(完整)八年级数学上册-分式混合计算专题练习80题

合集下载

分式混合运算专项练习158题(有答案)ok

分式混合运算专项练习158题(有答案)ok

分式混合运算专项练习158题(有答案)(1)(2) +﹣(3)(4)(5) (﹣)•÷(+)(6) 3.(7) (8)(9)(10) .(11) ;(12) .(13) •÷;(14) (﹣)÷.(15)(16)(17)(1+)÷(18)(19)(20) ()2•+÷(21) ;(22)(23)(24)(25)(26)(27) ;(28) .(29) ;(30) .(31) ;(32) ÷•.(33) ()÷.(34)(35) (36) ;(37) ;(38) ;(39)(40) .(41)(42)(43)(44) (﹣)÷(45)(46)(47) +(48) ;(49) .(50) .(51)(52).(53);(54).(55)÷•;(56)1﹣÷.(57)(58)(59)÷(60);(61).(62);(63).(64)(+1)÷(1﹣)(65)(66)•﹣÷(67);(68).(69)(70)[﹣(﹣x﹣y)]÷(71)﹣÷x.(72);(73);(74)÷(x+3)•;(75)(a ﹣)÷•(76)()÷•(2﹣x)2;(77)•(﹣)2(78)(79);(80)(81);(82);(83);(84)(85)(86)(87)(88).(89)(90).(91);(92).(93)[+÷(+)2]•(94)(95);(96)(97);(98)(99)x ﹣(100)(101)(102).(103).(104);(105).(106)(x2﹣y2)•÷;(107)+﹣(108).(109)÷﹣.(110)(111).(112).(113)(114).(115).(116)(117)(118)(119)(120)(x2y﹣1)﹣3•(﹣x﹣2)﹣3÷(xy)﹣1.(121);(122)(﹣)•.(123)(124).(125).(126).(127).(128).(129)﹣(130)(131)1﹣÷.(132)(﹣)3÷•(﹣)2;(133).(134)(135).(136).(137)(138).(139)(140).(141).(142);(143).(144).(145).(146).(147)(148);(149).(150)(151)(152)(153).(154)(155)(156).(157);(158).参考答案:(1)=﹣=;(2)+﹣=++==;(3)=﹣=2x+6﹣x+3=x+9;(4)=÷(﹣)=•(﹣)=﹣.(5)原式===.(6)原式===(7)原式==x+y(8)原式==a﹣1(9)原式==y﹣3(10)==3(x+2)﹣(x﹣2)=3x+6﹣x+2=2x+8.(11)原式==;(12)原式==(﹣1)==(13)解:原式==;(14)解:原式==(15)原式=÷•=••=.(16)原式=•=﹣=﹣=.(17)原式= = =.(18)===﹣y.(19)原式==1﹣==(20)原式===.(21)原式=××=.(22)原式==(23)原式==﹣1(24)原式===(25)=+﹣=,===;(26)=﹣••=﹣;(27)=﹣•, =﹣==﹣;(28),=(﹣)•,=﹣,=,=,=﹣.(29)原式==(a+1)﹣(a﹣1)=2;(30)原式=(31)原式==;(32)原式==.(33)()÷=•=(34)原式===.(35)原式=•(a﹣1)2=a﹣1.(36)原式=×=;(37)原式=×=;(38)原式=×==;(39)原式==a4b;(40)原式==(41)=×=2(m﹣3)﹣(m+3)=m﹣9.(42)原式==﹣.(43)原式=﹣+=1﹣x+x2=x2﹣x+1.(44)原式=(﹣)×=×=.(45)原式===3(1+x);(46)原式==.(47)原式=×+=+=.(48)原式=﹣==;(49)原式=••=.(50)原式=====.(51)原式=====;(52)原式===.(53)原式==;(54)原式=×=(55)原式=•=;(56)原式=1﹣=1﹣==.(57)原式=﹣÷(58)原式=×=.(59)原式=÷(﹣)=÷=×=.(60)原式=﹣===﹣;(61)原式=﹣•=﹣==.(62)原式=;(63)原式=××(m+n)(m﹣n)=(m+n)2.(64)原式=÷=×=.(65)原式=﹣×=﹣=.(66)原式=×﹣×=﹣==.(67)原式==0;(68)原式=+=(69)原式=(×=.(70)=.(71)===.(72)原式===;(73)原式=﹣+====;(74)原式=××=;(75)原式=××=;(76)原式=[﹣]ו(2﹣x)2=ו(2﹣x)2=;(77)原式=××=(78)原式===.(79)=﹣+,==;(80),=÷=•=﹣(81)原式==;(82)原式==;(83)原式=×=(84)原式=+﹣==.(85)原式=(x+1)(x﹣1)(﹣﹣),=x+1﹣x+1﹣(x+1)(x﹣1)=﹣x2+3.(86)原式=﹣×=﹣=0.(87)原式=÷(﹣)=.(88)原式=(﹣)÷=×=.(89)原式=﹣×(m ﹣1)=﹣=﹣2m . (90)===(91)原式=;(92)原式=.(93)原式=[+×]×=[+]×=(94) 原式==.(95)原式=(x+y )•﹣==x+y ;(96)原式==;(97)原式=••=;(98)原式=•+•=+==;(99)原式==(100)原式===.(101)原式=﹣===;(102)原式=•=•=.(103)原式=1﹣×=1﹣=﹣.(104)=×=;(105)=××=x.(106)原式=(x+y)(x﹣y)××=y;(107)原式=﹣﹣=﹣﹣==(108)=••==.(109)原式=•﹣=﹣==(110)=+=+﹣==;(111)=﹣+=﹣+1=1.(112)原式=+•=+==1.(113)原式=﹣==;(114)原式=•=•=•=y+9 (115)原式=1﹣•=1﹣===﹣(116)原式==x﹣y.(117)原式==;(118)原式===;(119)原式====﹣;(120)原式=x﹣6y3•(﹣x6)÷x﹣1y﹣1=﹣y3÷x﹣1y﹣1=﹣xy4(121)原式=++==﹣;(122)原式=(﹣)•=3(x+2)﹣(x﹣2)=3x+6﹣x+2=2x+8(123)原式=•=•=x﹣2;(124)原式=1﹣÷[﹣]=1﹣÷=1﹣•=1﹣==﹣.(125)原式=﹣×=﹣==.(126)原式=[﹣]÷=[﹣]×x=×x=﹣.(127)原式=[]÷=[﹣]÷=×=(128)原式=[]•=•=y+9.(129)原式==;(130)原式==0;(131)原式=1﹣=.(132)原式=﹣••=﹣;(133)原式=•﹣=﹣=(134)原式=••=(135)原式=[﹣]•=[﹣]•=•=(136)原式==﹣=(137)=;(138)=,==.(139)=•=(x+y)(x﹣y)=x2﹣y2;(140)=++===(141)原式=====(142)原式====2;(143)原式=÷=•=.(144)原式=÷=•=.(145)原式=4a﹣1﹣+=﹣==(146)原式=×+=+==1.(147)==﹣(148)原式=+•=+=﹣=﹣;(149)原式===0(150)原式=•=;(151)原式=•=;(152)原式=﹣===﹣;(153)原式=[﹣]•=•=•=(154)原式===;(155)原式=•=;(156)原式=﹣a2b6••=﹣b5(157)原式===﹣(x+y)=﹣x﹣y;(158)原式=÷=•=.。

初二分式混合运算练习题

初二分式混合运算练习题

初二分式混合运算练习题混合运算是数学基础中的重要内容之一,它涉及到各种运算符号的组合和运用。

而分式是数学中常见的一种形式,也是混合运算中常常出现的类型。

在初二的学习中,我们需要掌握分式的基本概念和运算规则,并能灵活应用于混合运算中。

为了帮助同学们巩固这方面的知识,下面给出一些初二分式混合运算的练习题,希望能够帮助大家更好地理解和掌握。

1. 简化以下分式:a) $\frac{6x^2}{3x}$b) $\frac{8xy}{4y}$c) $\frac{15a^2}{5ab}$d) $\frac{12m^2}{4mn}$2. 将以下分式化简为整数或带分数:a) $\frac{9}{3}$b) $\frac{18}{6}$c) $\frac{15}{5}$d) $\frac{28}{7}$3. 计算以下混合运算:a) $2 + \frac{5}{2} \times 3$b) $4 \div \frac{1}{5} + 3$c) $(2 + \frac{1}{2}) \times 3$d) $6 \div (2 + \frac{1}{3})$4. 计算下列分式的和:a) $\frac{1}{4} + \frac{1}{8}$b) $\frac{5}{6} + \frac{1}{2}$c) $\frac{2}{3} + \frac{4}{9}$d) $\frac{3}{5} + \frac{2}{10}$5. 计算下列分式的积:a) $\frac{2}{3} \times \frac{4}{5}$b) $\frac{1}{6} \times \frac{6}{7}$c) $(\frac{1}{2})^2$d) $\frac{3}{4} \times (\frac{1}{2})^3$6. 计算下列混合运算:a) $2 \div \frac{1}{3} - 4$b) $\frac{4}{9} \times (\frac{3}{4} - \frac{1}{2})$c) $5 + \frac{2}{3} \div \frac{1}{6}$d) $\frac{12}{5} - \frac{2}{3} \times \frac{15}{4}$7. 用分数表示下列混合数:a) $3\frac{2}{5}$b) $7\frac{3}{4}$c) $5\frac{1}{3}$d) $1\frac{7}{8}$8. 按照指定的运算关系,计算下列混合运算:a) $3 \times (2 + 1)$b) $4 + (3 - 2)$c) $(7 + 4) \times 2$d) $(5 - 2) \times 6$以上就是一些初二分式混合运算的练习题,可以帮助大家巩固和提高分式和混合运算的能力。

初二分式的混合运算练习题

初二分式的混合运算练习题

初二分式的混合运算练习题
首先,让我们来回顾一下初二分式的混合运算。

在分式的混合运算中,我们需要进行加、减、乘、除等运算,并且考虑到分式的化简和
约分。

下面是一些练习题,帮助你巩固这方面的知识。

1. 计算以下各式的值:
a) 3/4 + 1/2
b) 5/6 - 1/3
c) 2/3 × 4/5
d) 3/4 ÷ 1/2
2. 化简以下各式:
a) (2/3) × (6/10)
b) (1/2) ÷ (2/4)
c) 4/6 + 2/3 - 1/2
d) (3/8) ÷ (1/4) × (2/5)
3. 解决以下问题:
a) 如果一个苹果馅饼有16块,你吃了其中的3/4块,还剩下多少块?
b) 你用1/3小时跑完了1/2公里的距离,以相同的速度再跑2/3小时,你总共跑了多少公里?
c) 小明有1/4公斤的巧克力,他分给了3个朋友,每人得到多少公
斤的巧克力?
d) 如果12本书总共有3/4公斤,每本书的重量是多少?
4. 填空:
a) 5/6 + 3/4 = ___
b) 2/3 - 1/5 = ___
c) 2/5 × 3/4 = ___
d) 3/4 ÷ 2/5 = ___
以上就是初二分式的混合运算的练习题。

希望通过这些题目的练习,你能够更好地理解和掌握分式的混合运算。

如果有任何疑问,请随时
向老师或同学寻求帮助。

加油!。

人教版八年级数学上册 分式的混合运算练习题

人教版八年级数学上册 分式的混合运算练习题

第11讲 分式的混合运算一、【复习巩固】分式的混合运算(1)221423----÷--x x x x x (2)()()313252-----x x x x (3)22()5525x x x x x x -÷---,(4) 421628a a b b -+ (5)(b 1-a 1)·22b a ab - (6) b a b - +b a a +-222a b ab-(7)(x -1-18+x )÷13++x x (8)112223+----x x x x x x (9)22444222-+÷-++m m m m m m(10)242211x x xx x x x --÷--+- (11)xx x x x x x x 4)44122(22-÷+----+(12)2144122++÷++-a a a a a(13) 44321112+++÷⎪⎭⎫⎝⎛++-+-x x x x x x x (14)()()22442122-÷⎥⎦⎤⎢⎣⎡--+-++a a a a a a a a a二、【专题讲解】分式的化简求值(师傅领进门,修行靠个人,一字记之曰:“悟”)分式求值题既突出代数式的运算、变换的基础知识和基本技能,又注意数学思想方法的渗透,是历年考试热点,因此熟悉它们的题型和常用方法很有必要,现归纳分析如下,供同学们参考: 类型一、常规代入求值(这种类型是比较简单的)例1、先化简(1)1122-÷+-+a aa a a ,选一个你喜欢的数作为a 的值代入求值.类型二、化简代入法 ,考验悟性了 已知x =215+,求531xx x ++的值类型三、整体代入法 例 (1)已知,ab=-1,a -b=2,则式子baa b +=__________ (2)已知511=+y x ,求yxy x y xy x +++-2232=__________ (3)已知210x x +-=,求222(1)(1)(1)121x x x x x x x --÷+---+的值类型四、主元法 例:已知2x -3y -z=0,x -6y +z=0求2222223z yz x yzy x -++-的值类型五、倒数法 例:若0132=+-x x ,求分式的值1242++x x x类型六、配方法 例:设0a b >>,2260a b ab +-=,则a bb a+-的值等于 .类型七、裂项法 观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;……解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论;(3)求和:211⨯+321⨯+431⨯+…+201020091⨯类型八、特殊值法: 例 已知abc ≠0,a +b +c=0,求)11()11()11(ba c a cbc b a +++++=类型九、参数法:例: 已知0432≠==z y x ,求z y x zy x +--+3232的值类型十、常值代入法 例: 若abc=1求cac cbc b b ab a a ++++++++111的值类型十一、恒等变形法 例: 若ba b a +=+111,求分式b a a b +的值当堂练习1、先化简,再求值:12212122++-÷⎪⎭⎫⎝⎛+---x x x x x x xx , 其中x 满足012=--x x .2、已知22006a b +=,求ba b ab a 421212322+++的值. 3、已知311=-y x ,求y xy x yxy x ---+2232的值.4、若1=ab ,求221111ba +++的值 5.已知x x 12=+,求代数式34121311222+++-•-+-+x x x x x x x 的值5、432z y x ==,求222z y x zx yz xy ++++的值 6. 已知23=-+b a b a ,求分式ab b a 22-的值7、已知41=+xx ,求1242++x x x 的值. 8. 已知51,41,31=+=+=+c a ac c b bc b a ab ,求bcac ab abc++的值.9、.103225),0(072,0634222222的值求代数式若z y x z y x xyz z y x z y x ---+≠=-+=-- 10、已知()()212132++-+=+-+x Cx B x A x x x x (C B A 、、为常数),求C B A 、、的值.11、xx x x x x x x 2)12(1)3)(2(1)2)(1(1)1(1⋅-+++++++++。

人教八年级数学上册-分式的混合运算(附习题)

人教八年级数学上册-分式的混合运算(附习题)

课堂小结 对于不带括号的分式混合运算: (1)运算顺序:先乘方,再乘除,然后加减; (2)计算结果要化为最简分式. 对于带括号的分式混合运算: (1)将各分式的分子、分母分解因式后,再
进行计算; (2)注意处理好每一步运算中遇到的符号; (3)计算结果要化为最简分式.
课后作业
2y 3x
x2 2y
x 2y2
3x3 8y
x3 4 y3
3x3y2 8y3
2x3
2.先化简,再求值: m2
m2
3m 4m
4
m m
3 2
m
2
2

其中m=2.
解:原式
m m 3 m 22
m2 m3
2 m
2
m 2 m 2. m2 m2 m2
当m=2代入其中,得原式 2 2 0 . 22
问题 分数的混合运算的顺序是什么?你能将 它们推广,得出分式的混合运算顺序吗?
分式的混合运算顺序: “从高到低、从左到右、括号从小到大”.
例1 计算:
2a 2 b
1 a-b
-
a b
b 4
.
这道题的运算顺序是怎样的?
解:
2a 2
b
1 a-b
-
a b
b 4
=
4a2 b2
1 a-b
-
a b
例2 计算:
(1) m+2+
5
2-m
2m-4 ; 3-m
(2) xx2 -+22x -
x-1 x2 -4x+4
x-4 . x
这两道题的运算顺序又是怎样的?
解:(1)
m+2+

人教版八年级数学上册 分式混合运算(习题及答案)

人教版八年级数学上册 分式混合运算(习题及答案)

÷ x + 2 - ⎪ . 解:原式 = - ÷例 2:先化简 ⎢⎡ x ( x + 1) + x ⎥ ÷ 解:原式 = ⋅例题示范例 1:混合运算: 分式混合运算(习题)4 - x ⎛ 12 ⎫x - 2 ⎝ x - 2 ⎭【过程书写】x - 4 x 2 - 4 - 12x - 2 x - 2 x - 4 x 2 - 16 =- ÷x - 2 x - 2 x - 4 x - 2 =- ⋅x - 2 ( x + 4)( x - 4)=-1x + 4⎤ 2 x⎣ x - 1 ⎦ 1 - x,然后在 -2 ≤ x ≤ 2 的范围内选取一个你认为合适的整数 x 代入求值.【过程书写】x 2 + x + x 2 - x 1 - x x - 1 2 x2 x 2 1 - x = ⋅x - 1 2 x = - x∵ -2 ≤ x ≤ 2 ,且 x 为整数∴使原式有意义的 x 的值为-2,-1 或 2 当 x =2 时,原式=-2(2) - 1⎪ ÷ (3)⎪(4) y - 1 - y - 1 ⎭ y 2 + y巩固练习1. 计算:(1)1 - x - y x 2 - y 2÷x + 2 y x 2 + 4 x y + 4 y 2;⎛ a ⎫ ⎝ a - 1 ⎭ a 1 2 - 2a + 1;⎛ 2 ⎝ a 2 - b 2 - 1 ⎫ a ÷ a 2 - ab ⎭ a + b;⎛ 8 ⎫ y 2 - 6 y + 9 ⎪ ÷ ⎝;(5) ÷ - ⎪ ; (6) ÷ -1⎪ ;x ⎪ ⎪ ; 3 - x ⎛ 5 ⎫ x - 2 ⎛ -5 ⎫ ÷ - x - 3 ⎪ ; ÷ x + 2 -(10) ( x 2 - 1) - - 1⎪ ; 1a 2 - 2ab + b 2 ⎛ 1 1 ⎫ x 2 - 4x + 4 ⎛ 2 ⎫ 2a - 2b ⎝ b a ⎭ ⎝ x ⎭(7) ⎛ ⎝ 3x + 4 2 ⎫ x + 2 - ÷ x 2 - 1 x - 1 ⎭ x 2- 2 x + 1;(8) (9) 2 x - 4 ⎝ x - 2 ⎭ 2 x - 6 ⎝ x - 3 ⎭⎛ 1 ⎫ ⎝ x - 1 x + 1 ⎭(11) - ÷ - - ⎪ . ⎝ x + y x - y ⎭ x 2- 3xy ⎝x y ⎭ (1)先化简,再求值: 1 - ⎪÷(2)先化简,再求值: + ÷ x 2 - y 2 y 2 - x 2 ⎭ x 2 y - xy 2⎛ 2 1 ⎫ x 2 - y 2 ⎛ 1 1 ⎫ ⎪ ⋅2. 化简求值:⎛ ⎝ 1 ⎫ x 2 + 2x + 1 x + 2 ⎭ x + 2,其中 x = 3 -1.⎛ 5x + 3 y 2 x ⎫ 1 ⎪ ⎝x = 3 + 2 , y = 3 - 2 .,其中(3)先化简 ⎛ + 1⎪ ÷ (4)已知 A = .x + 1 ⎫ x 2 + x 2 - 2 x +⎝ x - 1 ⎭ x 2 - 2 x + 1 x 2 - 1,然后在 -2 ≤ x ≤ 2的范围内选取一个合适的整数 x 代入求值.x 2 + 2 x + 1 x -x 2 - 1 x - 1①化简 A ; ⎧ x -1≥ 0②当 x 满足不等式组 ⎨ ,且 x 为整数时,求 A 的值.⎩ x - 3 < 0x 2 + 3 B . x 2 + 1 D. 2ab 中的分子、分母的值同时扩大为原来的 2 倍,则分式的值(ab 中 a ,b 的值都扩大为原来的 2 倍,则分式的值(x 2 + y 2 中 x ,y 的值都扩大为原来的 2 倍,则分式的值(( x - 2)( x + 3) = x + 3,则 A =_______,B =_______.3. 不改变分式13x - y2 的值,把分子、分母中各项系数化为整数,结果是( )1 3 x2 + 1A . 6 x - yC . 3x - 3 y 18 x - 3 y2 x 2 + 6 18 x -3 y2 x 2 + 34. 把分式 a - 3bA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 12)5. 把分式 3a - 4bA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 126. 把分式 2 xyA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 12))7. 已知 4 x + 7A x - 2 + B2.(1)原式=1,当x=3-1时,原式=【参考答案】巩固练习1.(1)-yx+y (2)a-1(3)1 a2(4)y(y+1)(y2-2y-7) (y-1)(y-3)2(5)ab 2(6)-x+2(7)x-1 x+1(8)-(9)-1 2x+6 1 2x+4(10)-x2+3(11)-yx+y3x+13(2)原式=3xy,当x=3+2,y=3-2时,原式=3(3)原式=2x-4x+1,当x=2时,原式=0(4)①1x-1;②13. 4. 5. 6. 7.BADA 3,1。

湘教版数学八年级上册1分式混合运算专题练习

湘教版数学八年级上册1分式混合运算专题练习

初中数学试卷金戈铁骑整理制作分式的乘除乘方运算 姓名:一、基础知识点: 1.约分把一个分式的分子与分母的公因式约去,叫做约分.约分的依据是分式的基本性质. 若分式的分子、分母是多项式,必须先把分子、分母分解因式,然后才能约去公因式. 分子与分母没有公因式的分式,叫做最简分式,又叫做既约分式.分式的运算结果一定要化为最简分式.2.分式的乘法 乘法法测:b a ·dc =bdac . 3.分式的除法 除法法则:b a ÷d c =b a ·c d =bcad 4.分式的乘方求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(ba )n . 分式的乘方,是把分子、分母各自乘方.用式子表示为:(ba )n =n nb a (n 为正整数)二、典型例题例1、下列分式abc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.4例2.计算:3234)1(x y y x ∙ aa a a 2122)2(2+⋅-+ x y xy 2263)3(÷41441)4(222--÷+--a a a a a 例3、 若432z y x ==,求222z y x zx yz xy ++++的值.例4、计算(1)3322)(cb a - (2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(cb a bc a -÷- (4)232222)()()(x y xy xy x y y x -⋅+÷-例5计算:1814121111842+-+-+-+--x x x x x练习:1.计算:8874432284211x a x x a x x a x x a x a --+-+-+--例6.计算:2018119171531421311⨯+⨯++⨯+⨯+⨯ 练习1、()()()()()()()()1011001431321211++++++++++++x x x x x x x x例7、已知21)2)(1(12++-=+-+x Bx A x x x ,求A. B 的值。

八年级数学—分式的混合运算习题

八年级数学—分式的混合运算习题
2
4a 8a a 1 a 1 4).(a 2) (a 1 ) a 1 a 1
5.拓展思维: 你能很快计算出
20022003 2 2 20022002 20022004 2
的值吗?
2
4.答案1).解法一:
a 1 4 a a2 2 2 2 a 2a a 4a 4 a 2a
a 4 a(a 1) a 2a 2 a ( a 2) 4a
2 2
a4 a ( a 2) 2 a ( a 2) 4a
1 a2
1).解法二:
a 1 4 a a2 2 2 2 a 2a a 4a 4 a 2a
1 a2
x3 5 2).解: ( x 2) 2x 4 x 2 x 3 5 ( x 2)( x 2) 2x 4 x2
1 2( 3 x )
x2 x 3). 解: 2 2 x x 4x 4 x 2x
4 x
1 ( x 2)( x 2) 1 x 2 x 2 x
1 ( x 2)( x 2) 1 ( x 2)( x 2) ( x 2) x ( x 2) x
x2 x2 x x
4 x
4).解:
16.2 分式的混合运算习题课 分式的加减法(二)
1.计算:
3x x y 7y 1 x 4y 4y x x 4y x 2 x 1 x 1
2
(1) 2
3 3 2 2 x 2x x 4x 4
1 (2) x 1 x3 (3) x2 x ( x 2)
a 1 3. a 1

八年级数学上册分式的乘除混合运算及乘方练习题

八年级数学上册分式的乘除混合运算及乘方练习题

八年级数学上册分式的乘除混合运算及乘方练习题(含答案解析)学校:___________姓名:___________班级:___________一、单选题1.计算1a a a÷⨯的结果是( )A .aB .2aC .1aD .3a2.化简2()b ba a a -÷-的结果是( )A .-a -1B .a -1C .-a +1D .-ab +b3.下列分式运算或化简错误的是( )A .133122x x x x --=--+ B .322242x y x x y y-=-C .()22()x yx xy x y x--÷=- D .42122x x x++=--- 4.计算32n m ⎛⎫⎪⎝⎭的结果是( )A .32n mB .36n mC .35n mD .5n m 5.小马虎在下面的计算中只做对了一道题,他做对的题目是( )A .22a a b b ⎛⎫= ⎪⎝⎭B .1x yx y--=-- C .112a b a b+=+ D .341a a a÷= 6.265ab c ·103cb的计算结果是( ) A .245a c B .4a C .4a c D .1c7.计算222421a a a a --+-的结果是( )A .24a -B .24a -+C .24a --D .24a +8.试卷上一个正确的式子(11a b a b++-)÷★=2a b +被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( ) A .a a b- B .a ba- C .a a b+ D .224a a b -二、解答题 9.化简下列分式(1)3265224a y ab a b y by⎛⎫⎛⎫--⋅÷ ⎪⎪⎝⎭⎝⎭; (2)2211122x x x -⎛⎫-÷⎪++⎝⎭. 10.阅读下面的解题过程: 已知2212374y y =++,求代数式21461y y +-的值.解:∵2212374y y =++,∵223742y y ++=,∵2231y y +=. ∵()2246122312111y y y y +-=+-=⨯-=,∵211461y y =+-.这种解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目: 已知332x x +=+,求352242x x x x -⎛⎫÷-- ⎪--⎝⎭的值. 11.给定下面一列分式:3x y ,−52x y ,73x y,−94x y ,…,(其中x ≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律? (2)根据你发现的规律,试写出给定的那列分式中的第2013个分式.12.先化简,再求值:242a a a a ⎛⎫--÷ ⎪⎝⎭,请从不等式组104513a a +>⎧⎪-⎨≤⎪⎩ 的整数解中选择一个合适的数求值. 13.一艘船顺流航行km n 用了h m ,如果逆流航速是顺流航速的pq,那么这艘船逆流航行h t 走了多少路程? 14.化简:(1)⨯ (2)(a +2)2-(a +1)(a -1) 15.先化简,再求值:22x x +÷(1﹣211x x --),其中x 是不等式组()211532x x x x ⎧-<+⎨+≥⎩的整数解. 16.先化简,再求值:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭,其中2a =. 17.先化简,再求值:222a ab a b b ⎛⎫--÷ ⎪⎝⎭.其中2,0a b b =≠. 18.某花卉生产基地举行花卉展览,如图所示是用这两种花卉摆成的图案,白色圆点为盆景,灰色圆点为盆花.图1中盆景数量为2,盆花数量为2;图2中盆景数量为4,盆花数量为6;图3中盆景数量为6,盆花数量为12……按照以上规律,解决下列问题:(1)图6中盆景数量为________,盆花数量为___________;(2)已知该生产基地展出以上两种花卉在某种图案中的数量之和为130盆,分别求出该图案中盆景和盆花的数量;(3)若有n (n 为偶数,且2n ≥)盆盆景需要展出(只摆一种图案),照此组合图案,需要盆花的数量为________.(用含n 的代数式表示) 三、填空题19.已知a ≠0,12S a =,212S S =,322S S =,…,201020092S S =,则2012S =_______(用含a 的代数式表示). 20.(2a bc -)3•(2c ab-)2÷(bc a )4=________.21.已知7x y +=且12xy =,则当x y <时,11x y的值等于________.22.若分式21x x -□1x x -运算结果为x ,则在“□”中添加的运算符号为_____.(请从“+、﹣、×、÷”中选择填写)参考答案:1.D【分析】根据分式的乘除运算法则即可计算. 【详解】解:31a a a a a a a÷⨯=⨯⨯=故选D【点睛】本题考查了分式的运算,加减乘除混合运算时,先算乘除再算加减,同名运算按从左往右依次计算,熟练掌握分式的乘除运算是解题的关键.【分析】将除法转换为乘法,然后约分即可.【详解】原式=(1)(1)1(1)b b b a a a a a a a a b -⎛⎫⎛⎫-÷=-⨯=--=- ⎪ ⎪-⎝⎭⎝⎭, 故选B .【点睛】本题考查分式的化简,熟练掌握分式的运算法则是解题关键. 3.C【分析】根据分式的性质,分式的约分,分式的加减以及除法运算进行化简,逐项分析即可 【详解】A .原式(31)31(2)2x x x x ---==-++,正确,不符合题意;B .原式=2xy-,正确,不符合题意; C .原式2()xx x y x x y=-⋅=-,错误,符合题意; D .原式4242(2)12222x x x x x x x +----=-===-----,正确,不符合题意. 故选:C .【点睛】本题考查了分式的计算,掌握分式的性质以及分式的约分,分式的加减是解题的关键. 4.B【分析】根据分式的乘方运算法则解答即可. 【详解】解:()3333262n n n m m m ⎛⎫== ⎪⎝⎭.故选:B .【点睛】本题考查了分式的运算,属于基本题型,熟练掌握分式的乘方运算法则是解答的关键. 5.D【分析】根据分式的运算法则逐一计算即可得答案. 【详解】A.222()a a b b=,故该选项计算错误,不符合题意,B.()1x y x y x y x y---+=≠---,故该选项计算错误,不符合题意, C.11a b a b ab++=,故该选项计算错误,不符合题意, D.3341a a a a a÷=⋅=,故该选项计算正确,符合题意, 故选:D .【点睛】本题考查分式的运算,熟练掌握运算法则是解题关键.【分析】分式乘分式,用分子的积作积的分子,分母的积作积的分母,能约分的要约分. 【详解】265ab c ·103c b=226106045315ab c abc ac b bc c ⨯==⨯.故选C.【点睛】本题主要考查了分式的乘除法,做分式乘除混合运算时,要注意运算顺序,乘除法是同级运算,要严格按照由左到右的顺序进行运算,切不可打乱这个运算顺序. 7.A【分析】两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母,然后将各分式的分子、分母因式分解,进而可通过约分、化简得出结果.【详解】222421a a a a --+-=()()()()2122222421a a a a a a a -+-=-=-+-故选A .【点睛】本题考查了分式的乘法运算.如果分子、分母是多项式,那么就应该先分解因式,然后找出它们的公因式,最后进行约分. 8.A【分析】根据分式的混合运算法则先计算括号内的,然后计算除法即可. 【详解】解:11a b a b ⎛⎫+÷ ⎪+-⎝⎭∵=2a b + ()()a b a ba b a b -++÷+-∵=2a b+∵=()()22a ab a b a b ÷+-+=aa b-, 故选A .【点睛】题目主要考查分式的混合运算,熟练掌握运算法则是解题关键. 9.(1)2a b;(2)21x +.【分析】(1)先算乘方,再算乘除; (2)先算括号里的,再算括号外的除法. 【详解】解:(1)3265224a y ab a b y by ⎛⎫⎛⎫--⋅÷ ⎪⎪⎝⎭⎝⎭63235648a y ab by b y a =⋅⋅2a b=. (2)2211122x x x -⎛⎫-÷⎪++⎝⎭()()()211111x x x x x +-=⋅+-+ 21x =+. 【点睛】本题考查了分式的混合运算,解题的关键是掌握有关运算法则,以及注意分子、分母的因式分解,通分、约分.10.13-【分析】先把括号内通分,再把除法运算化为乘法运算,接着把分子分母因式分解后约分得到原式12(3)x -+利用倒数法由已知条件得到332x x +=+然后把左边化为真分式后利用整体代入的方法计算. 【详解】解:原式35(2)(2)3212(2)22(2)(3)(3)2(3)x x x x x x x x x x x --+---=÷=⋅=-----+-+,∵332x x +=+, ∵2311113333x x x x x ++-==-=+++, 12,33x ∴=+ ∵原式1111212(3)23233x x =-=-⋅=-⨯=-++ 【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.11.(1)任意一个分式除以前面那个分式等于2x y -;(2)40272013x y.【分析】(1)利用分式的化简即可发现规律; (2)根据所发现的规律,求需要求的分式.【详解】解:(1)53773225942322;;;;x x x x x x yy x x y y y y y x y y ⎛⎫÷== ⎪⎛⎫-⎝⎭÷=---÷-⎪- ⎝⎭,规律是任意一个分式除以前面那个分式等于2x y-;(2)根据规律:后面一个分式除以前面那个分式等于2x y-,第一个分式是3x y ,所以第2013个分式应该是:20123240272013x x x y y y⎛⎫⨯-= ⎪⎝⎭. 【点睛】本题考查了分式的化简,解题的关键是:利用分式化简的法则计算找规律,然后运用规律求指定项的分式. 12.22a a +,3【分析】根据分式的加减运算以及乘除运算法则进行化简,然后根据不等式组求出a 的值并代入原式即可求出答案.【详解】解:242a a a a ⎛⎫--÷ ⎪⎝⎭2242a a a a -=⋅- ()()2222a a a a a +-=⋅- 22a a =+,104513a a +>⎧⎪⎨-≤⎪⎩①②, 解不等式∵得:1a >- 解不等式∵得:2a ≤, ∵12a -<≤, ∵a 为整数, ∵a 取0,1,2, ∵0,20a a ≠-≠, ∵a =1,当a =1时,原式21213=+⨯=.【点睛】本题考查分式的化简求值,解一元一次不等式组,解题的关键是熟练运用分式的加减运算法则以及乘除运算法则,本题属于基础题型. 13.nptmqkm 【分析】根据题意表示出顺流速度,进而表示出逆流速度,即可得到这艘船逆流航行t h 走的路程. 【详解】解:根据题意得:顺流速度为nmkm/h ,逆流速度为pn qm km/h ,则这艘船逆流航行t h 走了nptmqkm .【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式. 14.(1)2 (2)45a +【分析】(1)利用平方差公式和完全平方公式即可求解;(2)利用平方差公式和完全平方公式进行展开后,进行合并同类项即可. (1)解:原式=22-=75- =2; (2)解:原式=()()22441a a a ++--=22441a a a ++-+ =45a +.【点睛】本题主要考查利用平方差公式进行二次根式的运算以及利用平方差公式和完全平方公式进行整式的运算,掌握乘法公式是解题的关键. 15.22x,当x =2时,原分式的值为12 【分析】由题意先把分式进行化简,求出不等式组的整数解,根据分式有意义的条件选出合适的x 值,进而代入求解即可.【详解】解:原式=()()()()()22211211221111x x x x x x x x x x x x +-⎛⎫--+÷=⨯= ⎪+-+-⎝⎭; 由()211532x x x x ⎧-<+⎨+≥⎩可得该不等式组的解集为:13x -≤<,∵该不等式组的整数解为:-1、0、1、2, 当x =-1,0,1时,分式无意义, ∵x =2,∵把x =2代入得:原式=22122=. 【点睛】本题主要考查分式的运算及一元一次不等式组的解法,要注意分式的分母不能为0.16.11a -,1 【分析】根据平方差公式、完全平方公式和分式的混合运算法则对原式进行化简,再把a 值代入求解即可.【详解】解:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭ ()()()2331113121a a a a a a a ⎡⎤+--=⋅-⋅⎢⎥--+-⎢⎥⎣⎦311112a a a a +⎛⎫=-⋅⎪--+⎝⎭ 2112a a a +=⋅-+ 11a =-, ∵2a =, ∵原式111121a ===--. 【点睛】本题考查分式的化简求值,熟练掌握平方差公式、完全平方公式和分式的混合运算法则是解题的关键. 17.a ab +,23【分析】根据分式的减法和除法可以化简题目中的式子,然后将2a b =代入化简后的式子即可解答本题.【详解】222a ab a b b ⎛⎫--÷ ⎪⎝⎭=222a ab a b bb b ⎛⎫--÷ ⎪⎝⎭=222a ab a b b b--÷ =()()()a ab bba b a b -+-=a a b+ 当2,0a b b =≠时,原式=222233b b b b b ==+. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式减法和除法的运算法则和计算方法. 18.(1)12;42(2)该图案中盆景和盆花的数量分别为20和110 (3)122n n ⎛⎫+ ⎪⎝⎭【分析】(1)由图可知,依次写出图1到图5的盆景的数量,盆花的数量;推导出一般性规律:图n 中盆景的数量为:2n ;盆花的数量为:()1n n +,将6n =代入求解即可;(2)由题意知,()21130n n n ++=,求出满足要求的n 值,进而可得盆景,盆花的数量; (3)根据推导出的一般性规律作答即可. (1)解:由图可知,盆景的数量依次为:12⨯、22⨯、32⨯、42⨯、52⨯······ 盆花的数量依次为:12⨯、23⨯、34⨯、45⨯、56⨯······ ∵可推导出一般性规律:图n 中盆景的数量为:2n ;盆花的数量为:()1n n + ∵图6中盆景的数量为:2612⨯=;盆花的数量为:()66142⨯+= 故答案为:12;42. (2)解:由题意知,()21130n n n ++= 整理得+-=231300n n()()10130n n -+=解得10n =,13n =-(不合题意,舍去)当10n =时,盆景数量为221020n =⨯=,盆花数量为13020110-= ∵该图案中盆景和盆花的数量分别为20和110. (3)解:由一般性规律可知,当有n 盆盆景需要展出时,需要盆花的数量为122n n ⎛⎫+ ⎪⎝⎭故答案为:122n n ⎛⎫+ ⎪⎝⎭.【点睛】本题考查了图形类规律探究,列代数式,解一元二次方程.解题的关键在于推导出一般性规律. 19.1a【分析】先把1S 的值代入2S 的表达式中,求出2S ,以此类推求出3S 、4S ,从而可发现规律:所有的奇次项都等于2a ,所有的偶次项都等于1a. 【详解】∵12S a =,∵212212S S a a ===, 312221S a S a===,∵每2个式子为一个周期循环, ∵20121S a= 故答案为:1a .【点睛】本题主要考查了分式乘除的混合运算与数字的变化规律,解题的关键是根据题意得出序数为奇数时为2a ,序数为偶数时为1a.20.833a b c- 【详解】解:原式=634483224433a b c a a c a b b c b c -⋅⋅=-.故答案为833a b c-. 21.112【分析】利用分式的加减运算法则与完全平方公式把原式化为:222()4x y xy x y +-,再整体代入求值,再利用平方根的含义可得答案.【详解】解:因为7x y +=,12xy =, 所以2222211()y x x y x y xy x y ⎛⎫⎛⎫---== ⎪ ⎪⎝⎭⎝⎭ 22222()47412112144x y xy x y +--⨯===, 又因为x y <,所以110x y->, 所以11112x y -=, 故答案为:112. 【点睛】本题考查的是由条件式求解分式的值,掌握变形的方法是解题的关键.22.﹣或÷.【分析】分别用计+、﹣、×、÷计算出结果进行验证即可解答.【详解】解:211x x x x +--=21x x x +-, 211x x x x ---=21x x x --=(1)1x x x --=x , 211x x x x --=32(1)x x -, 211x x x x ÷--=211x x x x-⨯-=x , 故答案为﹣或÷.【点睛】本题考查了分式方程的加、减、乘、除运算法则,掌握并灵活运用运算法则是解答本题的关键.。

八年级数学上册 分式混合运算(习题及答案)(人教版)

八年级数学上册 分式混合运算(习题及答案)(人教版)

分式混合运算(习题)例题示范例1:混合运算:412222x x x x -⎛⎫÷+- ⎪--⎝⎭. 【过程书写】2244122241622422(4)(4)14x x x x x x x x x x x x x x ---=-÷----=-÷----=-⋅-+-=-+解:原式例2:先化简(1)211x x x x x x+⎡⎤+÷⎢⎥--⎣⎦,然后在22x -≤≤的范围内选取一个你认为合适的整数x 代入求值.【过程书写】2221122112x x x x x x xx x x x x++--=⋅--=⋅-=-解:原式 ∵22x -≤≤,且x 为整数∴使原式有意义的x 的值为-2,-1或2当x =2时,原式=-2巩固练习1. 计算:(1)22221244x y x y x y x xy y---÷+++;(2)211121a a a a ⎛⎫-÷ ⎪--+⎝⎭;(3)22221a a b a ab a b⎛⎫-÷ ⎪--+⎝⎭;(4)2286911y y y y y y ⎛⎫-+--÷ ⎪-+⎝⎭;(5)2221122a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭; (6)24421x x x x -+⎛⎫÷- ⎪⎝⎭;(7)2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭;(8)352242x x x x -⎛⎫÷+- ⎪--⎝⎭; (9)253263x x x x --⎛⎫÷-- ⎪--⎝⎭;(10)211(1)111x x x ⎛⎫--- ⎪-+⎝⎭;(11)22221113x y x y x y x xy x y ⎛⎫⎛⎫--⋅÷-- ⎪ ⎪+--⎝⎭⎝⎭.2. 化简求值:(1)先化简,再求值:2121122x x x x ++⎛⎫-÷ ⎪++⎝⎭,其中1x .(2)先化简,再求值:2222225321x y x x yy x x y xy ⎛⎫++÷ ⎪---⎝⎭,其中x =y =(3)先化简22212211211x x x x x x x x ++-⎛⎫+÷+ ⎪--+-⎝⎭,然后在22x -≤≤ 的范围内选取一个合适的整数x 代入求值.(4)已知222111x x xA x x ++=---.①化简A ;②当x 满足不等式组1030x x -⎧⎨-<⎩≥,且x 为整数时,求A 的值.3. 不改变分式2132113x yx -+的值,把分子、分母中各项系数化为整数,结果是()A .263x y x -+B .218326x yx -+C .2331x y x -+ D .218323x y x -+4. 把分式32a b ab-中的分子、分母的值同时扩大为原来的2倍,则分式的值( ) A .不变 B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的125. 把分式34a bab -中a ,b 的值都扩大为原来的2倍,则分式的值() A .不变 B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的126. 把分式222xyx y +中x ,y 的值都扩大为原来的2倍,则分式的值() A .不变 B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的127. 已知47(2)(3)23x ABx x x x +=+-+-+,则A =_______,B =_______.【参考答案】巩固练习1. (1)yx y -+(2)1a -(3)21a(4)22(1)(27)(1)(3)y y y y y y +----(5)2ab(6)2x -+(7)11x x -+ (8)126x -+ (9)124x -+ (10)23x -+(11)y x y-+2. (1)原式11x =+,当1x =时,原式=(2)原式=3xy ,当x =y ==3 (3)原式241x x -=+,当x =2时,原式=0 (4)①11x -;②1 3.B 4.A 5.D 6.A 7.3,1。

分式混合运算专题练习

分式混合运算专题练习

分式的乘除乘方运算例1、下列分式a bc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.4 例2.计算:3234)1(xy y x • a a a a 2122)2(2+⋅-+ x y xy 2263)3(÷41441)4(222--÷+--a a a a a 例3、 若432z y x ==,求222z y x zx yz xy ++++的值.例4、计算(1)3322)(c b a - (2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(c b a bc a -÷- (4)232222)()()(xy xy xy x y y x -⋅+÷-例5计算:1814121111842+-+-+-+--x x x x x练习:1.计算:8874432284211x a x x a x x a x x a x a --+-+-+--例6.计算:2018119171531421311⨯+⨯++⨯+⨯+⨯练习1、()()()()()()()()1011001431321211++++++++++++x x x x x x x x例7、已知21)2)(1(12++-=+-+x B x A x x x ,求A. B 的值。

计算下列各题:(1)2222223223x y y x y x y x y x y x ----+--+ (2)1111322+-+--+a a a a .(3)29631a a --+ (4) 21x x --x -1 (5)3a a --263a a a +-+3a ,(6)xy y y x x y x xy --++-222 ⑺b a b b a ++-22 ⑻293261623x x x -+--+⑼xy y x y x y x 2211-⋅⎪⎪⎭⎫ ⎝⎛+-- ⑽ 222x x x +--2144x x x --+(11)a a a a a a 4)22(2-⋅+--.2.已知x 为整数,且918232322-++-++x x x x 为整数,求所有的符合条件的x 的值的和.3、混合运算:⑴2239(1)x x x x ---÷ ⑵232224x x x x x x ⎛⎫-÷ ⎪+--⎝⎭ ⑶ a a a a a a 112112÷+---+⑷ 444)1225(222++-÷+++-a a a a a a ⑸ )1x 3x 1(1x 1x 2x 22+-+÷-+-⑹ )252(23--+÷--x x x x ⑺ 221111121x x x x x +-÷+--+⑻2224421142x x x x x x x -+-÷-+-+ ⑼2211xyx y x y x y ⎛⎫÷- ⎪--+⎝⎭⑽ (abb a 22++2)÷ba b a --22 ⑾22321113x x x x x x x +++-⨯--+⑿ x x x x x x x x x 416)44122(2222+-÷+----+ (13)、22234()()()x y y y x x-⋅-÷-(14)、)252(423--+÷--m m m m (15)、x x x x x x x --+⋅+÷+--36)3(446222(16)、 ()3212221221------⎪⎭⎫ ⎝⎛ba cb b a (17)、⎪⎭⎫ ⎝⎛---÷⎪⎪⎭⎫ ⎝⎛+--x x x x x 23441823224.计算:x x x x x x x x -÷+----+4)44122(22,并求当3-=x 时原式的值.5、先化简,x x x x x x 11132-⋅⎪⎭⎫ ⎝⎛+--再取一个你喜欢的数代入求值:6、有这样一道题:“计算22211x x x -+-÷21x x x-+-x 的值,其中x=2 004”甲同学把“x=2 004”错抄成“x=2 040”,但他的计算结果也正确,你说这是怎么回事?7、计算、)1(1+a a +)2)(1(1++a a +)3)(2(1++a a +…+)2006)(2005(1++a a 。

初二分式混合计算练习题

初二分式混合计算练习题

初二分式混合计算练习题一、简答题1. 求下列分式的值:a) $\frac{1}{2} + \frac{2}{3}$b) $\frac{4}{5} - \frac{1}{10}$c) $\frac{3}{4} \times \frac{2}{5}$d) $\frac{6}{7} \div \frac{3}{8}$2. 求下列混合数的值:a) $1\frac{2}{3} + \frac{2}{5}$b) $3\frac{1}{2} - \frac{5}{6}$c) $2\frac{3}{4} \times \frac{4}{7}$d) $4\frac{1}{5} \div \frac{2}{3}$3. 计算下列分式混合数的值:a) $1\frac{1}{2} + \frac{2}{3} - \frac{1}{4}$b) $3\frac{1}{4} - \frac{5}{6} + \frac{1}{3}$c) $\frac{2}{3} \times 1\frac{1}{2} \div \frac{3}{4}$二、证明题1. 证明:$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$2. 证明:$\frac{a-b}{c} = \frac{a}{c} - \frac{b}{c}$3. 证明:$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \timesd}$三、应用题1. 甲、乙两个油罐的容量比为2:3。

甲罐的油量为$\frac{3}{4}$,求乙罐油量。

2. 甲、乙两个水箱的容量比为5:4,已知甲箱的水量是乙箱的$\frac{7}{10}$,求乙箱的水量。

3. 父亲今年40岁,儿子今年9岁。

若父亲的年龄是儿子年龄的3倍加12岁,问几年后父亲的年龄是儿子的5倍?4. 小明总共有48本书,其中$\frac{4}{5}$是小说,剩下的是散文。

初二数学上册综合算式专项练习题分式运算练习

初二数学上册综合算式专项练习题分式运算练习

初二数学上册综合算式专项练习题分式运算练习初二数学上册综合算式专项练习题-分式运算练习1. 分式简化(1) 将分式$\frac{4}{6}$化简为最简形式。

解:分子和分母都可以被2整除,所以$\frac{4}{6}=\frac{2}{3}$。

(2) 将分式$\frac{12}{16}$化简为最简形式。

解:分子和分母都可以被4整除,所以$\frac{12}{16}=\frac{3}{4}$。

(3) 将分式$\frac{15}{10}$化简为最简形式。

解:分子和分母都可以被5整除,所以$\frac{15}{10}=\frac{3}{2}$。

2. 分式的乘除(1) 计算$\frac{2}{3} \times \frac{3}{5}$。

解:$\frac{2}{3} \times \frac{3}{5}=\frac{2 \times 3}{3 \times5}=\frac{6}{15}=\frac{2}{5}$。

(2) 计算$\frac{4}{5} \div \frac{2}{3}$。

解:$\frac{4}{5} \div \frac{2}{3}=\frac{4}{5} \times\frac{3}{2}=\frac{4 \times 3}{5 \times 2}=\frac{12}{10}=\frac{6}{5}$。

3. 分式的加减(1) 计算$\frac{2}{3} + \frac{1}{4}$。

解:两个分式的分母不同,需要先找到它们的最小公倍数。

在这里,最小公倍数是12。

将$\frac{2}{3}$和$\frac{1}{4}$的分母都改为12,得到$\frac{8}{12} + \frac{3}{12}=\frac{8+3}{12}=\frac{11}{12}$。

(2) 计算$\frac{3}{5} - \frac{2}{3}$。

解:两个分式的分母不同,需要先找到它们的最小公倍数。

在这里,最小公倍数是15。

人教版八年级数学上册分式混合运算(习题及答案)

人教版八年级数学上册分式混合运算(习题及答案)

=-x分式混合运算(习题)例题示范【过程书写】W :原氏=—M÷H2X-2 X-2x-4 Λ2-16 =~x-2" x-2 x-4 X-2OHf(X+4)(x-4) _ 1 x+4=Z ,然后在-2≤%≤2的范围内选取一个你认为I-X合适的整数X 代入求值. 【过程书写】V -2≤%≤2,且X 为整数・•・使原式有意义的X 的值为-2, -1或2 当x=2时,原式=-2例1:混合运算:x+2-例2:先化简I%-1 解:原式=上二号x-12A 2 I-X= -• --- %-1 Zx巩固练习1.计算:(1) 1 一空亠… x+Zy A2+4Λ×+4^214丿3 A g-4x+4^2,ιp(7)金+4 2 ) x+2、A2-1 x-↑)' A2-2z+1IIU 丿(M-IM 1 一 1 一丨、I X — 1 x+1 )(8)3-X (2x-4弋x+2—(9)2te÷(X -3~X~3∖Ilv"2 _ 1、 川一‘(1「U+y χ-y 丿A2 - 3xy' { X y)2. 化简求值:l l ,X= y[S-^∖ •I 乙丿尢BlHj,円冰诅:(5x+ 3y 2* ] . 1其中I 尸一启} ' X^y-X^X= >/3 + Λ∕T , y=事- yj∑ •I I)TCK J 冋,円•平1旦:1 ) A2+2y +1A2的范围内选取一个合适的整数X 代入求值.(4)己知 M= * + 2x+1X . A2-1X-1①化简4②当X 满足不等式组< *"鼻°,且X 为整数时,求力的值x-3<03χl广 尹的值,把分子、分母中各项系数化为整数,结果是( )磁-3P2A 2 + 6D.2岸+ 3o_ 3b4.把分式 Γ f Φ旳分于、分垮旳值冋河旷穴为原米旳2借,则分坤胆()ZabA-不变B.扩大为原来的2倍C.扩大为原來的4倍D.缩小为原來的12MΛ /5.把分式 :甲a, Q 旳1宜郁旷穴为尿米旳2借,则分巩旳1宜()abA ・不变B.扩大为原来的2倍C.扩大为原來的4倍D.缩小为原來的126. 把分式 2少 I PX y 旳恒郁旷穴为尿米旳2借,则分巩旳但()予+ FA ・不变B.扩大为原来的2倍C.扩大为原來的4倍D.缩小为原來的127. 己知—4*+7_=4+厶,则&二 ____________________ , B= ________ .(x-2)(x+3) X-2 X+33. 不改变分式,A2+13A.竺工3x-3yA2 + 1【参考答案】巩固练习1.⑴丄x+ y(2)a-↑⑶1日2(4)X∕+1)(^-2y-7)(y-i)(y-3?(5)竺2(6)-χ+ 2(7)Hx+1(8)- 12x+6(9)- 12x+4(10)-A2+3(11)-_Z_x+y2.(1)原式=丄,^x= J3-1时,原氏=逅%+1 7 3 (2)原式二3® 当X=总+罷,y=√5^-√2^tt,原式二3 (3)原式=空当用2时,原式二0%+1(4)①丄r:②1X-A3. B4. A5. D6. A7.3, 1。

人教版数学八上《 分式的运算练习 (vip专享)

人教版数学八上《 分式的运算练习  (vip专享)

本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。

内容由一线名师原创,立意新,图片精,是非常强的一手资料。

分式的运算 题组1:分式的混合运算 1.计算b a (-ab)22的结果是( ) A.aB.bC.1D.-b 2.计算: (1)1-a 1-a 12++a a ; (2)1x x 1-x 22+÷x ; (3)(1x +1+1x -1)·(x 2-1);(4)256+2a 4-a 3a 2-a 2+-÷+a ; (5)(贵阳中考)(3x +1-1x )÷2x 2-x x 2+2x +1;(6)(长春中考)2-x x -2x -x 9-x .3-x x 22; (7))131(x 1-x x -2--+÷x ; (8)4+4x +x .4-x 3x )21(122x x -÷-+.题组2:分式的化简求值3.(湘潭中考)先化简,再求值:1-x 23)141-x 6(2+÷-+x x 1,其中x=2.4.(云南中考)化简求值:)1.(1+2x -x x -x 22xx -,其中x=51.5.(六盘水中考)先化简代数式(3a a -2-a a +2)÷a a 2-4,再从0,1,2三个数中选择适当的数作为a 的值代入求值.6.(贵港中考)已知|a +1|+(b -3)2=0,求代数式(1b -1a )÷a 2-2ab +b 22ab的值.7.(济宁中考)已知x+y=xy ,求代数式)1)(1(11y x yx ---+的值.8.(泰州中考)先化简,再求值:1x x 2x 1)231(2+-+-÷+-x x x ,其中x 满足x 2-x-1=0.9.(南昌中考)先化简,再求值:1x 2x -x 24+4x -x 222+÷x ,在0,1,2三个数中选一个合适的,代入求值.10.化简分式(x x -1-x x 2-1)÷x 2-xx 2-2x +1,并从-1≤x≤3中选一个你认为适合的整数x 代入求值.参考答案1.B2.(1)原式=1.(2)原式=12-x .(3)原式=2X.(4)原式=-23+a .(5)原式=x +1x 2.(6)原式=23-x . (7)原式=21+x .(8)原式=2+x x . 3.1211. 4 .56. 5.10 . 6.-12.7.0.8.19.原式=(x -2)22x·x 2x (x -2)+1=x -22+1=x 2.当x =1时,原式=12.(注意:x 不能取0和2) 10.原式=(x x -1-x x 2-1)·x 2-2x +1x 2-x=x x -1·(x -1)2x (x -1)-x (x +1)(x -1)·(x -1)2x (x -1)=1-1x+1=xx+1.∵x≠-1,0,1,∴当x=2时,原式=22+1=2 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档