初中数学-初一(上)《整式》单元测试

合集下载

人教版数学七年级上册第二章整式的加减单元测试卷(含答案)

人教版数学七年级上册第二章整式的加减单元测试卷(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题(共12小题,总分36分)1.代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有( )A. 7个B. 6个C. 5个D. 4个2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是33.多项式6x2y-3x-1的次数和常数项分别是()A 3和-1 B. 2和-1 C. 3和1 D. 2和14.下列运算中,“去括号”正确的是( )A. a+(b-c)=a-b-cB. a-(b+c)=a-b-cC. m-2(p-q)=m-2p+qD. x²-(-x+y)=x²+x+y5.对于式子:22x y+,2ab,12,3x2+5x-2,abc,0,2x yx+,m,下列说法正确是( )A 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式6. 下列计算,正确的是( )A. 3+2ab="5ab"B. 5xy–y="5x"C. -52m n+5n2m=" 0" D.–x =7.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是( ).A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-18.多项式23635x x-+与3231257x mx x+-+相加后,不含二次项,则常数的值是( )A. B. 3- C. 2- D. 8-9.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A. ﹣1B. 1C. 5D. ﹣510.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式 ( )A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y211.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A. 3aB. 6a +bC. 6aD. 10a -b12.两个完全相同的大长方形,长为a ,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是( )(用含a 的代数式表示)A. 12aB. 32a C. a D. 54a 二、填空题(共6小题,总分18分) 13.请写出一个系数是-2,次数是3的单项式:________________.14.若5m x n 3与-6m 2n y 是同类项,则xy 的值等于_________.15.若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是________.16.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母,则的值为__________. 18.观察下面的一列单项式:2x,-4x 2,8x 3,-16x 4,…根据你发现的规律,第n 个单项式为__________.三、解答题(共8小题,总分66分)19.化简:(1)3x 2-3x 2-y 2+5y +x 2-5y +y 2; (2) a 2b -0.4ab 2-12a 2b +25ab 2. 20.先化简,再求值:(1)2xy -12 (4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =13,y =-3. (2)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =1,b =-2.21.如果x 2-x+1的2倍减去一个多项式得到3x 2+4x-1,求这个多项式.22.若3x m y n 是含有字母x 和y 的五次单项式,求m n 的最大值.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a 2+4ab +4b 2)=a 2-4b 2(1)求所捂的多项式;(2)当a =-1,b =2时,求所捂的多项式的值.24.已知A =2a 2-a,B =-5a +1.(1)化简:3A -2B +2;(2)当a =-12时,求3A -2B +2的值. 25.先化简,再求值:已知a 2﹣1=0,求(5a 2+2a ﹣1)﹣2(a+a 2)的值.26.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).答案与解析一、选择题(共12小题,总分36分)1.在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有( )A. 7个B. 6个C. 5个D. 4个【答案】B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式.【详解】在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是3【答案】D【解析】【分析】根据单项式系数和次数的定义判断即可.【详解】235xy-的系数是35,次数是3.故选D.【点睛】本题考查单项式系数与次数的定义,关键在于牢记定义即可判断.3.多项式6x2y-3x-1的次数和常数项分别是()A. 3和-1B. 2和-1C. 3和1D. 2和1 【答案】A【解析】【分析】运用多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数即可得出答案.【详解】∵多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数∴多项式6x2y-3x-1的次数和常数项分别是:3和-1.故选A.【点睛】考查了多项式相关概念,正确把握多项式次数和常数项的定义(多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数)是解题关键.4.下列运算中,“去括号”正确的是( )A. a+(b-c)=a-b-cB. a-(b+c)=a-b-cC. m-2(p-q)=m-2p+qD. x²-(-x+y)=x²+x+y【答案】B【解析】【分析】对原式各项进行去括号变形得到结果,即可作出判断.【详解】解:A、a+(b-c)=a+b-c,错误;B、a-(b+c)=a-b-c,正确;C、m-2(p-q)=m-2p+2q,错误;D、x²-(-x+y)=x2+x-y,错误,故选B.【点睛】本题考查了去括号,熟练掌握去括号法则是解本题的关键.5.对于式子:22x y+,2ab,12,3x2+5x-2,abc,0,2x yx+,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案.详解:22x y+,2ab,12,3x2+5x﹣2,abc,0,2x yx+,m中:有4个单项式:12,abc,0,m;2个多项式为:22x y+,3x2+5x-2.故选C.点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.6. 下列计算,正确的是( )A. 3+2ab="5ab"B. 5xy–y="5x"C. -52m=" 0" D.–x =m n+5n2【答案】C【解析】分析:根据同类项的概念及合并同类项的法则得出.详解:A、一个是数字,一个是字母,不是同类项,不能合并,错误;B、字母不同,不是同类项,不能合并,错误;C、正确;D、字母的指数不同,不是同类项,不能合并,错误.故选C.点睛:本题主要考查同类项的概念和合并同类项的法则.同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.7.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是( ).A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-1【答案】B【解析】试题分析:本题考查同类项的定义,单项式x2y m+2与x n y的和仍然是一个单项式,意思是x2y m+2与x n y是同类项,根据同类项中相同字母的指数相同得出.解:由同类项的定义,可知2=n,m+2=1,解得m=﹣1,n=2.故选B.考点:同类项.8.多项式2x mx x+-+相加后,不含二次项,则常数的值是( )312573635x x-+与32A. B. 3- C. 2- D. 8-【答案】B【解析】由题意可知36+12m=0,解得m=-3,故选B.9.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A. ﹣1B. 1C. 5D. ﹣5【答案】A【解析】【分析】原式去括号整理后,将已知等式代入计算即可求出值.详解】∵m-x=2,n+y=3,∴原式=m-n-x-y=(m-x)-(n+y)=2-3=-1,故选A.【点睛】考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是( )A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y2【答案】B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x2﹣2y2+(x2+y2),=(1+1)x2+(﹣2+1)y2,=2x2﹣y2,故选B.【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键.11.长方形一边长为2a+b,另一边为a-b,则长方形周长为()A. 3aB. 6a+bC. 6aD. 10a-b 【答案】C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.12.两个完全相同的大长方形,长为a,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是()(用含a的代数式表示)A. 12a B.32a C. a D.54a【答案】C【解析】【分析】设小长方形的长为x,宽为y,大长方形宽为b,表示出x、y、a、b之间的关系,然后求出阴影部分周长之差即可.【详解】设图中小长方形的长为x,宽为y,大长方形的宽为b,根据题意,得:x+2y=a、x=2y,则4y=a,图(1)中阴影部分周长为2b+2(a-x)+2x=2a+2b,图(2)中阴影部分的周长为2(a+b-2y)=2a+2b-4y,图(1)阴影部分周长与图(2)阴影部分周长之差为:(2a+2b)-(2a+2b-4y)=4y=a,故选C.【点睛】考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,总分18分)13.请写出一个系数是-2,次数是3的单项式:________________.【答案】-2a3(答案不唯一)【解析】分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】解:系数是-2,次数是3单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.14.若5m x n3与-6m2n y是同类项,则xy的值等于_________.【答案】6【解析】【分析】根据同类项定义即可求x 、y 的值出答案.【详解】∵5m x n 3与-6m 2n y 是同类项,∴x=2,y=3∴xy=6.故答案是:6.【点睛】考查同类项的概念,解题的关键是熟练运用同类项的概念(含相同字母,且相同字母的指数也相同)求出x 、y 的值.15.若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是________.【答案】1【解析】【分析】把多项式(8x 2-6ax+14)-(8x 2-6x+6)化简整理成(6-6a)x+8的形式,再根据其值与x 无关,可得关于a 的方程,解方程即可.【详解】原式=8x 2-6ax+14-8x 2+6x-6=(6-6a)x+8,∵整式(8x 2-6ax+14)-(8x 2-6x+6)的值与x 无关,∴6-6a=0,解得:a=1,故答案是:1.【点睛】考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.16.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.【答案】2【解析】试题分析:由题意可得:2x 2+3x+7=10,所以移项得:2x 2+3x=10-7=3,所求多项式转化为:6x 2+9x ﹣7=3(6x 2+9x)-7=3×3-7=9-7=2,故答案为2.考点:求多项式的值.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母,则的值为__________.【答案】1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为118.观察下面的一列单项式:2x,-4x2,8x3,-16x4,…根据你发现的规律,第n个单项式为__________.【答案】(-1)n+1·2n·x n【解析】分析】通过观察题意可得:n为奇数时,单项式为正数;n为偶数时,单项式为负数.x的指数为n的值,2的指数为(n-1).由此可解出本题.【详解】解:∵2x=(-1)1+1•21•x1;-4x2=(-1)2+1•22•x2;8x3=(-1)3+1•23•x3;-16x4=(-1)4+1•24•x4;第n个单项式为(-1)n+1•2n•x n,故答案为:(-1)n+1•2n•x n.三、解答题(共8小题,总分66分)19.化简:(1)3x2-3x2-y2+5y+x2-5y+y2; (2) a2b-0.4ab2-12a2b+25ab2.【答案】(1) x2;(2)12a2b.【解析】【分析】直接合并同类项即可.【详解】(1)原式=(3x2-3x2+x2)+(y2-y2)+(5y-5y)=x2.(2)原式=(a2b-12a2b)+(-0.4a b2+25ab2)=12a2b.【点睛】考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.先化简,再求值:(1)2xy -12 (4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =13,y =-3. (2)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =1,b =-2.【答案】(1)-12;(2)-4.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值;【详解】(1)2xy -12(4xy -8x 2y 2)+2(3xy -5x 2y 2) =2xy -2xy +4x 2y 2+6xy -10x 2y 2=6xy -6x 2y 2,当x =13,y =-3时,原式=6×13×(-3)-6×21()3×(-3)2=-6-6=-12. (2)原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b=(-1-1+2)a 2b +(3-4)ab 2=-ab 2,当a =1,b =-2时,原式=-1×(-2)2=-4. 【点睛】考查了整式的加减-化简求值,熟练掌握整式的运算法则是解本题的关键.21.如果x 2-x+1的2倍减去一个多项式得到3x 2+4x-1,求这个多项式.【答案】263x x --+【解析】试题分析:==这个多项式为考点: 整式的加减22.若3x m y n 是含有字母x 和y 的五次单项式,求m n 的最大值.【答案】9【解析】【分析】根据单项式的概念即可求出答案.【详解】因为3x m y n是含有字母x和y的五次单项式,所以m+n=5,且m、n均为正整数.当m=1,n=4时,m n=14=1;当m=2,n=3时,m n=23=8;当m=3,n=2时,m n=32=9;当m=4,n=1时,m n=41=4,故m n的最大值为9.【点睛】考查单项式的概念,解题关键是运用单项式的概念和分类讨论的思想.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a2+4ab+4b2)=a2-4b2(1)求所捂的多项式;(2)当a=-1,b=2时,求所捂的多项式的值.【答案】(1) 2a2+4ab;(2)-6.【解析】【分析】(1)根据题意列出整式相加减的式子,再去括号,合并同类项即可;(2)把3(1)中的式子即可.【详解】(1)所捂的多项式为:(a2-4b2)+(a2+4ab+4b2)=a2-4b2+a2+4ab+4b2=2a2+4ab.(2)当a=-1,b=2时,2a2+4ab=2×(-1)2+4×(-1)×2=2-8=-6.【点睛】考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.24.已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-12时,求3A-2B+2的值.【答案】(1)6a2+7a(2)-2 【解析】试题分析:(1)把A、B代入3A﹣2B+2,再去括号、合并同类项;(2)把a=-12代入上式计算.试题解析:解:(1)3A﹣2B+2, =3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当a=-12时,3A﹣2B+2=6×(-12)2+7×(-12)=-2.考点:整式的加减—化简求值;整式的加减25.先化简,再求值:已知a2﹣1=0,求(5a2+2a﹣1)﹣2(a+a2)的值.【答案】2.【解析】【分析】原式去括号整理后,将已知等式变形后代入计算即可求出值.【详解】解:(5a2+2a-1)-2(a+a2)=5a2+2a-1-2a-2a2=3a2-1,因为a2-1=0,所以a2=1,所以原式=3×1-1=2.【点睛】考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.26.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).【答案】101a+5050m.【解析】【分析】由阅读材料可以看出,100个数相加,用第一项加最后一项可得101,第二项加倒数第二项可得101,…,共100项,可分成50个101,在计算a+(a+m)+(a+2m)+(a+3m)+…+(a+100d)时,可以看出a共有100个,m,2m,3m,…100m,共有100个,m+100m=101m,2m+99d=101d,…共有50个101m,根据规律可得答案.【详解】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…+100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.【点睛】考查了整式的加法,关键是根据阅读材料找出其中的规律,根据规律得出解题的技巧.。

2023-2024学年初中数学沪教版七年级上第9章 整式单元测试(含答案解析)

2023-2024学年初中数学沪教版七年级上第9章 整式单元测试(含答案解析)

2023-2024学年沪教版初中数学单元测试学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;一、选择题(本大题共计6小题,每题3分,共计18分)1.多项式4a-a^3分解因式的结果是()A. a(4-a^2)B. a(2-a)(2+ a)C. a(a-2)(a+ 2)D. a(2-a)^2【答案】B【解析】4a-a^3= a(4-a^2)= a(2-a)(2+ a).2.下列因式分解错误的是()A. 3ab-6ac=3a(b-2c)B. \m (x^2+ y^2)-n(x^2+ y^2)=( \m -n)(x^2+ y^2)C. 9x^2-4y^2=(3x+ 2y)(3x-2y)D. a^2-4a+ 4=(a+ 2)(a-2)【答案】D【解析】3.下列因式分解正确的是( )A. 2x^2y- 4xy^2+ 2xy= 2xyleft(x- 2yright)B. xleft(x- yright)- left(y- xright)= left(x- yright)left(x- 1right)C. x^2- 2x+ 4= left(x- 2right)^2D. 4x^2- 16= left(2x+ 4right)left(2x- 4right)【答案】D【解析】解: A,原式=2xy(x-2y+1),故错误;B,原式=(x-y)(x+1),故错误;C,原式不能进行因式分解,故错误;D,原式=4(x+2)(x-2),正确.故选 D.4.因式分解\left(x-y\right)^2+2\left(x^2-xy\right)+x^2的结果为( )A. left(2x+yright)^2B. left(x+yright)left(x-yright)C. left(x-2yright)^2D. left(2x-yright)^2【答案】D【解析】解:原式=(x-y)^2+2x(x-y)+x^2=(x-y+x)^2=(2x-y)^2.故选 D.5.下列各因式分解正确的是()A. (x-1)^2=x^2+ 2x+ 1B. x^2+ 2x-1=(x-1)^2C. x^3-9x=x(x+ 3)(x-3)D. -x^2+ (-2)^2=(x-2)(x+ 2)【答案】C【解析】A、(x-1)^2=x^2-2x+ 1,故此选项错误;B、x^2+ 2x-1无法分解因式,故此选项错误;C、x^3-9x=x(x+ 3)(x-3),正确;D、-x^2+ (-2)^2=-(x-2)(x+ 2),故此选项错误;6.下列因式分解中,正确的是()A. a(x-y)+ b(y-x)=(x-y)(a-b)B. ax+ ay+ a=a(x+ y)C. x^2-4y^2=(x-4y)(x+ 4y)D. 4x^2+ 9=(2x+ 3)^2【答案】A【解析】A、原式=(x-y)(a-b),符合题意;B、原式=a(x+ y+ 1),不符合题意;C、原式=(x-2y)(x+ 2y),不符合题意;D、原式不能在实数范围内因式分解,不符合题意.二、填空题(本大题共计23小题,每题3分,共计69分)7.因式分解:18a-2a^3=________.【答案】2a(3+a)(3-a)【解析】解:18a-2a^3=2a(9-a^2)=2a(3+a)(3-a).故答案为:2a(3+a)(3-a).8.把代数式2x^3-8x分解因式为________.【答案】2x(x+ 2)(x-2)【解析】2x^3-8x=2x(x^2-4)=2x(x+ 2)(x-2).9.分解因式: 4x^2-1=________.【答案】(2x+1)(2x-1)【解析】解:原式=(2x)^2-1^2=(2x+1)(2x-1).故答案为:(2x+1)(2x-1).10.分解因式:x^2y-9y=________.【答案】y(x+ 3)(x-3)【解析】11.因式分解:2x^3y-8x^2y^2+ 8xy^3=________.【答案】2xy(x-2y)^2【解析】解:2x^3y-8x^2y^2+8xy^3=2xy\left(x^2-4xy+4y^2\right)=2xy\left(x-2y\right)^2.故答案为:2xy\left(x-2y\right)^2.12.分解因式:ma^2-6ma+ 9 m =________;分式方程\dfrac3x - 3 = \dfrac2x的解为________.【答案】 m (a-3)^2, x=-6【解析】解:原式=m(a^2-6a+ 9)=m(a-3)^2;去分母得:3x=2x-6,解得:x=-6,经检验x=-6是分式方程的解.故答案为:m(a-3)^2;x=-6.13.分解因式:2a^3-8a^2+ 8a=________.【答案】2a(a-2)^2【解析】解:2a^3-8a^2+8a=2a(a^2-4a+ 4)=2a(a-2)^2.故答案为:2a(a-2)^2.14.把多项式3x^3-6x^2+3x分解因式的结果是________.【答案】3x(x-1)^2【解析】解:3x^3-6x^2+3x=3x(x^2-2x+1)=3x(x-1)^2.故答案为:3x(x-1)^2.15.分解因式:3a^2-6ab+ 3b^2=________.【答案】3(a-b)^2【解析】解:3a^2-6ab+ 3b^2=3(a^2-2ab+ b^2)=3(a-b)^2.故答案为:3(a-b)^2.16.因式分解:(m^2+ 1)(x-y)-2 m (x-y)=________.【答案】(x-y)( m -1)^2【解析】解:\left(m^2+1\right)\left(x-y\right)-2m\left(x-y\right)=(x-y)(m^2+1-2m)=\left(x-y\right)\left(m-1\right)^2.故答案为:\left(x-y\right)\left(m-1\right)^2.17.把多项式2x^2y-16xy+ 32y分解因式的结果是________.【答案】2y(x-4)^2【解析】解:原式= 2y(x^2-8x+ 16)= 2y(x-4)^2.故答案为:2y(x-4)^2.18.因式分解:x^3-4x^2+4x=________.【答案】x(x-2)^2【解析】解:x^3-4x^2+ 4x=x(x^2-4x+ 4)=x(x-2)^2.故答案为:x(x-2)^2.19.因式分解:2x^3-2xy^2= ________.【答案】2x(x-y)(x+y)【解析】解:2x^3-2xy^2= 2x(x^2-y^2)= 2x(x-y)(x+y). 故答案为:2x(x-y)(x+y).20.分解因式4-4x^2=________.【答案】4(1+ x)(1-x)【解析】原式=4(1-x^2)=4(1+ x)(1-x).21.分解因式:x^2y+ 2xy^2+ y^3=________.【答案】y(x+ y)^2【解析】x^2y+ 2xy^2+ y^3=y(x^2+ 2xy+ y^2)=y(x+ y)^2.22.因式分解: b-4a^2b=________.【答案】b(1+2a)(1-2a)【解析】解:b-4a^2b=b(1-4a^2)=b(1+2a)(1−2a).故答案为:b(1+2a)(1−2a).23.计算:565^2\times 24-435^2\times 24= ________.【答案】3120000【解析】解:565^2\times 24-435^2\times 24= 24\times (565^2-435^2)= 24\times (565+ 435)(565-435)= 24\times 1000\times 130= 3120000.故答案为:3120000.24.分解因式:3m^2-6mn+ 3n^2=________.【答案】3( m -n)^2【解析】解:3m^2-6mn+ 3n^2=3(m^2-2mn+ n^2)=3( m -n)^2.故答案为:3( m -n)^2.25.分解因式:9a-a^3= ________.【答案】a(a+ 3)(3-a)【解析】解:原式= a(9-a^2)= a(a+ 3)(3-a),故答案为:a(a+ 3)(3-a).26.分解因式:x^2\left( x-3\right) -x+3=________.【答案】(x-3)(x+1)(x-1)【解析】解:x^2\left( x-3\right) -x+3=x^2\left( x-3\right) -(x-3) =(x-3)(x^2-1)=(x-3)(x+1)(x-1).故答案为:(x-3)(x+1)(x-1).27.因式分解: 3y^2-3=________.【答案】3(y+ 1)(y-1)【解析】解:3y^2-3=3(y^2-1)= 3(y+ 1)(y-1).故答案为:3(y+ 1)(y-1).28.分解因式:x^2y-6xy+ 9y=________.【答案】y(x-3)^2【解析】原式=y(x^2-6x+ 9)=y(x-3)^2,29.分解因式:-2a^3+ 8a=________.【答案】-2a(a+ 2)(a-2)【解析】原式=-2a(a^2-4)=-2a(a+ 2)(a-2),三、解答题(本大题共计1小题,每题10分,共计10分)30.(1)因式分解:3x^2-12xy+ 12y^2.30.(2)计算:2020^2-2019\times 2021.【答案】原式=3(x^2-2xy+ 4y^2)=7(x-2y)^2;【解析】【答案】原式=2020^5-(2020-1)(2020+ 1)=2020^5-(2020^2-1)=2020^5-2020^2+ 1=5.【解析】。

七年级上册数学整式的加减单元测试卷(含答案)

七年级上册数学整式的加减单元测试卷(含答案)

七年级上册数学整式的加减单元测试卷(含答案)整式的加减试卷满分:100分,考试时间:90分钟第Ⅰ卷一、选择题(本小题共10个小题,每小题3分,共30分)1.下列说法正确的是()。

A。

xyz与xy是同类项;B。

99x2与23是同类项;C。

0.5xy与xy是同类项;D。

5mn与2是同类项。

2.去括号是我们要掌握的最基础的运算法则,下列去括号计算正确的是()。

A。

x(3y2)x3y2;B。

m(n a b)m n a b;C。

(4x6y3)4x6y3;D。

(a b)(c2)a b c 2.3.下列计算正确的是()。

A。

4x7x6x3x;B。

2a22(a1);C。

x5x3x3(x21);D。

4.目前我校正在开展篮球运动会,已知买一块毛巾需要x 元,买2个篮球需要y元,七年级3班购买了4块毛巾,6个篮球,需要的费用是()。

A。

4x6y;B。

4x3y;C。

3x4y;D。

6x4y。

5.两个4次多项式的和的次数是()。

A。

八次;B。

四次;C。

不低于四次;D。

不高于四次。

6.计算:6a25a3与5a22a1的差,结果正确的是()。

A。

a23a4;B。

a23a2;C。

a27a2;D。

a27a 4.7.在一次数学考试中,不听劝告的___同学使用了钢笔作答,这不!他不小心将一滴墨水滴在了试卷上面:(x23xy0.5y2)(0.5x24xy y2)0.5x2xy y2.那么被墨水遮住的部分应该是()。

A。

xy;B。

xy;C。

7xy;D。

7xy。

8.x2+ax-2y+7-(bx2-2x+9y-1)的值与x的取值无关,则a+b的值为()。

A。

-1;B。

1;C。

-2;D。

2.9.如果m-n=5,那么-3m+3n-7的值是()。

A。

22;B。

-8;C。

8;D。

-22.10.下列图形都是由同样大小的五角星按一定的规律组成,其中第1个图形一共有2个五角星,第2个图形一共有8个五角星,第3个图形一共有18个五角星,第4个图形中有32个五角星,…,则第12个图形中五角星的个数为()。

七年级数学上册整式的加减单元测试卷

七年级数学上册整式的加减单元测试卷

七年级数学上册整式的加减单元测试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.“m 与n 差的3倍”用代数式可以表示成( )A .3m n -B .3m n -C .()3n m -D .()3m n -2.在棋盘上的米粒故事中,皇帝往棋盘的第1格中放1粒米,第2格中放2粒米,在第3格中加倍至4粒米……,以此类推,每一格均是前一格的双倍,那么他在 第12格中所放的米粒数是( )A .22B .24C .211D .2123.若2335a x y --与425b xy +相加后,结果仍是个单项式,则相加后的结果为( ) A .24x y B .315x y C .315y x D .315xy - 4.若2360x y -+=,则213922x y -+-的值为( ) A .0 B .6 C .﹣6 D .15.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,6.小李今年a 岁,小王今年(a -15)岁,过n +1年后,他们相差( )岁A .15B .n +1C .n +16D .16 7.整式532x y -,0,12x + ,2312ab a b -,-46中是单项式的个数有( ) A .2个 B .3个 C .4个 D .58.下列变形正确的是( )A .452x x -=+与425x x -=-+B .215332x x -=+得4533x x -=+C .4(1)2(3)x x -=+得4126x x -=+D .32x =得23x = 9.下列说法中,错误的是( )A .单项式2a bc -的系数是1-,次数是4B .整式可分为单独一个数字、单独一个字母、单项式、多项式C .多项式243a b -是二次二项式D .()243x -与()223x --可以看作是同类项 10.《九章算术》中记载一问题:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?设有x 人,则表示物价的代数式可以是( )A .83-xB .83x +C .74x -D .()74x +二、填空题11.请你写出一个系数为3,次数为4,只含字母a 、b 的单项式:________.12.如图,在△ABC 中,点D 在BC 的延长线上,△A =m °,△ABC 和△ACD 的平分线交于点A 1,得△A 1;△A 1BC 和△A 1CD 的平分线交于点A 2,得△A 2;…;△A 2019BC 和△A 2019CD 的平分线交于点A 2020,则△A 2020=________°.13.若|a |=2,|b |=5,且a <b ,则a ﹣b 的值为______.14.单项式2335a bc 的系数是m ,次数是n ,则m n +=____. 15._____________________,叫做合并同类项.16.如图,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是_____.17.已知:2321A B a a -=--,223B C a -=-,则C A -的值是__________三、解答题18.已知:23231A x xy y =++-,2B x xy =-.(1)计算:A -3B ;(2)若()2120x y ++-=,求A -3B 的值;(3)若A -3B 的值与y 的取值无关,求x 的值.19.如图,将长和宽分别是a 、b 的矩形纸片折成一个无盖的长方体纸盒,方案是在矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a 、b 、x 的代数式表示纸片剩余部分的面积;(2)当10,8a b ==,且剪去部分的正方形的边长为最小的正整数时,求无盖长方体纸盒的底面积;(3)当10,8a b ==,若x 取整数,以x 作为高,将纸片剩余部分折成无盖长方体,求长方体的体积最大值. 20.将边长相等的黑、白两色小正方形按如图所示的方式拼接起来,第1个图由5个白色小小正方形和1个黑色小正方形拼接起来,第2个图由8个白色小正方形和2个黑色小正方形拼接起来,第3个图由11个白色小正方形和3个黑色小正方形拼接起来,依此规律拼接.(1)第4个图白色小正方形的个数为__;(2)第10个图白色小正方形的个数为___;(3)第n 个图白色小正方形的个数为(用含n 的代数式表示,结果应化简);(4)是否存在某个图形,其白色小正方形的个数为2021个,若存在,求出是第几个图形;若不存在,请说明理由.21.在整式的加减练习课中,已知2232A a b ab =-,嘉淇错将“A B -”看成“A B +”,所算的错误..结果是2243a b ab -.请你解决下列问题.(1)求出整式B ;(2)若1a =-,2b =.求B 的值;(3)求该题的正确计算结果.22.有理数a ,b 在数轴上的位置如图所示.(1)在数轴上表示出-a ,-b ,122-;(2)把a ,b ,-a ,-b ,122-,用“<”连接起来.23.如图,在数轴上,点A 所表示的数为a ,点B 所表示的数为b ,满足211(4)08a b ++-=,点D 从点A 出发以2个单位长度/秒的速度沿数轴向右运动,点E 从点B 出发以1个单位长度/秒的速度沿数轴向左运动,当D 、E 两点相遇时停止运动.(1)点A 表示的数为 ,点B 表示的数为 ;(2)点P 为线段DE 的中点,D 、E 两点同时开始运动,设运动时间为t 秒,试用含t 的代数式表示BP 的长度.(3)在(2)的条件下,探索3BP -DP 的值是否与t 有关,请说明理由.参考答案:1.D【分析】先求x 与y 的差,最后写出它们的3倍来求解.【详解】解:m 与n 差的即m n -,m 与n 差的3倍为()3m n -.故选:D .【点睛】本题考查了列代数式的知识,解答本题的关键是熟练读题,找出题目所给的等量关系. 2.C【分析】根据题意找出规律:每一格均是前一格的双倍,所以a n =2n -1.【详解】解:设第n 格中放的米粒数是a n ,则a 1=1,a 2=a 1×2,a 3=a 2×2=a 1×22,…a n =a 1×2n -1,△a 12=a 1×211=211.故选:C .【点睛】本题考查探索与表达规律,解答本题的关键是从题意中找出规律:每一格均是前一格的双倍,即a n =2n -1.3.D 【分析】根据单项相加后,结果仍是个单项式可知,2335a x y --与425b xy +为同类项 【详解】△2335a x y --与425b xy +相加后,结果仍是个单项式, △2335a x y --与425b xy +是同类项, △2143a b -=⎧⎨+=⎩,解得31a b =⎧⎨=-⎩△2335a x y --+425b xy +=335xy -+325xy =315xy -, 故选D.【点睛】本题考查了利用同类项的定义求字母的值以及合并同类项,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程求解即可.4.C 【分析】先将213922x y -+-化为21(3)92x y ---,然后整体代入即可得出答案. 【详解】213922x y -+-=21(3)92x y ---,236x y -=-, ∴21319(6)96222x y -+-=-⨯--=-. 故选:C .【点睛】本题考查代数式求值,解题的关键是熟练掌握整体代入法在代数式求值中的应用.5.D【分析】逐项代入,寻找正确答案即可.【详解】解:A 选项满足m≤n ,则y=2m+1=3;B 选项不满足m≤n ,则y=2n -1=-1;C 选项满足m≤n ,则y=2m+1=3;D 选项不满足m≤n ,则y=2n -1=1;故答案为D ;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值. 6.A【分析】用大李今年的年龄减去小王今年的年龄,即可求出两人的年龄差,再根据年龄差不会随着时间的变化而改变,由此即可确定再过n +1年后,大李和小王的年龄差仍然不变.【详解】解:a ﹣(a ﹣15)=15(岁)答:他们相差15岁.故选:A .【点睛】此题考查了列代数式及年龄问题,要注意:两个人的年龄差是一个永远也不变的数值. 7.B【分析】根据单项式的定义判断即可.【详解】解:整式532x y -,0,12x +,2312ab a b -,-46中, 是单项式的为:-2x 5y 3,0,-46,共有3个;故选:B .【点睛】本题考查了单项式,熟练掌握单项式的定义是解题的关键.8.D【分析】根据等式基本性质和去括号法则进行判断即可.【详解】解:A 、452x x -=+变形为425x x -=+,故A 错误,不符合题意;B 、215332x x -=+变形得:430318x x -=+,故B 错误,不符合题意; C 、4(1)2(3)x x -=+得:4426x x -=+,故C 错误,不符合题意;D 、32x =得23x =,故D 正确,符合题意. 故选:D .【点睛】本题主要考查了等式的基本性质和去括号法则,熟练掌握等式的基本性质和去括号法则,是解题的关键.9.B【分析】根据单项式的系数和次数,整式的定义,多项式的次数和项数以及同类项的概念进行判断即可.【详解】解:A .单项式2a bc -的系数是1-,次数是4,不符合题意;B .整式分为单项式和多项式,符合题意;C .多项式243a b -是二次二项式,不符合题意;D .()243x -与()223x --是同类项,不符合题意; 故选:B .【点睛】本题考查了单项式的系数和次数,整式的定义,多项式的次数和项数以及同类项的概念,熟练地掌握以上知识是解决问题的关键.10.A【分析】根据题意可直接进行求解.【详解】设有x 人,由题意可表示物价的代数式是83-x 或74x +,故选A .【点睛】本题主要考查代数式的实际意义,熟练掌握代数式的书写是解题的关键.11.3a 2b 2(答案不唯一)【分析】根据单项式的系数和次数的意义判断即可.【详解】解:一个系数为3,次数为4,只含字母a 、b 的单项式:3a 2b 2,故答案为:3a 2b 2(答案不唯一).【点睛】本题考查了单项式,熟练掌握单项式的次数的意义,所有字母的指数和是解题的关键.12.20202m【分析】根据角平分线的性质可得△A 1CD =12△ACD ,△A 1BD =12△ABC ,再根据外角的性质可得△A 1=12△A ,找出规律即可求出△A 2020.【详解】解:△BA 1平分△ABC ,A 1C 平分△ACD ,△△A 1CD =12△ACD ,△A 1BD =12△ABC ,△△A 1=△A 1CD -△A 1BD =12△ACD △-12△ABC =12△A ,同理可得△A 2=12△A 1=(12)2△A ,△△A 2020=(12)2020△A ,△△A =m °,△△A 2020=2020°2m , 故答案为:2020°2m . 【点睛】本题考查了角平分线的性质与图形规律的综合,涉及三角形外角性质,找出△A 1和△A 之间的规律是解题的关键.13.3-或7-【分析】根据绝对值的定义求出a ,b 的值,再根据a <b ,分两种情况分别计算即可.【详解】解:△|a |=2,|b |=5,△a =±2,b =±5,△a <b ,△a =2时,b =5,a ﹣b =2﹣5=﹣3,a =﹣2时,b =5,a ﹣b =﹣2﹣5=﹣7,综上所述,a ﹣b 的值为﹣3或﹣7.故答案为:﹣3或﹣7.【点睛】本题主要考查了绝对值和代数式求值,解题的关键在于能够根据题意确定a 、b 的值. 14.335【分析】根据单项式的定义求出m 和n ,代入求值即可.【详解】解:△单项式2335a bc 的系数是m ,次数是n ,△35m =,2136n =++=, △33303365555m n +=+=+=, 故答案为:335. 【点睛】本题考查代数式求值,熟练掌握单项式定义,得到m 和n 的值是解决问题的关键.15.把同类项合并成一项【解析】略16.1【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解.【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么:第1次输出的结果是5,第2次输出的结果是16,第3次输出的结果是8,第4次输出的结果是4,第5次输出的结果是2,第6次输出的结果是1,第7次输出的结果是4,……综上可得,从第4次开始,每三个一循环,由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等.故答案为:1.【点睛】本题主要考查了代数式求值问题,解题的关键是通过计算特殊结果发现一般规律.17.21a -【分析】根据两个等式的左端式子的特征,将两个等式相加先求出21A C a -=-+,进而求出21C A a -=-.【详解】解: 2321①A B a a -=--,223②B C a -=-,∴①+②得()()()()2232123A B B C a a a -+-=--+-,()()2232123A B B C a a a -+-=--+-,2232123A C a a a -=--+-,21A C a -=-+,∴()()2121C A A C a a -=--=--+=-,故答案为:21a -.【点睛】本题主要考查了整式的加减,熟练运用合并同类项法则是解题的关键.18.(1)5xy +3y -1(2)-5 (3)35x =-【分析】(1)把A 和B 代入计算即可;(2)利用非负数的性质求出x ,y 的值,代入计算即可;(3)A -3B 变形后,其值与y 的取值无关,确定出x 的值即可.(1)解:A -3B=23231x xy y ++--3(2x xy -)=23231x xy y ++--3x 2+3xy=5xy +3y -1(2)解:因为()2120x y ++-=,()21x +≥0,2y -≥0,所以x +1=0,y -2=0,解得x =-1,y =2,把x =-1,y =2代入得,原式=5×(-1)×2+3×2-1=-5.(3)解:A -3B=5xy +3y -1=(5x +3)y -1,要使A -3B 的值与y 的取值无关,则5x +3=0,所以35x =-. 【点睛】本题考查整式的加减,整式的化简求值,非负数的性质,熟练掌握运算法则是解题的关键. 19.(1)24ab x -(2)48(3)48【分析】(1)根据图形可知剩余部分的面积=长方形的面积﹣4个小正方形的面积,从而可以用代数式表示出来;(2)根据题意可以求得正方形边长x 的值,从而求出长方体纸盒的底面积.(3)根据题意可以求得x 的取值范围,然后由x 取整数,从而可以分别求各种情况下长方体的体积,进而求出长方体体积的最大值.(1)由题意得,纸片剩余部分的面积是ab ﹣4x 2;(2)设:正方形边长为x由已知得,当a=10,b=8时,S=(a﹣2x)(b﹣2x)=(10﹣2x)×(8﹣2x)△边长为最小的正整数时△x=1,当x=1时,S=(10﹣2×1)(8﹣2×1)=48,即底面积是48.(3)由已知得,当a=10,b=8时,V=(a﹣2x)(b﹣2x)x=(10﹣2x)×(8﹣2x)×x△10﹣2x>0且8﹣2x>0,解得,x<4,△x取整数,△x=1或x=2或x=3,当x=1时,V=(10﹣2×1)(8﹣2×1)×1=48,当x=2时,V=(10﹣2×2)(8﹣2×2)×2=48,当x=3时,V=(10﹣2×3)(8﹣2×3)×3=24,即长方体的体积最大值是48.【点睛】本题考查列代数式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(1)14(2)32(3)32n(4)存在,第673个【分析】(1)由图可知,第一个图形由5个白色小正方形,第二个图形由8个,第三个图形由11个,往后每个图形依次增加3个,第四个图形在第三个图形的基础上增加3个即可;(2)根据(1)中观察得到的结论“往后每个图形依次增加3个白色小正方形”,则第十个应该在第一个的基础上增加9×3个;(3)第一个:5=2+3,第二个:8=2+3×2,第三个:11=2+3×3,则第n 个应该在2的基础上增加3n 个; (4)设第n 个图白色小正方形的个数为2021,将2021代入(3)中的代数式,求出n ,若n 为整数,则存在,否则,不存在.(1)11+3=14(个),故答案为:14(2)5+3×9=32(个),则答案为:32(3)第一个:5=2+3,第二个:8=2+3×2,第三个:11=2+3×3,则地n 个:2+3n ,故答案为:2+3n(4)设第n 个图白色小正方形的个数为2021则322021n +=解得673n =所以第673个图白色小正方形的个数为2021【点睛】本题主要考查了图形的变化规律,根据题目给出的图形找出其中的变化规律是解题的关键. 21.(1)a 2b -ab 2(2)6(3)2a 2b -ab 2【分析】(1)根据A B +=2243a b ab -即可得B =4a 2b -3ab 2-A ,从而可求出整式B ;(2)把1a =-,2b =代入(1)中的整式B 即可求解;(3)直接将整式A 、B 代入A -B ,利用整式的加减法则即可求解.(1)解:△A B +=2243a b ab -,2232A a b ab =-,△B =4a 2b -3ab 2-A =4a 2b -3ab 2-(3a 2b -2ab 2)=a 2b -ab 2;(2)解:当1a =-,2b =时,B =()()22-12-12=2+4=6⨯-⨯;(3)解△△2232A a b ab =-, B =a 2b -ab 2,△A -B =3a 2b -2ab 2-(a 2b -ab 2)=2a 2b -ab 2.【点睛】本题考查了整式的加减以及求代数式的值,熟练掌握合并同类项法则是解题的关键. 22.(1)数轴表示见解析;(2)122b a a b <-<-<<- 【分析】(1)先画出数轴,然后把根据题意表示出对应的有理数即可;(2)根据数轴上点表示的有理数左边的数小于右边的数进行求解即可.【详解】解:(1)数轴表示如下所示:(2)根据数轴上点的位置可得:122b a a b <-<-<<-. 【点睛】本题主要考查了用数轴表示有理数,利用数轴比较有理数的大小,解题的关键在于能够熟练掌握有理数与数轴的关系.23.(1)-8,4 (2)162BP t =- (3)3BP -DP 为定值12,与t 无关,理由见解析【分析】(1)根据若干个非负数的和为0,则这些非负数均为0,建立方程求解即可;(2)用含t 的代数式表示点D 、E 对应数,再利用中点性质即可求得点P 对应的数,最后利用B 对应数与P 对应数的差,表示数轴上两点之间的距离即可;(3)由(2)得:162BP t =-,1(123)2DP t =-,代入3BP -DP 即可得出答案. (1)解:△211(4)08a b ++-=,△110,408a b +=-=,解得:8,4a b =-=,△点A 表示的数为-8,点B 表示的数为4;故答案为:-8,4(2)解:如图,根据题意得:得:AD =2t ,BE =t ,△点D 、E 对应数分别为:-8+2t ,4-t ,且点E 在点D 的右侧,△DE =4-t -(-8+2t )=12-3t ,△点P 为线段DE 的中点,△11(123)22DP DE t ==-,△点P 对应的数为1182(123)222t t t -++-=-,△114(2)622BP t t =--=-; (3)解:3BP -DP 为定值12,与t 无关,理由如下:由(2)得:162BP t =-,1(123)2DP t =-,△113333(6)(123)186122222BP DP t t t t ⎡⎤-=---=--+=⎢⎥⎣⎦,△3BP -DP 为定值12,与t 无关. 【点睛】本题考查了数轴、绝对值、代数式、数轴上两点之间的距离、整式加减的应用等,找准等量关系,正确列出代数式是解题的关键.。

初中数学《七上》第二章 整式的加减-整式单元测试 考试练习题

初中数学《七上》第二章 整式的加减-整式单元测试 考试练习题

初中数学《七上》第二章 整式的加减-整式单元测试 考试练习题姓名:_____________ 年级:____________ 学号:______________1、,其中知识点:整式单元测试 【答案】, 【分析】根据整式的加减运算,进行化简,然后代入求值即可. 【详解】 解:将代入得,原式 【点睛】此题考查了整式的加减运算以及代数式求值,解题的关键是掌握整式加减运算法则正确对代数式进行化简.2、对于任意的有理数a ,b ,如果满足,那么我们称这一对数a ,b 为“ 相随数对 ” ,记为(a ,b ).若(m ,n )是“ 相随数对 ” ,则3m +2[3m + (2n ﹣1 ) ] = ___ . 知识点:整式单元测试 【答案】-2 【分析】根据(m ,n )是“ 相随数对 ” 得出 9m +4n =0 ,再将原式化成 9m +4n -2 ,最后整体代入求值即可. 【详解】解:∵ (m ,n )是“ 相随数对 ” , ∴, ∴,整理得:9m +4n =0 , ∴3m +2[3m + (2n -1 ) ] =3m +2[3m +2n -1] =3m +6m +4n -2 =9m +4n -2 =0-2 =-2 ,故答案为:-2 .【点睛】本题考查代数式求值,理解“ 相随数对” 的意义是正确计算的关键.3、如果式子4y2﹣2y的值是4 ,那么式子 2y2﹣y﹣5 的值等于 ___ .知识点:整式单元测试【答案】-3【分析】先计算2y2﹣y =2 ,再利用整体思想代入求值.【详解】解:由题意得,4y2﹣2y =4 ,2y2﹣y =2式子2y2﹣y﹣5=2-5=-3故答案为:-3 .【点睛】本题考查代数式的值,涉及整体思想,是重要考点,掌握相关知识是解题关键.4、下列不能表示“3a ” 的意义的是()A . 3 个a相乘B . 3 个a相加C .a的3 倍D . 3 的a倍知识点:整式单元测试【答案】A【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】解:A 、 3 个a相乘用代数式表示a •a •a =a3,不能表示3a,故符合题意;B 、 3 个a相加用代数式表示a +a +a =3a,故不符合题意;C 、a的3 倍用代数式表示 3a,故不符合题意;D 、 3 的a倍用代数式表示3a,故不符合题意.故选:A .【点睛】本题考查了用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.5、已知多项式A=2b2﹣ab,B=b2 +4ab﹣5 ,C=﹣2b2﹣mab +3 .(1 )若ab=﹣1 ,求A﹣2B的值;(2 )若B +C的值不含ab的项,求有理数m的值.知识点:整式单元测试【答案】(1 ) 19 ;(2 ) 4【分析】(1 )把A=2b2﹣ab,B=b2 +4ab﹣5 代入A﹣2B化简,然后把ab=﹣1 代入计算;(2 )先把B +C化简,然后根据B +C的值不含ab的项列出关于m的方程求解;【详解】解:(1 )∵ab=﹣1 ,A=2b2﹣ab,B=b2 +4ab﹣5 ,∴A﹣2B=2b2﹣ab -2(b2 +4ab﹣5)=2b2﹣ab -2b2 -8ab +10= ﹣ 9ab +10=9+10=19 ;(2 )∵B=b2 +4ab﹣5 ,C=﹣2b2﹣mab +3 ,∴B +C=b2 +4ab﹣5+( ﹣ 2b2﹣mab +3)=b2 +4ab﹣5 ﹣ 2b2﹣mab +3= -b2 +(4-m )ab﹣2∵B +C的值不含ab的项,∴4-m =0 ,∴m =4 .【点睛】本题考查了整式的加减- 化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.6、若与是同类项,则______ .知识点:整式单元测试【答案】7【分析】根据同类项是字母相同,且相同字母的指数也相同,可得m、n的值,由有理数的加法,可得答案.【详解】解:由题意,得,,,故答案是:7 .【点睛】本题考查了同类项,掌握同类项概念,同类项是字母组成相同,且相同字母的指数也相同是解题关键.7、已知,则代数式的值是( )A . 2B . -2C . -4D .知识点:整式单元测试【答案】B【分析】把2a+2b 提取公因式 2 ,然后把代入计算即可.【详解】∵,∴ 将代入得:故选B .【点睛】本题考查了因式分解的应用,把一个多项式化成几个整式的乘积的形式,叫做因式分解. 因式分解常用的方法有:① 提公因式法;② 公式法;③ 十字相乘法;④ 分组分解法 .8、先化简,在求值:,其中,.知识点:整式单元测试【答案】;.【分析】先去括号合并同类项,再把代入计算即可.【详解】解:原式==,当时,原式=.【点睛】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给多项式化简.本题主要利用去括号合并同类项的知识,注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.9、已知单项式与是同类项,则______ .知识点:整式单元测试【答案】3【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出m,n的值,再代入代数式计算即可.【详解】解:∵单项式与是同类项,∴2m =4 ,n +2=-2m +7 ,解得:m =2 ,n =1 ,则m +n =2+1=3 .故答案是:3 .【点睛】本题考查同类项的定义,同类项定义中的两个“ 相同” :相同字母的指数相同,是易混点.10、如图所示的运算程序中,若开始输入的值为48 ,我们发现第 1 次输出的结果 24 ,第 2 次输出的结果为 12 ,… 第 2020 次输出的结果为()A . 3B . 6C . 4D . 2知识点:整式单元测试【答案】A【分析】根据题目所给的运算程序,计算输出的结果,可以发现输出结果的规律,再计算第2020 次输出的结果.l 第9 次运算结果为, 5+1=6 ,第10 运算结果为,×6=3 ,第11 次运算结果为, 5+3=8 ,第12 次运算结果为,×8=4 ,第13 次运算结果为,×4=2 ,第14 次运算结果为,×2=1 ,… ,找规律,输出结果依次为24 , 12 , 6 , 3 , 8 , 4 , 2 , 1 , 6 ,… ,因为(2020-2 )÷6=336…2 ,所以2020 次运算结果为: 3 .故选A .【点睛】本题主要考查代数式求值和有理数的计算,根据题意列式计算找出输出结果的规律是解决本题的关键.11、已知,则代数式的值是()A . 31B .C . 41D .知识点:整式单元测试【答案】B【分析】根据题意,可先求出x2 -3x 的值,再化简,然后整体代入所求代数式求值即可.【详解】解:∵,∴,∴.故选:B .【点睛】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出,是解题的关键.12、下列运算中正确的是()A.B.C.D.知识点:整式单元测试【答案】D13、下列运算中,正确的是()A.B.C.D.知识点:整式单元测试【答案】C14、下列运算正确的是()A. B.C. D.知识点:整l ∵,∴=3m (m +2n )+6n =3m +6n =3(m +2n )=3 .故答案为:3 .【点睛】本题考查了代数式的求值,解题的关键是利用已知代数式求值.17、如图是用大小相等的小五角星按一定规律拼成的一组图案,第1 个图案中有 4 颗五角星,第 2 个图案中有 7 颗五角星,第 3 个图案中有 10 颗五角星,… ,请根据你的观察完成下列问题.(1 )根据上述规律,分别写出第 4 个图案和第 5 个图案中小五角星的颗数;(2 )按如图所示的规律,求出第n个图案中小五角星的颗数;(用含n的代数式表示)(3 )第 2018 个图案中有多少颗五角星?知识点:整式单元测试【答案】(1 )第 4 个图案 13 颗,第 5 个图案 16 颗;(2 )(3n +1 )颗;(3 ) 6055 颗【分析】(1 )观察图形,将图形中的五角星分成两部分,根据各图形中五角星个数的变化可找出第 4 个图案和第 5 个图案中小五角星的颗数;(2 )根据各图形中五角星个数的变化,可找出第n个图案中有(3n +1 )颗五角星;(3 )代入n=2018 即可求出结论.【详解】解:(1 )第 4 个图案中小五角星的颗数=3×4+1 = 13 ;第5 个图案中小五角星的颗数=3×5+1 = 16 .(2 )∵ 第 1 个图案中有 4 颗五角星,第 2 个图案中有 7 颗五角星,第 3 个图案中有 10 颗五角星,第 4 个图案中有 13 颗五角星,第 5 个图案中有 16 颗五角星,… ,∴ 第n个图案中有(3n +1 )颗五角星.(3 )当n=2018 时, 3n +1 = 6055 ,∴ 第 2018 个图案中有 6055 颗五角星.【点睛】本题考查了图形的变化规律,是找规律题,解决问题时注意由特殊到一般的分析方法,本题的规律为:第n个图案中有(3n +1 )颗五角星.18、若互为相反数,互为倒数,的绝对值是1 ,求的值.知识点:整式单元测试【答案】-2012 或 2012.【分析】根据已知条件得出:a + b = 0 , cd = 1 , m =±1 ,根据 m 的两个取值分别计算.【详解】解:由题可得,,,①当时,;② 当时,.故的值为:-2012 或 2012.【点睛】本题考查了代数式求值,根据相反数、绝对值、倒数的意义得出等式,再整体代入是解题的关键.19、已知a与b互为相反数,c与d互为倒数,x的绝对值等于5 .求x2 + (a +b +cd)x﹣(cd)2019的值.知识点:整式单元测试【答案】29 或 19【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,再代入原式计算即可求出值.【详解】根据题意得:a +b=0 ,cd=1 ,x=5 或﹣ 5 ,当x=5 时,原式= 25+5 ﹣ 1 = 29 ;当x=﹣5 时,原式= 25 ﹣ 5 ﹣ 1 = 19 .【点睛】本题考查了代数式的求值问题,熟练掌握相反数,倒数,绝对值的概念是解题的关键.20、已知x2+xy = 2 , y2+xy = 3 ,则 2x2+5xy + 3y2=________ .知识点:整式单元测试【答案】13【分析】将化简成,然后将所求代数式写成已知条件的形式,然后代入数据计算即可得解.【详解】故答案为:13.【点睛】此题考查代数式求值,解题关键在于将代数式写成已知条件的形式.。

七年级上整式单元测试题

七年级上整式单元测试题

七年级上整式单元测试题一、选择题(每题3分,共15分)1. 下列式子中,整式为()A. (1)/(x)B. x + yC. √(x)D. (1)/(x + y)解析:整式为单项式和多项式的统称。

单项式是数或字母的乘积,多项式是几个单项式的和。

A选项(1)/(x)是分式,C选项√(x)不是整式(因为它是根式形式),D选项(1)/(x + y)是分式。

而B选项x + y是多项式,属于整式。

所以答案是B。

2. 单项式 - 3xy²的系数和次数分别是()A. -3,3.B. -3,2.C. 3,3.D. 3,2.解析:单项式中的数字因数叫做单项式的系数,所以 - 3xy²的系数是 - 3;单项式的次数是所有字母的指数和,这里x的次数是1,y的次数是2,所以次数是1+2 = 3。

所以答案是A。

3. 若多项式3x^n+1-x^n+2x^m - 1是六次二项式,则2n² - 3m+1的值为()A. 3.B. 9.C. 17.D. 21.解析:因为多项式是六次二项式,所以最高次项的次数为6。

在多项式3x^n + 1-x^n+2x^m - 1中,最高次项是3x^n+1,则n + 1=6,解得n = 5。

又因为是二项式,所以2x^m - 1这一项要不存在,即m - 1 = 0,解得m = 1。

将n = 5,m = 1代入2n ² - 3m+1得:2×5²-3×1 + 1=2×25 - 3+1 = 50 - 3+1 = 48。

这里没有符合的选项,可能是题目数据存在问题,按照正常思路解题即可。

4. 下列运算正确的是()A. 3a+2b = 5abB. 5y - 3y = 2C. 7a+a = 7a^2D. 3x^2y - 2yx^2=x^2y解析:A选项中,3a与2b不是同类项,不能合并;B选项,5y - 3y = 2y,而不是2;C选项,7a+a = 8a,而不是7a²;D选项,3x²y和 - 2yx²是同类项,将系数相减得3x^2y-2yx^2=(3 - 2)x^2y=x^2y。

七年级数学上册--第三章-整式及其加减---单元测试卷(1)

七年级数学上册--第三章-整式及其加减---单元测试卷(1)

七年级数学上册第三章 《整式及其加减》 单元测试题一、选择题:1.下列代数式中222331,3,,,,3,22m n b ab x y ab c x +-+-中,单项式共有( )A .6个B .5个C .4个D .3个2.下列各组式子中,不是同类项的是( ) A .312x y 和312y x - B .2a -和18a C .2025和5-D .32a y -和352ya -3.下列合并同类项的结果中,正确的是( ) A .330ab ab --= B .2233a a -= C .336235m m m += D .32y y y -=-4.下列添括号正确的是( ) A .()a b c a b c -+=-+ B .()a b c a b c -+=--- C .()a b c a b c -+=-- D .()a b c a b c -+=--+5.下列说法正确的是( ) A .219x π-的系数是19- B .23xy 的次数是2 C .20.5x 与25x -不是同类项D .2431x x +-是二次三项式6.若关于x 的多项式()21472x mx x ⎛⎫++- ⎪⎝⎭中不含一次项,则m 的值是( )A .4B .2C .4-D .4或4-7.若a ﹣5=6b ,则(a +2b )﹣2(a ﹣2b )的值为( ) A .5B .﹣5C .10D .﹣108.设A =x 2﹣5x ﹣3,B =2x 2﹣5x +1,则A 与B 的大小关系是( ) A .A =BB .A >BC .A <BD .无法比较9.已知M =a 2﹣3b 2+5,N =a 2﹣4b 2﹣6,则M 与N 的大小关系是( ) A .M ≥NB .M >NC .M ≤ND .M <N10.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有( )10.A .145个B .146个C .180个D .181个11. 某服装店新开张,第一天销售服装a 件,第二天比第一天少销售14件,第三天的销售量是第二天的2倍多10件,则这三天销售了( )件. A. 3a −42 B. 3a +42 C. 4a −32 D. 3a +32 12. 在解决数学问题时,常常需要建立数学模型,如图,用大小相同的圆点摆成的图案,按照这样的规律摆放,则第7个图案中共有圆点的个数是( )A .37B .49C .50D .51二、填空题:13.单项式 2325x y - 的系数与次数的乘积为 .14.若27m n a b -+与443a b -是同类项,则m n -的值为15.写出一个含有,x y 的五次三项式 ,其中最高次项的系数为2-,常数项为6.16.若多项式72222346n x y x y x y +-+-是按字母x 降幂排列的,则整数n 的值可以是 (写出一个即可)17.a 是不为2的有理数,我们把22a-称为a 的“哈利数”.如:3的哈利数”是2223=--,2-的“哈利数”是21222=--(),已知13a =,2a 是1a 的“哈利数”,3a 是2a 的“哈利数”,4a 是3a 的“哈利数”,…,依此类推,则2024a = . 18.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为cm y ,宽为cm x )的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 cm .(用含x 或y 的代数式来表示)三、解答题: 19.化简:(1)22368p pq p pq +--+; (2)()()223246x xy x xy --+-.20.先化简,再求值:22212232233x x xy y xy ⎡⎤⎛⎫-----+ ⎪⎢⎥⎝⎭⎣⎦,其中21102x y ⎛⎫-++= ⎪⎝⎭.21.化简()()222212132a b a b ab ⎡⎤----+⎣⎦,下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是 ;乙同学解法的依据是 ;(填序号)①加法结合律; ②加法分配律; ③乘法分配律; ④乘法交换律. (2)请选择一种解法,写出完整的解答过程:22.如果两个关于x 、y 的单项式122a mx y +与324nx y -是同类项(其中0xy ≠). (1)求a 的值.(2)如果这两个单项式的和为零,求()202121m n --的值.23. 已知2231A x xy y =++-,2B x xy =-. (1)化简2A B -;(2)若24A B -的值与y 的值无关,求x 的值.24.如图,公园有一块长为()21a -米,宽为a 米的长方形土地(一边靠着墙),现将三面留出宽都是b 米的小路,余下部分设计成花圃ABCD ,并用篱笆把花圃不靠墙的三边围起来.(1)花圃的宽AB 为______米,花圃的长BC 为______米;(用含a b ,的式子表示) (2)求篱笆的总长度;(用含a b ,的式子表示)(3)若305a b ==,,篱笆的单价为60元/米,请计算篱笆的总价.。

七年级数学上册《整式的加减》单元测试卷及答案

七年级数学上册《整式的加减》单元测试卷及答案

人教新版七年级上册《第2章整式的加减》单元测试(1)一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4 3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣44.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.46.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.17.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣109.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣411.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+112.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为.15.当k=时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=.17.已知a2+a﹣3=0,则2024﹣a2﹣a=.18.x2﹣2x+y=x2﹣().19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?人教新版七年级上册《第2章整式的加减》单元测试卷(1)参考答案与试题解析一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个【考点】整式.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数与次数分别为,4,故选:D.3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣4【考点】合并同类项.【分析】根据合并同类项的法则判断即可得结论.【解答】解:﹣2x﹣2x=(﹣2﹣2)x=﹣4x.故选:B.4.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy【考点】同类项.【分析】根据同类项的概念逐一判断即可得.【解答】解:A.﹣a2b和ab2相同字母的指数不相同,不是同类项;B.a2和22所含字母不相同,不是同类项;C.﹣ab2和2b2a所含字母相同,且相同字母的指数也相同,是同类项;D.2ab与2xy所含字母不相同,不是同类项;故选:C.5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.4【考点】同类项.【分析】根据同类项的概念求出x、y的值,再代入所求式子计算即可.【解答】解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.6.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1【考点】合并同类项.【分析】直接利用两式可以合并进而得出m=n+2,即可得出答案.【解答】解:∵﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m﹣n=2.故选:A.7.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定【考点】整式的加减.【分析】直接利用整式的加减运算法则计算进而得出答案.【解答】解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10【考点】代数式求值.【分析】根据相反数的定义得:﹣2a﹣3b=﹣4,首先化简﹣4a﹣6b+1,然后把﹣2a﹣3b =﹣4代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a+3b=4,∴﹣2a﹣3b=﹣4,∴﹣4a﹣6b+1=2(﹣2a﹣3b)+1=﹣8+1=﹣7,故选:C.9.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1【考点】代数式求值;有理数的混合运算.【分析】根据题意一一计算即可判断.【解答】解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣4【考点】多项式.【分析】根据多项式的定义即可求解.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.11.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+1【考点】多项式.【分析】字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.12.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较【考点】整式的加减.【分析】首先计算两个整式的差,再通过分析差的正负性可得答案.【解答】解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式【考点】多项式.【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【解答】解:多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选:B.二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为2或1.【考点】多项式.【分析】根据多项式的次数定义和n是正整数得出4+n=6或4+n=5,求出n的值即可.【解答】解:∵x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,又∵n是正整数,∴4+n=6或4+n=5,∴n=2或n=1;故答案为:2或1.15.当k=2时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.【考点】合并同类项;多项式.【分析】根据多项式的概念即可求出答案.【解答】解:∵多项式x2+kxy﹣2xy﹣6中不含xy项,∴原式=x2+(k﹣2)xy﹣6令k﹣2=0,∴k=2故答案为:2.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=2.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.【解答】解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.17.已知a2+a﹣3=0,则2024﹣a2﹣a=2021.【考点】代数式求值.【分析】由a2+a﹣3=0可得a2+a=3,再将a2+a=3整体代入要求的式子即可.【解答】解:∵a2+a﹣3=0,∴a2+a=3,∴2024﹣a2﹣a=2024﹣(a2+a)=2024﹣3=2021,故答案为:2021.18.x2﹣2x+y=x2﹣(2x﹣y).【考点】去括号与添括号.【分析】本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.【解答】解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值14.【考点】整式的加减.【分析】先将代数式(5x+2)﹣(3xy﹣5y)化简为:5(x+y)﹣3xy+2,然后把x+y=3,xy=1代入求解即可.【解答】解:∵x+y=3,xy=1,∴(5x+2)﹣(3xy﹣5y)=5x+2﹣3xy+5y=5(x+y)﹣3xy+2=5×3﹣3×1+2=14.故答案为:14.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.【考点】合并同类项.【分析】这个式子的运算是合并同类项的问题.根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(3x2﹣3x2)+(2xy﹣3xy)+(4y2﹣4y2)=﹣xy.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.【考点】整式的加减—化简求值.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:原式=12a2+6a﹣2a2﹣3a+5=10a2+3a+5.当a=﹣2时,原式=10×(﹣2)2+3×(﹣2)+5=40﹣6+5=39.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.【考点】整式的加减—化简求值.【分析】(1)先去掉括号,再合并同类项即可得出答案;(2)先去掉括号,再合并同类项即可;(3)先把给出的式子进行化简,再代入x,y的值进行计算即可;(4)根据题意先列出算式,再合并同类项,最后把x,y的值进行计算即可.【解答】解:(1)(5a+4c+7b)+(5c﹣3b﹣6a)=5a+4c+7b+5c﹣3b﹣6a=5a﹣6a+7b﹣3b+4c+5c=﹣a+4b+9c;(2)(2a2b﹣ab2)﹣2(ab2+3a2b)=2a2b﹣ab2﹣2ab2﹣6a2b=2a2b﹣6a2b﹣ab2﹣2ab2=﹣4a2b﹣3ab2;(3)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=1,y=﹣2时原式=(﹣2)2+5×1×(﹣2)=4﹣10=﹣6;(4)2A﹣B=2(4x2y﹣5xy2)﹣(3x2y﹣4y2)=8x2y﹣10xy2﹣3x2y+4y2=5x2y﹣10xy2+4y2当x=﹣2,y=1时,原式=5×(﹣2)2×1﹣10×(﹣2)×12+4×12=5×4×1﹣(﹣20)×1+4=20+20+4=44.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.【考点】合并同类项;多项式;绝对值;代数式求值.【分析】(1)先把多项式合并同类项,再令含x项的系数等于0,求出m、n的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m、n的一次方程,求出m、n的值,再代入计算即可.(3)根据四次三项式的概念,得关于k的方程,求解即可.【解答】解:(1)原式=(m﹣1)x2+(3+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,3+n=0,∴m=1,n=﹣3,∴(m+n)3=(1﹣3)3=﹣8,(2)原式=(6m﹣1)x2+(4n+2)xy+2x+y+4,∵多项式不含二次项,∴6m﹣1=0,4n+2=0.∴.∴.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?【考点】列代数式.【分析】(1)先表示出第二车间的人数,再表示出第三车间的人数即可;(2)把表示三个车间的人数的代数式相加即可得到答案;(3)先表示出调动后第一车间的人数,再用调动后第一车间的人数减去第三车间的人数即可.【解答】解:(1)∵第二车间的人数比第一车间人数的少20人,即人,而第三车间人数是第二车间人数的多10人,∴第三车间的人数为:人;(2)三个车间共有:人;(3)(x+10)﹣(x﹣15)=25(人),答:原第三车间人数比调动后的第一车间人数少25人.。

七年级数学上册《第二章 整式》单元测试卷-带答案(人教版)

七年级数学上册《第二章 整式》单元测试卷-带答案(人教版)

七年级数学上册《第二章整式》单元测试卷-带答案(人教版)一、选择题1. 在式子5,x=2,a,√ 3,m+n>0,st中,代数式的个数是( )A. 3B. 4C. 5D. 62. 已知m表示一个一位数,n表示一个两位数.若把m放在n的左边,组成一个三位数,则这个三位数可表示为( )A. mnB. m+nC. 10m+nD. 100m+n3. 代数式2(y−2)的正确含义是( )A. 2乘y减2B. 2与y的积减去2C. y与2的差的2倍D. y的2倍减去24. 多项式2a2b−ab2−ab的项数及次数分别是( )A. 3,3B. 3,2C. 2,3D. 25. 若关于x,y的多项式4x2y+7mxy−5y3+6xy化简后不含二次项,则m的值为( )A. −47B. −67C. 0D. 576. 下列代数式中,值总为正数的是( )A. x+1B. |x|C. x2+2D. x37. 代数式3m2−52可表示为( )A. m的3倍的平方减去5除以2B. m的3倍减去5的一半C. m与5的差的3倍除以2D. m的平方的3倍与5的差的一半8. 如图所示的图案均是长度相同的小木棒按一定的规律拼搭而成:第1个图案需7根小木棒,第2个图案需13根小木棒⋯⋯依此规律,第10个图案需小木棒的根数是( )A. 101B. 111C. 133D. 1579. 现定义一种新运算:如:则等于( )A. −9B. −6C. 6D. 910. 按一定规律排列的单项式:x,2x3,4x5,8x7⋯则第n个单项式是( )A. 2n x2n−1B. 2n−1x2n−1C. 2n−1x2n+1D. 2n x2n+1二、填空题11. 单项式−πa2b3的系数是.12. 多项式ab−2a−b中的各项系数和多项式的次数分别是.13. 张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸.若剩余的以每份0.2元的价格退回报社,则张大伯卖报盈利元.14. 若a+2b=8,3a+4b=18,则a+b的值为.15. 将方程2x−3y3=6变形为用含y的式子表示x,那么x=______ .16. 在代数式a3,1x+y,1−x−5xy2,−x,6xy+1,a2−b2中,多项式有个.17. 某种商品原价是m元,第一次降价打“九折”,第二次降价每件又减20元,第二次降价后的售价是元.18. 某化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(t⋅km),铁路运价为1.2元/(t⋅km),且这两次运输共支出公路运费15000元,铁路运费97200元.设购买xt原料,制成yt产品.则从A地到这家化工厂原料运输费是,这批产品的销售款比原料费与运输费的和.多元.19. 将面积分别是9和7的两个三角形按如图所示的方式放置,若图中对应的阴影部分面积分别是m和n,则m−n=.20. 如图,用正方形按如图所示的规律拼图案,图案 ①中有5个正方形,图案 ②中有9个正方形,图案 ③中有13个正方形,图案 ④中有17个正方形,按此规律排列下去,则图案 ⑨中正方形的个数为.三、解答题21. 已知a=8,b=−5,c=−3,求下列代数式的值.(1)a−b−c.(2)a−(c+b).22. 我们知道,人在运动时的心跳速率通常和人的年龄有关,如果用a表示一个人的年龄,b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么有b=0.8(220−a).(1)正常情况下,在运动时一个15岁的少年所能承受的每分钟心跳的最高次数是多少?(2)一个45岁的人运动时,10秒钟的心跳次数为22次,他有危险吗?23. 已知3x2y|m|−(m−1)y+5是关于x,y的三次三项式,求2m2−3m+1的值.24. 根据下列语句列代数式:(1)b的4倍的相反数.3(2)x与y的2倍的和的立方.(3)x减去y的差的平方.(4)x与y的和的倒数.25.如图,有两摞规格相同的数学课本整齐地叠放在讲台上.请根据图中所给的数据信息解答下列问题.(1)每本书的厚度为cm,课桌的高度为cm.(2)若将该规格的x本数学课本在桌面上叠放成一摞,请用含x的式子表示该摞数学课本高出地面的高度.26. 已知m、n是正整数,a、b、c均不为0,若a m+1b2c−17ab n+1c2+112a m+3b n c是八次三项式,求m、n的值.参考答案1、B2、D3、C4、A5、B6、C7、D8、C9、A10、B11、−π312、1,−2,−1,213、0.3b−0.2a14、515、3y+18216、317、(0.9m−20)18、40000040000019、220、3721、【小题1】16【小题2】1622、【小题1】164次.【小题2】没有危险.23、624、【小题1】−43b.【小题2】(x+2y)3.【小题3】(x−y)2.【小题4】1x+y.25、【小题1】0.5、85【小题2】(85+0.5x)cm26、依题意,可得a m+1b2c的次数为m+1+2+1=m+4,−17ab n+1c2的次数为1+n+1+2=n+4,112a m+3b n c的次数为m+3+n+1=m+n+4因为m、n为正整数,所以m+n+4>m+4,m+n+4>n+4.因为a m+1b2c−17ab n+1c2+112a m+3b n c是八次三项式,所以m+n+4=8,即m+n=4,所以m=1n=3或m=2,n=2或m=3,n=1.。

华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案

华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案

华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案(测试时间:90分钟;试卷满分:100分)一、选择题(每小题3分,共24分)1.下列叙述中,正确的是( )A.0是单项式B.单项式23xy的次数是5C.单项式-2x 2y5的系数为-2 D.多项式3a3b+2a2是六次二项式2.用代数式表示“a的平方与b的平方的差”,正确的是( )A.(a-b)2B.a2-b2C.a-b2D.a-2b3.(2024·湘潭模拟)下列计算正确的是( )A.5-(-1)=4B.(-2)4=-16C.2a2-a=2aD.3x-(-2y+4)=3x+2y-44.当x=1时,整式ax3+bx+1的值为2 023,则当x=-1时,整式ax3+bx-2的值是( )A.2 024B.-2 024C.2 022D.-2 0225.若单项式a3m b9-n与78a6b2n的和仍是单项式,则m-n的值是( )A.1B.5C.-5D.-16.观察下列关于x的单项式,探究其规律:-x,3x2,-5x3,7x4,-9x5,11x6……按照此规律,第2 025个单项式是( )A.-2 025x2 025B.4 049x2 025C.-4 049x2 025D.4 051x2 0257.(2024·包头模拟)甲、乙两店卖豆浆,每杯售价均相同.已知甲店的促销方式为每买2杯,第1杯原价,第2杯半价;乙店的促销方式为每买3杯,第1,2杯原价,第3杯免费.若东东想买12杯豆浆,则下列所花的钱最少的方式是( )A.在甲店买12杯B.在甲店买8杯,在乙店买4杯C.在甲店买6杯,在乙店买6杯D.在乙店买12杯8.有依次排列的3个整式:x,x+6,x-3,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串,例如:x,6,x+6,-9,x-3,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推,通过实际操作,得到以下结论:①整式串2为:x,6-x,6,x,x+6,-x-15,-9,x+6,x-3;②整式串3的所有整式的和比整式串2的所有整式的和小3;③整式串5共65个整式;④整式串2 024的所有整式的和为3x-6 069;上述四个结论正确的有( )A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.(2024·郴州模拟)单项式-5a2b(m+2)与3a n+5b是同类项,那么m-n=.10.多项式13x|m|-(m+4)x-11是关于x的四次三项式,则m的值是.11.(2024·长沙模拟)已知关于x的多项式(4x2-3x+5)-(2mx2-x+1)化简后不含x2项,则m的值是.12.如果x=5时,代数式ax5+bx-7的值为9,那么x=-5时,代数式a2x5+b2x+7的值为.13.已知三个有理数a,b,c,其积是负数,其和是正数,当x=|a|a +|b|b+|c|c时,代数式x2 025-2x+2的值为.14.(2024·台州模拟)如图所示,未来公园的广场背景墙上有一系列用灰砖和白砖铺成的图案,图①有1块灰砖,8块白砖;图②有4块灰砖,12块白砖;以此类推.若某个图案中有49块灰砖,则此图案中有块白砖.三、解答题(共52分)15.(6分)计算:(1)3m-3n-2m+n;(2)(8x-7y)-(4y-5x).16.(8分)先化简,再求值.(1)4(3a2b-ab2)-2(-ab2+3a2b),其中a是1的相反数,b是2的倒数;(2)3(x-2y)+5(x+2y-1)-2,其中2x+y=3.17.(8分)(2024·苏州期末)已知代数式A=3x2+3xy+2y,B=x2-xy+x.(1)计算A-3B;(2)当x=-1,y=3时,求A-3B的值;(3)若A-3B的值与x的取值无关,求y的值.18.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a +1 0,2-b a -c ; (2)|b -c |= ; (3)化简:|c -3|+|c -b |-|b +1|.19.(10分)近年来,电商多选择在11月11日促销.今年的促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a 厘米、b 厘米、c 厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长).回答下列问题:(1)用含a ,b ,c 的式子表示甲、乙两种打包方式所用的打包带的长度: 甲需要 厘米,乙需要 厘米;(2)当a =50厘米,b =40厘米,c =30厘米时,直接写出甲、乙两种打包方式所用的打包带的长度:甲需要 厘米,乙需要 厘米;(3)当a >b >c 时,两种打包方式中,哪种方式节省打包带?并说明你的理由.20.(12分)观察下列等式.11×2=1-12,12×3=12-13,13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.(1)猜想并写出:1n (n+1)= .(2)直接写出下列各式的计算结果:①11×2+12×3+13×4+…+12022×2023=;②11×2+12×3+13×4+…+1n(n+1)=.(3)探究并计算:①11×3+13×5+15×7+…+12021×2023.②11×3-12×4+13×5-14×6+15×7-…+12021×2023-12022×2024.【附加题】(10分)某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过12 m3的部分a元/m3超过12 m3但不超过20 m3的部分1.5a元/m3超过20 m3的部分 2a元/m3(1)当a=2时,某户一个月用了15 m3的水,求该户这个月应缴纳的水费.(2)设某户月用水量为28 m3,该户应缴纳的水费为元.(3)当a=2时,甲,乙两户一个月共用水40 m3,已知甲户缴纳的水费超过了24元,设甲户这个月用水x m3,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).参考答案一、选择题(每小题3分,共24分)1.下列叙述中,正确的是(A)A.0是单项式B.单项式23xy的次数是5C.单项式-2x 2y5的系数为-2 D.多项式3a3b+2a2是六次二项式2.用代数式表示“a的平方与b的平方的差”,正确的是(B)A.(a-b)2B.a2-b2C.a-b2D.a-2b3.(2024·湘潭模拟)下列计算正确的是(D)A.5-(-1)=4B.(-2)4=-16C.2a2-a=2aD.3x-(-2y+4)=3x+2y-44.当x=1时,整式ax3+bx+1的值为2 023,则当x=-1时,整式ax3+bx-2的值是(B)A.2 024B.-2 024C.2 022D.-2 0225.若单项式a3m b9-n与78a6b2n的和仍是单项式,则m-n的值是(D)A.1B.5C.-5D.-16.观察下列关于x的单项式,探究其规律:-x,3x2,-5x3,7x4,-9x5,11x6……按照此规律,第2 025个单项式是(C)A.-2 025x2 025B.4 049x2 025C.-4 049x2 025D.4 051x2 0257.(2024·包头模拟)甲、乙两店卖豆浆,每杯售价均相同.已知甲店的促销方式为每买2杯,第1杯原价,第2杯半价;乙店的促销方式为每买3杯,第1,2杯原价,第3杯免费.若东东想买12杯豆浆,则下列所花的钱最少的方式是(D)A.在甲店买12杯B.在甲店买8杯,在乙店买4杯C.在甲店买6杯,在乙店买6杯D.在乙店买12杯8.有依次排列的3个整式:x,x+6,x-3,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串,例如:x,6,x+6,-9,x-3,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推,通过实际操作,得到以下结论:①整式串2为:x,6-x,6,x,x+6,-x-15,-9,x+6,x-3;②整式串3的所有整式的和比整式串2的所有整式的和小3;③整式串5共65个整式;④整式串2 024的所有整式的和为3x-6 069;上述四个结论正确的有(D)A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.(2024·郴州模拟)单项式-5a2b(m+2)与3a n+5b是同类项,那么m-n=2.10.多项式13x|m|-(m+4)x-11是关于x的四次三项式,则m的值是4.11.(2024·长沙模拟)已知关于x的多项式(4x2-3x+5)-(2mx2-x+1)化简后不含x2项,则m的值是2.12.如果x=5时,代数式ax5+bx-7的值为9,那么x=-5时,代数式a2x5+b2x+7的值为-1.13.已知三个有理数a,b,c,其积是负数,其和是正数,当x=|a|a +|b|b+|c|c时,代数式x2 025-2x+2的值为1.14.(2024·台州模拟)如图所示,未来公园的广场背景墙上有一系列用灰砖和白砖铺成的图案,图①有1块灰砖,8块白砖;图②有4块灰砖,12块白砖;以此类推.若某个图案中有49块灰砖,则此图案中有32块白砖.三、解答题(共52分)15.(6分)计算:(1)3m-3n-2m+n;(2)(8x-7y)-(4y-5x).【解析】(1)原式=(3-2)m+(-3+1)n=m-2n;(2)原式=8x-7y-4y+5x=13x-11y.16.(8分)先化简,再求值.(1)4(3a2b-ab2)-2(-ab2+3a2b),其中a是1的相反数,b是2的倒数;(2)3(x-2y)+5(x+2y-1)-2,其中2x+y=3.【解析】(1)原式=12a2b-4ab2+2ab2-6a2b=6a2b-2ab2;因为a是1的相反数,b是2的倒数所以a=-1,b=12所以原式=6×(-1)2×12-2×(-1)×(12)2=3+12=72;(2)原式=3x-6y+5x+10y-5-2=8x+4y-7;当2x+y=3时,原式=4(2x+y)-7=4×3-7=12-7=5.17.(8分)(2024·苏州期末)已知代数式A=3x2+3xy+2y,B=x2-xy+x.(1)计算A-3B;(2)当x=-1,y=3时,求A-3B的值;(3)若A-3B的值与x的取值无关,求y的值.【解析】(1)因为A=3x2+3xy+2y,B=x2-xy+x所以A-3B=(3x2+3xy+2y)-3(x2-xy+x)=3x2+3xy+2y-3x2+3xy-3x=6xy+2y-3x;(2)当x=-1,y=3时,A-3B=6xy+2y-3x=6×(-1)×3+2×3-3×(-1)=-18+6+3=-9;(3)A-3B=6xy+2y-3x=(6y-3)x+2y因为A-3B的值与x的取值无关所以6y-3=0,解得y=1.218.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a+10,2-b a-c;(2)|b-c|=;(3)化简:|c-3|+|c-b|-|b+1|.【解析】(1)由题意得,-3<a<-2,-1<b<0,1<c<2所以a+1<0,2-b>0>a-c.答案:<>(2)因为b-c<0,所以|b-c|=-(b-c)=c-b.答案:c-b(3)因为-3<a<-2,-1<b<0,1<c<2,所以c-3<0,c-b>0,b+1>0所以|c-3|+|c-b|-|b+1|=3-c+c-b-(b+1)=2-2b.19.(10分)近年来,电商多选择在11月11日促销.今年的促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a厘米、b厘米、c厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长).回答下列问题:(1)用含a ,b ,c 的式子表示甲、乙两种打包方式所用的打包带的长度: 甲需要 厘米,乙需要 厘米;(2)当a =50厘米,b =40厘米,c =30厘米时,直接写出甲、乙两种打包方式所用的打包带的长度:甲需要 厘米,乙需要 厘米;(3)当a >b >c 时,两种打包方式中,哪种方式节省打包带?并说明你的理由. 【解析】(1)2×2(a +c )+2(b +c )=(4a +2b +6c )厘米,2(a +c )+2×2(b +c )=(2a +4b +6c )厘米 所以甲需要(4a +2b +6c )厘米,乙需要(2a +4b +6c )厘米; 答案:(4a +2b +6c ) (2a +4b +6c )(2)当a =50厘米,b =40厘米,c =30厘米时,4a +2b +6c =4×50+40×2+6×30=460厘米,2×50+4×40+30×6=440厘米 所以甲需要460厘米,乙需要440厘米; 答案:460 440(3)乙种节省,理由如下:(4a +2b +6c )-(2a +4b +6c )=4a +2b +6c -2a -4b -6c =2a -2b 因为a >b >c ,所以2a -2b >0 所以(4a +2b +6c )-(2a +4b +6c )>0 所以乙种打包方式更节省. 20.(12分)观察下列等式.11×2=1-12,12×3=12-13,13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.(1)猜想并写出:1n (n+1)= .(2)直接写出下列各式的计算结果: ①11×2+12×3+13×4+…+12 022×2 023= ;②11×2+12×3+13×4+…+1n (n+1)= .(3)探究并计算: ①11×3+13×5+15×7+…+12 021×2 023.②11×3-12×4+13×5-14×6+15×7-…+12 021×2 023-12 022×2 024.【解析】(1)1n (n+1)=1n -1n+1.答案:1n -1n+1(2)①11×2+12×3+13×4+…+12 022×2 023=1-12+12-13+…+12 022-12 023=1-12 023=2 0222 023.②11×2+12×3+13×4+…+1n (n+1)=1-12+12-13+…+1n -1n+1=1-1n+1=n n+1.答案:①2 0222 023②nn+1(3)①11×3+13×5+15×7+…+12 021×2 023=12(1-13+13-15+15-17+…+12 021-12 023)=12(1-12 023)=1 0112 023.②11×3-12×4+13×5-14×6+15×7-…+12 021×2 023-12 022×2 024 =(11×3+13×5+…+12 021×2 023)- (12×4+14×6+…+12 022×2 024)=12(1-13+13-15+…+12 021-12 023)-12(12-14+14-16+…+12 022-12 024)=12(1-12 023)-12(12-12 024)=1 0112 023-1 0114 048=2 025×1 0112 023×4 048.【附加题】(10分)某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过12 m3的部分a元/m3超过12 m3但不超过20 m3的部分1.5a元/m3超过20 m3的部分 2a元/m3(1)当a=2时,某户一个月用了15 m3的水,求该户这个月应缴纳的水费.(2)设某户月用水量为28 m3,该户应缴纳的水费为元.(3)当a=2时,甲,乙两户一个月共用水40 m3,已知甲户缴纳的水费超过了24元,设甲户这个月用水x m3,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).【解析】(1)12×2+(15-12)×1.5×2=24+9=33(元)所以该户这个月应缴纳的水费为33元;(2)12a+(20-12)×1.5a+(28-20)×2a=12a+12a+16a=40a(元).答案:40a(3)因为12×2=24所以x>12当12<x≤20时,甲用水量超过12 m3但不超过20 m3,乙用水量超过20 m3所以12×2+(x-12)×1.5×2+12×2+(20-12)×2×1.5+(40-x-20)×2×2=24+3x-36+24+24+80-4x= (116-x)元;当20<x<28时,甲的用水量超过20 m3,乙的用水量超过12 m3但不超过20 m3所以12×2+(20-12)×1.5×2+(x-20)×2×2+12×2+(40-x-12)×2×1.5=24+24+4x-80+24+84-3x= (x+76)元当28≤x≤40时,甲的用水量超过20 m3,乙的用水量不超过12 m3所以12×2+(20-12)×1.5×2+(x-20)×2×2+(40-x)×2=24+24+4x-80+80-2x=(2x+48)元; 综上所述,当12<x≤20时,甲,乙两户一个月共缴纳的水费为(116-x)元;当20<x<28时,甲,乙两户一个月共缴纳的水费为(x+76)元;当28≤x≤40时,甲,乙两户一个月共缴纳的水费为(2x+48)元.。

人教版七年级数学上册第2章《整式的加减》单元测试题1(含答案)

人教版七年级数学上册第2章《整式的加减》单元测试题1(含答案)

人教版七年级数学上册第2章《整式的加减》单元测试题测试范围:§2.1 整式 参考时间:60分钟(答案附卷后)一、选择题(每小题3分,共30分) 1.单项式-4a 的系数是( )A. 4B. -4C. 1D. a 2.单项式43a 2b 4的次数是( )A. 9B. 8C. 7D. 6 3.用代数式表示“a 的5倍与b 的差”,正确的是( )A. 5a -bB. 5a +bC. a -5bD. 5(a -b) 4.若多项式x 2-5x -2与3x 2+4x -n 的常数项相同,则n -1n的值是( )A. 0B. 1.5C.-2D. 25.多项式21145x -的最高次项的系数为( )A. 2B. 15C. -15D. -120 6. 某商品打七折后价格为a 元,则原价为( )A. 0.7a 元B. 107a 元 C. 1.2a 元 D. (a +0.2)元7.某种股票原价为a 元,连续两天上涨,每次涨幅为10%,则该股票两天后的价格为( )A. 1.21a 元B. 1.1a 元C.1.2a 元D. (a +0.2)元 8.已知代数式3x 2-4x +6的值为15,则9x 2-12x -7的值是( )A. 10B. 15C. 18D. 20 9.多项式3x |m |y 3+(m -3)x -1是关于x 、y 的六次三项式,则m 的值为( )A. -3B. 3C. ±3D. ±110. 一列单项式:-x ,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,…,若第n 个单项式的系数为b , 则下列算式结果为1的是( )A. |b |-2nB. 2n -|b |C. 3n -|b |D. 以上都不对二、填空题(每小题3分,共18分) 11.下列各式:①3xy ; ②-4; ③5x; ④26x +; ⑤23m n+; ⑥x 2-y 2-1. 其中单项式有_________, 多项式有___________,整式有_______________. (填序号)12. 为了帮助洪水灾区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中6名教师人均 捐款a 元,则该班学生共捐款_______________元(用含a 的代数式表示). 13. 任意写出一个含有字母x 、y 的四次三项式,其中最高次项的系数为-2, 一次项系数为1,常数项为-5,你写出的多项式是________________. 14. 按下面程序计算:输入x =-4,则输出的结果是____________.15. 已知当x =-1时,ax 3+bx +1的值为5,则当x =1时,ax 3+bx -1的值为__________. 16. 如图,两个正方形面积分别为9和4. 两个阴影部分面积分别为S 1、S 2(S 1>S 2),则S 1-S 2的值为__________.第16题三、解答题(共8题,共72分)17.(8分)关于x 的多项式x 4+(a +2)x 3+5x 2-(b +4)x -1不含x 3项和x 项,求a -b 的值.18. (8分)若多项式(a -2b )x 3-x 2+x -b 是关于x 的二次三项式,常数项为3,求a 2-b 2的值.19.(8分)若332|b |a x y --是关于x 、y 的单项式,且系数是5,次数是5,求a 、b 的值.20. (8分)已知(m +3)2+|n -1|=0,求式子5m 2n 3+4(m -n )2的值.21.(8分)已知整式A =10x 9+9x 8+8x 7+7x 6+6x 5+5x 4+4x 3+3x 2+2x +1. (1)当x =1时,求整式A 的值; (2)当x =-1时,求整式A 的值;(3)小明同学做此题第(2)题时,由于将整式中某一项前的“+”号看成“-”号,误求得 整式的值为7,问小明同学看错了哪一项前的符号?22. (10分)甲、乙两家文具店出售同样的毛笔和宣纸,毛笔每支18元,宣纸每张2元. 甲店优惠方法为:买一支毛笔送两张宜纸;乙店优惠方法为:按总价的九折优惠. 小丽想购买5支毛笔,宣纸x 张(x ≥10). (1) 若到甲店购买,应付______________元(用代数式表示);(2) 若到乙店购买,应付______________元(用代数式表示); (3) 若小丽要买宣纸10张,应选择那家商店? 若买100张呢?23. (10分)某人买了50元的乘车公交卡,若此人乘车的次数用m表示,则记录他每次乘车后的余额如下表:(1) 写出此人乘车的次数m表示余额的式子;(2)若m为多项式2x3y4z+32x3y4-5的次数,计算乘了m次后还剩下多少元?24. (12分)观察下列三行数:-3,9,-27,81,-243,……①-6,6,-30,78,-246,……②-1,3,-9,27,-81,……③(1) 第一行数按什么规律排列?(2) 第二行、第三行的数与第一行数分别有什么关系?(3) 设x、y、z分别是这①②③行的第n、n-1、n-2个数,若x+y-az与n无关,求a的值.答 案一、选择题(每小题3分,共30分)题号1 2 3 4 5 6 7 8 9 10 答案BDABCBADAB第10题:b =(-1)n (2n -1),|b |=2n -1,故选B .二、填空题(每小题3分,共18分)11. ①②,⑤⑥,①②⑤⑥; 12. (3200-6a ); 13. -2x 3y +x -5(不唯一); 14. -30; 15. -5; 16. 5.三、解答题(共8题,共72分) 17. a =-2,b =-4,a -b =2. 18. a =-6,b =-3,a 2-b 2=27. 19. a =-10,b =5或1.20. m =-3,n =1,原式=109.21. (1)当x =1时,A =10+9+8+7+6+5+4+3+2+1=55;(2)当x =-1时,A =-10+9-8+7-6+5-4+3-2+1=-5;(3) ∵7-(-5)=12,12÷2=6,系数为6,故看错了5次项前的符号. 22. (1)5×18+2(x -10)=2x +70,填(2x +70);(2)0.9(5×18+2x )=1.8x +81,填(1.8x +81);(3)当x =10时,甲店费用为2x +70=90(元),乙店费用为1.8x +81=99(元),应选甲店; 当x =100时,甲店费用为2x +70=270(元),乙店费用为1.8x +81=261(元),应选乙店. 23. (1)(50-0.8m )(元);(2)当m =8时,50-0.8m =43.6(元). 24. (1)第一行的第n 个数为:(-3)n ;(2)第二行的数为第一行的相应数减去3,即第二行的第n 个数为:(-3)n -3; 第三行的数为第一行的相应数除以3,即第三行的第n 个数为:13×(-3)n ; (3)由题设得:x =(-3)n ,y =(-3)n -1-3,z =13×(-3)n -2, ∴x +y -az =(-3)n +[(-3)n -1-3]-13a (-3)n -2=(-3)n -2[(-3)2+(-3)-13a ]-3=(-3)n -2(6-13a )-3, 令6-13a =0,得a =18.。

人教版七年级数学上册《第四章整式的加减》单元测试卷-带答案

人教版七年级数学上册《第四章整式的加减》单元测试卷-带答案

人教版七年级数学上册《第四章整式的加减》单元测试卷-带答案一、单选题1.式子222,,2,59b x y a x -++-中,单项式有( ) A .1个 B .2个 C .3个 D .4个2.单项式2ab -的系数、次数分别是( )A .0、3B .1-、2C .0、2D .1-、33.下列各题中的两个项,不属于同类项的是( )A .22x y 与212yx -B .1与23-C .2a b 与22510ba ⨯D .213m n 与2n m 4.系数为-12且只含有 x 、y 的三次单项式(不需要包含每个字母),可以写出( ) . A .2 个 B .3 个 C .4 个 D .5 个5.下列说法正确的是( )A .1a +不是一个代数式B .单项式223ab π-的系数是23- C .一个多项式的次数为5,那么这个多项式的各项的次数都小于5D .0是一个单项式6.13⎛⎫-- ⎪⎝⎭的倒数是( ) A .13 B .13- C .﹣3 D .3 7.()()1333m m --+⋅-的值是( ) A .1 B .1- C .0 D .()13m +-8.三个有理数a ,b ,c 在数轴上表示的位置如图所示,则化简a b c b a +--+的结果是( )A .22a b +B .22a b c +-C .c -D .2b c --9.若()()2221x mx x -++的结果中x 的二次项系数和一次项系数相等,则m 的值为( )A .3B .-3C .4D .110.如图是2022年12月的日历表,在此日历表中用阴影十字框选中5个数(如2、8、9、10、16).若这样的阴影十字框上下左右移动选中这张日历表中的5个数,则这5个数的和可能为( )A .41B .46C .75D .116二、填空题11.单项式4367x y -的系数与次数的积是 . 12.在23b 32xy + 2- 5ab x + 3xy 1a b +,单项式有 .多项式有 ,整式有 .13.已知25,29a b c d -=-=,那么()()2a c b d ---的值为 .14.已知多项式()()2224331x mx y x y nx +-+--+-的值与字母x 的取值无关,其中m 、n 是常数,那么m n = .15.一个两位数m 的十位上的数字是a ,个位上的数字是b ,记()f m a b =+为这个两位数m 的“衍生数”.如494913f(1)若()11f m =,则满足条件的两位数m 的个数有 个;(2)现有2个两位数x 和y ,且满足100x y +=,则()()f x f y += .三、解答题16.化简 (1)2227a b a b - (2)347x y x y -++(3)()12ab ba ab --+ (4)()()225223x x x x -+--+17.已知关于x 、y 的多项式214310922m x x y x x +--+-是六次五项式.(1)m 的值是______,该多项式的常数项是______;(2)将此多项式按x 的降幂排列.18.已知代数式2232A x xy y =++ 2B x xy x =-+.(1)求2A B -;(2)当1x =-,3y =时,求2A B -的值;(3)若2A B -的值与x 的取值无关,求y 的值. 19.观察下面的三行单项式x 22x 34x 48x 516x …①2x - 24x 38x - 416x 532x -…②2x 23x - 35x 49x - 517x …③根据你发现的规律,完成以下各题:(1)第①行第8个单项式为 ;第②行第2024个单项式为 .(2)第③行第n 个单项式为 .(3)取每行的第9个单项式,令这三个单项式的和为A .计算当12x =时,12564A ⎛⎫ ⎪⎝⎭+的值. 参考答案1.B2.D3.D4.C5.D6.D7.C8.C9.B10.C11.6-12. 23b 2- 32xy + 5ab x + 23b 2- 32xy + 5ab x + 13.4-14.8-15. 8 19或1016.(1)257a b(2)103x y - (3)52ab(4)22x x ++17.(1)4;22-(2)542103922x y x x x --++- 18.(1)522xy y x +-(2)7- (3)25y =19.(1)782x ;202420242x(2)()()11121n n n x ---+ (3)1292。

第3章整式-华东师大版七年级数学上册单元综合测试(Word版 含答案)

第3章整式-华东师大版七年级数学上册单元综合测试(Word版 含答案)

初一上册数学第三章整式综合测试卷满分100分,用时100分一、单选题(每题3分,共10题,30分)1、3.14、π、x 、x=y 中,是代数式的有几个( )A 、1个B 、2个C 、3个D 、4个2、约翰霍普金斯大学数据表示,疫情至今全球新冠确诊人数超4130000人,用科学计数法可表示为( )A 、41×B 、41.3×C 、4.13×D 、4.15× 3、下列各式计算正确的是( )A 、8a-5a=3B 、3x ·5x=15x ²C 、8mn ²-9m ²n=-mnD 、3a ²-3a=a4、若│x-3│+│y+2x │=0,则xy 等于( )A 、3B 、-3C 、6D 、-185、下列各式中,去括号正确的是( )A 、-3(x-2y+3)=-3x-2y-3B 、-5(x+3y )=-5x-15yC 、7a-(-8a+5)=7a-8a-5D 、(-2x+3y ²)+(5y ²-7)=-2x+3y ²+5y ²+76、7πx ² +9xy-1是几次几项式( )A 、八次一项式B 、七次二项式C 、二次三项式D 、七次三项式7、现有7张小卡片按照下图方式进行排列,排列后的图形为1个大的正方形,则卡片C 的面积表示为( )5y 510510610510a bA 、21ab B 、 a (b-a ) C 、a(b-2a) D 、31b(b-2a)8、若a 、b 、c 在数轴上位置上如图所示,化简 │a-b-c │+│b-a │+│c-a+b │为( )| | | |b 0 a cA 、3a-3b-2cB 、b-aC 、-3a+3b+2cD 、a+b+c9、宴会摆放桌子,摆放1张桌子时可以坐6人,2张桌子时可以坐10人,3张桌子可以坐14人,则摆放n 张桌子可以坐几人( )。

第四章 整式的加减 单元测试 人教版数学七年级上册

第四章 整式的加减 单元测试 人教版数学七年级上册

第四章整式的加减单元测试人教版数学七年级上册一、选择题1.下列各项中,去括号正确的是()A.B.C.D.2.下列去括号错误的是()A.B.C.D.3.单项式的系数和次数分别是()A.﹣3,2 B.,3 C.,2 D.,34.若单项式与是同类项,则m+n的值为()A.3 B.4 C.5 D.65.一个同时含有字母x,y,z,且系数为3的5次单项式共有()个.A.5个B.6个C.7个D.不能确定6.在m,,,,,中是整式的有()个A.5个B.4个C.3个D.2个7.墨迹覆盖了等式﹣(x2+1)=3x中的多项式,则覆盖的多项式为()A.x+2 B.﹣x2+3x﹣1 C.﹣x2+3x+1 D.x2+3x+18.如图,在长方形中放入正方形,正方形,正方形,点E在上,点M、N在上,若,,,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.B.C.D.二、填空题9.合并同类项:.10.请写出一个系数是-5的三次单项式.11.若代数式的值为6,则代数式的值为.12.已知关于x,y的代数式ax2+2x+x2﹣3y2﹣bx+4y﹣5的值与x的取值无关,则a﹣b= .13.如图,有两个长方形的纸片,它们的面积分别为33和19,其中有一部分重叠,剩余空白部分的面积分别为和(),则.三、计算题14.求值:,其中.15.化简:(1)4a2+3b2+2ab-4a2-4b2;(2)2(x2+xy-5)-4(2x2-xy).四、解答题16.已知代数式,(1)求的值;(2)若值与的取值无关,求的值.17.小明准备完成化简:,发现系数“□”印刷不清楚.(1)她把“□”猜成4,请你化简;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”请通过计算说明原题中“□”是什么数.18.如图,池塘边有块长为,宽为的长方形土地,现在将其余三面留出宽都是的小路,中间余下的长方形部分作菜地.(1)菜地的长为m,菜地的宽为m.(用含x的代数式表示)(2)求菜地的周长.(用含x的代数式表示)19.绿源超市销售茶壶、茶杯,茶壶每只定价50元,茶杯每只定价6元.春节期间,超市将开展促销活动,向顾客提供两种优惠方案:方案一:每买一只茶壶就赠一只茶杯;方案二:茶壶和茶杯都按定价的90%付款.某顾客计划到该超市购买茶壶8只和茶杯x只(茶杯数多于8只).(1)用含x的代数式分别表示方案一与方案二各需付款多少元?(2)当时,请通过计算说明该顾客选择上面的两种购买方案哪种更省钱?20.如图,一块原边长分别为,的矩形,现将原矩形一边增加,另一边减少,变化后的面积为或.(1);;;用含,的式子表示(2)当时,变化后的面积会;增加或减少(3)当时,有两种方案,第一种方案如图,第二种方案如图请你比较这两种方案,确定哪一种方案变化后的面积比较大.答案1.D2.C3.D4.D5.B6.B7.D8.D9.10.答案不唯一11.2012.-313.1414.解:解:原式= a2-8a+3当时,原式=23 15.(1)-b2+2ab;(2)-6x2+6xy-10 16.(1)解:,;(2)解:的值与的取值无关,,.17.(1)解:原式;(2)解:设“□”为a,∴原式=ax2+6x+8-6x-5x2-2,,∴原题中“□”是5.18.(1);(2)解:19.(1)解:顾客按方案一购买,则需要付款:元顾客按方案二购买,则需要付款:元(2)解:当时,方案一需付款:(元)方案二需付款:(元)选择方案二购买更省钱20.(1);;(2)减少(3)解:,,,,,第二种方案变化后的面积比较大。

2024-2025学年人教新版七年级上册数学《第4章 整式的加减》单元测试卷(有答案)

2024-2025学年人教新版七年级上册数学《第4章 整式的加减》单元测试卷(有答案)

2024-2025学年人教新版七年级上册数学《第4章整式的加减》单元测试卷一.选择题(共8小题,满分24分)1.代数式x2+5,﹣1,x2﹣8x+2,π,,中,整式有()A.3个B.4个C.5个D.6个2.已知﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1B.m=3,n=1C.m=,n=1D.m=3,n=03.下列计算正确的是()A.5a﹣2a=3B.2a2+6a2=8a4C.x2y﹣2xy2=﹣xy2D.3mn﹣2mn=mn4.在等式1﹣a2+2ab﹣b2=1﹣()中,括号里应填()A.a2﹣2ab+b2B.a2﹣2ab﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b25.若a<0,则|a﹣(﹣a)|等于()A.﹣a B.0C.2a D.﹣2a6.如图是小明完成的线上作业,他的得分是()判断题(每小题2分,共10分)①1是单项式.(×)②非负有理数不包括零.(×)③绝对值不相等的两个数的和一定不为零.(√)④单项式﹣a的系数与次数都是1.(√)⑤将34.945精确到十分位为34.95.(×)A.4分B.6分C.8分D.10分7.在下列各整式中,次数为5的是()A.8x3y B.m+n2+q2C.52c3D.x2y38.若代数式2(mx2+x﹣1)﹣(x2﹣nx+1)的值与x的取值无关,则m2023n2025的值为()A.﹣4B.4C.D.二.填空题(共8小题,满分24分)9.有一道题:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+□,“□”的地方被墨水弄污了,你认为“□”内应填写.10.已知关于x的整式x3﹣x2+x a﹣2x﹣2bx中不含有x的一次项和二次项,则a+b=.11.若关于x,y,z的单项式﹣mx3y n与单项式的次数相同,系数互为倒数,则该单项式是.12.多项式x2+x+1的次数是.13.若2a m+1b2与﹣3a3b n是同类项,则m+n的值为.14.若一个四位自然数M各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为8,则称M为“幸福数”.把四位数M的前两位数字和后两位数字整体交换得到新的四位自然数N.规定.例如:M=2344,∵2+3=5,4+4=8,∴2344是“幸福数”,则.若P是最大的“幸福数”,则F(P)=;若S是“幸福数”,且F(S)恰好能被8整除,则所有满足题意的S的值共有个.15.如果a2﹣3a﹣7=0,那么代数式(a﹣1)2+a(a﹣4)﹣2的值为.16.设x、y互为相反数,且xy≠0.m的绝对值为8,则的值为.三.解答题(共6小题,满分52分)17.已知单项式﹣3xy2的系数和次数分别是a,b,求ab+a b的值.18.已知A=3x2+xy+y,B=2x2﹣xy+2y.(1)化简2A﹣3B.(2)当x=2,y=﹣3,求2A﹣3B的值.19.【问题呈现】(1)已知代数式mx﹣y﹣3x+4y﹣1的值与x的值无关,求m的值;【类比应用】(2)将7张长为a,宽为b的小长方形纸片(如图①),按如图②的方式不重叠地放在长方形ABCD 内,未被覆盖的两部分的面积分别记为S1,S2,当AB的长度变化时,S1﹣S2的值始终不变,求a与b 的数量关系.20.已知多项式A=(m﹣3)2﹣(2﹣m)(2+m)+6m.(1)化简多项式A;(2)若m2﹣4=5,求多项式A的值.21.类比同类项的概念,我们规定:所含字母相同,并且相同字母的指数之差的绝对值等于0或1的项是“强同类项”,例如:﹣x3y4与2x4y3是“强同类项”.(1)给出下列四个单项式:①5x2y5,②﹣x5y5,③4x4y4,④﹣2x3y6.其中与x4y5是“强同类项”的是(填写序号);(2)若x3y4z m﹣2与﹣2x2y3z6是“强同类项”,求m的值;(3)若C为关于x、y的多项式,C=(n﹣5)x5y6+3x4y5﹣7x4y n,当C的任意两项都是“强同类项”,求n的值;(4)已知2a2b s、3a t b4均为关于a,b的单项式,其中s=|x﹣1|+k,t=2k,如果2a2b s、3a t b4是“强同类项”,那么x的最大值是,最小值是.22.定义:若非零实数a,b,c满足,则称c是a和b的“协调数”.如4是3和6的“协调数”.(1)问:是不是﹣2和﹣3的“协调数”?(2)若2m是p和q的“协调数”,用m,q的代数式表示q.参考答案与试题解析一.选择题(共8小题,满分24分)1.B2.B3.D4.A5.D6.B7.D8.A二.填空题(共8小题,满分24分)9.3x.10.1.11.﹣3x3y2.12.2.13.4.14.30,3.15.13.16.16或﹣16.三.解答题(共6小题,满分52分)17.﹣36.18.解:(1)2A﹣3B=2(3x2+xy+y)﹣3(2x2﹣xy+2y)=6x2+2xy+2y﹣6x2+3xy﹣6y=5xy﹣4y;(2)当x=2,y=﹣3时,2A﹣3B=5xy﹣4y=5×2×(﹣3)﹣4×(﹣3)=﹣18.19.(1)3;(2)a﹣2b=0.20.(1)2m2+5;(2)23.21.(1)②③④;(2)m=7,8,9;(3)n=5或n=6;(4),.22.(1)是;(2).。

七年级上学期数学《整式的运算》章节测试题附详细答案

七年级上学期数学《整式的运算》章节测试题附详细答案

七年级上学期数学《整式的运算》章节测试题(时间:90分钟 满分:100分)一、选择题(每题3分,共30分)1.下列计算:①a 3·a 3=2a 6;②m 2+m 3=2m 5;③(−2a 2)2=−4a 4;④x 8÷x 4= x 2;⑤a 2·(a 10÷a 4)=a 8;⑥(a −b)2÷(b −a)2=1;⑦m+a 2n+a 2=m n 。

其中正确的个数为( )。

A.4个B.3个C.2个D.1个2.若单项式8a k+m b n 与a k+2b 2的和是一个单项式,且k 为非负整数,则满足条件的k 值有( )。

A.1组B.2组C.3组D.无数组3.若M+N=x 2−3,M=3x −3,则N 是( )。

A.x 2+3x −6B.−x 2+3xC.x 2−3x −6D.x 2−3x4.代数式2a 2−3a+1的值是6,则4a 2−6a+5的值是( )。

A.17B.15C.20D.255.若a 3·a 4·a n =a 9,则n=( )。

A.1B.2C.3D.46.若a ≠0,下面各式中错误的是( )。

A.a -n =(1a )nB.a -m =1a mC.a -p =−1a pD.a -8=1a 8 7.( 34)-2、( 65)2、(76)0三个数中,最大的是( )。

A.(34)-2 B.(65)2 C.(76)0 D.无法确定 8.若a+b=0,ab=11,则a 2−ab+b 2的值为( )。

A.11B.−11C.−33D.339.代数式(y −1)(y+1)(y 2+1)−(y 4+1)的值是( )。

A.0B.2C.−2D.不确定10.若a −b=2,a −c=1,则(2a −b −c)2+(c −a)2=( )。

A.9B.10C.2D.1二、填空题(每题3分,共30分)11.多项式4x −23x 2y 2−x 3y+5y 3−7按x 的降幂排列是____________________。

七年级数学整式单元

七年级数学整式单元

初一(上)《整式的加减》单元测试卷姓名 座号 成绩 家长签名一、选择题(3分×10=30分)1、三个单项式:(1)2310y x -,(2)2001.0x -,(3)y x 3,按次数由小到大排列,正确的是 ( )A 、 (1)(2)(3)B 、(3)(2)(1)C 、 (2)(3)(1)D 、(3)(1)(2)2、在代数式21215,5,,,,,233x y z x y a x y xyz y π+---+-中有 ( ) A 、3个单项式 B 、4个单项式C 、5个单项式D 、6个单项式3、下列各组式子中,为同类项的是 ( )A 、y x 23与23xy -B 、xy 3与yx 2-C 、x 2与22xD 、xy 5与yz 54、关于代数式213a a -+的值,下列说法错误的是 ( ) A 、当21=a 时,其值为0 B 、当a =-3时,其值不存在C 、当3-≠a 时,其值存在D 、当a =5时,其值为55、如果一个多项式的次数是5,那么这个多项式任何一项的次数( )A 、都小于5B 、都不大于5C 、都等于5D 、都不小于56、下列添括号正确的是 ( )A 、323272867(286)x x x x x x --+=--+B 、()()a b c d a d b c -+-=--+C 、225623(562)3a ab a b a ab a b ---=-+--D 、27(27)a b c a b c -+=--7、当3m >时,243+-m 可化为 ( )A 、45m -B 、 41m -C 、71m -D 、m 45-8、当x 分别等于1和-1时,代数式x x 4225++的值 ( )A 、 异号B 、 相等C 、 互为相反数D 、 互为倒数9、多项式6)2()2(23--+-x k x k k 是关于x 的二次多项式,则k 的值是( )A 、0B 、2C 、0或2D 、不能确定10、某市的出租车的起步价为5元(行驶不超过2米),以后每增加1千米,加价1.5元,现在某人乘出租车行驶P 千米的路程(P >2所需费用是( )A 、5+1.5PB 、5+1.5C 、5-1.5PD 、5+1.5(P -2)二、填空(3分×10=30分)11、两个单项式2212m a b 与412n a b -的和是一个单项式,那么m = ,n = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一(上)《整式》单元测试
一.耐心填一填:你一定很棒!(每空2分,共40分) 1.234
x y 的系数是 ,次数是 。

2.多项式3232486xy x y x y y 是 次 项式,最高次项是 ,常数项是 ,按字母y 的降幂排列为 。

3.若45a b 与22x y a b 是同类项,则x= , y= 。

4.若x+y=3 ,则4-2x-2y = . 5.去括号:-2(2y-x)= .
6.当a= ,b= 时,3(1)1a x y b xy 是关于的三次二项式。

7.2x 2381273x x x
8.如果a、b 互为相反数,c、d 互为倒数,x 的绝对值是1,那么代数式2a b
x cd x 9.若3232583n m a b a b a b ,则m= ,n= 。

10.若2(1)460x y ,则7x+8y+4x-6y 的值为 . 11.若一个只含字母a 和b 的单项式,其系数为 -1,次数为3,请你写出一个这样的单项式: .
12.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费。

已知某户用煤气x 立方米(x>60),则该户应交煤气费 元。

二.精心选一选:你一定能行!(每个3分,共18分)
13.在代数式2m n 、22x y 、1
x
、-5、a 中,单项式的个数是( )个
A. 1
B. 2
C. 3
D. 4 14.把2x x 合并同类项得( )
A. -3x
B. –x
C. -2x 2
D. -2
15.下列各题去括号所得结果正确的是( )
A.22(2)2x x y z x x y z B.(231)231x x y x x y C . 35(1)351x x x x x x D .22(1)(2)12x x x x 16.不改变多项式3223324b ab a b a 的值,把后三项放在前面是“-”号的括号中,以下正确的是( )
A .32233(24)b ab a b a B. 3223324b ab a b a C. 32233(24)b ab a b a D. 32233(24)b ab a b a 17.下列运算中,错误..
的是( ) A .444358x x x B. 66484x x C. 333352x x x D. 666484x x x 18.减去3x 得236x x 的式子为( )
A .26x B. 236x x C. 26x x D. 266x x 三.细心算一算:你一定是学习中的强者! 19.化简:(每题5分,共20分)
(1)144
mn mn (2)22
37(43)2x x x x
(3)(2)()xy y y yx (4)22225(3)2(7)a b ab a b ab
四.先化简,再求值:(每小题7分,共14分)
1.233(4333)(4)a a a a a 其中a=-2 ;
2.22222222
(22)(33)(33)x y xy x y x y x y xy ,其中x=-1,y=2
五.解答:(7分)
已知A=22433a b ab b ,B=22411a b ab a ,C=22482ab a b c ,求A+B-C
六.用心想一想:你更是生活中的智者!(每题7分,共21分) 1.先阅读下面例题的解题过程,再解答后面的题目。

例:已知代数式29647y y ,求2237y y 的值。

解:由 29647y y 得 26479y y 即 2642y y
因此 2231y y , 所以 2237y y =8
题目:已知代数式214521x x =-2,求2645x x 的值。

2.人在运动时心跳速率通常和人的年龄有关,用a 表示一个人的年龄,用b 表示正常情况下,这个人在运动时承受的每分钟心跳的最高次数,则0.8(220)b a
(1)正常情况下,在运动时一个15岁的少年所能承受的每分钟心跳的最高次数是多少?
(2)一个45岁的人运动时,10秒钟心跳的次数为22次,请问他有危险吗?为什么?
3.某市电信局推出上网包月制三种类型,见下表。

若不包月或包月后超出的时间,则按每小时2元收费。

小李平均每月上网90小时,问:他应该选择哪。

相关文档
最新文档