人教版七年级数学上册第二章测试题附答案
人教版数学七年级上册 第二章测试题含答案
人教版数学七年级上册第二章测试题含答案2.1整式一.选择题1.下列说法正确的是()A.是单项式B.x2+2x﹣1的常数项为1C.的系数是2D.xy的次数是2次2.在下面四个式子中,为单项式的是()A.y=x2B.C.﹣D.x3+x2(b+1)+1是关于x的二次多项式,则a,b的值可以是()A.0,0B.0,﹣1C.2,0D.2,﹣14.下列说法中,正确的为()A.单项式﹣的系数是﹣2,次数是3B.单项式a的系数是0,次数是1C.是二次单项式D.单项式﹣的系数是﹣,次数是35.下列代数式:0,﹣π,3x﹣2,a,,,,.多项式有()个.A.4B.3C.2D.16.多项式2x5+4xy3﹣5x2﹣1的次数和常数项分别是()A.5,﹣1B.5,1C.10,﹣1D.4,﹣17.关于整式的概念,下列说法正确的是()A.的系数是B.32x3y的次数是6C.的常数项是D.﹣x2y+xy﹣7是5次三项式8.下列说法正确的是()A.单项式的系数是B.m的系数和次数都是1C.m+n+1是一次单项式D.多项式2m3+3m2﹣4的项数是49.下列式子:x2+2,+4,,,5x,0中,整式的个数是()A.3B.4C.5D.610.下列说法正确的是()①的相反数是﹣3;②a3b的次数是3;③多项式﹣5x+6x2﹣1是二次三项式;④﹣6.1是负分数;⑤的系数是﹣.A.1个B.2个C.3个D.4个二.填空题11.多项式2x+3x2y﹣4的次数是,次数最高的项是,常数项是.12.若x2y3﹣πx4y n+xy2是关于x,y的六次多项式,则正整数n的值为.13.同时符合下列条件:①同时含有字母a,b;②常数项是﹣,且最高次项的系数是2的一个4次2项式,请你写出满足以上条件的一个整式.14.已知(b﹣3)x2y|b|+(a+2)是关于x,y的五次单项式,a2﹣3ab+b2的值为.15.把多项式2x3y﹣4y2x+5x2﹣1重新排列:则按x降幂排列:.三.解答题16.若关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,求m ﹣n的值.17.已知多项式A=ax4+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数.(1)求a,b的值;(2)求b2﹣3b+4b﹣5的值.18.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.19.已知a、b互为相反数,c、d互为倒数,多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,单项式x2n y5﹣m的次数与这个多项式的次数相同,求(a+b)m+m n﹣(cd﹣n)2019的值.参考答案与试题解析一.选择题1.【解答】解:A、是多项式,故此选项错误;B、x2+2x﹣1的常数项为﹣1,故此选项错误;C、的系数是,故此选项错误;D、xy的次数是2次,正确.故选:D.2.【解答】解:A.y=x2是y关于x的函数,不是单项式;B.是数与字母的商,不是数与字母的积,不是单项式;C.﹣是单项式;D.(x﹣y)2=x2﹣2xy+y2,是多项式,不是单项式;故选:C.3.【解答】解:由题意得:a﹣2=0,b+1≠0,解得:a=2,b≠﹣1,故选:C.4.【解答】解:A、单项式﹣的系数是﹣,次数是3,故原题说法错误;B、单项式a的系数是1,次数是1,故原题说法错误;C、是二次多项式,故原题说法错误;D、单项式﹣的系数是﹣,次数是3,故原题说法正确;故选:D.5.【解答】解:在代数式:0,﹣π,3x﹣2,a,,,,中,多项式有3x﹣2,,共2个;故选:C.6.【解答】解:多项式2x5+4xy3﹣5x2﹣1的次数和常数项分别是5,﹣1.故选:A.7.【解答】解:A、﹣的系数是﹣;B、32x3y的次数是4;C、﹣的常数项是﹣;D、﹣x2y+xy﹣7是三次三项式;故选:C.8.【解答】解:A、单项式﹣的系数是﹣,原说法错误,故此选项不符合题意;B、单m的系数和次数都是1,原说法正确,故此选项符合题意;C、m+n+1是一次多项式,原说法错误,故此选项不符合题意;D、多项式2m3+3m2﹣4的项数是3,原说法错误,故此选项不符合题意.故选:B.9.【解答】解:在x2+2,+4,,,5x,0中,整式有x2+2,,5x,0,共有4个.故选:B.10.【解答】解:①的相反数是﹣;②a3b的次数是4;③多项式﹣5x+6x2﹣1是二次三项式;④﹣6.1是负分数;⑤的系数是﹣,其中正确的③④,共2个;故选:B.二.填空题(共5小题)11.【解答】解:多项式2x+3x2y﹣4的次数是:3,次数最高的项是:3x2y,常数项是:﹣4.故答案为:3,3x2y,﹣4.12.【解答】解:∵x2y3﹣πx4y n+xy2是关于x,y的六次多项式,又∵n是正整数,∴4+n=6,∴n=2;故答案为:2.13.【解答】解:满足以上条件的一个整式为2a2b2﹣,故答案为:2a2b2﹣(答案不唯一).14.【解答】解:∵(b﹣3)x2y|b|+(a+2)是关于x,y的五次单项式,∴|b|=3且b﹣3≠0,a+2=0,解得a=﹣2,b=﹣3,∴a2﹣3ab+b2=(﹣2)2﹣3×(﹣2)×(﹣3)+(﹣3)2=4﹣18+9=﹣5,故答案为:﹣5.15.【解答】解:多项式2x3y﹣4y2x+5x2﹣1的各项为2x3y,﹣4y2x,5x2,﹣1,按x降幂排列,得2x3y+5x2﹣4y2x﹣1;故答案为:2x3y+5x2﹣4y2x﹣1.三.解答题(共4小题)16.【解答】解:∵关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,∴m+1=3,﹣n=﹣3,解得:n=3,m=2,故m﹣n=2﹣3=﹣1.17.【解答】解:(1)∵多项式A=ax4+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数,∴;(2)b2﹣3b+4b﹣5=,把b=4代入得:==8+4﹣5=7.18.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.19.【解答】解:∵多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,∴2+m+1=6,解得:m=3,∵单项式x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,则2n+5﹣3=6,解得:n=2,∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=12.2 整式的加减一.选择题1.下列计算正确的是()A.5a﹣4a=1B.3x+4x=7x2C.4x2y+yx2=5x2y D.a+2b=3ab2.若单项式a m﹣1b2与a2b n的和仍是单项式,则2m﹣n的值是()A.3B.4C.6D.83.计算x3+x3的结果是()A.x6B.x9 C.2x6 D.2x34.下列等式一定成立的有()①﹣a+b=﹣(a﹣b),②﹣a+b=﹣(b+a),③2﹣3x=﹣(3x﹣2),④30﹣x=5(6﹣x).A.1个B.2个C.3个D.4个5.下列去括号的结果中,正确的是()A.﹣m+(﹣n2+3mn)=﹣m+n2+3mnB.4mn+4n﹣(m2﹣2mn)=4mn+4n﹣m2+2mnC.﹣(a﹣c)+(b+d)=﹣a+b﹣c+dD.(﹣3b+)﹣(﹣5a)=5a﹣3b﹣6.若代数式x2+ax﹣(bx2﹣x﹣3)的值与字母x无关,则a﹣b的值为()A.0B.﹣2C.2D.17.A和B都是三次多项式,则A+B一定是()A.三次多项式B.次数不高于3的整式C.次数不高于3的多项式D.次数不低于3的整式8.下列计算正确的是()A.2a+3b=5ab B.2a2+3a2=5a4C.2a2b+3a2b=5a2b D.2a2﹣3a2=﹣a9.若与a m b3是同类项,则m+n的值为()A.1B.2C.3D.无法确定10.已知6b﹣a=﹣5,则(a+2b)﹣2(a﹣2b)=()A.5B.﹣5C.﹣10D.10二.填空题11.请写出﹣5x5y3的一个同类项.12.已知关于x,y的多项式﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7不含二次项,则m+n=.13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×,所捂多项式是.14.有理数a,b,c在数轴上的位置如图所示:则代数式|a+c|﹣2|a﹣b|+|b﹣c|化简后的结果为.15.若关于x、y的代数式mx3﹣3nxy2﹣(2x3﹣xy2)+xy中不含三次项,则m﹣6n的值为.三.解答题16.计算(1)(﹣2)2×5﹣(﹣2)3÷4;(2)(6m2n﹣4m)+(2m2n﹣4m+1).17.已知﹣x m﹣2n y m+n与﹣3x5y6的和是单项式,求(m﹣2n)2﹣5(m+n)﹣2(m﹣2n)2+(m+n)的值.18.先化简,再求值:2x2﹣[3(﹣x2+xy)﹣(xy﹣3x2)]+2xy,其中x是﹣2的倒数,y 是最大的负整数.参考答案1.解:A、原式=a,不符合题意;B、原式=7x,不符合题意;C、原式=5x2y,符合题意;D、原式不能合并,不符合题意.故选:C.2.解:∵单项式a m﹣1b2与a2b n的和仍是单项式,∴m﹣1=2,n=2,解得:m=3,n=2,∴2m﹣n=2×3﹣2=4,故选:B.3.解:x3+x3=2x3.故选:D.4.解:①﹣a+b=﹣(a﹣b),正确;②﹣a+b=﹣(﹣b+a),故②错误;③2﹣3x=﹣(3x﹣2),正确;④30﹣x=5(6﹣x),故④错误;所以正确的有①③共2个.故选:B.5.解:A、原式=﹣m﹣n2+3mn=﹣m﹣n2+3mn,不符合题意;B、原式=4mn+4n﹣m2+2mn,符合题意;C、原式=﹣a+c+b+d,不符合题意;D、原式=﹣3b++5a,不符合题意,故选:B.6.解:∵x2+ax﹣(bx2﹣x﹣3)=x2+ax﹣bx2+x+3=(1﹣b)x2+(a+1)x+3,且代数式的值与字母x无关,∴1﹣b=0,a+1=0,解得:a=﹣1,b=1,则a﹣b=﹣1﹣1=﹣2,故选:B.7.解:A和B都是三次多项式,则A+B一定是次数不高于3的整式,故选:B.8.解:A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.9.解:∵与a m b3是同类项,∴m=1,n+1=3,∴m=1,n=2,∴m+n=3,故选:C.10.解:∵6b﹣a=﹣5,则(a+2b)﹣2(a﹣2b)=a+2b﹣2a+4b=﹣a+6b=﹣5;故选:B.11.解:答案不唯一,如3x5y3.故答案为:3x5y3(答案不唯一).12.解:﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7=﹣5x2y﹣(2n+3)xy+5my2+4x﹣7,∵多项式不含二次项,∴5m=0,2n+3=0,解得m=0,n=﹣1.5,∴m+n=﹣1.5,故答案为:﹣1.5.13.解:由题意可得,所捂多项式是:(3x2y﹣xy2+xy)÷(﹣xy)=3x2y÷(﹣xy)﹣xy2÷(﹣xy)+xy÷(﹣xy)=﹣6x+2y﹣1.故答案为:﹣6x+2y﹣1.14.解:根据数轴得a<b<0<c且|a|>|b|>|c|,则a+c<0,a﹣b<0,b﹣c<0,则|a+c|﹣2|a﹣b|+|b﹣c|=﹣(a+c)+2(a﹣b)﹣(b﹣c)=﹣a﹣c+2a﹣2b﹣b+c=a﹣3b.故答案为:a﹣3b.15.解:mx3﹣3nxy2﹣(2x3﹣xy2)+xy=(m﹣2)x3+(1﹣3n)xy2+xy,∵关于x、y的代数式mx3﹣3nxy2﹣(2x3﹣xy2)+xy中不含三次项,∴m﹣2=0,1﹣3n=0,解得m=2,n=,∴m﹣6n=2﹣=2﹣2=0.故答案为:0.16.解:(1)原式=4×5﹣(﹣8)÷4=20+2=22;(2)原式=6m2n﹣4m+2m2n﹣4m+1=8m2n﹣8m+1.17.解:原式=(1﹣2)(m﹣2n)2+(1﹣5)(m+n)=﹣(m﹣2n)2﹣4(m+n),∵﹣x m﹣2n y m+n与﹣3x5y6是同类项,∴m﹣2n=5,m+n=6,∴﹣(m﹣2n)2﹣4(m+n)=﹣52﹣4×6=﹣25﹣24=﹣49.18.解:原式=2x2+5x2﹣2xy+xy﹣3x2+2xy=4x2+xy,∵x是﹣2的倒数,y是最大的负整数,∴x=﹣,y=﹣1,则原式=1.。
人教版七年级数学上册第二章单元测试题(含答案)
人教版七年级数学上册第二章单元测试题(含答案)一、单选题1.下列各组单项式中,属于同类项的是( )A .2x y 与22yxB .2ab 与2a b -C .4x -与4y -D .3ab 与3a b2.下列说法正确的是( )A .单项式2xy-的系数是-2 B .单项式23x y -与4x 是同类项 C .单项式2x yz -的次数是4D .多项式3221x x --是三次三项式3.下列各式中,正确的是( )A .325a a a +=B .235a b ab +=C .321ab ab -=D .22223a b a b a b -=-4.多项式245634a a a ---的最高次项为( )A .-4B .4C .44aD .44a -5.一台整式转化器原理如图,开始时输入关于x 的整式M ,当21M x =+时,第一次输出41x +,继续下去,则第3次输出的结果是( )A .161x +B .141x +C .121x +D .81x +6.已知单项式13a b x y -与436x y 是同类项,则代数式a+b 的值为( )A .5B .6C .7D .87.下列说法中正确的个数是( )⑴a 和0都是单项式.⑵多项式2223721a b a b ab -+-+的次数是3. ⑶单项式22π3a b -的系数为23-.⑷222x xy y +-可读作2x 、2xy 、2y -的和. A .1个B .2个C .3个D .4个8.将1,2,3,4,5,6六个数随机分成2组,每组各3个,分别用 1a , 2a , 3a 和 1b , 2b ,3b 表示,且 123a a a << , 123b b b >> ,设 112233m a b a b a b =-+-+- ,则 m 的可能值为( ). A .3B .39或C .9D .59或9.已知代数式x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( )A .-1B .1C .-2D .210.多项式8x 2-3x+5与多项式3x 3+2mx 2-5x+7相加后,不含二次项,则常数m 的值是( )A .2B .-4C .-2D .-8二、填空题11.将多项式2233235x y xy x y -++-按字母y 降幂排列是 . 12.多项式2365a a --中的常数项是 .13.若42m a b -与325n a b +是同类项,则m n -+的值是 . 14.若单项式12m xy -与32n x y -的差是单项式,则m n -的值是 .15.如图,数轴上有三个点A 、B 、C ,表示的数分别是﹣4、﹣2、3,请回答:(1)若使C 、B 两点的距离与A 、B 两点的距离相等,则需将点C 向左移动 个单位(其中点C 不与点A 重合).(2)若在表示﹣1的点处有一只小青蛙,一步跳1个单位长.小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步…按此规律继续跳下去,那么跳第99次时,应跳 步,落脚点表示的数是 .(3)若移动A 、B 、C 三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是 个单位;(4)若数轴上有个动点表示的数是x ,则|x+4|+|x+2|+|x-3|的最小值是 .16.把四张形状大小完全相同的小长方形卡片(如图①),卡片长为x ,宽为y ,不重叠地放在一个底面为长方形(宽为a )的盒子底部(如图②),盒底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是 (用只含b 的代数式表示).三、解答题17.先化简,再求值:4xy -2xy -(-3xy ),其中x =2,y =-1.18.已知 22a b -=- ,求代数式 ()()22324232ab a b ab a b -+--+ 的值.19.先化简,再求值:()42424443a ab a ab a ---+,其中3a =-,2b =.20.已知有理数a 、b 、c 在数轴上对应的点如下图所示,化简:|||2|||b a a c c b --+-+21.设 ()()3254326356107133212ax x x x b x x x x x -+++=+-++- ,求a 与b 的值22.已知A=a 2-2ab+b 2,B=-a 2-3ab-b 2,求:2A-3B 。
人教版七年级数学上册第二章测试题含答案
人教版数学七年级上册第二章整式的加减一、选择题(每题3分,计24分) 1.下列各式中不是单项式的是( ) A .3a B .-51 C .0 D .a32.甲数比乙数的2倍大3,若乙数为x ,则甲数为( ) A .2x -3 B . 2x+3 C .21x -3 D .21x+3 3.如果2x 3n y m+4与-3x 9y 2n是同类项,那么m 、n 的值分别为( ) A .m=-2,n=3 B .m=2,n=3 C .m=-3,n=2 D .m=3,n=2 4.已知3221A a ab =-+,3223B a ab a b =+-,则A B +=( ) A .3222331a ab a b --+ B .322231a ab a b +-+ C .322231a ab a b +-+ D .322231a ab a b --+ 5.从减去的一半,应当得到( ). A.B.C.D.6.减去-3m 等于5m 2-3m-5的式子是( )A .5(m 2-1) B .5m 2-6m-5 C .5(m 2+1) D .-(5m 2+6m-5)7.在排成每行七天的日历表中取下一个33⨯方块.若所有日期数之和为189,则n 的值为( )A .21B .11C .15D .98.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +_____________+2y 空格的地方被钢笔水弄污了,那么空格中的一项是( )A .7xy -B .7xyC .xy -D .xy 二、填空题(每题4分,计32分)9.单项式2r π-的系数是 ,次数是 . 10.当 x =5,y =4时,式子x -2y的值是 . 11.按下列要求,将多项式x 3-5x 2-4x+9的后两项用( )括起来. 要求括号前面带有“—”号,则x 3—5x 2—4x+9=___________________12.把(x —y )看作一个整体,合并同类项:5(x —y )+2(x —y )—4(x —y )=_____________.13.一根铁丝的长为54a b +,剪下一部分围成一个长为a 宽为b 的长方形,则这根铁丝还剩下_____________________.14.用语言说出式子a+b 2的意义:______________________________________15.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a 个座位,后面每一排都比前一排多一个座位,若第n 排有m 个座位,则a 、n 和m 之间的关系为 .16.小明在求一个多项式减去x 2—3x+5时,误认为加上x 2—3x+5,•得到的答案是5x 2—2x+4,则正确的答案是_______________. 三、解答题(共28分)17.(6分)化简:(1))343(4232222x y xy y xy x +---+; (2))32(5)5(422x x x x +--.18.(6分)如图所示,在下面由火柴棒拼出的一系列的图形中,第n 个图形由n•个正方形组成.n=4n=3n=2n=1(1)第2个图形中,火柴棒的根数是________;(2)第3个图形中,火柴棒的根数是________;(3)第4个图形中,火柴棒的根数是_______;(4)第n个图形中,火柴棒的根数是________.19.(8分)有这样一道题:“当a=2009,b=—2010时,求多项式3323323a ab a b a a b a b a-+++--+2010的值.”76336310小明说:本题中a=2009,b=—2010是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出,a b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.20.(8分)一个三角形一边长为a+b,另一边长比这条边大•b,•第三边长比这条边小a —b.(1)求这个三角形的周长;(2)若a=5,b=3,求三角形周长的值.四、拓广探索(共16分)21.(8分)有一串单项式:x,-2x2,3x3,-4x4,……,-10x10,……(1)请你写出第100个单项式;(2)请你写出第n个单项式.22.(8分)如图所示,请你探索正方形的个数与等腰三角形的个数之间的关系.正方形个数 1 2 3 4 …n等腰三角形个数(1)照这样的画法,如果画15个正方形,可以得_______个等腰三角形;(2)若要得到152个等腰三角形,应画_______个正方形;2.1-2.2测试B1.(7分)已知x 2—xy=21,xy-y 2=—12,分别求式子x 2-y 2与x 2—2xy+y 2的值.2.(7分)同一时刻的北京时间、巴黎时间、东京时间如图所示.(1)设北京时间为)237(<<a a ,分别用代数式表示同一时刻的巴黎时间和东京时间; (2)2001年7月13日,北京时间22:08,国际奥委会主席萨马兰奇宣布,北京获得2008年第29届夏季奥运会的主办权.问这一时刻贩巴黎时间、东京时间分别为几时?3.(8分)按照下列步骤做一做:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,得到一个新数;(3)求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?4.(8分)有一包长方体的东西,用三种不同的方法打包,哪一种方法使用的绳子最短?哪一种方法使用的绳子最长?(a+b>2c)参考答案 一、选择题1.D 2.B 3.B 4.D 5.D 6.C 7.A 8.C 二、填空题9.2,π- 10.3 11.x 3—5x 2—(4x —9) 12.3(x —y ) 13.3a+2b14.a 与b 的平方的和 15.m=a+n —1 16.3x 2+4x —6 三、解答题17.(1)原式=xy x y xy y xy x -=-+--+2222343423; (2)原式=x x x x x x 3561510204222--=---. 18.(1)7;(2)10;(3)13;(4)3n+119.∵332332376336310a a b a b a a b a b a -+++--+2010=332(731)(66)(33)a a b a b +-+-++-+2010=2010.∴a=2009,b=—2010是多余的条件,故小明的观点正确.20. (1) 三角形的周长为:b a b a b a b b a b a 52)()()(+=+-++++++; (2)当a =5,b =3时,周长为:25. 四、拓广探索21.(1)—100x 100;(2)(—1)n+1x n. 22.0,4,8,12,4(n —1) (1)56;(2)4(n —1)=152,n=39. 2.1-2.2测试B 参考答案1.x 2-y 2= (x 2-xy )+(xy-y 2)=21—12=9, x 2-2xy+y 2= (x 2-xy )—(xy-y 2)=21+12=33. 2.(1)巴黎时间为a+5,东京时间为a+1; (2) 巴黎时间为3:08,东京时间为23:08. 3.(1)24;(2)42;(3)42—24=18;是9的倍数.设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a,交换后的两位数为10a+b.10b+a-(10a+b)=10b+a-10a-b=9b-9a=9(b-a)4.第(1)种方法的绳子长为4a +4b +8c ,第(2)种方法的绳子长为4a +4b +4c ,第(3)种方法的绳子长为6a +6b +4c ,从而第(3)种方法绳子最长,第(2)种方法绳子最短。
人教版七年级数学上册第二章测试题(附答案
人教版七年级数学上册第二章测试题(附答案)一、单选题(共12题;共24分)1.下列各组中的两个项,不属于同类项的是()A. 与n2mB. 1与C. 与D. 与2.计算x2- 2x2 的结果()A. -1B. -x2C. x2D. x43.在一张某月的日历上,任意圈出同一列上的三个数的和不可能是( )A. 14B. 33C. 51D. 274.下列去括号正确的是()A. B.C. D.5.下面四个整式中,不能表示图中阴影部分面积的是()A. B. C. D.6.下列各式中去括号正确的是()A. a2-4(-a+1)=a2-4a﹣4B. -(mn-1)+(m-n)=-mn-1+m-nC. 5x-(2x-1)-x2=5x-2x+1-x2D. x2-2(2x-y+2)=x2-4x+y-27.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是()A. 22B. 24C. 26D. 288.下列计算正确的是( )A. B. C. D.9.如图,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究在第n个图中,黑、白瓷砖分别各有多少块( )A. ,B. ,C. ,D. ,10.整式x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则a+b的值为A. ﹣1B. 1C. ﹣2D. 211.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要( )根火柴棍.A. 3nB. 3n+2C. 2n+3D. 2n+1二、填空题(共8题;共20分)12.若7x3a y4b与﹣2x3y3b+a是同类项,则a=________,b=________.13.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,第2018次输出的结果为________.14.若单项式5x3y2与一个多项式的积为20x5y2-15x3y4+70(x2y3)2,则这个多项式为________.15.观察下面的一列单项式:2x,﹣4x2,8x3,﹣16x4,…根据你发现的规律,第7个单项式为________;第n个单项式为________.16.已知单项式与的和仍是一个单项式,那么=________.17.观察下列多项式:,,,,…按此规律,则可以得到第个多项式是________.18.观察一组关于的单项式:,,,,….按照排列规律,第n个单项式是________.19.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和.如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3“分裂”后,其中有一个奇数是347,则m的值是________.三、计算题(共2题;共10分)20.计算:21.先化简,再求值:,其中.四、解答题(共3题;共28分)22.已知a,b为常数,且三个单项式4xy2,axy b,-5xy相加得到的和仍是单项式,求a,b的值.23.如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去;(1)填表:(2)如果剪了100次,共剪出多少个小正方形?(3)如果剪了n次,共剪出多少个小正方形?(4)观察图形,你还能得出什么规律?24.【阅读理解】我们知道1+2+3+…+n= ,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2 ,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为1+2+3+…+n2.(1)【规律探究】将三角形数阵经两次旋转可得如图2 所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为________,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)=________,因此12+22+32+…+n2=________。
人教版七年级上册数学第二章《整式的加减》计算题训练(含答案)
3.计算
(1) 2 x 5y 43x 4 y
(2) 4x2 y 3xy 23xy 2 2x2 y
4.计算:
(1) 3a2b 5 5b2 6a2b 7 5b2 4a3 ;
(2) 3ab2 2 2ab2 a2b 3 1 4a2b 10ab2 . 2
5.化简:
8.化简并求值: 2 ab2 2a2b 3 ab2 a2b 1 ,其中 a 2,b 1.
9.先化简,再求值: x2 y2 2xy 3x2 4xy y2 5xy ,其中, x= 1, Nhomakorabeay 2.
10.先化简,再求值 2
ab 3a2
5a2
4ab a2
14.已知 A 3a2 ab , B 5ab a2 (1)求 2A B 的值;
(2)若 2A 与 B C 互为相反数,a、b 满足 a 22 + b+1=0 ,求 C 的值.
15.已知 A 4x2 2xy 3y2, B 4x2 3y2 . (1)求 A B ; (2)当 x 3, y 1 时,求 A B 的值.
18.已知代数式 A 2x2 5xy 7 y 3 , B x2 xy 2
(1)求 3A 2A 3B 的值;
(2)若 A 2B 值与 x 的取值无关,求 y 的值.
1.(1) 1 x2 - 3x + 2 5
(2) 1 a2b 4
2.(1) 2x2 x 1 (2) 3a2 33a 18
3.(1) 6 y 10x (2) 2x2 y 3xy 4
4.(1) 3a2b 4a3 2 (2) 4ab2 6
5.(1) a2b 8ab2 (2) x2 4x
6.(1) 2a2 7b2 ab (2)12a 10b
7. 3x2 4xy 12 , 24 8. ab2 a2b 3 , 5 9. 4x2 xy ;6 10. 2ab ;1 11. 3x2 y 5xy , 2 12. 5x2 xy ,18 13. a2b 6ab2 3 , 89 14.(1) 5a2 3ab (2) 14
人教版数学七年级上册第二章测试题及答案
人教版数学七年级上册第二章测试题及答案人教版数学七年级上册第二章整式的加减一、选择题(共6小题,每小题4分,满分24分)1、整式﹣3.5x3y2,﹣1,,﹣32xy2z,﹣x2﹣y,﹣a2b ﹣1中单项式的个数有()A、2个B、3个C、4个D、5个2、在下列运算正确的是()A、2a+3b=5abB、2a﹣3b=﹣1C、2a2b﹣2ab2=0D、2ab﹣2ab=03、若代数式A、2B、±2C、3D、±34、下列各组代数式中,是同类项的是()A、5x2y与xyC、5ax2与yx2B、﹣5x2y与yx2D、83与x3是五次二项式,则a的值为()5、下列各组中的两个单项式能合并的是()A、4和4xB、3x2y3和﹣y2x3C、2ab2和100ab2cD、6、某商品原价为100元,现有下列四种调价方案,其中<n<m<100,则调价后该商品价格最低的方案是()A、先涨价m%,再降价n%B、先涨价n%,再降价m%C、行涨价%,再降价%D、先涨价%,再降价%二、填空题(共8小题,每小题4分,满分32分)7、﹣πx2y的系数是.8、去括号填空:3x﹣(a﹣b+c)=.9、多项式A:4xy2﹣5x3y4+(m﹣5)x5y3﹣2与多项式B:﹣2xny4+6xy﹣3x﹣7的次数相同,且最高次项的系数也相同,则5m﹣2n=.10、一个长方形的一边为3a+4b,另一边为a+b,那么这个长方形的周长为.11、任写一个与是同类项的单项式:.12、设a﹣3b=5,则2(a﹣3b)2+3b﹣a﹣15的值是.13、已知a是正数,则3|a|﹣7a=.14、给出下列算式:32﹣12=8=8×1,52﹣32=16=8×2,72﹣52=24=8×3,92﹣72=32=8×4,…观察上面一系列等式,你能发现什么规律?设n(n≥1)表示自然数,用关于n的等式表示这个规律为:.15、化简:①(a+b+c)+(b﹣c﹣a)+(c+a﹣b);②(2x2﹣+3x)﹣4(x﹣x2+);③3a2﹣[8a﹣(4a﹣7)﹣2a2];④3x2﹣[7x﹣(﹣3+4x)﹣2x2].16、有一个两位数,它的十位数字是个位数字的8倍,则这个两位数一定是9的倍数,试说明理由.17、先化简,再求值:,.,其中18、(1)用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=5,h=4时,S的值.19、一艘轮船顺水航行3小时,逆水航行2小时,(1)已知轮船在静水中前进的速度是m千米/时,水流的速度是a千米/时,则轮船共航行(2)轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?答案及详解一、选择题(共6小题,每小题4分,满分24分)1、整式﹣3.5x3y2,﹣1,,﹣32xy2z,﹣x2﹣y,﹣a2b ﹣1中单项式的个数有()A、2个B、3个C、4个D、5个考点:单项式。
初中数学人教版七年级上册第二章《整式的加减》测试卷解析及答案
初中数学人教版七年级上册第二章《整式的加减》测试卷解析及答案初中数学人教版七年级上册第二章《整式的加减》测试卷解析及答案第一节选择题(共10小题,每小题2分,满分20分)1. 答案:B解析:此题考察对整式的加法运算的理解,将同类项相加即可得出答案。
2. 答案:C解析:此题考察对整式的加法运算的理解,将同类项相加即可得出答案。
3. 答案:A解析:此题考察对整式的加法运算的理解,将同类项相加即可得出答案。
4. 答案:D解析:此题考察对整式的加法运算的理解,将同类项相加即可得出答案。
5. 答案:C答案。
6. 答案:A解析:此题考察对整式的减法运算的理解,将同类项相减即可得出答案。
7. 答案:B解析:此题考察对整式的减法运算的理解,将同类项相减即可得出答案。
8. 答案:D解析:此题考察对整式的减法运算的理解,将同类项相减即可得出答案。
9. 答案:A解析:此题考察对整式的减法运算的理解,将同类项相减即可得出答案。
10. 答案:C解析:此题考察对整式的减法运算的理解,将同类项相减即可得出答案。
第二节填空题(共5小题,每小题4分,满分20分)1. 答案:-8a答案。
2. 答案:5xy解析:此题考察对整式的加法运算的理解,将同类项相加即可得出答案。
3. 答案:ab解析:此题考察对整式的减法运算的理解,将同类项相减即可得出答案。
4. 答案:-3x解析:此题考察对整式的减法运算的理解,将同类项相减即可得出答案。
5. 答案:0解析:此题考察对整式的加法运算的理解,将同类项相加即可得出答案。
第三节解答题(共5小题,每小题10分,满分50分)1. 答案:(3a+4b)-(5a-2b)解析:此题考察对整式的减法运算的理解,将括号内的整式分别加上和减去即可得出答案。
2. 答案:(6a-7b)+(3b-4a)解析:此题考察对整式的加法运算的理解,将括号内的整式分别加上即可得出答案。
3. 答案:(2x+3y)-(4x+5y)解析:此题考察对整式的减法运算的理解,将括号内的整式分别加上和减去即可得出答案。
七级上册数学第二章测试卷及答案人教版(二)
七年级上册数学第二章测试卷及答案人教版(二)1.(2020·吉林省初一期末)先化简,再求值:()()2222x y xy xy x y +--,其中1,1x y ==-【答案】3x 2y ,-3【解析】解:原式 = 2x 2y+2xy-2xy+x 2y = 3x 2y ,把x=1,y=-1代入原式 = 3x 2y = 3×12×(-1)= -32.(2020·广东省初一期末)先化简,再求值:已知6x 2﹣3(2x 2﹣4y )+2(x 2﹣y ),其中x =﹣1,y =12.【答案】2x 2+10y ;7【解析】解:原式=6x 2﹣6x 2+12y +2x 2﹣2y=2x 2+10y ,当x =﹣1,y =12时,原式=2×(﹣1)2+10×12=2+5=7.3.(2020·上饶市广信区第七中学初二月考)某同学在计算一个多项式乘以﹣3x 2时,因抄错运算符号,算成了加上﹣3x 2,得到的结果是x 2﹣4x+1,那么正确的计算结果是多少?【答案】﹣12x 4+12x 3﹣3x 2【解析】解:这个多项式是(x 2﹣4x+1)﹣(﹣3x 2)=4x 2﹣4x+1,(3分)正确的计算结果是:(4x 2﹣4x+1)•(﹣3x 2)=﹣12x 4+12x 3﹣3x 2.(3分)4.(2019·河北省初三三模),,A B C 均为多项式,小元在计算“A B -”时,误将符号抄错而计算成了“A B +”,得到结果是C ,其中221132A x x C x x =+-=+,,请正确计算AB -.【答案】2x --【解析】根据题意,得A B C +=,221(3)(1)2B C A x x x x ∴=-=+-+-=221312x x x x +--+=21212x x ++,∴2211(1)(21)22A B x x x x -=+--++=221112122x x x x +----=2x --.5.(2019·苏州市景范中学校初一期末)已知:223+2A B a ab -=,223A a ab =-+-.(1)求B ;(用含a 、b 的代数式表示)(2)比较A 与B 的大小.【答案】(1)-5a 2+2ab-6;(2)A >B .【解析】(1)∵2A-B=3a 2+2ab ,A=-a 2+2ab-3,∴B=2A-(3a 2+2ab )=2(-a 2+2ab-3)-(3a 2+2ab )=-2a 2+4ab-6-3a 2-2ab=-5a 2+2ab-6,(2)∵A=223a ab -+-,B=-5a 2+2ab-6,∴A-B=(223a ab -+-)-(-5a 2+2ab-6)=-a 2+2ab-3+5a 2-2ab+6=4a 2+3,∵无论a 取何值,a 2≥0,所以4a 2+3>0,∴A >B .6.(2017·江西省初一期末)已知代数式22223,31A x xyB x x =+-=++(1)求2A B -的值;(2)若2A B -的值与x 的取值无关,求y 的值.【答案】(1)265xy x --;(2)3【解析】(1)()222223231A B x xy x x -=+--++22223262x xy x x =+----265xy x =--;(2)由(1)得:()2265265A B xy x y x -=--=--,∵A-2B 的值与x 的取值无关,∴2y-6=0,∴y=3.7.(2020·南京市金陵中学河西分校初一期中)已知A=22x +3xy-2x-l ,B= -2x +xy-l .(1)求3A+6B ;(2)若3A+6B 的值与x 无关,求y 的值.【答案】(1) 15xy -6x -9 ;(2)25.解:(1)3A+6B=3(2x 2+3xy ﹣2x ﹣1)+6(﹣x 2+xy ﹣1)=6x 2+9xy ﹣6x ﹣3﹣6x 2+6xy ﹣6=15xy ﹣6x ﹣9;(2)原式=15xy ﹣6x ﹣9=(15y ﹣6)x ﹣9要使原式的值与x 无关,则15y ﹣6=0,解得:y=25.8.(2019·山西省初一期中)张老师给学生出了一道题:当20192020a b ==-,时,求: 3323323(763)(363103)a a b a b a a b a b a -+---++-的值.题目出完后,小明说:“老师给的条件20192020a b ==-,是多余的.”小红说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【答案】因为代数式与a 、b 的取值无关,故小明说得对【解析】解:∵3323323(763)(363103)a ab a b a a b a b a -+---++-=3323323763363103a ab a b a a b a b a -+++--+=()()()3333322731066333a a a ab a b a b a b +-+-+-+=3故代数式与a 、b 的取值无关,即小明说得对.9.(2020·河北省初三零模)已知22A x mx =-+,221B nx x =+-,且化简2A B -的结果与x 无关.(1)求m 、n 的值;(2)求式子2222223(2)[2(2)5]m n mn m n mn m n mn ---+--的值.【答案】(1)1m =-,2n =;(2)-36.【解析】(1)∵22A x mx =-+,221B nx x =+-,∴2A B-=222(2)(21)x mx nx x -+-+-=2222421x mx nx x -+--+=2(2)(22)5n x m x -+--+∵2A B -的结果与x 无关,∴20n -=,220m --=解得,1m =-,2n =;(2)2222223(2)[2(2)5]m n mn m n mn m n mn ---+-- =2222223+6245m n mn m n mn m n mn ---++=29mn ∵1m =-,2n =∴原式=29(1)2⨯-⨯=-36.10.(2019·广西壮族自治区初一期中)有这样一道题:已知5x =,1y =-,求代数式()32332132233x y xy y x y xy ⎛⎫-+--- ⎪⎝⎭的值.小明认为:“已知5x =”这个条件是多余的,你认为小明的说法有道理吗?为什么?【答案】小明的说法有道理.【解析】解:小明的说法有道理.理由:原式=32332626x y xy y x y xy -+-+-=32y -∵代数式化简后与x 无关∴小明的说法有道理.11.(2020·河北省石家庄新世纪外国语学校初三二模)(1)计算217﹣323﹣513+(﹣317)(2)某同学做一道数学题:“两个多项式A 、B ,B =3x 2﹣2x ﹣6,试求A +B ”,这位同学把“A +B ”看成“A ﹣B ”,结果求出答案是﹣8x 2+7x +10,那么A +B 的正确答案是多少?【答案】(1)﹣10;(2)﹣2x 2+3x ﹣2.【解析】解:(1)217﹣323﹣513+(﹣317)=217﹣323﹣513﹣317=217﹣317﹣323﹣513=﹣1﹣9=﹣10.(2)∵A ﹣B =﹣8x 2+7x +10,B =3x 2﹣2x ﹣6,∴A =(﹣8x 2+7x +10)+(3x 2﹣2x ﹣6)=﹣5x 2+5x +4,∴A +B =(﹣5x 2+5x +4)+(3x 2﹣2x ﹣6)=﹣2x 2+3x ﹣2.12.(2018·天津初一期末)已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+.()1化简:2B A -;()2已知x 22a b --与y 1ab 3的同类项,求2B A -的值.【答案】(1)225x 9xy 9y +-(2)63或-13【解析】()1∵22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+,∴()()22222222222B A 22xy 3y 4x 3x 3y 5xy 4xy 6y 8x 3x 3y 5xy 5x 9xy 9y -=-+-+-=-+--+=+-;()2∵x 22a b --与y 1ab 3的同类项,∴x 21-=,y 2=,解得:x 3=或x 1=,y 2=,当x 3=,y 2=时,原式45543663=+-=;当x 1=,y 2=时,原式5183613=+-=-.考点2:与某项无关问题典例:(2020·河北省初三三模)已知22A x mx =-+,221B nx x =+-.(1)求2A B -,并将结果整理成关于x 的整式;(2)若2A B -的结果与x 无关,求m 、n 的值;(3)在(2)基础上,求()()22222232225m n mn m n mn m n mn ⎡⎤---+--⎣⎦的值.【答案】(1)2(2)(22)5n x m x -+--+;(2)1m =-,2n =;(3)-36.【解析】解:(1)∵22A x mx =-+,221B nx x =+-,∴()()2222221A B x mx nx x -=-+-+-2222421x mx nx x =-+--+2(2)(22)5n x m x =-+--+(2)∵2A B -的结果与x 无关,∴20n -=,220m --=解得,1m =-,2n =(3)原式2222222362459m n mn m n mn m n mn mn =-+--++=∵1m =-,2n =∴原式29(1)236=⨯-⨯=-.方法或规律点拨此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.巩固练习1.(2020·广东省绿翠现代实验学校初一期中)已知多项式2412A x my =+-与多项式221B nx y =-+.(1)当1m =,5n =时,计算A B +的值;(2)如果A 与2B 的差中不含x 和y ,求mn 的值.【答案】(1)9x 2-y-11;(2)-8【解析】解:(1)当1m =,5n =时,2412A x y =+-,2521B x y =-+,∴A+B=4x 2+y-12+5x 2-2y+1=9x 2-y-11;(2) A -2B =4x 2+my-12-2(nx 2-2y+1)=(4-2n) x 2+(m+4)y-14∵A 与2B 的差中不含x 和y∴4-2n=0,m+4=0,∴n=2,m=-4∴mn=-82.(2020·甘州中学初一月考)(1)化简求值:已知,求代数式的值.(2)若化简的结果与的取值无关,求的值.【答案】(1);(2).【解析】解:(1)由可得:,.原式,当,时,原式(2)原式,由结果与的取值无关,得到,解得:.3.(2020·河北省育华中学初三一模)已知2223,A x xy y B x xy=++=-()1若()2230x y ++-=,求2A B -的值()2若2-的值与y的值无关,求x的值A B【答案】(1)-9;(2)x=-1【解析】(1)A-2B=(2x2+xy+3y)-2(x2-xy)=2x2+xy+3y-2x2+2xy=3xy+3y.∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B的值与y的值无关,即(3x+3)y与y的值无关,∴3x+3=0.解得x=-1.4.(2019·广西壮族自治区初一期中)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?【答案】相信,理由见解析.【解析】相信,理由如下:(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)=7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+3=(7a3+3a3-10a3)+(-6a3b+6a3b)+(3a2b-3a2b)+3=3,则不管a,b取何值,整式的值都为3.考点3:整式运算的应用典例:(2020·珠海市斗门区实验中学初一期中)今年秋季,长白山土特产喜获丰收,某土特产公司组织10辆汽车装运甲、乙、丙三种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的汽车有x辆,装运乙种土特产的汽车有y 辆,根据下表提供的信息,解答以下问题.(1)装运丙种土特产的车辆数为(用含x 、y 的式子表示);(2)用含x 、y 的式子表示这10辆汽车共装运土特产的吨数;(3)求销售完装运的这批土特产后所获得的总利润(用含x 、y 的式子表示).【答案】(1)装运丙种土特产的车辆数为10-x-y ;(2)这10辆汽车共装运土特产的吨数为60-2x-y ;(3)销售完装运的这批土特产后所获得的总利润为90000-4200x-4000y .【解析】(1)由题意得,装运丙种土特产的车辆数为:10−x −y (辆)答:装运丙种土特产的车辆数为(10−x −y );(2)根据题意得:4x+5y+6(10-x-y)=4x+5y+60-6x-6y=60-2x-y答:这10辆汽车共装运土特产的数量为(60-2x-y )吨;(3)根据题意得:()12004100051500610x y x y ⨯+⨯+⨯--=4800x+5000y+90000-9000x-9000y=90000-4200x-4000y .答:销售完装运的这批土特产后所获得的总利润为(90000-4200x-4000y )元.方法或规律点拨本题主要考查了列代数式,正确理解各种数量关系之间的运算关系是列代数式的关键所在.巩固练习1.(2019·广西壮族自治区初一期末)某商店在甲批发市场以每箱x 元的价格进了30箱海鸭蛋,又在乙批发市场以每箱y 元(x >y )的价格进了同样的50箱海鸭蛋,如果商家以每箱2x y + 元的价格卖出这些海鸭蛋,卖完后,这家商店( )A .盈利了B .亏损了C .不赢不亏D .盈亏不能确定【答案】A【解析】购买海鸭蛋的进价为:30x+50y卖完海鸭蛋的收入为:8040402x y x y +=+∵40x+40y -(30x+50y)=10(x -y)>0∴收入>进价故选:A .2.(2019·霍林郭勒市第五中学初一期中)如图所示,某长方形广场的四角都有一块半径相同的14圆形的草地,已知圆形的半径为r 米,长方形的长为a 米,宽为b 米. (1)请列式表示广场空地的面积;(2)若长方形的长为300米,宽为200米,圆形的半径为10米,计算广场空地的面积(计算结果保留π).【答案】(1)ab -πr 2;(2)60 000-100π.【解析】(1)广场空地的面积(单位:平方米)为:ab -πr 2;(2)当a=300,b=200,r=10时,ab -πr 2=300×200-π×102=60 000-100π.所以广场空地的面积(单位:平方米)为:60 000-100π.3.(2019·河南省初一期中)自我国实施“限塑令”起,开始有偿使用环保购物袋,为了满足市场需求,某厂家生产A 、B 两种款式的布质环保购物袋,每天生产4500个,两种购物袋的成本和售价如下表,若设每天生产A 种购物袋x 个.(1)用含x 的整式表示每天的生产成本,并进行化简;(2)用含x 的整式表示每天获得的利润,并进行化简(利润=售价-成本);(3)当x =1500时,求每天的生产成本与每天获得的利润.【答案】(1)每天的生产成本为(-x +13 500)元;(2)每天获得的利润为()0.2x 2 250-+元.(3)每天的生产成本为12 000元;每天获得的利润为1 950元.【解析】解:(1)2x +3(4500-x )=-x +13500,即每天的生产成本为(-x +13500)元.(2)(2.3-2)x +(3.5-3)(4500-x )=-0.2x +2250,即每天获得的利润为(-0.2x +2250)元.(3)当x =1 500时,每天的生产成本:-x +13500=-1500+13 500=12000元;每天获得的利润:-0.2x +2250=-0.2×1500+2 250=1950(元).4.(2019·内蒙古自治区初一期末)如图所示,一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形.已知正方形的边长为a ,三角形的高为h .(1)用式子表示阴影部分的面积;(2)当a =2,h =12时,求阴影部分的面积.【答案】(1)2a 2ah -(2)2【解析】(1)阴影部分的面积为:221a 4ah a 2ah 2-⨯=-;(2)当1a 2h 2,==时,原式2a 2ah =-=22-12222⨯⨯=.5.(2020·黑龙江省初一期末)A 、B 两仓库分别有水泥15吨和35吨,C 、D 两工地分别需要水泥20吨和30吨.已知从A 、B 仓库到C 、D 工地的运价如表:到C 工地到D 工地A 仓库每吨15元每吨12元B 仓库每吨10元每吨9元(1)若从A 仓库运到C 工地的水泥为x 吨,则用含x 的代数式表示从A 仓库运到D 工地的水泥为 吨,从B 仓库将水泥运到D 工地的运输费用为 元;(2)求把全部水泥从A 、B 两仓库运到C 、D 两工地的总运输费(用含x 的代数式表示并化简);(3)如果从A 仓库运到C 工地的水泥为10吨时,那么总运输费为多少元?【答案】(1)15-x ;9x+180;(2)(2x+515)元;(3)535元.【解析】(1)从A 仓库运到D 工地的水泥为:(15-x )吨,从B 仓库将水泥运到D 工地的运输费用为:[35-(15-x )]×9=(9x+180)元;(2)总运输费:15x+12×(15-x )+10×(15-x )+[35-(15-x )]×9=(2x+510)元;(3)当x=10时,2x+510=530.答:总运费为530元.6.(2019·山西省初一期中)综合与探究阅读理解:数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用较大数与较小数的差来表示.例如:在数轴上,有理数3与1对应的两点之间的距离为312-=;在数轴上,有理数3与-2对应的两点之间的距离为()325--=;在数轴上,有理数-3与-2对应的两点之间的距离为()()231---=.解决问题:如图所示,已知点A 表示的数为-3,点B 表示的数为-1,点C 表示的数为2.(1)点A 和点C 之间的距离为______.(2)若数轴上动点P 表示的数为x ,当1x >-时,点P 和点B 之间的距离可表示为______;当1x <-时,点P 和点B 之间的距离可表示为______.(3)若数轴上动点P 表示的数为x ,点P 在点A 和点C 之间,点P 和点A 之间的距离表示为PA ,点P 和点C 之间的距离表示为PC ,求23PA PC +(用含x 的代数式表示并进行化简)(4)若数轴上动点P 表示的数为-2,将点P 向右移动19个单位长度,再向左移动23个单位长度终点为Q ,那么P ,Q 两点之间的距离是______.【答案】(1)5;(2)1x + ,1x --;(3)12-x ;(4)4【解析】解:(1)2-(-3)=5;(2)x-(-1)=1x + ;1x --;(3)∵PA=x-(-3)=x+3,PC=2-x ,∴()()232332PA PC x x +=++-2663x x=++-12x =-;(4)∵-2+19-23=-6,∴P ,Q 两点之间的距离是-2-(-6)=4.7.(2020·珠海市斗门区实验中学初一期中)如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足|a+2|+(c ﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB= ,AC= ,BC= .(用含t 的代数式表示)(4)请问:3BC ﹣2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3BC ﹣2AB=12.【解析】(1)∵|a +2|+(c −7)2=0,∴a +2=0,c −7=0,解得a =−2,c =7,∵b 是最小的正整数,∴b =1;故答案为:−2;1;7.(2)(7+2)÷2=4.5,对称点为7−4.5=2.5,2.5+(2.5−1)=4;故答案为:4.(3)依题意可得AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3;5t+9;2t+6.(4)不变.3BC−2AB=3(2t+6)−2(3t+3)=12.8.(2020·四川省初一期中)小明家住房户型呈长方形,平面图如下(单位:米).现准备铺设整个长方形地面,其中三间卧室铺设木地板,其它区域铺设地砖.(房间内隔墙宽度忽略不计)(1)求a的值;(2)请用含x的代数式分别表示铺设地面需要木地板和地砖各多少平方米;(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米.装修公司有A,B两种活动方案,如表:已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低?【答案】(1)3;(2)木地板:75﹣7x,地砖:7x+53;(3)B种活动方案【解析】解:(1)根据题意,可得a+5=4+4,得a=3;(2)铺设地面需要木地板:4×2x+a[10+6﹣(2x﹣1)﹣x﹣2x]+6×4=8x+3(17﹣5x)+24=75﹣7x,铺设地面需要地砖:16×8﹣(75﹣7x)=128﹣75+7x=7x+53;(3)∵卧室2的面积为21平方米,∴3[10+6﹣(2x﹣1)﹣x﹣2x]=21,∴3(17﹣5x)=21,∴x=2,∴铺设地面需要木地板:75﹣7x=75﹣7×2=61,铺设地面需要地砖:7x+53=7×2+53=67,A种活动方案所需的费用:61×300×0.8+67×100×0.85+2000=22335(元),B种活动方案所需的费用:61×300×0.9+67×100×0.85=22165(元),22335>22165,所以小方家应选择B种活动方案,使铺设地面总费用(含材料费及安装费)更低.考点4:数字规律探究典例:(2020·河北省初三一模)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣3,﹣2,﹣1,0,且任意相邻四个台阶上数的和都相等.(1)求第五个台阶上的数x是多少?(2)求前21个台阶上的数的和是多少?(3)发现:数的排列有一定的规律,第n个﹣2出现在第 个台阶上;(4)拓展:如果倩倩小同学一步只能上1个或者2个台阶,那么她上第一个台阶的方法有1种:1=1,上第二个台阶的方法有2种:1+1=2或2=2,上第三个台阶的方祛有3种:1+1+1=3、1+2=3或2+1=3,…,她上第五个台阶的方法可以有 种.【答案】(1)第五个台阶上的数x是﹣3(2)-33(3)(4n﹣2)(4)8【解析】(1)由题意得:﹣3﹣2﹣1+0=﹣2﹣1+0+x,x=﹣3,答:第五个台阶上的数x是﹣3;(2)由题意知:台阶上的数字是每4个一循环,﹣3﹣2﹣1+0=﹣6,∵21÷4=5…1,∴5×(﹣6)+(﹣3)=﹣33,答:前21个台阶上的数的和是﹣33;(3)第一个﹣2在第2个台阶上,第二个﹣2在第6个台阶上,第三个﹣2出现在第10个台阶上;…第n个﹣2出现在第(4n﹣2)个台阶上;故答案为(4n﹣2);(4)上第五个台阶的方法:1+1+1+1+1=5,1种,1+1+1+2=5,1+2+2=5,1+2+1+1=5,1+1+2+1=5,4种,2+2+1=5,2+1+2=5,2+1+1+1=5,3种,∴1+4+3=8种,答:她上第五个台阶的方法可以有8种.故答案为8.方法或规律点拨本题考查数字的变化类,解答本题的关键是明确题目中数字的变化特点,求出相应的结果.巩固练习1.(2020·绵竹市孝德中学初一期中)已知一个三位数:100a+10b+c,将它的百位数字与个位数字交换后得到一个新的三位数:100c+10b+a,试求这两个三位数的差,并求当a=5,c=7时,差的值是多少?【答案】差为99a-99c或99c-99a,差值分别为-198和198【解析】解:由题意可得:①100a+10b+c-(100c+10b+a)=99a-99c,将a=5,c=7代入,原式=99×(-2)=-198;②100c+10b+a-(100a+10b+c)=99c-99a,将a=5,c=7代入,原式=99×2=198;2.(2019·湖南省初一期中)定义:若2a b +=,则称a 与b 是关于1的平衡数,例如,462-+=,则4-与6是关于1的平衡数(1)3与 是关于1的平衡数,5x -与 (用含的式子表示)是关于1的平衡数(2)若2223()4a x x x =-++,223(4)2b x x x x ⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1的平衡数,并说明理由.【答案】(1)-1,x-3;(2)a 与b 不是关于1的平衡数,理由见详解【解析】解:(1)∵3(1)2,5(3)2x x +-=-+-=∴3与-1是关于1的平衡数,5x -与x-3是关于1的平衡数;(2)a 与b 不是关于1的平衡数,理由如下:∵22223()434a x x x x x =-++=--+,2223(4)232b x x x x x x ⎡⎤=--+-=++⎣⎦∴2234326a b x x x x +=--++++=∴ a 与b 不是关于1的平衡数.3.(2020·河北省初三二模)把正整数1,2,3,4, 排成如下的一个数表.(1)2020在第_____行,第______列;(2)第n 行第3列的数是_______(用含“n ”的代数式表示)(3)嘉嘉和淇淇玩数学游戏,嘉嘉对淇淇说:“你从数表中挑一个数x ,按如图所示的程序计算,只要你告诉我所得的数在第几行,我就知道你挑的数在第几行.”你认为嘉嘉说得有道理吗?计算说明理由.【答案】(1)253,4;(2)85n -;(3)嘉嘉说得有道理,见解析【解析】(1)由图中可以得出规律,每一行共有8个数,每行最后的数是8的倍数,∵2020÷8=252……4,∴2020在第253行,第4列;(2)第n 行第3列的数是:8(n −1)+3=8n −5;(3)根据计算程序,可得:y =[]5(10)1058x x +-÷=+,所以当知道数y 在第几行时,则x 必在它的上一行,所以嘉嘉说得有道理.4.(2020·云南省初三学业考试)符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+,2(4)14f =+, .(1)利用以上运算的规律写出()f n = ;(n 为正整数)(2)计算:(1)(2)(3)(100)f f f f 的值.【答案】(1)1+2n;(2)5151.【解析】解:(1)∵f (1)=1+21,f (2)=1+22,f (3)=1+23,f (4)=1+24…∴f (n )=1+2n,故答案为:1+2n ;(2)f (1)•f (2)•f (3)•…•f (100)=(1+21)(1+22)(1+23)(1+24)...(1+2100)=31×42×53×64× (102100)10110212⨯⨯=51515.(2020·河北省初三学业考试)观察下列等式,探究发现规律,并解决问题,①2113323-=⨯;②3323323-=⨯;③4333323-=⨯;(1)直接写出第④个等式: ;(2)猜想第n 个等式(用含字母n 的式子表示),并说明这个等式的正确性;(3)利用发现的规律,求123103333++++ 的值.(参考数据:113177147=)【答案】(1)35﹣34=2×34;(2)猜想:第n 个等式为:3n +1﹣3n =2×3n .理由见解析;(3)88572【解析】(1)①2113323-=⨯;②3323323-=⨯;③4333323-=⨯;∴第④个等式:35-34=2×34;故答案为:35-34=2×34;(2)猜想:第n 个等式为:3n +1﹣3n =2×3n .理由如下:∵3n +1﹣3n =3×3n ﹣3n =(3﹣1)×3n =2×3n ,∴3n +1﹣3n =2×3n ;(3)根据发现的规律,有:311﹣310=2×310,∴(32﹣31)+(33﹣32)+(34﹣33)+…+(311﹣310)=2(31+32+33+…+310),∴311﹣31=2(31+32+33+…+310),即31+32+33+ (310)12(311﹣3).∵311=177147,∴31+32+33+…+310=12(177147﹣3)=88572.6.(2020·河北省初三二模)魔术师说将你想到的数进行以下四步操作,我就可以猜到你心里想的数.第一步:心中想一个数,求其平方;第二步:想比这个数小2的数,求其平方;第三步:求其平方的差值;第四步:平方的差值除以4再加1.将结果告诉我,我就能猜中你心里想的数.(1)若你想的数是5,求出你告诉魔术师的结果是多少.(2)聪明的同学们,你觉得魔术师的步骤一定能猜中你心中的数吗?请用代数式计算证明你的结论.解答:魔术师 猜中你心中的数(填“能”或“否”);证明:设心中想的数为n (n 为任意实数)【答案】(1)5;(2)能,证明见解析.【解析】(1)()2255225916--=-=,16415÷+=,告诉魔术师的数是5.故答案为:5(2)能()222222(2)444444n n n n n n n n n --=--+=-+-=-,()4441n n -÷=-,()11n n -+=,∴可以猜中.故答案为:能,证明见解析7.(2020·河北省初三三模)如图,从左向右依次摆放序号分别为1,2,3,…,n 的小桶,其中任意相邻的四个小桶所放置的小球个数之和相等.尝试 求x +y 的值;应用 若n =22,则这些小桶内所放置的小球个数之和是多少?发现 用含k (k 为正整数)的代数式表示装有“4个球”的小桶序号.【答案】尝试:x +y =9;应用:99;发现:装有“4个球”的小桶序号为4k -1.【解析】尝试:根据题意可得6+3+4+5=4+5+x +y ,∴x +y =9;应用:∵6+3+4+5=3+4+5+x ,又∵x +y =9,∴x =6,y =3,∴小桶内所放置的小球数每四个一循环,∵22÷4=5⋯⋯2,∴(6+3+4+5)×5+9=99发现:装有“4个球”的小桶序号分别为3=4×1-1,7=4×2-1,11=4×3-1…,∴装有“4个球”的小桶序号为4k -1.8.(2020·云南省初三学业考试)观察下列等式的规律11111111111141112233445223344555+++=-+-+-+-=-=⨯⨯⨯⨯请用上述等式反映出的规律解决下列问题:(1)请直接写出111111223344520192020++++⋅⋅⋅+⨯⨯⨯⨯+的值为 .(2)化简:()11111122334451n n ++++⋅⋅⋅+⨯⨯⨯⨯⨯+【答案】(1)20192020;(2)1n n +【解析】1111111111223344520192020=-+-+-+-++- 211200=-20192020=故答案为:20192020.(2)()11111122334451n n ++++⋯+⨯⨯⨯⨯⨯+111111111122334451n n =-+-+-+-++-+ 111n =-+ 1n n =+9.(2020·石家庄市第二十八中学初三一模)小丽同学准备化简:(3x 2﹣6x ﹣8)﹣(x 2﹣2x □6),算式中“□”是“+,﹣,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x 2﹣6x ﹣8)﹣(x 2﹣2x ×6);(2)若x 2﹣2x ﹣3=0,求(3x 2﹣6x ﹣8)﹣(x 2﹣2x ﹣6)的值;(3)当x =1时,(3x 2﹣6x ﹣8)﹣(x 2﹣2x □6)的结果是﹣8,请你通过计算说明“□”所代表的运算符号.【答案】(1)2x2+6x﹣8;(2)4;(3)□处应为“﹣”.【解析】(1)(3x2﹣6x﹣8)﹣(x2﹣2x×6)=(3x2﹣6x﹣8)﹣(x2﹣12x)=3x2﹣6x﹣8﹣x2+12x=2x2+6x﹣8;(2)(3x2﹣6x﹣8)﹣(x2﹣2x﹣6)=3x2﹣6x﹣8﹣x2+2x+6=2x2﹣4x﹣2,∵x2﹣2x﹣3=0,∴x2﹣2x=3,∴2x2﹣4x﹣2=2(x2﹣2x)﹣2=6﹣2=4;(3)“□”所代表的运算符号是“﹣”,当x=1时,原式=(3﹣6﹣8)﹣(1﹣2□6),∴﹣11﹣(1+2□6)=﹣8,整理得:1+2□6=﹣3,∴2□6=﹣4∴即□处应为“﹣”.10.(2020·重庆中考真题)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.【答案】(1)312是“好数”,675不是“好数”,理由见解析;(2)611,617,721,723,729,831,941.理由见解析.【解析】(1)∵3,1,2都不为0,且3+1=4,4能被2整除,∴312是“好数”.∵6,7,5都不为0,且6+7=13,13不能被5整除,∴675不是“好数”;(2)设十位数字为x,个位数字为y,则百位数字为(x+5).其中x,y都是正整数,且1≤x≤4,1≤y≤9.十位数字与个位数字的和为:2x+5.当x=1时,2x+5=7,此时y=1或7,“好数”有:611,617当x=2时,2x+5=9,此时y=1或3或9,“好数”有:721,723,729当x=3时,2x+5=11,此时y=1,“好数”有:831当x=4时,2x+5=13,此时y=1,“好数”有:941所以百位数字比十位数字大5的所有“好数”的个数是7.考点5:图形规律探究典例:(2020·山东省初三二模)(问题提出):有同样大小正方形256个,拼成如图1所示⨯的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过的1616多少个小正方形?(问题探究):我们先考虑以下简单的情况:一条直线穿越一个正方形的情况.(如图2)从图中我们可以看出,当一条直线穿过一个小正方形时,这条直线最多与正方形上、下、左、右四条边中的两个边相交,所以当一条直线穿过一个小正方形时,这条直线会与其中某两条边产生两个交点,并且以两个交点为顶点的线段会全部落在小正方形内.这就启发我们:为了求出直线l最多穿过多少个小正方形,我们可以转而去考虑当直线l穿越由小正方形拼成的大正方形时最多会产生多少个交点.然后由交点数去确定有多少根小线段,进而通过线段的根数确定下正方形的个数.⨯正方形的情况(如图3):再让我们来考虑33⨯的正方为了让直线穿越更多的小正方形,我们不妨假设直线l右上方至左下方穿过一个33⨯正方形的情况:从上下来看,这条直线由下至上形,我们从两个方向来分析直线l穿过33最多可穿过上下平行的两条线段;从左右来看,这条直线最多可穿过左右平行的四条线段;⨯的大正方形中的六条线段,从而直线l上会产生6个交点,这6这样直线l最多可穿过33个交点之间的5条线段,每条会落在一个不同的正方形内,因此直线l最多能经过5个小正方形.(问题解决):⨯的一个大的正方形.如果用一(1)有同样大小的小正方形16个,拼成如图4所示的44条直线穿过这个大正方形的话,最多可以穿过_________个小正方形.⨯的一个大的正方形.如果用一条直线穿过(2)有同样大小的小正方形256个,拼成1616这个大正方形的话,最多可以穿过___________个小正方形.⨯的大正方形的话,最多可以穿过___________个小正方形.(3)如果用一条直线穿过n n(问题拓展):⨯的大长方形的话(如图5),最多可以穿过个___________小(4)如果用一条直线穿过23正方形.⨯的大长方形的话(如图6),最多可以穿过___________个小(5)如果用一条直线穿过34正方形.⨯的大长方形的话,最多可以穿过________个小正方形.(6)如果用一条直线穿过m n(类比探究):由二维的平面我们可以联想到三维的立体空间,平面中的正方形中四条边可联想到正方体中的正方形的六个面,类比上面问题解决的方法解决如下问题:(7)如图7有同样大小的小正方体8个,拼成如图所示的222⨯⨯的一个大的正方体.如果用一条直线穿过这个大正方体的话,最多可以穿过___________个小正方体.(8)如果用一条直线穿过n n n ⨯⨯的大正方体的话,最多可以穿过_________个小正方体.【答案】(1)7;(2)31;(3)21n -;(4)4;(5)6 ;(6)1m n +-;(7)4;(8)32n -【解析】(1)再让我们来考虑4×4正方形的情况(如图4):为了让直线穿越更多的小正方形,我们不妨假设直线L 右上方至左下方穿过一个4×4的正方形,我们从两个方向来分析直线l 穿过4×4正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的3条线段;从左右来看,这条直线最多可穿过左右平行的5条线段;这样直线L 最多可穿过4×4的大正方形中的8条线段,从而直线L 上会产生8个交点,这8个交点之间的7条线段,每条会落在一个不同的正方形内,因此直线L 最多能经过7个小正方形.故答案为7(2)我们发现直线穿越1×1正方形时最多经过1个正方形,直线穿越2×2正方形时最多经过3个正方形,直线穿越3×3正方形时最多经过5个正方形,直线穿越4×4正方形时最多经过7个正方形,…直线穿越n×n 正方形时最多经过2n-1个正方形.∴直线穿越10×10正方形时最多经过19个正方形.故答案为19.(3)由(2)可知,有2×16-1=31个正方形,故答案为31.(4)由(2)可知有2n-1个正方形.故答案为2n-1.(5)为了让直线穿越更多的小正方形,我们不妨假设直线L 右上方至左下方穿过一个2×3的正方形,我们从两个方向来分析直线l穿过2×3正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的1条线段;从左右来看,这条直线最多可穿过左右平行的4条线段;这样直线L最多可穿过2×3的大正方形中的5条线段,从而直线L上会产生5个交点,这5个交点之间的4条线段,每条会落在一个不同的正方形内,因此直线L最多能经过4个小正方形,故答案为4.(6)为了让直线穿越更多的小正方形,我们不妨假设直线L右上方至左下方穿过一个3×4的正方形,我们从两个方向来分析直线l穿过3×4正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的2条线段;从左右来看,这条直线最多可穿过左右平行的5条线段;这样直线L最多可穿过4×4的大正方形中的7条线段,从而直线L上会产生7个交点,这7个交点之间的6条线段,每条会落在一个不同的正方形内,因此直线L最多能经过6个小正方形.故答案为6.(7)为了让直线穿越更多的小正方形,我们不妨假设直线L右上方至左下方穿过一个m×n 的正方形,我们从两个方向来分析直线l穿过m×n正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的(m-1)条线段;从左右来看,这条直线最多可穿过左右平行的(n+1)条线段;这样直线L最多可穿过4×4的大正方形中的(m+n)条线段,从而直线L上会产生(m+n)个交点,这m+n个交点之间的(m+n-1)条线段,每条会落在一个不同的正方形内,因此直线L最多能经过(m+n-1)个小正方形,故答案为(m+n-1).(8)用类似的方法可以得到:用一条直线穿过1×1×1正方体的话,最多可以穿过1个小正方体,用一条直线穿过,2×2×2正方体的话,最多可以穿过4个小正方体,用一条直线穿过,3×3×3正方体的话,最多可以穿过7个小正方体,用一条直线穿过4×4×4正方体的话,最多可以穿过10个小正方体,…用一条直线穿过,n×n×n正方体的话,最多可以穿过(3n-2)个小正方体.故答案为4.(9)由(8)可知有(3n-2)个正方形,故答案为(3n-2).方法或规律点拨本题考查线线相交得点、以及正方形、立方体的有关知识,是个探究题目,学会从简单到复杂的推理方法,找到规律即可解决问题,本题难度比较大,从穿过的线段入手,找到问题的突破口,这个方法值得在以后的学习中应用.巩固练习1.(2020·安徽省初三二模)(1)观察下列图形与等式的关系,并填空:第一个图形:;第二个图形:;第一个等式:9+4=13;第二个等式:13+8=21;第三个图形:;……;第三个等式: + = ;……;(2)根据以上图形与等式的关系,请你猜出第n个等式(用含有n的代数式表示),并证明.【答案】(1)17,12,29;(2)(4n+5)+4n=8n+5,证明见解析【解析】解:(1)观察图形的变化可知:第一个图形:9+4=13,即4×1+5+4=13=8×1+5,第二个图形:13+8=21,即4×2+5+4×2=21=8×2+5,第三个图形:17+12=29,即4×3+5+4×3=29=8×3+5,…发现规律:第n个等式为:(4n+5)+4n=8n+5;故答案为:17,12,29;(2)由(1)发现的规律:所以第n个等式为:(4n+5)+4n=8n+5;证明:左边=4n+5+4n=8n+5=右边.所以等式成立.2.(2020·河北省初三其他)如图,第①个多边形由正三角形“扩展”而来,边数记为。
人教版七年级上册数学第二章检测卷(附答案)
人教版七年级上册数学第二章检测卷(附答案)一、单选题(共12题;共24分)1.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为=,现已知x1=,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2020的值为()A. B. ﹣2 C. ﹣ D.2.将一组数、、3、2 、、…、3 按下面的方式进行排列:,,3,2 ,;3 、,2 ,3 、;……若2 的位置记为(1,4),2 的位置记为(2,3),则这组数中最大的无理数的位置记为( )。
A. (5,2)B. (5,3)C. (6,2)D. (6,5)3.已知:,,则()A. B. C. D. 以上答案全不对4.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,39=19683,……它们的个位数字有什么规律,用你发现的规律直接写出92019的个位数字是()A. 3B. 9C. 7D. 15.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点,,,,…那么点A2020的坐标为()A. (1010,0)B. (505,0)C. (1010,1)D. (1011,1)6.如图,直角坐标平面xoy内,动点P按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点P第2018次运动到点( )A. (2018,0)B. (2017,0)C. (2018,1)D. (2017,-2)7.如图,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE, CE,如图:在射线AD上取点F 连接BF, CF,如图,依此规律,第n个图形中全等三角形的对数是()A. NB. 2n-1C.D. 3(n+1)8.观察下列各式及其展开式=+2ab+=+3 b+3a +=+4 b+6 +4a +=+5 b+10 +10 +5a +……请你猜想的展开式中含项的系数是()A. 224B. 180C. 112D. 489.观察图中菱形四个顶点所标的数字规律,可知数2019应标在()A. 第504个菱形的左边B. 第505个菱形的左边C. 第504个菱形的上边D. 第505个菱形的下边10.若A=3x2+5x+2,B=4x2+5x+2,则A与B的大小关系是()A. A>BB. A<BC. A≥BD. A≤B11.已知单项式的次数是,则的值是()A. B. C. D.12.下列式子中是单项式的个数为( )① ,② ,③ ,④ ,⑤ ,⑥ ,⑦ ,⑧ ,⑨ ,⑩A. 5个B. 6个C. 7个D. 8个二、填空题(共5题;共10分)13.若-xy3与2x m-2y n+5是同类项,则mn=________.14.多项式是关于的二次三项式,则________。
初中数学人教版七年级上册 第二章 有理数的运算单元测试(含简单答案)
第二章 有理数的运算一、单选题1.天宫空间站每天大约要绕地球15周半,大约每90分钟,航天员就要经历一次日出与日落,经计算,空间站绕地球一周的路程大约为43000千米.将数据43000可用科学记数法表示为( )A .43×103B .4.3×104C .4.3×105D .0.43×1052.把算式(−5)−(−4)+(−7)−(+2)写成省略括号的形式,结果正确的是( )A .−5−4−7+2B .−5+4−7+2C .−5+4−7−2D .−5−4+7−23.下列各数中,结果相等的是( )A .23和32B .(−2)3和−23C .(−3)2和−32D .|−2|3和(−2)34.某市一天的最高气温为2°C ,最低气温为−9°C ,那么这天的最高气温比最低气温高( )A .−11°CB .−7°C C .11°CD .7°C5.计算|−2|−23×(−3)的结果为( )A .–26B .–22C .26D .226.下列算式:①(−2)+(−3)=−5; ②(−2)×(−3)=−6; ③−32−(−3)2=0; ④−27÷13×3=−27,其中正确的有( )A .0个B .1个C .2个D .3个7.绝对值不大于2的所有负整数的和为( )A .0B .-1C .-2D .-38.若−1<a <0,则对a 、−a 、a 2、a 3排列正确的是( )A .a <a 3<a 2<−aB .a <−a <a 2<a 3C .a <a 3<−a <a 2D .−a <a <a 2<a 39.如果a ,b 满足a +b >0且ab <0,则下列各式中正确的是( )A .a >0,b <0B .a <0,b >0C .a >0,b <0且|a |<|b |D .a ,b 异号,且正数的绝对值较大10.若|a |=2,|b |=23,且ab <0,则a b =( )A .3B .−2C .−3D .3或−3二、填空题11.计算|−18|+6= .12.比-3.5大的所有负整数的和为 .13.点A ,B ,C 在同一条数轴上,其中点A ,B 表示的数分别为−3,1,若BC =2,则AC 等于 .14.若a 、b 互为相反数,c 、d 互为倒数,|x |=3,则式子−2(a +b )+cd +x 的值为 .15.若|a +3|+(b ﹣1)2=0,则a +b = .16.规定“*”是一种运算符号,且a *b =ab ﹣3a ,则计算(﹣3)*2= .17.小明和小聪坐公交从学校去体育馆参加运动会,他们从学校门口的公交车站上车,上车后发现包括他们俩共13人,经过2个站点小明观察到上下车情况如下(记上车为正,下车为负):A (+4,-2),B (+6,-5).经过A ,B 这两站点后,车上还有 人.18.有一个数值转换器,其工作原理如图所示,若输入-2,则输出的结果是 .三、解答题19.计算:(1)−20−(−18); (2)2×(−3)+8÷(−2);(3)−22+[1−(−3)2]×|−14|; (4)(−24)×(0.25−38)+(−1)2023.20.“十一”黄金周期间,某超市家电部大力促销,收银情况如下表,下表为当天与前一天的营业额的涨跌情况(上涨为正,下跌为负,单位:万元).已知9月30日的营业额为26万元:10月1日10月2日10月3日10月4日10月5日10月6日10月7日+4+3+20−1−3−5(1)家电部黄金周内哪天收入最高,为多少万元?哪天收入最低,为多少万元?(2)家电部黄金周内平均每天的营业额是多少万元?21.小明骑摩托车从咖啡店出发,在东西向的大道上送咖啡.如果规定向东行驶为正,向西行驶为负,一天中小明的五次行驶记录如下(单位:km):−7,+8,−4,+6,−5.(1)求第五次咖啡送完时小明在咖啡店的什么方向?距离多少千米?(2)若摩托车每千米耗油量为0.2升,小明从出发送第一次咖啡到送完五次咖啡后返回咖啡店共耗油多少升?22.外卖送餐为我们的生活带来了许多便利,某学习小组调查了一名外卖小哥一周每天的送餐情况,规定送餐量超过40单(送一次外卖称为一单)的部分记为“+”,低于40单的部分记为“−”,下表是该外卖小哥一周的送餐量:星期一二三四五六日送餐量/单−3+4−5+14−8+7+12求该外卖小哥这一周平均每天送餐多少单.23.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作−10.上星期图书馆借出图书记录如下:星期星期一星期二星期三星期四星期五记录数值+8−7+6+12小明统计时不小心把星期四的数据滴上墨水了,请你根据以上信息,回答下列问题:(1)上星期三借出图书多少册?(2)上星期二比上星期三少借出图书多少册?(3)上星期五比上星期四多借出图书15册,被污染的数据是多少?(4)上星期图书馆一共借出图书多少册?24.阅读材料:求1+2+22+…+22023+22024的值.解:设S=1+2+22+…+22023+22024将等式两边同时乘以2,得2S=2+22+23+…+22024+22025将下式减去上式,得S=22025−1即1+2+22+…+22023+22024=22025−1请你仿照此法计算:(1)1+3+32+33+⋯+310(2)15+152+153+⋯+1519参考答案:1.B2.C3.B4.C5.C6.B7.D8.A9.D10.C11.2412.-613.6或214.4或−215.﹣2.16.317.1618.-219.(1)-2;(2)-10;(3)-6;(4)2.20.(1)家电部黄金周内10月3日、4日收入最高,为35万元;10月7日收入最低,为26万元(2)家电部黄金周内平均每天的营业额是32万元21.(1)西方,2km(2)6.4升22.该外卖小哥这一周平均每天送餐43单23.(1)56册(2)13册(3)−3(4)266册24.(1)311−12(2)519−14×519。
人教版七年级数学上册第二章测试卷及答案解析【含详细知识点】
人教版七年级数学上册第二章测试卷及答案解析【含详细知识点】第二章测试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.下列式子中,是单项式的是( ) A.x +y 2 B .-12x 3yz 2C.5xD .x -y 2.下列各式计算正确的是( )A .3x +x =3x 2B .-2a +5b =3abC .4m 2n +2mn 2=6mnD .3ab 2-5b 2a =-2ab 23.按某种标准,多项式x 3-3x 与ab 2+4属于同一类,则下列符合此类标准的多项式应是( )A .x 3+y 2B .ab 2+3c -2C .a 2+6xD .x 2y4.如图,用式子表示三角尺的面积为( )A .ab -r 2 B.12ab -r 2 C.12ab -πr 2 D .ab5.已知P =-2a -1,Q =a +1且2P -Q =0,则a 的值为( )A .2B .1C .-0.6D .-16.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形……依此规律,第十个图形中三角形的个数是( )A .50个B .52个C .54个D .56个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式-2x 2y5的系数是________,次数是________.8.化简:(4a -2)-3(-1+5a )=________.9.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.10.已知多项式(3-b )x 5+x a +x -b 是关于x 的二次三项式,则a +b 2的值为________. 11.有一组多项式:a +b 2,a 2-b 4,a 3+b 6,a 4-b 8,…,请观察它们的构成规律,用你发现的规律写出第8个多项式是____________,第n 个多项式是____________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)-3m +2m -5m ;(2)(2a 2-1+2a )-(a -1+a 2).14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.有理数a ,b ,c 在数轴上的位置如图所示,化简:|b -a |-|c -b |+|a +b |.19.已知A =2x 2+xy +3y -1,B =x 2-xy .(1)若(x +2)2+|y -3|=0,求A -2B 的值;(2)若A -2B 的值与y 的取值无关,求x 的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a 元,学生每人b 元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a 、b 的式子表示)?并计算当a =300,b =200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)(2)(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案与解析1.B 2.D 3.A 4.C 5.C 6.D 7.-25 38.-11a +1 9.111a +80 10.1111.a 8-b 16 a n +(-1)n +1b 2n12.-4 解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,∴数据从左到右依次为-4、6、b 、-4、6、b 、-4、6、-2.由题意易得第9个数与第6个数相同,即b =-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.13.解:(1)原式=-6m .(3分)(2)原式=2a 2-1+2a -a +1-a 2=a 2+a .(6分)14.解:2(x -3y )-(2y -x )=2x -6y -2y +x =3x -8y .(6分)15.解:原式=-9y +6x 2+3y -2x 2=4x 2-6y .(3分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由数轴可知,c <b <0<a ,|a |>|b |,∴b -a <0,c -b <0,a +b >0,(3分)∴原式=-(b -a )+(c -b )+(a +b )=-b +a +c -b +a +b =2a -b +c .(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分)21.解:(1)l =2πr +2a .(3分) (2)S =πr 2+2ar .(6分)(3)当a =8m ,r =5m 时,l =2π×5+2×8=10π+16≈47.4(m),S =π×52+2×8×5=25π+80≈158.5(m 2).(9分)22.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分) (2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(-4)=-8.(9分)23.解:(1)11 14 32(3分)(2)第n 个“T”字形图案共有棋子(3n +2)个.(6分)(3)当n =20时,3n +2=3×20+2=62(个).即第20个“T”字形图案共有棋子62个.(9分)(4)这20个数据是有规律的,第1个与第20个数据的和、第2个与第19个数据的和、第3个与第18个数据的和……都是67,共有10个67.所以前20个“T”字形图案中,棋子的总个数为67×10=670(个).(12分)第二章 整式的加减知识点详细梳理一.用字母表示数(代数初步知识)1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式;用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc 。
人教版数学七年级上册。第二章测试题含答案
人教版数学七年级上册。
第二章测试题含答案人教版数学七年级上册第二章测试题含答案2.1 整式一.选择题1.下列说法正确的是(B)。
A。
是单项式B。
x2+2x-1的常数项为1C。
的系数是2D。
xy的次数是2次2.在下面四个式子中,为单项式的是(A)。
A。
y=x2B。
C。
2D。
23.x3+x2(b+1)+1是关于x的二次多项式,则a,b的值可以是(C)。
A。
B。
C。
2,-1D。
4.下列说法中,正确的为(D)。
A。
单项式-的系数是-2,次数是3B。
单项式a的系数是,次数是1C。
是二次单项式D。
单项式-的系数是-,次数是35.多项式有(B)个。
A。
4B。
3C。
2D。
16.多项式2x5+4xy3-5x2-1的次数和常数项分别是(B)。
A。
5,-1B。
4,-1C。
10,-1D。
4,17.关于整式的概念,下列说法正确的是(B)。
A。
的系数是B。
32x3y的次数是6C。
的常数项是D。
-x2y+xy-7是5次三项式8.下列说法正确的是(D)。
A。
单项式的系数是B。
m的系数和次数都是1C。
m+n+1是一次单项式D。
多项式2m3+3m2-4的项数是49.下列式子:x2+2,+4,5x,中,整式的个数是(C)。
A。
3B。
4C。
5D。
610.下列说法正确的是(①,②,④)。
①-的相反数是-3;②a3b的次数是3;③多项式-5x+6x2-1是二次三项式;④-6.1是负分数;⑤的系数是-。
二.填空题11.多项式2x+3x2y-4的次数是3,次数最高的项是3x2y2,常数项是-4.12.若x2y3-πx4yn+xy2是关于x,y的六次多项式,则正整数n的值为4.13.同时符合下列条件:①同时含有字母a,b;②常数项是-1,且最高次项的系数是2的一个4次2项式,请你写出满足以上条件的一个整式。
答案:2a2b-1.14.已知(b-3)x2y|b|+(a+2)是关于x,y的五次单项式,a2-3ab+b2的值为-1.15.把多项式2x3y-4y2x+5x2-1重新排列:则按x降幂排列:5x2-4y2x+2x3y-1.三.解答题16.若关于x,y的多项式3x2-nxmy-x是一个三次三项式,且最高次项的系数是-3,求m-n的值。
人教版七年级上册数学第二章有理数的运算--计算题训练(含解析)
(3)解:原式 .
4.(1) ;
(2) ;
(3) ;
(4) ;
(5) ;
(6) .
【分析】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.
利用有理数的加减运算的法则进行运算即可;
先算除法,乘法,再算加减即可;
先算乘方,绝对值,再算乘法,最后算加减即可;
先算乘方,再算括号里的运算,除法转为乘法,接着算乘法,最后算加减即可;
(1)根据乘法交换律、结合律和有理数的乘法运算法则进行计算即可得解;
(2)把小数化为分数,然后根据有理数的乘法运算法则进行计算即可得解;
(3)逆运用乘法分配律进行计算即可得解;
(4)利用乘法分配律进行计算即可得解.
【详解】(1)解:原式
;
(2)解:原式
;
(3)解:原式
;
(4)解:原式
.
3.(1)
(2)
先算乘方,乘法的分配律,再算加减即可;
先算乘方,除法转为乘法,再算乘法,最后算加减即可.
【详解】(1)解:
;
(2)解:
;
(3)解:
;
(4)解:
;
(5)解:
;
(6)解:
.
5.(1)
(2)1
【分析】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.
(1)利用有理数的加减运算的法则进行运算即可;
熟练掌握运算法则及性质是解题的关键.
【详解】(1)解:
;
(2)解:
;
(3)解:
;
(4)解:
.
9.(1)
(2)18
(3)
(4)
【分析】本题考查了有理数的加、减、乘法运算,熟练掌握运算法则是解题的关键.
人教版七年级数学上册第二章综合测试卷含答案
人教版七年级数学上册第二章综合测试卷一、选择题(每题3分,共30分) 1.[2023·陕西]计算:3-5=( ) A.2B.-2C.8D.-82.[真实情境题·2024·苏州工业园区一模·体育赛事]2024苏州马拉松暨大运河马拉松系列赛(苏州站)于4月14日成功举行,本次赛事吸引了来自世界各地的约25 000名选手同台竞技,数据25 000用科学记数法可以表示为( ) A.2.5×103B.0.25×105C.2.5×104D.25×1033.下列各组数中,互为相反数的是( ) A.-6与-16B.(-2)2与4C.-24与(-4)2D.8与|-8|4.[2023·西宁]要使算式-3□1的值最小,则□中填入的运算符号是( ) A.+B.-C.×D.÷5.[2024·衢州衢江区期中]算式(34+712-59)×(-36)=34×(-36)+712×(-36)-59×(-36)利用了( )A.乘法交换律B.乘法结合律C.加法交换律D.分配律6.有理数a ,b 在数轴上的对应点如图,则下列结论正确的是( )(第6题)A.ab >0B.ba <0C.a +b <0D.b -a <07.杨梅开始采摘啦!每筐杨梅以5 kg 为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是( )(第7题)A.19.7kgB.19.9kgC.20.1kgD.20.3kg8.下列等式中不成立的是( ) A.-(-12)-|-13|=16B.(-12)÷(-115)=(-12)×(-15) C.14÷1.2÷23=14×56×32D.(-34)÷0.25=(-34)×149.[母题 教材P64活动二] 计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(101)2表示二进制数,将它转换成十进制形式是:1×22+0×21+1×20=5,那么将二进制数(10101)2转换成十进制数是( ) A.41 B.21 C.13D.1110.若|x |=11,|y |=14,|z |=20,且|x +y |=x +y ,|y +z |=-(y +z ),则x +y -z =( ) A.23 B.45C.45或23D.-45或-23二、填空题(每题3分,共18分)11.[2024·西安高新区模拟]如图,数轴上点A 所表示的数的倒数为 .12.[新考向·2024·温州龙湾区期中·数学文化]魏晋时期,伟大的数学家刘徽通过“割圆术”得到圆周率的近似值为3.141 6,则数据3.141 6精确到百分位是.13.若|x-2|+(y+1)2=0,则x-2y=.14.[新视角·结论开放题]如图,5张卡片上分别写了5个不同的整数,若同时抽取3张,这3张卡片上各数之积最小为-48,则卡片上a表示的数为.(写出一个即可)-40a2 615.[新考向·数学文化]《九章算术》中有这样一个问题:“今有蒲生一日,长三尺.蒲生日自半.”其意思是“有蒲这种植物,蒲第一日长了3尺,以后蒲每日生长的长度是前一日的一半”.则第二十日蒲生长的长度为尺.16.下列说法:①2 024个不为0的有理数相乘,其中负数有2 005个,那么所得的积为负数;②若m满足|m|+m=0,则m<0;③若三个有理数a,b,c满足|ab|ab +|ac|ac+|bc|bc=-1,则|a|a+|b|b +|c|c=-1.其中正确的是.(填序号) 三、解答题(共72分)17.(6分)计算:(1)2×(-3÷19)-4×(-3);(2)(-2)3+(-3)×[(-4)2+2].18.(8分)[母题 教材P40例2] 气象统计资料表明:山上的高度每升高100 m ,平均气温下降0.6 ℃.已知某座山山脚的温度是8 ℃. (1)若这座山的高度是2 km ,求山顶的温度;(2)小明在上山过程中看到温度计上的读数是-1 ℃,此时他距山脚有多高?19.(10分)认真阅读材料,解决问题.计算:120÷(14-15+12). 我们知道除法没有分配律,在遇到类似的除法的混合运算时,计算会很困难,在学完倒数时,小明对这种除法的混合运算有了自己的想法:先算这个式子的倒数,再利用倒数的意义得出结果,下面是小明的计算过程:解:原式的倒数为(14-15+12)÷120=(14-15+12)×20=14×20-15×20+12×20=5-4+10=11.故原式=111.请你根据对小明的方法的理解,计算(-124)÷(14-512+38).20.(10分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,-,×,÷中的某一个(可重复),然后计算结果. (1)计算:1+2-6-9;(2)若1÷2×6□9=-6,请推算□内的符号;(3)在“1□2□6-9”的□内填入符号,使计算所得的数最小,求出这个最小数,并说明理由.21.(12分)粮库6天粮食进出库的吨数如下(“+”表示进库,“-”表示出库):+36,-35,-10,+32,-48,-10. (1)经过这6天,粮库里的粮食是增多了还是减少了?(2)经过这6天,粮库管理员结算时发现粮库里还存有390吨粮食,那么6天前粮库里存有粮食多少吨?(3)如果进出的装卸费都是每吨8元,那么这6天要付装卸费多少元?22.(12分)[新视角 规律探究题]观察下列各式:第1个等式:-1×12=-1+12=-12;第2个等式:-12×13=-12+13=-16;第3个等式:-13×14=-13+14=-112;…(1)根据上述规律写出第5个等式: ; (2)第n 个等式: ;(用含n 的式子表示)(3)计算:(-1×12)+(-12×13)+(-13×14)+…+(-12 024×12 025).23.(14分) [新视角 新定义题]规定:若干个相同的有理数(均不等于0)的除法运算叫作除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n 个a 相除记作,读作“a 的圈n 次方”.请你阅读以上材料并完成下列问题: (1)直接写出计算结果:2③=,(-13)④= ;(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算能否转化为乘方运算呢?我们可以进行下列计算: 如:2④=2÷2÷2÷2=2×12×12×12=(12)2;(-3)⑤=(-3)÷(-3)÷(-3)÷(-3)÷(-3)=(-3)×(-13)×(-13)×(-13)×(-13)=(-13)3.仔细思考上述计算过程,将下列运算结果直接写成幂的形式: 5⑤= ,(-2)⑥= ;(3)想一想,将一个非零有理数a 的圈n 次方写成幂的形式为a n= ;(4)算一算:122÷(-13)④×(-2)⑤.答案一、1. B 2. C 3. C4. B 【点拨】因为-3+1=-2,-3-1=-4,-3×1=-3,-3÷1=-3,-4<-3<-2,所以□中填入的运算符号是“-”.5. D6. B 【点拨】由数轴可知b>1,-1<a<0,|a|<|b|,所以ab<0,b<0,a+b>0,b-a>0.a7. C 【点拨】这4筐杨梅的总质量是(-0.1-0.3+0.2+0.3)+5×4=20.1(kg).8. D9. B 【点拨】1×24+0×23+1×22+0×21+1×20=16+0+4+0+1=21.10. C 【点拨】因为|x|=11,|y|=14,|z|=20,所以x=±11,y=±14,z=±20.因为|x+y|=x+y,|y+z|=-(y+z),所以x+y≥0,y+z≤0.所以x=11,y=14,z=-20或x=-11,y=14,z=-20.当x=11,y=14,z=-20时,x+y-z=11+14-(-20)=45,当x=-11,y=14,z=-20时,x+y-z=-11+14-(-20)=23,所以x+y-z=45或23.12.3.1413.4二、11.-1214.1(答案不唯一) 【点拨】因为5张卡片上分别写了5个不同的整数,所以a≠-4,0,2,6.因为若同时抽取3张,这3张卡片上各数之积最小为-48,且2×6×(-4)=-48,所以当3张卡片上各数之积最小时,抽取的卡片是-4,2,6, 所以a 可能是1,-1,-2,-3. 15.3219 【点拨】根据题意,第一日长了3尺,第二日长了(3×12)尺,第三日长了3×12×12=3×122(尺),…,所以第二十日蒲生长的长度为3×12×12×…×12=3×1219=3219(尺).16.① 【点拨】①2 024个不为0的有理数相乘,其中负数有2 005个,那么所得的积为负数,故原说法正确;②若m 满足|m |+m =0,则m ≤0,故原说法错误; ③若三个有理数a ,b ,c 满足|ab |ab+|ac |ac+|bc |bc=-1,则a ,b ,c 中有2个为负数或1个为负数, 当a ,b ,c 中有2个为负数时,|a |a+|b |b+|c |c=-1;当a ,b ,c 中有1个为负数时,|a |a+|b |b+|c |c=1,故原说法错误.三、17.【解】(1)原式=2×(-27)-(-12)=-54+12 =-42.(2)原式=-8+(-3)×(16+2) =-8+(-3)×18 =-8-54 =-62.18.【解】(1)2 km =2 000 m , 8-2 000÷100×0.6=8-12=-4(℃).所以山顶的温度为-4 ℃.(2)[8-(-1)]÷0.6×100=9÷0.6×100=1 500(m). 所以此时他距山脚有1 500 m 高. 19.【解】原式的倒数为(14-512+38)÷(-124)=(14-512+38)×(-24)=14×(-24)-512×(-24)+38×(-24)=-6+10-9=-5,故原式=-15.20.【解】(1)1+2-6-9=3-6-9=-3-9=-12. (2)因为1÷2×6□9=-6, 所以1×12×6□9=-6,所以3□9=-6,所以□内的符号是“-”. (3)这个最小数是-20.理由:在“1□2□6-9”的□内填入符号,使计算所得的数最小, 所以1□2□6的结果应最小. 1□2□6的最小值是1-2×6=-11. 所以1□2□6-9的最小值是-11-9=-20. 所以这个最小数是-20.21.【解】(1)36-35-10+32-48-10=-35(吨), 答:经过这6天,粮库里的粮食是减少了. (2)390-(-35)=390+35=425(吨), 答:6天前粮库里存有粮食425吨.(3)(36+35+10+32+48+10)×8=171×8=1 368(元). 答:这6天要付装卸费1 368元. 22.【解】(1)-15×16=-15+16=-130(2)-1n ×1n+1=-1n+1n+1=-1n (n+1)(3)由(2)知,第n 个等式为-1n ×1n+1=-1n +1n+1=-1n (n+1);则(-1×12)+(-12×13)+(-13×14)+…+(-12 024×12 025) =(-1+12)+(-12+13)+(-13+14)+…+(-12 024+12 025) =-1+12-12+13-13+14+…-12 024+12 025=-1+12 025=-2 0242 025.23.【解】(1)12;9 (2)(15)3;(12)4(3)(1a )n -2(4)由题意可得122÷(-13)④×(-2)⑤=122÷(-3)2×(-12)3=-2.。
初中七年级数学上册第二章《整式的加减》测试卷3套含答案
A. 2(n 2) 3
B. 2(n 1)
C. 2n 3
D. 2(n 2)
6. 3x2 4x 2 2x2 x ,括号内应填( )
A. 5x2 3x 2
B. x2 3x
C. x2 3x 2
D. x2 3x 2
7.(衢州中考)如图,边长为(m 3)的正方形纸片剪出一个边长为 m 的正方形之后剩余部分又剪拼成一个
D. (x 1) x2 2 x 1 x2 2
7.若多项式 mx2 3 x 7 2 x2 4 的化简结果不含二次项,则 m 的值为( )
A.0
B.1
C. 2
D.2
8.某商品打七折后价格为 a 元,则原价为( )
A. a 元
B. 10 a 7
C. 30%a
9.若单项式 3a b m2 2 与 1 a3bn 的和仍是单项式,则 mn 的值是(
a
2
”错抄成
“ a 2 ”,乙同学没抄错题,但他们做出的结果一样,你知道是怎么回事吗?
25.我国出租车收费标准因地而异.甲市起步价为 6 元,3 千米后每千米收费为 1.5 元;乙市起步价为 10 元, 3 千米后每千米收费为 1.2 元. (1)试问在甲、乙两市乘坐出租车 s(s>3) 千米的费用差是多少元?
18.【答案】14 3n 1
三、
19.【答案】解:原式 3a2b 1 ab2 3 ab2 a2b 2a2b 1 ab2 .
4
4
2
(2)原式 3a2 b2 3a2 6b2 5b2
20.【答案】解: x3 2x2 3x 1 2x2 3x 2 x3 2x2 3x 1 2x2 3x 2 x3 3 .
24.【答案】解:原式 3a3b3 1 a2b b 4a3b3 1 a2b b2 a3b3 1 a2b 2b2 3 b2 b 3,可知次多
人教版数学七年级上册第二单元测试试卷(含答案)
人教版数学7年级上册第2单元·时间:120分钟 满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)下列代数式中,不是单项式的是( )A .a 2B .2aC .a 2D .a +22.(3分)在下列单项式23xy 2,13πrh ,5x ,1中,次数是0的是( )A .23xy 2B .13πrh C .5x D .13.(3分)多项式12x 6y 2―2x 3y 4+3的次数和项数分别为( )A .7,2B .8,3C .8,2D .7,34.(3分)多项式x 2﹣2x 2y +3y 2各项系数和是( )A .1B .2C .5D .65.(3分)下列计算正确的是( )A .2ab ﹣ab =abB .2ab +ab =2a 2b 2C .4a 3b 2﹣2a =2a 2bD .﹣2ab 2﹣a 2b =﹣3a 2b 26.(3分)对于式子a bc +b ca+c ab 的描述,正确的是( )A .该代数式的值必大于0B .该代数式的值必小于0C .该代数式的值可能为0D .该代数式的值不能为07.(3分)若3x ﹣2y ﹣7=0,则6x ﹣4y ﹣6的值为( )A .20B .8C .﹣8D .﹣208.(3分)设(x ﹣1)3=ax 3+bx 2+cx +d ,则a ﹣b +c ﹣d 的值为( )A .2B .8C .﹣2D .﹣89.(3分)下列添括号正确的是( )A .﹣b ﹣c =﹣(b ﹣c )B .﹣2x +6y =﹣2(x ﹣6y )C .a ﹣b =+(a ﹣b )D .x ﹣y ﹣1=x ﹣(y ﹣1)10.(3分)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A.8x元B.10(100﹣x)元C.8(100﹣x)元D.(100﹣8x)元二、填空题(共5小题,满分15分,每小题3分)11.(3分)单项式―34πx2y的系数是 .12.(3分)若13x2y a+3与0.4x1﹣b y4是同类项,则a= ,b= .13.(3分)在春季绿化活动中,榕榕栽种了一棵小树,栽种后测得树高约2.1米,预估今后每年长0.3米,则n年后的树高为 米.14.(3分)已知两个单项式2x3y m与﹣2x n y2的和为0,则m+n的值是 .15.(3分)已知有理数x、y满足|x﹣3|+(2y+4)2=0,则代数式x+y的值为 .三、解答题(共8小题,满分75分)16.(9分)先化简,再求值:(6a2﹣2ab)﹣2(3a2+4ab),其中a=1,b=﹣2.17.(9分)已知x=12,求(2x2―12+3x)―4(x―x2+12)的值.18.(9分)已知a2﹣2a+1=0,求代数式a(a﹣4)+(a+1)(a﹣1)+1的值.19.(9分)下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.例:先去括号,再合并同类项:m(A)﹣6(m+1).解:m(A)﹣6(m+1)=m2+6m﹣6m﹣6= .20.(9分)某演习场中有南北两个演习区,南演习区有一个长方形方队,方队每排有(3a﹣b)名队员,共有(3a+b)排;北演习区有一个正方形方队,方队每排有(a+b)名队员,共有(a+b)排,其中a>b>0.(1)南演习区队员比北演习区多几名?(2)当a=6,b=2时,演习场上共有多少名队员?21.(10分)已知A=x3﹣x2y﹣y2(x﹣y).(1)当x=y时,求A的值.(2)当x>0,y>0,且x≠y时,试说明A的值是正数.22.(10分)近日,教育部正式印发《义务教育课程方案》,将劳动从原来的综合实践活动课程中完全独立出来,并在今年9月份开学开始正式施行.某学校率先行动,在校园开辟了劳动教育基地,培养学生劳动品质.已知该劳动教育基地有一块长方形和一块正方形实验田,长方形实验田每排种植(3a﹣b)株豌豆幼苗,种植了(3a+b)排,正方形实验田每排种植(a+b)株豌豆幼苗,种植了(a+b)排,其中a>b>0.(1)该劳动教育基地这两块实验田一共种植了多少株豌豆幼苗?(用含a、b的代数式表示并化简)(2)当a=5,b=2时,求该劳动教育基地这两块实验田一共种植了多少株豌豆幼苗?23.(10分)已知:整式A=(2x﹣3)+(3x+5).(1)化简整式A;(2)若2A+B=5x+6,①求整式B;②在“A□B”的“□”内,填入“+,﹣,×,÷”中的一个运算符号,经过计算发现,结果是不含一次项的整式,请你写出一个符合要求的算式,并计算出结果.参考答案一、选择题(共10小题,满分30分,每小题3分)1.D;2.D;3.B;4.B;5.A;6.D;7.B;8.B;9.C;10.C;二、填空题(共5小题,满分15分,每小题3分)11.―3 4π12.1;﹣113.0.3n+2.114.515.1;三、解答题(共8小题,满分75分)16.解:(6a2﹣2ab)﹣2(3a2+4ab)=6a2﹣2ab﹣6a2﹣8ab=﹣10ab.当a=1,b=﹣2时,原式=﹣10×1×(﹣2)=20.17.解:原式=2x2―12+3x―4x+4x2―2=6x2―x―5 2;∵x=1 2;∴6x2―x―52=6×14―12―52=―32.18.解:a(a﹣4)+(a+1)(a﹣1)+1=a2﹣4a+a2﹣1+1=2a2﹣4a=2(a2﹣2a),∵a2﹣2a+1=0,∴a2﹣2a=﹣1,∴原式=2×(﹣1)=﹣2.19.解:由题知,m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6,∵m2+6m=m(m+6),∴A为:m+6,故答案为:m2﹣6.20.解:(1)根据题意得:(3a﹣b)(3a+b)﹣(a+b)2=9a2﹣b2﹣a2﹣2ab﹣b2=8a2﹣2ab﹣2b2,答:南演习区队员比北演习区多(8a2﹣2ab﹣2b2)名;(2)(3a﹣b)(3a+b)+(a+b)2=9a2﹣b2+a2+2ab+b2=10a2+2ab,当a=6,b=2时,10a2+2ab=10×62+2×6×2=10×36+24=360+24=384,答:演习场上共有384名队员.21.解:(1)将x=y代入A=x3﹣x2y﹣y2(x﹣y)中得:A=x3﹣x2•x﹣x2(x﹣x)=0,则A的值为0;(2)A=x3﹣x2y﹣y2(x﹣y)=x2(x﹣y)﹣y2(x﹣y)=(x﹣y)(x2﹣y2)=(x﹣y)(x﹣y)(x+y)=(x﹣y)2(x+y);∵x>0,y>0,且x≠y,∴x+y>0,(x﹣y)2≠0,∴A的值是正数.22.解:(1)由题意得,(3a﹣b)(3a+b)+(a+b)2=9a2﹣b2+a2+2ab+b2=10a2+2ab.(2)当a=5,b=2时,原式=10×52+2×5×2=270.答:该劳动教育基地这两块实验田一共种植了270株豌豆幼苗.23.解:(1)A=(2x﹣3)+(3x+5)=2x﹣3+3x+5=5x+2;(2)①∵2A+B=5x+6,∴B=5x+6﹣2A=(5x+6)﹣2×(5x+2)=5x+6﹣10x﹣4=﹣5x+2;②∵A+B=(5x+2)+(﹣5x+2)=4,是不含一次项的整式,A﹣B=(5x+2)﹣(﹣5x+2)=10x,是含有一次项的整式,A×B=(5x+2)(﹣5x+2)=4﹣25x2,是不含一次项的整式,A÷B=(5x+2)÷(﹣5x+2)=―5x25x2是分式,不是整式,所以A和B相加或相乘时不含一次项,结果分别是:4和4﹣25x2.。
人教版七年级数学上册《第二章有理数的运算》单元测试卷-附答案
人教版七年级数学上册《第二章有理数的运算》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.根据有关数据,目前全球稀土资源储量为1.2亿吨,而中国储量为4400万吨,居世界第一位,请用科学记数法表示44000000为( )A .0.04×109B .0.04×107C .4.4×107D .44×1062.用四舍五入法按要求对1.8040分别取近似值,其中错误的是( )A .1.8(精确到0.1)B .1.80(精确到0.01)C .1.80(精确到千分位)D .2(精确到个位)3.甲、乙、丙三地的海拔高度分别为30米,-25米和-10米,那么最高的地方比最低的地方高( )A .25米B .40米C .15米D .55米4.已知a =|5|,|b|=8,且满足a+b <0,则a ﹣b 的值为( )A .13或3B .11或3C .3D .﹣35.如果|a +2|+(b −1)2=0,那么(a +b )2023的值是( )A .3B .1C .−1D .−1或16.有理数a,b 在数轴上对应的位置如图所示,则下列选项错误的是( )A .a +b <0B .a −b >0C .−b a >0D .ab <07.一根1m 长的绳子,第1次剪去一半,第2次剪去剩下绳子的一半.如此剪下去,剪第8次后剩下的绳子的长度是( )A .(12)6mB .(12)7mC .(12)8mD .(12)12m 8.|13−12|+|14−13|+|15−14|+⋅⋅⋅+|110−19|的值是( )A .−23B .23C .−25D .25 9.根据以下程序,当输入x =1时,输出的结果为( )A .﹣3B .﹣1C .2D .810.规定一种运算:aΨb =a (b +a )(a −b ),如2Ψ3=2×(3+2)×(2−3)=−10,则3Ψ4=( )A .7B .12C .−16D .−21 二、填空题11.比较大小:−(−5)2 −|−62|.12.近似数7.200万精确到 位.13.若|x|=|−2|,|y −3|=2且|x −y|=y −x 则x +y = .14.根据“二十四点”游戏的规则,用仅含有加、减、乘、除及括号的运算式(每个数字只能用一次),使12,−12,3,−1的运算结果等于24: (只要写出一个算式即可 )15.数学家发明了一个魔术盒,当任意数对(a ,b )放入其中时,会得到一个新的数:a 2+b +1.将数对(﹣3,2)放入其中得到数m = .16.已知a 、b 、c 都是有理数,其中a 为正数,若代数式abc |abc|的值为−1,则代数式|a|a +|b|b +|c|c 的值为 .17.进制也就是进位计数制,是人为定义的带进位的计数方法.我们常用的十进制是逢十进一,如4652可以写作4×103+6×102+5×101+2×100,数要用10个数字组成:0、1、2、3、4、5、6、7、8、9.在小型机中引入了八进制,只要八个数字:0、1、2、3、4、5、6、7,如八进制中174可以写作1×82+7×81+4×80等于十进制的数124.将八进制中的数1234等于十进制中数应为 .(请直按写结果)三、解答题18.计算:(1)(−38)×(−112)÷(−214); (2)(−2)2×5−(−2)3÷4;(3)2×(−3)3−4×(−3)+15; (4)−14+(−5)×[(−1)3+2]−(−3)2÷(−12).19.元朝时期人们已经把正负数作为一个专门的数学研究科目,朱世杰在《算学启蒙》一书中还写出了正负数的乘法法则,这是人们对正负数研究迈出的新的一步.小云学习了有理数的运算后,在计算(−5)−(−5)×110÷110×(−5)时,她的解法如下:解:原式=−5−(−12)÷(−12)① =−5−1①=−6①请回答:(1)小云的解法有错误,错误处是______(填序号),错误原因是__________________;(2)请写出正确的解答过程.20.一只小虫从某点O 出发在一条直线上爬行. 规定向右爬行为正,向左为负. 小虫共爬行5次,小虫爬行的路程依次为:(单位:厘米)−5,−3,+10,−4,+8.(1)小虫最后在出发点的左边还是右边?离出发点多少厘米?(2)若小虫爬行速度保持不变,共用了6分钟,请问小虫的爬行速度是多少?21.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中,最接近25千克的那筐白菜为千克;(2)以每筐25千克为标准,这8筐白菜总计超过多少千克或不足多少千克?(3)若白菜每千克售价26元,则出售这8筐白菜可卖多少元?22.金秋,学校的劳动实践果园里苹果挂满枝头,老师组织七年级同学一共采摘了10袋苹果,每袋质量各不相同,为了计算简便,以每袋5千克为标准,超过标准质量的记作正数,不足的记作负数,所做记录如下表:袋子编号12345678910记录结果+0.8−1−0.3+1.1+0.7+0.2−0.4+1−0.7−1.3(1)在摘得的10袋苹果中,质量最多和最少的一袋各是多少千克?(2)七年级同学共摘得苹果多少千克?23.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(−3)÷(−3)÷(−3)÷(−3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”(−3)÷(−3)÷(−3)÷(−3)记作(−3)④,读作“−3的圈4次方”,一般地,把a÷a÷a⋅⋅⋅÷a(n个a)(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=________,(−12)③=________;(2)关于除方,下列说法错误的是________:A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1的圈n次方都等于1;C.3④=4③;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考:我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式(−3)的圈4次方=________5的圈5次方=________;(−12)的圈6次方=________(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;(3)算一算:24÷23+(−8)×2③.参考答案1.C2.C3.D4.A5.C6.B7.C8.D9.C10.D11.>12.十13.7或3或−114.3×(−12)×(−1)−12=2415.1216.117.668.18.(1)−14;(2)22;(3)-27;(4)1219.运算顺序错误20.(1)右边,6厘米(2)5厘米/分钟21.(1)24.5(2)这8筐白菜总计不足5.5千克.(3)出售这8筐白菜可卖5057元.22.(1)质量最多的一袋是6.1千克,最少的一袋是3.7千克;(2)七年级同学共摘得苹果50.1千克.23.初步探究(1)12,−2;(2)C;深入思考(1)(−13)2,(15)3,(−2)4;(2)(1a)n−2(3)−1.。
人教版2024年《数学》七年级上册第2章检测试卷与参考答案[4卷]
人教版2024年《数学》七年级上册第2章检测试卷与参考答案[4卷]一、选择题本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的。
1.单项式的系数和次数依次是( )A .-2,2B .-,4C .-,2D .-,5【答案】D 【解析】单项式的系数为,次数为2+1+2=5,故答案为:D.2.下列代数式中:,,,,,0,整式有( )个A .3个B .4个C .5个D .6个【答案】B【解析】是整式,共4个.故选B.3.多项式3x 3﹣2x 2y 2+x+3是( )A .三次四项式B .四次四项式C .三次三项式D .四次三项式222x yz -121212222x yz -12-1x 2x y +213a b x y π-54yx 212,,,03πx yx y a b -+【答案】B【解析】根据多项式的定义,多项式3x 3−2x 2y 2+x+3有4项,最高项的指数是4,因此是四次四项式.故答案选B.4.计算3a -2a 的结果正确的是()A .1B .aC .-aD .-5a【答案】B【解析】将同类项的系数相加减作为结果的系数,字母和字母的指数不变.原式=3a -2a=(3-2)a=a.5.下列每组单项式中是同类项的是( )A .2xy 与﹣yx B .3x 2y 与﹣2xy 2C .与﹣2xy D .xy 与yz【答案】A 【解析】A 选项:2xy 与﹣yx 含字母相同,并且相同字母的指数也相同,所以是同类项,故是正确的;B 选项:3x 2y 与-2xy 2所含字母相同,但相同字母的指数不同,所以不是同类项,故是错误的;C 选项:-与﹣2xy 所含字母不同,所以不是同类项,故是错误的;D 选项:xy 与yz 所含字母不同,所以不是同类项,故是错误的;故选A .1312x 1312x6.已知,那么的结果为( )A .B .C .D .【答案】A【解析】原式=-3+x -y ,因为x -y =,所以原式=-3+=-,故选A.7.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样【答案】C【解析】设商品原价为x ,甲超市的售价为:x (1﹣20%)(1﹣10%)=0.72x ;乙超市售价为:x (1﹣15%)2=0.7225x ;丙超市售价为:x (1﹣30%)=70%x=0.7x ;故到丙超市合算.故选C .8.某两位数,十位上的数字为a,个位上的数字为b,则这个两位数可表示为 ()A .abB .a+bC .10a+bD .10b+a【答案】C【解析】根据题意,这个两位数可表示为10a+b ,故选C .1x y 2-=()3x y --+52-529292-1212529.某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元【答案】B【解析】据3月份的产值是万元,用把4月份的产值表示出来(1-10%),从而得出5月份产值列出式子1-10%)(1+15%).故选B .10.若一个整式减去a 2-2b 2等于a 2+2b 2,则这个整式是()A .2b 2B .-2b 2C .2a 2D .-2a 2【答案】C【解析】根据题意则有这个整式为:(a 2-2b 2)+(a 2+2b 2)= a 2-2b 2+a 2+2b 2=2 a 2,故选B.11.观察如图所示图形,则第n 个图形中三角形的个数是( )A .2n +2B .4n +4C .4nD .4n -4【答案】C 【解析】根据给出的3个图形可以知道:第1个图形中三角形的个数是4,a a a a第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n 个图形中三角形的个数是4n .故选C .12.如图,两个三角形的面积分别是 7 和 3,对应阴影部分的面积分别是 m 、n , 则 m ﹣n 等于( )A .4B .3C .2D .不能确定【答案】A 【解析】设重叠部分的面积为x .由题意得,m=7﹣x ,n=3﹣x ,所以m ﹣n=(7﹣x )﹣(3﹣x )=4,故选A .13.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:,空格的地方被墨水弄脏了,请问空格中的一项是( )A .+2abB .+3abC .+4abD .-ab()()2222223355a ab b a ab b a +---++=26b -【答案】A【解析】依题意,空格中的一项是:(2a 2+3ab-b 2)-(-3a 2+ab+5b 2)-(5a 2-6b 2) =2a 2+3ab-b 2+3a 2-ab-5b 2-5a 2+6b 2=2ab . 故选A.14.关于x 的多项式3x 3+2mx 2﹣5x+7与多项式8x 2﹣3x+5相加后不含二次项,则常数m 的值为( )A .2B .﹣4C .﹣2D .﹣8【答案】B【解析】因为关于x 的多项式3x 3+2mx 2-5x+7与多项式8x 2-3x+5相加后不含二次项,所以2m+8=0,解得m=-4.故选B.二、填空题本题共4个小题;每个小题3分,共12分,把正确答案填在横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册第二章测试题附答案(考试时间:120分钟 满分:120分)分数:一、选择题(本大题共6小题,每小题3分,共18分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1.下列各式中是单项式的是( B ) A.2 020xB .2 020C .a +2 020D .-2 020+a 2b 2.下列各单项式中与3xy 是同类项的是( C ) A .5x 2y 2 B .5x C .-6xy D .3y 3.下列关于多项式5ab 2-2a 2bc -9的说法中正确的是( C ) A .它是三次三项式 B .它是四次两项式C .它的最高次项是-2a 2bcD .它的常数项是94.当1<a <2时,化简|a -2|+|1-a |的值是( B ) A .-1 B .1 C .3 D .-35.若使(ax 2-2xy +y 2)-(-x 2+bxy +2y 2)=5x 2-9xy +cy 2恒成立,则a ,b ,c 的值分别为( C )A .4,-7,-1B .-4,-7,-1C .4,7,-1D .4,7,16.如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值为( C )A .180B .182C .184D .186二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式-52x 2y 28的系数是 -258,次数是 4 .8.多项式5x 2-7x 2y -6x 2y 2+6是 四 次 四 项式.9.已知|x +3|+(y -4)2=0,则式子2(3x -y)-3(x +7y)的值为 -101 .10.在计算A -(5x 2-3x -6)时,小明同学将括号前面的“-”号抄成了“+”号,得到的运算结果是-2x 2+3x -4,则多项式A 是 -7x 2+6x +2 .11.已知A =5x 2-mx +n ,B =-3y 2+2x -1,其中m ,n 为常数.若A +B 中不含有一次项和常数项,则整式m 2-2mn +n 2的值为 1 .12.观察下面一组图形,寻找其变化规律填空.第10个图形中三角形的个数为 37 个;第n 个图形中,三角形的个数为 (4n -3) 个.选择、填空题答题卡一、选择题(每小题3分,共18分)题号123456 得分 答案 B C C B CC二、填空题(每小题3分,共18分)得分:______ 7. -258 4 8. 四 四9. -101 10. -7x 2+6x +2 11. 1 12. 37 (4n -3) 13.合并下列同类项:(1)4a 2-3b 2+2ab -4a 2-3b 2+5ba ; 解:原式=-6b 2+7ab .(2)5xy +3y 2-3x 2-xy +4xy +2x 2-x 2+3y 2. 解:原式=8xy +6y 2-2x 2. 14.化简下列各式:(1)2x -⎝⎛⎭⎫3x -x -12+⎣⎡⎦⎤5x -32(x -2); 解:原式=2x -3x +x -12+5x -32x +3=-x +x 2-12+5x -32x +3=3x +212.(2)5(a 2b -3ab 2)-2(a 2b -7ab 2)-(a 2b +2ab 2). 解:原式=5a 2b -15ab 2-2a 2b +14ab 2-a 2b -2ab 2 =2a 2b -3ab 2.15.化简求值:3x 2y -[2x 2y -(2xyz -x 2z )-4x 2z ]-xyz ,其中x =2,y =-3,z =1. 解:原式=3x 2y -2x 2y +2xyz -x 2z +4x 2z -xyz =x 2y +xyz +3x 2z .当x =2,y =-3,z =1时,原式=22×(-3)+2×(-3)×1+3×22×1 =-6.16.某食品厂打折后出售食品,第一天卖出m 千克,第二天卖出的比第一天的2倍还多3.7千克,第三天卖出的比第一天的3倍少2千克.(1)用含m 的代数式表示这个食品厂三天共卖出食品的数量; (2)当m =10时,这个食品厂三天共卖出食品多少千克? 解:(1)m +2m +3.7+3m -2=(6m +1.7)千克. (2)当m =10时,原式=6×10+1.7=61.7(千克).即这个食品厂三天共卖出食品61.7千克. 17.按如图所示的程序计算:(1)若开始输入的n 的值为20,求最后输出的结果; (2)若开始输入的n 的值为5,你能得到输出的结果吗?解:(1)210.(2)输入5时,第一次运算得到的值为15,小于200,不能输出,从转换器可知,应把15再输入到公式n (n +1)2计算得120,还是无法输出,再将120输入公式可得7 260,即最后的输出结果为7 260.四、(本大题共3小题,每小题8分,共24分) 18.已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值; (2)若A -2B 的值与y 的值无关,求x 的值. 解:(1)因为A =2x 2+xy +3y -1,B =x 2-xy ,所以A -2B =2x 2+xy +3y -1-2(x 2-xy) =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.因为(x +2)2+||y -3=0,∴x =-2,y =3.所以A -2B =-18+9-1=-10.(2)因为A -2B =y(3x +3)-1,A -2B 的值与y 的值无关, 所以3x +3=0,解得x =-1.19.,尺寸如下:长 宽 高 小纸箱a4b大纸箱 1.5a 5 2b(1)用a ,b 的代数式表示大纸箱的表面积是 15a +6ab +20b ,小纸箱的表面积是 8a +2ab +8b ;(2)若a =6,b =3,大纸箱的表面积比小纸箱的表面积多多少?解:(15a +6ab +20b)-(8a +2ab +8b) =15a +6ab +20b -8a -2ab -8b =7a +4ab +12b. 当a =6,b =3时, 原式=7a +4ab +12b=7×6+4×6×3+12×3 =42+72+36=150.即大纸箱的表面积比小纸箱的表面积多150.20.有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:b<0,a+b=0,a-c>0,b-c<0;(2)|b-1|+|a-1|=a-b ;(3)化简|a+b|+|a-c|-|b|+|b-c|.解:原式=0+(a-c)+b-(b-c)=0+a-c+b-b+c=a.五、(本大题共2小题,每小题9分,共18分)21.自我国实施“限塑令”起,开始有偿使用环保购物袋,为了满足市场需求,某厂家生产A,B两种款式的布质环保购物袋,每天生产4 500个,两种购物袋的成本和售价如下表,若设每天生产A种购物袋x个.成本(元/个) 售价(元/个)A 2 2.3B 3 3.5(1)用含x(2)用含x的整式表示每天获得的利润,并进行化简(利润=售价-成本);(3)当x=1 500时,求每天的生产成本与每天获得的利润.解:(1)2x+3(4 500-x)=-x+13 500,即每天的生产成本为(-x+13 500)元.(2)(2.3-2)x+(3.5-3)(4 500-x)=-0.2x+2 250,即每天获得的利润为(-0.2x+2 250)元.(3)当x=1 500时,每天的生产成本为-x+13 500=12 000(元).每天获得的利润为-0.2x+2 250=-0.2×1 500+2 250=1 950(元).22.有一个长方形娱乐场所,其设计方案如图所示,其中半圆形休息区和长方形游泳池以外的地方都是绿地.试解答下列问题:(1)游泳池和休息区的面积各是多少?(2)绿地的面积是多少?(3)如果这个娱乐场所的长是宽的1.5倍,要求绿地面积占整个面积的一半以上.小亮同学根据要求,设计的游泳池的长和宽分别是长方形娱乐场所的长和宽的一半,他的设计符合要求吗?为什么?解:(1)游泳池的面积为mn ; 休息区的面积为12×π×⎝⎛⎭⎫n 22=18π n 2.(2)绿地的面积为ab -mn -18πn 2.(3)符合要求,理由:由已知得a =1.5b ,m =0.5a ;n =0.5b. 所以⎝⎛⎭⎫ab -mn -18πn 2-12ab =38b 2-π32b 2>0. 所以ab -mn -18πn 2>12ab.所以小亮设计的游泳池符合要求.六、(本大题共12分)23.某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2 000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a (a >10)人,则甲旅行社的费用为 1500a 元,乙旅行社的费用为 (1600a -1600) 元;(用含a 的代数式表示,并化简)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由;(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a ,则这七天的日期之和为 7a ;(用含a 的代数式表示,并化简)(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程)解:(1)由题意得,甲旅行社的费用=2 000×0.75a =1 500a ; 乙旅行社的费用=2 000×0.8(a -1) =1 600a -1 600;故答案为1 500a (1 600a -1 600). (2)该单位选择甲旅行社更优惠. 理由:将a =20代入,得甲旅行社的费用=1 500×20=30 000(元);乙旅行社的费用=1 600×20-1 600=30 400(元) ∵30 000<30 400,∴甲旅行社更优惠.(3)设最中间一天的日期为a ,则这七天分别为:a -3,a -2,a -1,a ,a +1,a +2,a +3,∴这七天的日期之和=(a-3)+(a-2)+(a-1)+a+(a+1)+(a+2)+(a+3)=7a. 故答案为7a.(4)①设这七天的日期和是63,则7a=63,a=9,所以a-3=6,即6号出发;②设这七天的日期和是63的2倍,即126,则7a=126,a=18,所以a-3=15,即15号出发;③设这七天的日期和是63的3倍,即189,则7a=189,a=27,所以a-3=24,即24号出发;所以他们可能于五月6号或15号或24号出发.。