八年级数学分式单元测试题
人教版初中数学八年级上册第十五章《分式》测试题(含答案)
=1- + - + - +…+ -
=1-
= ;
(2)①∵ + =
= ,
∴ ,
解得 .
∴A和B的值分别是 和- ;
②∵ = • - •
= •( - )- ( - )
∴原式= • - • + • - • +…+ • - •
= • - •
= -
= .
故 且 .
故答案为 且 .
18.解:(1)去分母得:2x﹣5=3(2x﹣1),解得:x=﹣ ,
经检验x=﹣ 是分式方程的解;
所以原方程的解是x=﹣ ;
(2)去分母得:2x﹣1﹣x+1=0,解得:x=0,
经检验x=0是增根,所以分式方程无解.
19解:设 ,则 , , .
所以 .
20解:原式=[ + ]÷ =( + )•x=x﹣1+x﹣2=2x﹣3
10.计算(a2)3+a2·a3-a2÷a-3的结果是( )
A.2a5-aB.2a5- C.a5D.a6
11.已知关于x的分式方程 =1的解是负数,则m的取值范围是( )
A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2
12.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是( )
八年级上册《第15章分式》单元同步测验卷
一、单选题
1.代数式 中的x取值范围是( )
A.x B.x C.x D.
2.下列各式:2个C.3个D.4个
3.若分式 中的x和y都扩大10倍,那么分式的值()
数学八年级上册《分式》单元测试题含答案
八年级上册数学《分式》单元测试卷考试时间:90分钟满分:100分第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•松桃县期末)若分式有意义,则实数x的取值范围是()A .x=2B .x=﹣2C .x≠2D .x≠﹣22.(2018秋•鸡东县期末)在,,﹣3xy+y2,,,分式的个数为()A .2B .3C .4D .53.(2018秋•永川区期末)如果把分式中的x和y都同时扩大2倍,那么分式的值()A .不变B .扩大4倍C .缩小2倍D .扩大2倍4.(2018春•利津县期末)若A =﹣22,B =2﹣2,C =()﹣2,D =()0.则()A .A <B <D <C B .A <B <C <D C .B <A <D <C D .A <C <B <D5.(2018春•开江县期末)若x为整数,使分式值为整数,则满足条件的整数有()A .5个B .6个C .8个D .7个6.(2018秋•江北区期末)从﹣3,﹣2,﹣1,,1,3这六个数中,随机抽取一个数,记为A .关于x的方程1的解是正数,那么这6个数中所有满足条件的A 的值有()个.A .3B .2C .1D .47.(2018秋•香坊区期末)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,提速前列车的平均速度是()A .km/hB .km/hC .km/hD .km/h8.(2018秋•怀柔区期末)定义:如果一个关于x的分式方程 B 的解等于,我们就说这个方程叫和解方程.比如:4就是个和解方程.如果关于x的分式方程3﹣n是一个和解方程,那么n的值是()A .B .C .D .9.(2019春•包河区期末)计算的结果是()A .﹣3xB .3xC .﹣12xD .12x10.(2018秋•海淀区期末)学完分式运算后,老师出了一道题:化简.小明的做法是:原式;小亮的做法是:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4;小芳的做法是:原式1.对于这三名同学的做法,你的判断是()A .小明的做法正确B .小亮的做法正确C .小芳的做法正确D .三名同学的做法都不正确第Ⅱ卷(非选择题)二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•吕梁期末)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=0.000000001m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm,将28nm用科学记数法可表示为.12.(2018春•惠山区期末)在分式,,,中,最简分式有个.13.(2019春•泰州期末)已知关于x的方程1的解是负值,则A 的取值范围是.14.(2018秋•芝罘区期末)若分式的值为0,则x的值为.15.(2019春•丹东期末)如果解关于x的分式方程时,出现增根,那么m的值为.16.(2018秋•阳东区期末)小明家离学校2000米,小明平时从家到学校需要用x分钟,今天起床晚,怕迟到,走路速度比平时快5米/分钟,结果比平时少用了2分钟到达学校,则根据题意可列方程.评卷人得分三.解答题(共6小题,满分46分)17.(6分)(2019春•顺义区期末)计算:(﹣1)﹣2018+()2﹣(π﹣4)0﹣3﹣2;18.(6分)(2018秋•孝义市期末)先化简,再从,﹣1,0,1中选一个合适的数作为m的值代入求值.19.(8分)(2019秋•娄底期中)解分式方程:(1)(2)20.(8分)(2018秋•宜都市期末)如图,“复兴一号“水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“复兴二号“水稻的试验田是边长为(m﹣n)米的正方形,两块试验田的水稻都收获了A 千克.(1)哪种水稻的单位面积产量高?为什么?(2)高的单位面积产量比低的单位面积产量高多少?21.(8分)(2018秋•凉州区期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是(填写序号即可);(2)若A 为正整数,且为“和谐分式”,请写出A 的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:小强:显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:,请你接着小强的方法完成化简.22.(10分)(2018秋•鞍山期末)近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,一般的高铁包括G字头的高速动车组以及D 字头的动车组.由大连到北京的G377的平均速度是D 31的平均速度的1.2倍,行驶相同的路程1500千米,G377少用1个小时.(1)求D 31的平均速度.(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段D 31票价为266元/张,G377票价为400元/张,如果你有机会给有关部门提一个合理化建议,使G377的性价比达到D 31的性价比,你如何建议,为什么?参考答案一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•松桃县期末)若分式有意义,则实数x的取值范围是()A .x=2B .x=﹣2C .x≠2D .x≠﹣2[解析]解:由题意得,x﹣2≠0,解得:x≠﹣2;故选:D .[点睛]此题考查了分式有意义的条件,属于基础题,掌握分式有意义分母不为零是关键.2.(2018秋•鸡东县期末)在,,﹣3xy+y2,,,分式的个数为()A .2B .3C .4D .5[解析]解:分式有:,,共2个.故选:A .[点睛]本题主要考查分式的定义,注意判断分式的条件是:含有分母,且分母中含有未知数.3.(2018秋•永川区期末)如果把分式中的x和y都同时扩大2倍,那么分式的值()A .不变B .扩大4倍C .缩小2倍D .扩大2倍[解析]解:分式中的x和y都同时扩大2倍,可得2,所以分式的值扩大为原来的2倍,故选:D .[点睛]本题主要考查了分式的基本性质,在解题时要根据分式的基本性质进行解答是本题的关键.4.(2018春•利津县期末)若A =﹣22,B =2﹣2,C =()﹣2,D =()0.则()A .A <B <D <C B .A <B <C <D C .B <A <D <C D .A <C <B <D[解析]解:∵A =﹣22=﹣4,B =2﹣2,C =()﹣2=4,D =()0=1,∴﹣41<4,∴A <B <D <C .故选:A .[点睛]此题主要考查了负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.5.(2018春•开江县期末)若x为整数,使分式值为整数,则满足条件的整数有()A .5个B .6个C .8个D .7个[解析]解:∵2,∴x+3=±1、±2、±3、±6,则x=﹣4、﹣2、﹣1、﹣5、0、﹣6、3、﹣9时分式的值为整数,故选:C .[点睛]此题考查了分式的值,将原式计算适当的变形是解本题的关键.6.(2018秋•江北区期末)从﹣3,﹣2,﹣1,,1,3这六个数中,随机抽取一个数,记为A .关于x的方程1的解是正数,那么这6个数中所有满足条件的A 的值有()个.A .3B .2C .1D .4[解析]解:由1得:2x+A =x﹣1∴x=﹣1﹣A∵解是正数,且x﹣1为原方程的分母,∴﹣1﹣A >0,且﹣1﹣A ≠1∴A <﹣1,且A ≠﹣2故在﹣3,﹣2,﹣1,,1,3这六个数中,符合题意得数有:﹣3,,故选:B .[点睛]本题考查了分式方程的解及一元一次不等式的应用,本题难度不大,属于基础题.7.(2018秋•香坊区期末)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,提速前列车的平均速度是()A .km/hB .km/hC .km/hD .km/h[解析]解:设提速前这次列车的平均速度xkm/h.由题意得,,方程两边乘x(x+v),得s(x+v)=x(s+50)解得:x,经检验:由v,s都是正数,得x是原方程的解.∴提速前这次列车的平均速度km/h,故选:D .[点睛]本题考查了列代数式(分式),解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.8.(2018秋•怀柔区期末)定义:如果一个关于x的分式方程 B 的解等于,我们就说这个方程叫和解方程.比如:4就是个和解方程.如果关于x的分式方程3﹣n是一个和解方程,那么n的值是()A .B .C .D .[解析]解:关于x的分式方程3﹣n是一个和解方程,根据题中的新定义得:x,把x代入得:3n=3﹣n,解得:n,故选:D .[点睛]此题考查了解分式方程,弄清题中的新定义是解本题的关键.9.(2019春•包河区期末)计算的结果是()A .﹣3xB .3xC .﹣12xD .12x[解析]解:原式12x;故选:D .[点睛]分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.10.(2018秋•海淀区期末)学完分式运算后,老师出了一道题:化简.小明的做法是:原式;小亮的做法是:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4;小芳的做法是:原式1.对于这三名同学的做法,你的判断是()A .小明的做法正确B .小亮的做法正确C .小芳的做法正确D .三名同学的做法都不正确[解析]解:小明的作法是错误的,错误在于第二个等号后面的分子书写错误,忘记加括号了,分子部分正确书写是(x+3)(x﹣2)﹣(x﹣2);小亮的作法是错误的,错误在于第一个等号后面的部分,此处应该是通分,而小亮直接把分母漏掉了;小芳的作法是正确的;故选:C .[点睛]本题考查分式的混合运算、合并同类项,解答本题的关键是明确分式加减的计算方法,同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,再根据同分母分式相加减的方法计算.二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•吕梁期末)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=0.000000001m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm,将28nm用科学记数法可表示为 2.8×10﹣8.[解析]解:将28nm用科学记数法可表示为28×10﹣9=2.8×10﹣8.故答案为:2.8×10﹣8.[点睛]本题考查用科学记数法表示较小的数,一般形式为A ×10﹣n,其中1≤|A |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(2018春•惠山区期末)在分式,,,中,最简分式有3个.[解析]解:是最简分式,是最简分式,,不是最简分式,是最简分式,故答案为:3.[点睛]本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.13.(2019春•泰州期末)已知关于x的方程1的解是负值,则A 的取值范围是 A <﹣2且A ≠﹣4.[解析]解:方程1,去分母得:2x﹣A =x+2,解得:x=A +2,由分式方程的解为负值,得到A +2<0,且A +2≠﹣2,解得:A <﹣2且A ≠﹣4,故答案为:A <﹣2且A ≠﹣4[点睛]此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14.(2018秋•芝罘区期末)若分式的值为0,则x的值为﹣1.[解析]解:∵分式的值为0,∴1﹣|x|=0且(x﹣1)(x﹣2)≠0,解得:x=﹣1.故答案为:﹣1.[点睛]此题主要考查了分式的值为零的条件,正确把握分式有意义的条件是解题关键.15.(2019春•丹东期末)如果解关于x的分式方程时,出现增根,那么m的值为﹣4.[解析]解:去分母得:m+2x=x﹣2,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m+4=0,解得:m=﹣4,故答案为:﹣4[点睛]此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.(2018秋•阳东区期末)小明家离学校2000米,小明平时从家到学校需要用x分钟,今天起床晚,怕迟到,走路速度比平时快5米/分钟,结果比平时少用了2分钟到达学校,则根据题意可列方程.[解析]解:设小明平时从家到学校需要用x分钟,则实际从家到学校用(x﹣2)分钟,根据题意,得.故答案为:.[点睛]本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.三.解答题(共6小题,满分46分)17.(6分)(2019春•顺义区期末)计算:(﹣1)﹣2018+()2﹣(π﹣4)0﹣3﹣2;[解析]解:原式=11.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)(2018秋•孝义市期末)先化简,再从,﹣1,0,1中选一个合适的数作为m的值代入求值.[解析]解:原式•,当m时(m≠﹣1,0,1),原式=﹣2.[点睛]此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(8分)(2019秋•娄底期中)解分式方程:(1)(2)[解析]解:(1)去分母得:x2+x﹣x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:2x2﹣2x﹣4﹣x2﹣2x=x2﹣2,解得:x,经检验x是分式方程的解.[点睛]此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.(8分)(2018秋•宜都市期末)如图,“复兴一号“水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“复兴二号“水稻的试验田是边长为(m﹣n)米的正方形,两块试验田的水稻都收获了A 千克.(1)哪种水稻的单位面积产量高?为什么?(2)高的单位面积产量比低的单位面积产量高多少?[解析]解:(1)根据题意知,“复兴一号“水稻的实验田的单位面积为(千克/米2),“复兴二号“水稻的实验田的单位面积为(千克/米2),则,∵m、n均为正数且m>n,∴0,∴“复兴二号”水稻的单位面积产量高;(2)由(1)知,∴高的单位面积产量比低的单位面积产量高(kg).[点睛]此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21.(8分)(2018秋•凉州区期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是②(填写序号即可);(2)若A 为正整数,且为“和谐分式”,请写出A 的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:小强:显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,请你接着小强的方法完成化简.[解析]解:(1)②分式,不可约分,∴分式是和谐分式,故答案为:②;(2)∵分式为和谐分式,且A 为正整数,∴A =4,A =5;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,原式故答案为:小强通分时,利用和谐分式找到了最简公分母.[点睛]本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答.22.(10分)(2018秋•鞍山期末)近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,一般的高铁包括G字头的高速动车组以及D 字头的动车组.由大连到北京的G377的平均速度是D 31的平均速度的1.2倍,行驶相同的路程1500千米,G377少用1个小时.(1)求D 31的平均速度.(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段D 31票价为266元/张,G377票价为400元/张,如果你有机会给有关部门提一个合理化建议,使G377的性价比达到D 31的性价比,你如何建议,为什么?[解析]解:(1)设D 31的平均速度为x千米/时,则G377的平均速度为1.2x千米/时.由题意:1,解得x=250.经检验:x=250,是分式方程的解.答:D 31的平均速度250千米/时.(2)G377的性价比0.75D 31的性价比0.94,∵0.94>0.75∴为了G377的性价比达到D 31的性价比,建议降低G377票价.[点睛]本题考查分式方程的应用,解题的关键是正确寻找等量关系,构建方程解决问题,属于中考常考题型.。
八年级数学分式单元测试卷
一、选择题(每题4分,共20分)1. 下列分式值为1的是()A. 1/2B. 2/3C. 3/4D. 4/52. 若a、b、c是互不相等的实数,则下列分式中值为0的是()A. a/bB. b/cC. c/aD. a/b + c/c3. 分式2x/(x+1)的定义域为()A. x ≠ 0B. x ≠ -1C. x ≠ 1D. x ≠ 0且x ≠ -14. 若x > 0,则下列分式中值最大的是()A. 1/xB. xC. x^2D. 1/x^25. 分式(2x+3)/(x-1)的增减性为()A. 在x < 1时递增,在x > 1时递减B. 在x < 1时递减,在x > 1时递增C. 在整个定义域内递增D. 在整个定义域内递减二、填空题(每题4分,共16分)6. 分式3/(x-2)的值域为______。
7. 若分式f(x) = (x-1)/(x+2)在x = -1时的值为1,则f(x)的定义域为______。
8. 分式(2x+5)/(x-3)的分子分母同时乘以3后,其值为______。
9. 若a、b是实数,且a+b=0,则分式a/b的值为______。
10. 分式(1/x)的倒数是______。
三、解答题(共64分)11. (12分)已知分式f(x) = (x^2-4)/(x-2),求f(x)的定义域和值域。
12. (12分)若分式g(x) = (2x+3)/(x-1)的值在x=3时为5,求g(x)的表达式。
13. (20分)已知函数f(x) = (x^2+2x+1)/(x+1),求f(x)的定义域、值域和f(-1)的值。
14. (20分)若分式h(x) = (x-1)/(x^2-4)在x=2时的值为-1/3,求h(x)的定义域和h(0)的值。
注意:本试卷满分100分,考试时间为60分钟。
请将答案填写在答题卡上相应的位置。
答案:一、选择题1. B2. D3. B4. D5. A二、填空题6. x ≠ 27. x ≠ -28. 29. 010. x三、解答题11. 解:f(x)的定义域为x ≠ 2,值域为实数集R。
八年级数学上册《分式》单元测试卷(含答案解析)
八年级数学上册《分式》单元测试卷(含答案解析)一.选择题1.下列各式﹣3x,,,,,,中,分式的个数为()A.1 B.2 C.3 D.42.下列各式中:①;②;③;④;⑤;⑥分式有()A.1个B.2个C.3个D.4个3.代数式中,,, +b,,分式有()A.1个B.2个C.3个D.4个4.下列约分中,正确的是()A.= B.=0 C.=x3 D.=5.把分式﹣约分结果是()A.﹣B.﹣C.﹣D.﹣6.已知=7,则的值是()A.B.2 C.D.7.下列运算中正确的是()A.= B.C.•=﹣ D.÷=8.当x=﹣2时,下列分式有意义的是()A. B.C. D.9.若分式的值为0,则x的值为()A.﹣5 B.5 C.﹣5和5 D.无法确定10.下列各式,从左到右变形正确的是()A.B. C. D.二.填空题11.当x时,分式有意义.12.约分=.13.写出一个含有字母m,且m≠2的分式,这个分式可以是.14.若分式的值为负数,则x的取值范围是.15.计算=.16.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).17.若式子的值为零,则x的值为.18.不改变分式的值,使分式的分子、分母中各项系数都为整数,=.19.化简:=.20.下列各式中中分式有个.三.解答题21.(1)=(2)=22.当x为何值时,分式的值为0?23.给定下面一列分式:,…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.24.下列分式,当x取何值时有意义.(1);(2).25.已知实数a,b满足,6a=2010,335b=2010,求+的值.26.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列分式中,属于“和谐分式”的是:(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.参考答案与解析一.选择题1.解:﹣3x,,的分母中均不含有字母,因此它们是整式,而不是分式.﹣,,,分母中含有字母,因此是分式.故选:D.2.解:①分母中含有π,是具体的数,不是字母,所以不是分式;②分母中含有字母a,是分式;③是等式,不是分式;④分母中没有字母,不是分式;⑤分母中含有字母x,是分式;⑥分母中没有字母,不是分式;分式有②⑤2个,故选:B.3.解;代数式, +b的分母中含有字母,是分式,故选:B.4.解:A、=,故此选项错误;B、,无法化简,故此选项错误;C、=x4,故此选项错误;D、=,正确.故选:D.5.解:﹣=﹣=﹣.故选:C.6.解:∵=7,∴=,∴x﹣4﹣=,∴x﹣=,∵的倒数为x﹣1﹣=﹣1=,∴=,故选:C.7.解:A、=≠,不正确;B、=﹣1,正确;C、=,不正确;D、==,不正确;故选:B.8.解:A、当x=﹣2时,x+2=0,无意义;B、当x=﹣2时,有意义;C、当x=﹣2时,x2﹣4=0,无意义;D、当x=﹣2时,x2+3x+2=4﹣6+2=0,无意义.故选:B.9.解:由题意得,|x|﹣5=0,解得x=±5,当x=5时,x2﹣4x﹣5=0,分式无意义;当x=﹣5时,x2﹣4x﹣5=40≠0,分式有意义;∴x的值为﹣5.故选:A.10.解:A、2前面是加号不是乘号,不可以约分,原变形错误,故本选项不符合题意;B、原式=﹣,原变形错误,故本选项不符合题意;C、原式==,原变形正确,故本选项符合题意;D、从左边到右边不正确,原变形错误,故本选项不符合题意;故选:C.二.填空题11.解:由题意得:2x+3≠0,解得:x≠﹣,故答案为:≠﹣.12.解:=.故答案为:.13.解:含有字母m,且m≠2的分式可以是,故答案为:(答案不唯一).14.解:∵分式的值为负数,∴﹣2x+3<0,解得:x>.故答案为:x>.15.解:原式=x=.故答案为:.16.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.17.解:∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为:﹣1.18.解:分式的分子,分母同时乘以500就可得到.故答案为:.19.解:原式==,故答案为:.20.解:中分式为:、+1,﹣共3个.故答案为:3.三.解答题21.解:(1)由分式的基本性质,可得故答案为:5y.(2)分式的分子分母同时乘以﹣1,得=,故答案为2﹣x.22.解:∵分式的值为0,∴,解得x=0且x≠3,∴x=0.∴当x=0时,分式的值为0.23.解:(1)﹣÷=﹣;÷(﹣)=﹣…规律是任意一个分式除以前面一个分式恒等于;(2)∵由式子:,…,发现分母上是y1,y2,y3,…故第7个式子分母上是y7,分子上是x3,x5,x7,故第7个式子是x15,再观察符号发现第偶数个为负,第奇数个为正,∴第7个分式应该是.24.解:(1)要使分式有意义,则分母3x+2≠0,解得:x≠﹣;(2)要使分式有意义,则分母2x﹣3≠0,x≠.25.解:∵6a=2010,335b=2010,∴6ab=2010b,335ab=2010a,∴6ab×335ab═2010b+a,(6×335)ab=2010 a+b,∴ab=a+b,∴+==1.26.解:(1)①=,故是和谐分式;②=,故不是和谐分式;③=,故是和谐分式;④=,故是和谐分式;故答案为①③④;(2)===,故答案为;(3)解方程组得,∵方程组有正整数解,∴m=﹣1或﹣7.。
人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)
人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
最新八年级下期数学第十六章分式单元测试题及答案
八年级下期数学第十六章分式单元测试题及答案一、选择题(本题共16分,每小题2分)1、在x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个2、下列各式中,一定成立的是( )A 、1-=---b a a b B 、()222b a b a -=- C 、y x yx xy y x -=---1222 D 、()2222a b b ab a -=+- 3、与分式23.015.0+-x x 的值,始终相等的是( ) A 、2315+-x x B 、203105+-x x C 、2032+-x x D 、2315 4、下列分式中的最简分式(不能再约分的)是( )A 、112++a aB 、aa a 222++ C 、cd ab 42 D 、2)1(22++a a 5、下列说法正确的是 ( )A 、若n m >,则88->-n mB 、42≤-x 的解集是2≥xC 、当m =32时, m m 23-无意义 D 、分式2)2(++m m m 总有意义6、下列从左边到右边的变形正确的是( )A 、)32(4124822b a ab ab ab b a -=--B 、22)21(41-=+-x x x C 、mm m 2321=+ D 、1=-+-b a b b a a7、若分式)1)(4()4)(4(--+-m m m m 的值为零,则m = ( )A 、±4B 、 4C 、 4-D 、 18、下列化简正确的是 ( )A 、b a b a b a +=++2B 、1-=+--b a b aC 、1-=---b a b aD 、b a b a b a -=--22二、填空题(本题共16分,每小题2分)1、 当x 时,分式42+-x x 有意义。
2、若32=a b ,则=+-ba b a 。
3、当x 时,分式242+-x x 的无意义;(1分) 当x 时,分式242+-x x 值为零;(1分) 4、计算(结果用科学计数技术法表示)(1) (3×10-8)×(4×103)= (1分) (2) (2×10-3)2÷(10-3)3 = (1分)5、化简:ab bc a 2= ,(1分) 12122+--x x x -2122x x -- = ;(1分) 6、化简:a y ya 242-⋅= ,(1分) =-÷+-)1(11m m m . (1分) 7、如果分式333++x x x 与的差为2 ,那么x 的值是 . 8、若=++≠==a c b a a c b a 则),0(753 .三、化简、计算(本题共25分,第1—5题每小题4分,第6题5分)1、a b a b a b a -+-+2、y y y y y y 93322-⋅⎪⎪⎭⎫ ⎝⎛+--3、 19)1(961222--⨯+÷++-a a a a a a4、x x x x x x x x -÷+----+4)44122(225、2224442yx x y x y x y x y y x x +÷--+⋅-6、已知:ba ab ab b a ++-==+21,4求:的值。
八年级分式单元测试题
八年级分式单元测试题一、选择题(每题3分,共15分)1. 下列式子是分式的是()A. (x)/(2)B. (x + 1)/(2)C. (1)/(x + 1)D. (x)/(π)解析:分式的定义是分母中含有字母的式子。
A选项分母为2,是常数;B选项分母为2,是常数;C选项分母为x + 1,含有字母x,是分式;D选项分母为π,π是常数。
所以答案是C。
2. 若分式(x 1)/(x + 2)的值为0,则x的值为()A. 1.B. 1.C. 2.D. -2.解析:分式的值为0的条件是分子为0且分母不为0。
由分子x 1 = 0,解得x = 1,当x = 1时,分母x+2=1 + 2 = 3≠0。
所以答案是A。
3. 化简frac{a^2-b^2}{a b}的结果是()A. a bB. a + bC. (a + b)/(a b)D. (a b)/(a + b)解析:根据平方差公式a^2-b^2=(a + b)(a b),所以frac{a^2-b^2}{a b}=((a + b)(ab))/(a b)=a + b。
答案是B。
4. 计算(2)/(x 1)+(3)/(1 x)的结果是()A. -1.B. 1.C. (1)/(x 1)D. (5)/(x 1)解析:先将(3)/(1 x)化为-(3)/(x 1),则(2)/(x 1)+(3)/(1 x)=(2)/(x 1)-(3)/(x 1)=(2 3)/(x 1)=-(1)/(x 1)=-1。
答案是A。
5. 若分式方程(x)/(x 3)=2+(k)/(x 3)有增根,则k的值为() A. 3 B. 0 C. -3 D. 1 解析:分式方程有增根,就是分母为0,即x 3 = 0,解得x = 3。
方程两边同时乘以x 3得到x = 2(x 3)+k,把x = 3代入得3 = 2×(3 3)+k,解得k = 3。
答案是A。
二、填空题(每题3分,共15分)6. 当x=______时,分式\frac{1}{x 2}\)无意义。
初二数学分式单元测试题及答案
分式单元复习卷1.下列运算正确的是( )A .40=1 B.(-3)-1=31 C.(-2m-n )2=4m-n D.(a+b )-1=a -1+b -12.分式28,9,12zy x xy z x x z y -+-的最简公分母是( ) A.72xyz 2 B.108xyz C.72xyz D.96xyz 23.用科学计数法表示的树-3.6×10-4写成小数是( )A.0.00036B.-0.0036C.-0.00036D. -360004.如果把分式yx x 232-中的x,y 都扩大3倍,则分式值( ) A.扩大3倍 B.不变 C.缩小3倍 D.扩大2倍5.若分式6522+--x x x 的值为0,则x 的值为( )A.2B.-2C.2或-2D.2或36.计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x 的结果是( ) A.1 B.x+1 C.x x 1+ D.11-x 7.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx 上述方程,正确的有( )个 A.1 B.2 C.3 D.48.在ma y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A.2 B.3 C.4 D.59.若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A.-1 B.0 C.1 D.210. 若3,111--+=-ba ab b a b a 则的值是( ) A.-2 B.2 C.3 D.-3 11.把分式方程12121=----x x x ,的两边同时乘以x-2,约去分母,得( ) A.1-(1-x)=1 B.1+(1-x)=1 C.1-(1-x)=x-2 D.1+(1-x)=x-212.已知 k ba c c abc b a =+=+=+,则直线y=kx+2k 一定经过( ) A.第1、2象限 B.第2、3象限 C.第3、4象限 D.第 1、4象限二、填空2、()a bab ab a 2332222=++ 3、7m =3,7n =5,则72m-n = 4、 一组按规律排列的式子:()0,,,,41138252≠--ab ab a b a b a b ,其中第7个式子是 第n 个式子是 5、 方程04142=----xx x 的解是 6、若2222,2b a b ab a b a ++-=则= 三 化简1、 ()d cd b a cab 234322222-∙-÷ 2、 111122----÷-a a a a a a 3、 ⎪⎭⎫ ⎝⎛---÷--225262x x x x四、解答1、 已知bab a b ab a b a ---+=-2232,311求 的值五先化简代数式()()n m n m mn n m n m n m n m -+÷⎪⎪⎭⎫ ⎝⎛+---+222222,然后在取一组m=1,n= -1的值代入求值六、解方程1、 12332-=-x x 2、 1412112-=-++x x x七、应用题1、2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?2、一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.3、某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m³,5月份的燃气费是90元.求该市今年居民用气的价格.分式单元复习卷答案一 、CACBB CCBCA DB二、1.如112-+x x ,2.3b , 3.59 , 4.-()n n n ab a b 137201,-- 5.3, 6.53 三 1、ac1 , 2、1-a a , 3、32+-x 四、解答提示:将所求式子的分子、分母同时除以ab 。
人教版八年级数学上:第15章《分式》单元测试(含答案)(含答案)
第15章分式一、解答题1.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作______(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.2.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.3.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?4.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?5.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.6.(2014•晋江市)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?7.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?8.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?9.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.10.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?11.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?12.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?13.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?14.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?15.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?16.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?17.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?18.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.19.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.20.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.21.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?22.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?23.杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)24.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?25.某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?26.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?27.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?28.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?29.某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?30.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.第15章分式参考答案与试题解析一、解答题1.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作天(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.【解答】解:(1)设乙工程队单独完成此项工程需要x天,由题意得: +=,解得:x=30,经检验:x=30是原分式方程的解,2x=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)甲工程队单独做a天后,再由甲、乙两工程队合作:(1﹣a×)÷(+)=(天),由题意可得:1•a+(1+2.5)•≤64,解得:a≥36,答:甲工程队要单独施工36天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.故答案为:天.2.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.【解答】解:设普通列车的速度2x千米/小时,则动车的速度是5x千米/小时,由题意有:解得:x=40,经检验:x=40是分式方程的解,∴2x=80,5x=200.答:普通列车的速度80千米/小时,动车的速度是200千米/小时.3.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?【解答】解:(1)设文学书的单价是x元,则科普书的单价是(x+4)元,根据题意,得=,解得x=8.经检验:x=8是原分式方程的解,x+4=12.答:文学书的单价是8元,则科普书的单价是12元.(2)设购进科普书65本后还能购进y本文学书,则12×65+8y≤1250,解得:y≤58.75,∵y为整数,∴y最大是58,答:购进科普书65本后至多还能购进58本文学书.4.(2014•西藏)列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?【解答】解:设七年级学生每小时植x棵,则八年级每小时植(x+10)棵,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+10=50+10=60,答:七年级学生每小时植50棵,则八年级每小时植60棵.5.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.【解答】解:设甲队单独完成这项工程需x天,由题意得:×6+(+)×16=1,解得:x=30,经检验:x=30是原分式方程的解,2x=60,答:甲队单独完成这项工程需30天,乙队单独完成这项工程需60天.6.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【解答】解:(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,依题意得,,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批葡萄进价每千克8元.(2)由题意,得第一批的数量为:,50×2×11﹣(400+500)=200答:可盈利200元.7.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?【解答】解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.﹣=15,解得x=160,经检验,x=160,是所列方程的解.答:甲队每天完成160米2.8.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.9.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得 x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.10.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程的解.答:乙工程队单独做需要80天完成;(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.11.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.12.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得 25a+5(2a+8﹣a)≤670解得 a≤21∴荣庆公司最多可购买21个该品牌的台灯.13.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.14.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【解答】解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得﹣=10解得:x=20则1.5x=30,经检验得出:x=20是原方程的根,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据题意得解得:20≤a≤25,所以a=20、21、22、23、24、25,则40﹣a=20、19、18、17、16、15∴共有6种方案.15.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.16.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得: =,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.17.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.。
数学八年级上册《分式》单元测试卷含答案
八年级上册数学《分式》单元测试卷(考试时间:90分钟 试卷满分:120分)第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.21352πx y x a +-,,,,属于分式的有A .1个B .2个C .3个D .4个2.若分式12x x +-有意义,则x 的取值范围是A .2x ≠B .2x =C .1x =-D .0x =3.计算1a a a÷⨯的结果是 A .a B .2a C .1aD .3a4.下列化简过程正确的是A .22b b a a=B .222()a b a b a b a b -+=++ C .22y yx y x y=++D .0.20.3230.4410x y x yx y x y++=--5.如果把分式52xx y-中的x y 、都扩大3倍,那么分式的值一定A .扩大3倍B .扩大5倍C .扩大15倍D .不变6.下列各式是最简分式的是A .48aB .2a b aC .22a b a b++D .22b ab a --7.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为 A .8.23×10-6 B .8.23×10-7 C .8.23×106D .8.23×1078.若分式29(3)(1)x x x ---的值为零,则x 的值为A .0B .-3C .3D .3或-39.若关于x 的方程2134416m m x x x ++=-+-无解,则m 的值为 A .-1或5 B .-1或5或-13C .5或-13 D .-1310.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 A .4848944x x +=+- B .4848944x x +=+- C .48x+4=9 D .9696944x x +=+- 第Ⅱ卷二、填空题(本题共8小题,每小题3分,共24分) 11.化简3213(2)()a bc ---=__________.12.分式2111245x y xy -,,的最简公分母是__________. 13.计算22111m m m ---的结果是__________. 14.方程3x x -–2=43x -的解为__________.15.计算:221642·44244a a a a a a a --+÷++++=__________. 16.当A =__________时,方程2111ax a x -=--的解与方程43x x-=的解相同. 17.甲、乙二人加工某种零件,若单独工作,则乙比甲多用12天才能完成,若两人合作,则8天可以完成,设甲单独工作x 天完成,列方程得__________.18.用四则运算的加法与除法定义一种新运算记为☆.若对于任意有理数A ,B ,A ☆B =a ba b+-,则方程1☆x =5的解是__________.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)已知分式x nx m-+,当x =-3时,该分式没有意义;当x =-4时,该分式的值为0.试求(m +n )2019的值.20.(本小题满分6分)计算:(1)2222510369x y yy x x⋅÷;(2)2492332x x x +--; (3)24()22a a a a a a--⋅-+. 21.(本小题满分8分)解分式方程:(1)23x x x ++=1; (2)22411x x =--. 22.(本小题满分8分)先化简:22121()11a a a a a a ++-÷-++,再从–1,0,1中选取一个数并代入求值. 23.(本小题满分9分)某服装制造厂要在开学前赶制2400套校服,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原来多了20%,结果提前4天完成任务.问原计划每天能完成多少套校服?24.(本小题满分9分)若关于x 的分式方程2111x mx x +---=1的解是负数,求m 的取值范围. 25.(本小题满分10分)有一道题“先化简,再求值:22241244x x x x x -+÷+--()+x 2–3,其中x =小玲做题时把“x =x ,但她的计算结果也是正确的,请你解释这是怎么回事?26.(本小题满分10分)商场经营的某品牌童装,4月的销售额为20000元,为扩大销量,5月份商场对这种童装打9折销售,结果销量增加了50件,销售额增加了7000元. (1)求该童装4月份的销售单价;(2)若4月份销售这种童装获利8000元,6月全月商场进行“六一”儿童节促销活动.童装在4月售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?参考答案11.12.2013.14.x =215.–216.17.18.x =19.[解析]∵x +m =0时,分式无意义,∴x ≠–m , ∴m =3,(3分)又因为x –n =0,分式的值为0,∴x =n ,即n =–4,则(m +n )2019=[3+(-4)]2019=(–1)2019=-1.(6分)20.[解析](1).(2分) (2).(4分)(3).(6分) 21.[解析](1)=1,两边都乘以x (x +3),得2(x +3)+x 2=x (x +3), 解得x=6,(2分)经检验x=6是原方程的解.(4分) (2), 两边都乘以(x +1)(x –1),得2(x +1)=4, 解得x =1,(6分)检验:当x =1时,(x +1)(x –1)=0,∴x =1是分式方程的增根,原方程无解.(8分) 22.[解析]原式==,(4分) 其中A ≠1且A ≠–1, ∴A 只能取0.(6分)当A =0时,原式=1.(8分)23.[解析]设原计划每天能完成x 套校服,则实际每天能完成(1+20%)x 套校服,根据题意得:, 解得:x =100,经检验,x =100是原方程的解且符合题意. 答:原计划每天能完成100套校服. 24.[解析]由=1,得(x+1)2–m=x 2–1,解得x =–1+.(4分) 由已知可得–1+<0,–1+≠1且–1+≠–1,(7分)解得m<2且m ≠0.(9分)25.[解析]+–3 =(–4)+–3 =+4+–3 =2+1.(6分)因为化简原式的结果是2+1,不论xxx 2的值均为3,原式的计算结果都是7,所以把“x =−x ,计算结果也是正确的.(10分)26.[解析](1)设4月份的销售单价为x 元.由题意得-=50,(2分) 解得x =200.经检验,x =200是原方程的解,且符合题意. 所以4月份的销售单价为200元.(5分)(2)4月份的销量为20000÷200=100(件),则每件衣服的成本为(20000-8000)÷100=120(元). 6月份的售价为200×0.8=160(元),(7分) 设销量为y 件,由题意得160y -120y ≥8000×(1+25%), 解得y ≥250,所以销量至少为250件,才能保证6月的利润比4月的利润至少增长25%.(10分)6334a b c2xy 11m -1788112x x +=+232232225936102x y x x y x y y⋅⋅=249(23)(23)23232323x x x x x x x +--==+---(2)(2)()2(2)422a a a a a a a a a+--⋅=+--=-+23xx x ++22411x x =--2222121(1)1·111(1)a a a a a a a a a a a +---+--+÷=+++-11a --24002400 4(120%)x x-=+2111x m x x +---2m2m 2m 2m22241244x x x x x -+÷+--()2x 224444x x xx -++⋅-2x 2x 2x 2x 2x 2x 2000070000.9x +20000x。
八年级分式单元测试题(含答案)
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.分式测试题一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分):1.下列运算正确的是( )A.x 10÷x 5=x 2B.x -4·x=x -3C.x 3·x 2=x 6D.(2x -2)-3=-8x 62. 一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时.A.11a b + B.1ab C.1a b + D.aba b+ 3.化简a ba b a b--+等于( ) A.2222a b a b +- B.222()a b a b +- C.2222a b a b -+ D.222()a b a b +-4.若分式2242x x x ---的值为零,则x 的值是( )A.2或-2B.2C.-2D.45.不改变分式52223x yx y -+的值,把分子、分母中各项系数化为整数,结果是( )A.2154x y x y -+ B.4523x y x y -+ C.61542x y x y -+ D.121546x yx y-+6.分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( ) A.1个 B.2个 C.3个 D.4个 7.计算4222x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭的结果是( ) A. -12x + B. 12x + C.-1 D.1 8.若关于x 的方程x a cb x d-=- 有解,则必须满足条件( )A. a ≠b ,c ≠dB. a ≠b ,c ≠-dC.a ≠-b , c ≠d C.a ≠-b , c ≠-d 9.若关于x 的方程ax=3x-5有负数解,则a 的取值范围是( ) A.a<3 B.a>3 C.a ≥3D.a ≤3 10.解分式方程2236111x x x +=+--,分以下四步,其中,错误的一步是( ) A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1二、填空题:(每小题4分,共20分)11.把下列有理式中是分式的代号填在横线上 .(1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m .12.当a 时,分式321+-a a 有意义. 13.若-1,则x+x -1=__________. 14.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.15.计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________.16.已知u=121s s t -- (u ≠0),则t=___________. 17.当m=______时,方程233x mx x =---会产生增根. 18.用科学记数法表示:12.5毫克=________吨. 19.当x 时,分式x x--23的值为负数. 20.计算(x+y)·2222x y x y y x+-- =____________.三、计算题:(每小题6分,共12分)21.23651x x x x x+----; 22.2424422x y x y x x y x y x y x y ⋅-÷-+-+. 四、解方程:(6分) 23.21212339x x x -=+--。
人教版八年级上册数学第十五章《分式》单元测试卷(Word版,含答案)
人教版八年级上册数学第十五章《分式》单元测试卷(60分钟 100分)一、选择题(每小题3分,共30分)1.(南充中考)若1x =-4,则x 的值是( )A .4B .14C .-14D .-42.在第127届“广交会”上,有近26 000家厂家进行“云端销售”.其中数据26 000用科学记数法表示为( )A .26×103B .2.6×103C .2.6×104D .0.26×1053.下列式子:-5x ,1a +b,12 a 2-12 b 2,310m ,2π ,其中分式有( ) A .1个 B .2个 C .3个 D .4个4.计算1m +2 -14-m 2 ÷1m -2的结果为( ) A .0 B .1m +2 C .2m +2 D .m +2m -25.下列等式是四位同学解方程x x -1 -1=2x 1-x过程中去分母的一步,其中正确的是( )A .x -1=2xB .x -1=-2C .x -x -1=-2xD .x -x +1=-2x 6.若a =-0.32,b =-3-2,c =⎝⎛⎭⎪⎫-13 -2 ,d =⎝ ⎛⎭⎪⎫-13 0,则大小关系正确的是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <d D .c <a <d <b7.若a =1,则a 2a +3 -9a +3的值为( ) A .2 B .-2 C .12 D .-128.(呼伦贝尔中考)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A .240x =280130-xB .240130-x=280x C .240x +280x =130 D .240x -130=280x9.对于两个不相等的实数a ,b ,我们规定符号Min{a ,b }表示a ,b 中的较小的值,如Min{2,4}=2,按照这个规定,方程Min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1x -2,3x -2 =x -1x -2 -2的解为( )A .0B .0或2C .无解D .不确定10.关于x 的分式方程2x +a x +1=1的解为负数,则a 的取值范围是( ) A .a >1 B .a <1C .a <1且a ≠-2D .a >1且a ≠2二、填空题(每小题3分,共24分)11.(北京中考)若代数式1x -7有意义,则实数x 的取值范围是__ __. 12.(广州中考)方程x x +1 =32x +2的解是 . 13.(呼和浩特中考)分式2x x -2 与8x 2-2x 的最简公分母是__ __,方程2x x -2 -8x 2-2x=1的解是__ __. 14.有一个分式,三位同学分别说出了它的一个特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x ≠±1;丙:当x =-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .15.(嘉兴中考)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程 .16.已知3x -4(x -1)(x -2) =A x -1 +B x -2,则实数A =__ __. 17.若(x -y -2)2+|xy +3|=0,则⎝ ⎛⎭⎪⎪⎫3x x -y -2x x -y ÷1y 的值是 . 18.数学家们在研究15,12,10这三个数的倒数时发现112 -115 =110 -112 .因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数x ,5,3(x >5),则x =__ __.三、解答题(共46分)19.(6分)计算或化简:(1)(-1)2 022-|-7|+9 ×(5 -π)0+⎝ ⎛⎭⎪⎫15 -1 . (2)(徐州中考)⎝ ⎛⎭⎪⎫1-1a ÷a 2-2a +12a -2. 20.(6分)解方程:(1)(遵义中考)1x -2 =32x -3. (2)(大庆中考)2x x -1 -1=4x -1. 21.(8分)(鄂州中考)先化简x 2-4x +4x 2-1 ÷x 2-2x x +1 +1x -1,再从-2,-1,0,1,2中选一个合适的数作为x 的值代入求值.22.(8分)某茶店用4 000元购进了A 种茶叶若干盒,用8 400元购进了B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?。
八年级数学第二学期《分式》单元测试题
《第3章 分式》单元测试题一、选择题1.在下列各式ma m x xb a x x a ,),1()3(,43,2,3222--÷++π中,是分式的有( ) A.2个 B.3个 C.4个 D.5个2.要使分式733-x x 有意义,则x 的取值范围是( ) A.x=37 B.x>37 C.x<37 D.x ≠=37 3.若分式4242--x x 的值为零,则x 等于( ) A.2 B.-2 C.2± D.04.计算)1(1xx x x -÷-所得的正确结论为( ) A.11-x B.1 C.11+x D.-1 5.把分式2222-+-+-x x x x 化简的正确结果为( ) A.482--x x B.482+-x x C.482-x x D.48222-+x x 6.当x=33时,代数式)23(232x x x x x -+÷--的值是( ) A.213- B.213+ C.313- D.313+ 二、填空题7.若分式)3)(2(2+--a a a 的值为0,则a= .8.已知当x=-2时,分式ax b x -- 无意义,x=4时,此分式的值为0,则a+b= . 9.使分式方程3232-=--x m x x 产生增根,m 的值为 . 10.要使15-x 与24-x 的值相等,则x= . 11.化简=-+-ab b b a a . 12.已知5922=-+b a b a ,则a :b= .13若121-x 与)4(31+x 互为倒数,则x= . 三、解答题14.计算(22+--x x x x )24-÷x x ; 15化简⎪⎪⎭⎫ ⎝⎛++÷--ab b a b a b a 22222;16.化简:⎪⎭⎫ ⎝⎛--+÷--13112x x x x 。
17. (1)125552=-+-x x x (2)22122=-+-x x x x(3)114112+-=-+x x x (4)x x x x x -+=-+2516318.若关于x 的方程x x x k --=+-3423有增根,试求k 的值。
初二数学分式单元测试卷附答案
初二数学分式单元测试卷附答案初二数学分式单元测试卷附答案一、填空题(每空2分,共20分)1.下列有理式:其中分式有________.2.当__________时,分式有意义.3.当__________时,分式的值为零.4.不改变分式的值,把分式的分子、分母各项系数都化为整数,得__________5.分式与的最简公分母是__________.6.化简:__________.7.若分式与的值相等,则x=__________.8.当m=__________时,方程的根为.9.若方程有增根,则a=__________.10.甲、乙两人在电脑上合打一份稿件,4小时后甲另有任务,余下部分由乙单独完成又用6小时.已知甲打6小时的稿件乙要打7.5小时,若设甲单独完成需x小时,则根据题意可列方程__________.二、选择题(每题3分,共30分)11.如果分式,那么a、b满足()A.a=2bB.a≠一bC.a=2b且a≠一bD.a=一612.分式中,最简分式有()A.4个B.3个C.2个D.1个13.分式约分等于()A.B.C.D.14.若把分式中的x、y都扩大2倍,则分式的值()A.扩大为原来的2倍B.不变C.缩小为原来的2倍D.缩小为原来的4倍15.下列计算正确的是()A.B.C.D.16.计算的结果为()A.B.C.D.17.满足方程的的值是()A.0B.1C.2D.没有18.要使的值和的`值互为倒数,则的值是()A.0B.一1C.D.119.若的方程=0有增根,则的值为()A.11B.3C.9D.1320.甲、乙两人承包一项任务,合作5天能完成,若单独做,甲比乙少用4天,设甲单独做需x天,则可列方程为()A.B.C.D.三、解答题(共50分)21.计算(每题4分,共16分)(1)(2);22.解分式方程(每题5分,共10分)(1)(2).23.(6分)先化简,再求值:其中a=一2,b=一1.24.(6分)已知x,y满足求的值.25.(6分)某个年级的学生乘汽车出去春游,预计共需费23700元,临行前又增加了50人,总费用相应变成了27650元,问原来准备参加春游的学生有多少人?26.(6分)用价值为100元的甲种涂料与价值为240元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,新涂料的总价值不变,求这种涂料每千克售价多少元?参考答案1.2.3.4.5.6.17.68.29.410.11.C12.C13.D14.B15.C16.A17.A18.B19.B20.C21.(1)2(2)(3)一(x+1)(4)322.(1)(2)x=1523.224.25.原来准备参加春游的学生有300人.26.17元.。
八年级数学单元测试题(分式)
八年级数学第一章《分式》单元测试题(满分120分,考试时间90分钟)班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.将分式xyyx 323-中的字母x ,y 的值都扩大为原来的2倍,则分式的值( ) A 、不变 B 、扩大为原来的2倍 C 、扩大为原来的4倍D 、缩小为原来的21 2.计算120090+的结果为( )A 、2009B 、2C 、1D 、03.计算22)(ab ab 的结果为( )A 、bB 、aC 、1D 、b1 4.如果32=b a ,那么b a b+的值是( ) A 、23B 、52 C 、53 D 、32 5.已知分式xyyx -+1的值是a ,如果用x 、y 的相反数代入这个分式所得的值为b ,则a 、b 关系( )A 、相等B 、互为相反数C 、互为倒数D 、乘积为-16.若分式21+-x x 的值为0,则x 的值为( ) A 、0B 、1C 、-1D 、-27.化简xy y x y x ---22的结果是( ) A 、y x -- B 、x y - C 、y x - D 、y x +8.若x ≠0,p 是正整数,则下列各式中错误的是( )A 、ppxx1=- B 、ppx x⎪⎭⎫⎝⎛=-1C 、p p x x -=-D 、111-=--pp xx9.纳米是一种长度单位,1纳米=10-9米,已知某种花粉的直径为3500纳米,•那么用科学记数法表示该种花粉的直径为( )A 、3.5×104米B 、3.5×10-5米C 、3.5×10-9米D 、3.5×10-6米10.暑假期间,部分同学包租一辆面包车出去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少分摊了3元车费,若设原来的学生共x 人,则所列方程为( )A 、32180180=+-x x B 、31802180=-+x x C 、32180180=--x x D 、31802180=--xx 二、填空题(每小题3分,共30分) 11.如果分式32-x x有意义,那么x 的取值范围是 。
八年级上册数学《分式》单元检测含答案
一、填空题
1.下列等式成立的是().
A. B.
C. (x≠0)D.
[答案]C
[解析]
[分析]
根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.
[详解]解:A.分式的分子分母都加上x,分式的值一般会改变,故A错误;
B.分式的分子分母都减去x,分式的值一般会改变,故B错误;
C.分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C正确;
20.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.
21.人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.
12.分式 , , 的最简公分母是________.
13. __________.
14.计算: =______________.
15.分式 的最简公分母是_____________.
三、解答题
16.化简:
17.计算: + .
18 解方程: .
19.若有理数A,B满足|A-1|+|A B-3|=0,试求 +…+ 的值.
D.该方程符合分式方程的定义,属于分式方程,故本选项错误.
故选B.
[点睛]本题考查了分式方程的定义:分母中含有未知数的方程叫做分式方程.
二、填空题
11 当A=_____时,分式 无意义.
[答案]
[解析]
[分析]
根据分式无意义的条件是分母等于0解答即可.
人教版八年级数学上册《分式》单元检测试卷(含答案)
人教版八年级数学上册《分式》单元检测试卷(含答案)一、选择题(每小题3分,共30分)1.下列各式中,是分式的是()A. xπ−2B. 14x2 C. 2x−1x+3D. x22.若分式13−x有有意义,则x的取值范围是()A.x=3B. x<3C. x≠0D. x≠33.下列算式结果是﹣3的是()A. (−3)−1B. ﹣|﹣3|C. -(-3)D. (-3)04.如果把分式x+2yx+y中的x,y都扩大2倍,则分式的值()A. 扩大2倍B. 缩小2倍C. 是原来的23D. 不变5.下列式中是最简分式的是()A. 12b27a2B. 2(a−b)2b−aC. x2+y2x+yD. x2−y2x−y6.使分式x2+11−3x的值为负的条件是()A. x<0B. x>0C. x>13D. x<137.3xy24z2·(−8z3y)等于()A. 6xyzB. −3xy2−8z34yzC. −6xyzD. 6x²yz8.已知xx2−x+1=12,则x2+1x2的值为()A. 12B. 14C. 7D. 49.解分式方程1−xx−2+2=12−x,可知方程的解为()A. x=﹣2B. x=4C. x=3D. 无解10.A,B两地相距45千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A. 45x+4+45x−4=9 B.454+x+454−x=9 C. 45x+4=9 D. 90x+4+90x−4=9二、填空题(每小题3分,共18分)11.当x_________时,分式|x|−3x+3的值为0.12.要使分式x−1x+2的值是非负数,则x的取值范围是________________.13.化简(a −b 2a)·aa−b 的结果是________________. 14.若分式3a+2无意义,且b−4b 2+1=0,那么ab =__________. 15.a ,b 为实数,且ab =1,设P =a a+1+bb+1,Q =1a+1+1b+1,则P__________Q (选填“>”“<”或“=”)16.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中, 设计划每天加工x 套,则根据题意可得方程为______________________. 三、解答题(72分) 17. (8分)计算与化简. (1)(4x 2−4+1x+2)÷1x−2 ; (2)a+1a−3−a−3a+2÷a 2−6a+9a 2−4.18. (8分)解下列分式方程.(1)x−2x+2−1=3x 2−4 ; (2)xx−1−2x+1=1 .19.(8分)先化简,再求值:a−32a−4÷(5a−2−a −2) ,其中a =√3−3 .20.(8分)化简aa2−4·a+2a2−3a−12−a,并求值,其中a与2、3构成△ABC的三边,且a为整数.21.(8分)已知,点A(1,3)、B(5,3)、C(2,6),平行于x轴的直线l过点(0,m).(1)画出△ABC关于y轴的轴对称图形△A1B1C1,并直接写出A1的坐标;(2)如图,若m=1,请画出△ABC关于直线l的轴对称图形△A2B2C2;(3)若P(a,b)与P′(c,d)关于直线l对称,则a与c的数量关系为____________,b 与d的数量关系为_____________.22.(10分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某公司在武汉市某区甲、乙两个街道社区投放一批“公租自行车”。
人教版八年级上册数学《分式》单元综合检测卷(含答案)
∴|m|=1或 ∴m= 1,m=4
∵ ∴m -1,
∴m=1或4
故答案为1或4
【点睛】此题考查了分式的值不为0的条件,以及绝对值等知识,熟练掌握相关知识是解题关键.
15.已知关于x的方程 =3的解是非负数,则m的取值范围是________.
【答案】m≥﹣9且m≠﹣6
【解析】
【分析】
12.当x_____时,分式 有意义.
【答案】≠﹣4.
【解析】
分析】
直接利用分式有意义的条件,即分母不为零,进而得出答案.
【详解】解:分式 有意义,则4+x≠0,
解得:x≠-4.
故答案为≠-4.
【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.
13.若 =3,则 的值为_____.
A.x>2B.x<2C.x≠﹣1D.x<2且x≠﹣1
【答案】B
【解析】
分析:
根据使分式值为负数的条件进行分析解答即可.
详解:
∵无论 取何值,代数式 的值都大于0,
∴要使代数式 的值为负数,需满足: ,
解得: .
故选B.
点睛:本题解题需注意两点:(1)代数式 的值恒为正数;(2)要使分式的值为负数,需满足分子和分母的值一个为正数,另一个为负数.
故答案为D
【点睛】本题考查的知识点是分式的性质,解题关键是熟记分式的性质:分式的分子分母都乘或除以同一个不为0的整式,分式的值不变.
6.化简 的结果为()
A. ﹣ B. ﹣yC. D.
【答案】D
【解析】
【分析】
先因式分解,再约分即可得.
【详解】
故选D.
【点睛】本题主要考查约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 分式 单元测试题
一、选一选(请将唯一正确答案代号填入题后的括号内) 1.已知x ≠y ,下列各式与
x y
x y
-+相等的是( ).
(A )()5()5x y x y -+++ (B)22x y
x y -+ (C) 222()x y x y -- (D )2222
x y x y -+
2.化简
2
122
93
m m +-+的结果是( ). (A )269m m +- (B)23m - (C)23m + (D )2299
m m +-
3.化简3222121
()11
x x x x x x x x --+-÷+++的结果为( ).
(A)x-1 (B)2x-1 (C)2x+1 (D)x+1
4.计算
11
()a a a a -÷-的正确结果是( ). (A )11a + (B )1 (C )1
1
a - (D )-1
5.分式方程12
12
x x =--( ).
(A )无解 (B )有解x=1 (C )有解x=2 (D )有解x=0
6.若分式2
1
x +的值为正整数,则整数x 的值为( )
(A )0 (B )1 (C )0或1 (D )0或-1
7.一水池有甲乙两个进水管,若单独开甲、乙管各需要a 小时、b 小时可注满空池;现两管同时打开,那么注满空池的时间是( )
(A )
11a b + (B )1ab (C )1a b + (D )ab
a b
+ 8.汽车从甲地开往乙地,每小时行驶1v km ,t 小时可以到达,如果每小时多行驶2v km ,那
么可以提前到达的小时数为 ( )
(A )
212v t v v + (B ) 112v t v v + (C )1212v v v v + (D )1221
v t v t
v v -
9.下列说法:①若a ≠0,m,n 是任意整数,则
a m .a n =a m+n ; ②若a 是有理数,m,n 是整
数,且mn>0,则(a
m
)n =a mn ;③若a ≠b 且ab ≠0,则(a+b)
=1;④若
a 是自然数,则
a -3.a 2=a -1.其中,正确的是( ).
(A )① (B )①② (C )②③④ (D )①②③④
10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是:( )
(A )1515112x x -=+ (B )15
15
112x x -=+ (C )
1515112x x -=- (D )15
15
112
x
x -=- 二、填一填 11.计算
2
21
42a a a -=-- . 12.方程 3470x x
=-的解是 . 13.计算 a
2
b 3(ab 2)-2=
.
14.瑞士中学教师巴尔末成功地从光谱数据
9162536
,,,,5122132
中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按这种规律写出第七个数据是 .
15.如果记 2
21x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=22
11211=+;f(12)表示当x=12时y 的值,即f(12)=2
21
()12151()
2=
+;……那么f(1)+f(2)+f(
12)+f(3)+f(13)+…+f(n)+f(1
n
)= (结果用含n 的代数式表示). 三、做一做
16、计算(每小题6分,共24分)
(1)x x x 11-+ (2)y
x x
x y xy x 22+⋅+
(3)、)1
1(2)2(y x y x xy y x y y x x +÷+⋅+++ (4)22
2)1
1(11-+⋅-÷--a a a a a a a
17.先化简,再求值:62
393
m m m m -÷+--,其中m=-2.
18.解方程:11115867
x x x x +=+++++.
19.有一道题“先化简,再求值: 2221
(
)244
x x x x x -+÷+-- 其中,x=-3”小玲做题
时把“x=-3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?
20.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,问这笔钱全部用来买钢笔或日记本,可买多少?
21.A 、B 两地相距80千米,甲骑车从A 地出发1小时后,乙也从A 地出发,以甲的速度的1.5倍追赶,当乙到达B 地时,甲已先到20分钟,求甲、乙的速度.
四、试一试
22.在数学活动中,小明为了求 2341111122222n
+++++ 的值(结果用n 表示),设计如图1所示的几何图形.
(1)请你利用这个几何图形求23411111
22222n +++++ 的值为 ; (2)请你利用图2,再设计一个能求23411111
22222n
+++++ 的值的几何图形.
12
2
12图2
图1
本章测试题
一、1.C 2.B 3.A 4.A 5.D 6.C 7.D 8.A 9.B 10.B
二、11.
1
2
a+
12.x=30 13.
1
6
14.
81
77
15.
1
2
n-
三、16 16.-5 17.x=
13
2
- 18. 24
x+. 19.可以买钢
笔100支或者日记本450本.
20.甲的速度为40千克/时,乙速为60千克/时. 21.(1)
1
1
2n
-;(2)略。