗效,当然随着越来越多标准药物的出现,以及出于伦理等方面的考虑,现在安慰剂对照的试验也开始变少,但它在药物研发中的地位是决不能抹杀的。
随着医学的发展,现在各个疾病基本上都有自己有效的治疗药物,这时我们推出一种新药,往往在选择对照时,不得不选择那些已有的有效治疗药物,所以相比较安慰剂对照试验,阳性对照试验越来越多,而阳性对照试验最理想的情况是,你的药物优于阳性对照药物,这与上文中提及的安慰剂对照试验一样,是证实你的药物的疗效的最好的也是最有力的方法。
这种阳性对照的优效性试验在现在我们的临床试验中发挥了很重要的作用,怎么说呢,一种新药的出现,如果它有突破性的进展,最大的证明就是你的疗效优于现在这种疾病的标准治疗药物,而此时阳性对照的优效性试验就是你证明你疗效的最理想的选择。
给大家介绍一个药物研发历史上一个很著名的阳性对照优效性试验的例子-EVIDENCE研究。
最新非劣效、等效性、优效性
非劣效、等效和优效性检验及其适用范围摘要:在对国内临床研究报告的审评中我们经常遇到以传统的显著性检验代替非劣效等设计的检验的情况,下文探讨了二者的区别及适用范围。
关键词:非劣效试验等效性试验优效性试验一、传统检验和区间检验药品的临床试验一般要求设计为随机、盲法和对照药物比较的研究,以判断和区别其实际的疗效如何,审评中我们常见到的错误是采用如下传统的假设检验:无效假设H0: A药的疗效-B药的疗效=0备择假设H1:A药的疗效≠B药的疗效结论:如P>0.05,按α=0.05的检验水准不能拒绝H0假设,如P≤0.05,则接受H1假设。
目前已经公认这种传统的假设检验(又称显著性检验)用于临床试验判断药物的疗效是不合理的,它不能准确区分两药疗效差异的方向性和体现差异大小所揭示的临床实际意义,因此国际普遍采用非劣效、等效或优效性假设检验。
传统的假设检验之所以不合理,在于两个方面,一方面它所推断的是两个总体均数在统计学是否不相等,是纯粹的统计学意义,而未体现实际的临床意义,虽然有单双侧之分,如单侧为H0:μ1-μ2=0,H1:μ1-μ2>0(或μ1-μ2<0),但它检验的依然是样本所代表的总体均数的统计学含义,而未将实际临床意义包含进来考虑。
另一方面,对于传统检验的结论,如P>0.05,表示两药疗效的差别无统计学意义, 不拒绝H0假设,说明现有数据尚无法对两药疗效的总体均数是否不等的判断下结论,并不是当然的接受H0假设,并非认为H0假设必然成立而两药疗效的总体均数一定相等,此时有可能两药疗效的总体均数确实相似,也有可能是检验效能(把握度)不够,尚需更大样本量进行检验;如P≤0.05,两药疗效的差别有统计学意义,也就是说,两药疗效的总体均数确实不相等,但这种统计学意义的差异不一定具有实际的临床意义,也可能其临床意义却是优效、等效或非劣效的。
因此,临床试验的统计学家们提出了区间假设检验的方法,提出以临床意义的差异Δ来进行假设检验,这就是非劣效、等效和优效性检验的概念和方法。
非劣效、等效性、优效性之欧阳语创编
非劣效、等效和优效性检验及其适用范围摘要:在对国内临床研究报告的审评中我们经常遇到以传统的显著性检验代替非劣效等设计的检验的情况,下文探讨了二者的区别及适用范围。
关键词:非劣效试验等效性试验优效性试验一、传统检验和区间检验药品的临床试验一般要求设计为随机、盲法和对照药物比较的研究,以判断和区别其实际的疗效如何,审评中我们常见到的错误是采用如下传统的假设检验:无效假设 H0: A药的疗效-B药的疗效=0备择假设 H1: A药的疗效≠B药的疗效结论:如P>0.05,按α=0.05的检验水准不能拒绝H0假设,如P≤0.05,则接受H1假设。
目前已经公认这种传统的假设检验(又称显著性检验)用于临床试验判断药物的疗效是不合理的,它不能准确区分两药疗效差异的方向性和体现差异大小所揭示的临床实际意义,因此国际普遍采用非劣效、等效或优效性假设检验。
传统的假设检验之所以不合理,在于两个方面,一方面它所推断的是两个总体均数在统计学是否不相等,是纯粹的统计学意义,而未体现实际的临床意义,虽然有单双侧之分,如单侧为H0:μ1-μ2=0,H1:μ1-μ2>0(或μ1-μ2<0),但它检验的依然是样本所代表的总体均数的统计学含义,而未将实际临床意义包含进来考虑。
另一方面,对于传统检验的结论,如P>0.05,表示两药疗效的差别无统计学意义, 不拒绝H0假设,说明现有数据尚无法对两药疗效的总体均数是否不等的判断下结论,并不是当然的接受H0假设,并非认为H0假设必然成立而两药疗效的总体均数一定相等,此时有可能两药疗效的总体均数确实相似,也有可能是检验效能(把握度)不够,尚需更大样本量进行检验;如P≤0.05,两药疗效的差别有统计学意义,也就是说,两药疗效的总体均数确实不相等,但这种统计学意义的差异不一定具有实际的临床意义,也可能其临床意义却是优效、等效或非劣效的。
因此,临床试验的统计学家们提出了区间假设检验的方法,提出以临床意义的差异Δ来进行假设检验,这就是非劣效、等效和优效性检验的概念和方法。
非劣效等效性优效性
非劣效等效性优效性标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]非劣效、等效和优效性检验及其适用范围??摘要:在对国内临床研究报告的审评中我们经常遇到以传统的显着性检验代替非劣效等设计的检验的情况,下文探讨了二者的区别及适用范围。
关键词:非劣效试验等效性试验优效性试验一、传统检验和区间检验药品的临床试验一般要求设计为随机、盲法和对照药物比较的研究,以判断和区别其实际的疗效如何,审评中我们常见到的错误是采用如下传统的假设检验:无效假设H0:A药的疗效-B药的疗效=0备择假设H1:A药的疗效≠B药的疗效结论:如P>,按α=的检验水准不能拒绝H0假设,如P≤,则接受H1假设。
目前已经公认这种传统的假设检验(又称显着性检验)用于临床试验判断药物的疗效是不合理的,它不能准确区分两药疗效差异的方向性和体现差异大小所揭示的临床实际意义,因此国际普遍采用非劣效、等效或优效性假设检验。
传统的假设检验之所以不合理,在于两个方面,一方面它所推断的是两个总体均数在统计学是否不相等,是纯粹的统计学意义,而未体现实际的临床意义,虽然有单双侧之分,如单侧为H0:μ1-μ2=0,H1:μ1-μ2>0(或μ1-μ2<0),但它检验的依然是样本所代表的总体均数的统计学含义,而未将实际临床意义包含进来考虑。
另一方面,对于传统检验的结论,如P>,表示两药疗效的差别无统计学意义,不拒绝H0假设,说明现有数据尚无法对两药疗效的总体均数是否不等的判断下结论,并不是当然的接受H0假设,并非认为H0假设必然成立而两药疗效的总体均数一定相等,此时有可能两药疗效的总体均数确实相似,也有可能是检验效能(把握度)不够,尚需更大样本量进行检验;如P≤,两药疗效的差别有统计学意义,也就是说,两药疗效的总体均数确实不相等,但这种统计学意义的差异不一定具有实际的临床意义,也可能其临床意义却是优效、等效或非劣效的。
非劣效性、等效性临床试验
优效性试验(superiority)—显示优效性的设计通过安慰剂对照试验显示优于安慰剂或优于阳性药,或由剂量反应关系证实疗效是最可信的。
此类试验称为优效性试验。
非劣效性(non-inferiority)—试验/等效性(equivalence)试验—显示非劣效性或等效性的设计,以阳性药物为对照,试验的目标是显示试验药物的疗效与某种已知的阳性药物“不差”或“相当”,分别称为非劣效性试验和等效性试验稳定性假设(constancy assumption)—指阳性对照药物在既往研究(对安慰剂)中的效应量在当前的非劣效性或等效性试验保持不变。
检测灵敏度(assay sensitivity)—分辨某种治疗与较差的治疗或无效的治疗之间差别的能力,对优效性试验、非劣效性试验与等效性试验具有不同的意义。
优效性试验如果是成功的,即试验显示出试验药与安慰剂之间的差别,则检验灵敏度自然成立;对非劣效性和等效性试验而言,如果阳性药没有检测灵敏度,一个无效的试验药可能会因为非劣效性而错误地确认其疗效。
{无效药如何得出非劣效性}一、非劣效性/等效性试验中的样本含量估计(一)决定非劣效性/等效性试验样本含量估计的要素1. 非劣效性(non-inferiority)/等效性(equivalence)界值从临床意义上确认药物的疗效,需要事先确认评价的界值。
在优效性试验中,界值指试验药和对照药之间相差的临床上认可的最小值。
在非劣效性试验中指临床上可接受的最大值。
对非劣效性和等效性试验,它必须小于阳性对照药与安慰剂比较时的效应差值(如果已知,可取去1/3或1/2)。
界值的确定需要由主要研究者从临床意义上和统计学专业人员才统计学意义上共同商定,而不是单独依赖于主要研究者或统计学专业人员。
优效性试验和非劣效性试验仅用一个界值,用δδ01和δ02 0表示;而等效性试验要用劣侧和优侧两个界值,分别用表示,理论上两侧界值可以取不等距,但实际上有一般取等距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优效性试验(superiority)—显示优效性的设计通过安慰剂对照试验显示优于安慰剂或优于阳性药,或由剂量反应关系证实疗效是最可信的。
此类试验称为优效性试验。
非劣效性(non-inferiority)—试验/等效性(equivalence)试验—显示非劣效性或等效性的设计,以阳性药物为对照,试验的目标是显示试验药物的疗效与某种已知的阳性药物“不差”或“相当”,分别称为非劣效性试验和等效性试验稳定性假设(constancy assumption)—指阳性对照药物在既往研究(对安慰剂)中的效应量在当前的非劣效性或等效性试验保持不变。
检测灵敏度(assay sensitivity)—分辨某种治疗与较差的治疗或无效的治疗之间差别的能力,对优效性试验、非劣效性试验与等效性试验具有不同的意义。
优效性试验如果是成功的,即试验显示出试验药与安慰剂之间的差别,则检验灵敏度自然成立;对非劣效性和等效性试验而言,如果阳性药没有检测灵敏度,一个无效的试验药可能会因为非劣效性而错误地确认其疗效。
{无效药如何得出非劣效性}一、非劣效性/等效性试验中的样本含量估计(一)决定非劣效性/等效性试验样本含量估计的要素1. 非劣效性(non-inferiority)/等效性(equivalence)界值从临床意义上确认药物的疗效,需要事先确认评价的界值。
在优效性试验中,界值指试验药和对照药之间相差的临床上认可的最小值。
在非劣效性试验中指临床上可接受的最大值。
对非劣效性和等效性试验,它必须小于阳性对照药与安慰剂比较时的效应差值(如果已知,可取去1/3或1/2)。
界值的确定需要由主要研究者从临床意义上和统计学专业人员才统计学意义上共同商定,而不是单独依赖于主要研究者或统计学专业人员。
优效性试验和非劣效性试验仅用一个界值,用δδ01和δ02 0表示;而等效性试验要用劣侧和优侧两个界值,分别用表示,理论上两侧界值可以取不等距,但实际上有一般取等距。
界值确定必须在实验设计阶段完成,并在试验方案中阐明,如有修订,必须在揭盲之前进行并阐述理由,一旦揭盲,不得修改。
这一点很重要,若不遵守,则很容易陷入“数字游戏”的危险。
根据既往经验,对有些临床定量指标具有专业意义上的变化量,{血压实验组—血压对照组}可根据粗略的界值参考标准,例如血压可取为0.67kPa(5mmHg),胆固醇可取为0.52mmol/L(20mg/dl),白细胞可取为0.5x109/L(500个/mm3)。
非劣效性/等效性试验经常是对变化量间的比较,相应的界值(指变化量之间的差值)应更小{血压变化值实验组—血压变化值对照值},例如血压变化值的等效界值可取为0.4kPa(3mmHg),胆固醇变化值的等效界值可取为0.26mmol/L(10mg/dl),白细胞变化值的等效界值可取为0.2x109/L (200个/mm3)。
当难以确定时,可酌取1/5~1/2个标准差或参比组均数的1/10~1/5等。
{变化值的标准差和变化值的标准误?还是指标的标准差、标准误?} 对两组率而言,建议取15%以下的值,通常最大不超过对照组样本率的1/5。
当然,界值也不能过小。
例12--1 为了显示一种新药血管紧张素Ⅱ拮抗剂(AⅡ)治疗轻中度原发性高血压的降压效果不差于标准药血管紧张素转换酶抑制剂(ACE),主要终点指标用仰卧舒张压()的下降幅度,{变化量} 应如何考虑制定非劣性界值的问题?资料表明,,既往ACE与安慰剂的对照试验显示最小的药物效应差值Δ为1.34kPa(10mmHg),基于临床考虑,认为用δ0=0.40kPa(约为Δ的1/3)作为非劣效性试验的界值是合理的{有文献表明不可取},即只要AⅡ的平均降压不比ACE的平均降压值小0.40kPa或更多,则可认为AⅡ与ACE相比为非劣效。
当然,若适当放宽控制非劣效的标准时,δ0的取值可稍微大些,例如δ0=0.670kpa(约为Δ的1/2)。
2.Ⅰ、Ⅱ型错误概率Ⅰ型错误概率用α表示,指事实为劣效/不等效时拒绝了劣效/不等效的概率;Ⅱ型错误概率用表示,指当事实为非劣效/等效是接受了劣效/不等效的概率。
检验功效power=1—β。
一般准则是,α取0.05或0.10,β取0.05、0.10或0.20。
新药注册研究中,α取0.05或0.10,β取0.20或0.10可被认可。
3. 变异度反映两组总的变异程度,一般用方差(或标准差)表示。
两组定量指标均数比较,其方差可通过两组样本方差估计,或用标准治疗组方差,或以既往研究结果作为估计值。
两组率指标比较其方差可通过两组样本率估计,或根据既往知识取值;若难以获知事先信息。
可用50%作为总体率,估算最大样本含量。
4. 终点指标类型及效应测量最常见的终点指标和二分类指标。
从非劣效性/等效性对比判定考虑,还需考虑效应指标差值或比值的选择问题,一般使用差值。
对两组比较以δ表示两组总体参数或比值。
在实际进行非劣效性/等效性设计时往往不能获知δ的大小,通常令δ=0 (两组为差值时)或δ=1(两组为比值时)。
5.比较类型设计非劣性试验是为了显示试验治疗按照一个事先制定的界值δ0不差于标准治疗,该类型试验关心的问题是单侧的,但对试验治疗可能优于的程度未加限制。
而等效性试验关心的问题则是双侧的,希望阐明两种治疗的效应在两个方向上差别不大,即分别按照界值δ01和δ02揭示出试验治疗既不比标准治疗差,也不优于标准治疗。
从假设检验的角度考虑,双侧等效性不同于大家熟知的通常意义上的双侧检验情形(图12-2a)。
后者涉及的无效假设是δ取单个数值δ0,备选假设取两个方向上的不同于δ0的任何值,因此其备选假设是“双侧”的。
然而,在双侧等效性情况下(图12-2b),无效假设(δ≤δ01或δ≥δ02)是双侧的。
这种比较类型的不同将体现在样本含量估计中。
6.两组的例数分配比例两组比较去相等的样本含量时总样本含量最少,且可在同等总样本含量下达到最高的统计效能,当然,实际工作中也可按需要进行两组不等的样本含量估算。
试验中有时尚需结合具体情况进行适当调整,例如考虑最多的是依从性和失访问题。
(1)依从性(compliance)临床试验的困难之一就是患者不遵从指定的治疗。
从保守的角度考虑,假定不依从的患者没有从治疗中收益,则样本含量调整计算式为: 2)1(m adj p n n -=式中,p m : 不依从的比例,表12-2列举了不同的不依从比例的调整因子大小。
表12-2 不同的依从比例下的调整因子大小不依从比例 0.05 0.10 0.20 0.30 0.50 调整因子=1/(1—m P )2 1.11 1.23 1.56 2.04 4.00(2) 失访(loss to follow-up ) 泛指分析时未能获得终点结果。
假定失访率为l, 则样本含量调整公式为:l n n -=1 它假定所有患者的失访都发生在随机化时(??),可见该结果偏于保守。
(二) 非劣效性/等效性试验样本含量的估计方法非劣效性试验两组总样本含量计算通用公式为)()()(k k N -+-+=111][20δδμμσβα式中,N :两组总样本含量;2σ:方差;αμ,βμ:对应于α和β的标准正态离差;k 和(k —1):各组在总样本中所占的比例;δ:对照组减试验组的总体真实差值;δ0:临床上可以接受的界值。
对非劣效性/等效性试验,常设定δ=0。
方差2σ须事先给定。
对于率指标,若两组总体率相同且已知为π,则2σ=π(1—π);若两组总体率不同,则π可取两总体率的平均数。
实际应用中常难以获得总体信息,可以预实验结果代替。
设T 代表试验组,P 代表阳性对照组,根据预实验结果对方差进行估计,定量指标和二分类率指标的计算公式分别为2)1()1(222-+-+-=p T p pT T n n n S n S S )1(2C c P p S -=式中,C P :为两组预实验样本的合并率,P T P P T T C n n p n p n P ++=。
对等效性试验,假定两端界值等距,即δ02=﹣δ01=δ0,计算总体样本含量将单侧βμ替换为双侧2/βμ即可。
例12-2 例12-3由上例计算结果不难理解,若试验目的主要在于确认新药不比标准药差。
而不关心新药是否比标准药好,采用非劣效性试验更节省样本含量。
二、非劣效性/等效性试验中的统计推断(一)判定非劣效性/等效性的假设检验方法我们平时所做的觉得多数假设检验其零假设为两总体参数相等,其统计推断往往仅限于两者的差别是否有统计学意义。
若P >α, 意味着统计上“不能拒绝零假设”,但并非说明零假设成立,更没有理由说两组相等;若P≤α,虽然可“拒绝零假设”,但也只能推断两者在统计上有差别,而不能评价差别的大小。
为能对非劣效性/等效性进行推断,需要建立有别于传统的检验假设,并据此进行统计推断。
1. 检验假设的构建无效假设和备选假设分别用H0和H a表示。
以α作为总的检验水准。
设T为试验组参数,P为阳性对照组参数,表12-3列举几种不同情形的检验假设。
(此时不能在称无效假设为零假设了)表12-3 不同试验类型的检验假设试验类型无效假设备选假设检验水准非劣效性试验 H0:T—P ≤﹣δ0 H a:T—P >α等效性试验H01:T—P ≤﹣δ0 H a1:T—P>﹣δ0 α/2H02:T—P ≥δ0 H a2:T—P<δ0 α/2统计优效性试验H0:T—P ≤ 0H a:T—P > 0 α临床优效性试验H0:T—P ≤δ0 H a:T—P >δ0α假设检验的意义:①非劣效试验 H0:试验药劣于对照药,其差值大于或等于﹣δ0H a:试验药非劣于对照药②等效性试验 H01:试验药劣于对照药,其差值大于或等于﹣δ0H a1:试验药非劣于对照药H02:试验药优于对照药,其差值大于或等于δ0H a2:试验药非优于对照药③优效性试验 H 0:两药疗效相等或试验药劣于对照药,其差值大于或等于0或者δ0 H a :试验药优于对照药2. 检验统计量和推断结论(1) 非劣效性试验 由非劣效性试验的检验假设可见只需进行一次单侧检验即可做出推断结论。
若P ≤α,则拒绝H 0,可推论T 非劣效于P ;若P >α,则还不能下非劣效的结论。
这里的α含义是,当T 比P 疗效差,其效应值实际上超过δ0时,错误地下T 非劣效于P的结论的概率。
1) 定量指标 均数的非劣效性检验用单侧t 检验,统计量计算PT X X P T S X X t ----=)()(δ 自由度? 式中,P T X X S -:两组均数差值的标准误)11](2)1()1([22PT P T P P T T X X n n n n n S n S S P T +-+-+-=-。
2) 率指标 率的非劣效性检验用单侧u 检验,统计量计算P T P P P T S P P u --+=)(0δ式中,P T P P S -:两组率差值的标准误)11)(1(P T c c P P n n p p S P T +-=-(2) 等效性试验 对等效性的推断需要采用双向单侧检验,即在两个方向上同时进行两次单侧检验(two one-sided tests)。