电容器基本概念
电容知识点总结高中
电容知识点总结高中一、基本概念1. 电容的定义电容是指两个带电体分别带有异号电荷时,它们之间的电位差与它们两者之间的电荷量之比。
一般用C表示,单位为法拉(F)。
2. 电容的公式电容C的计算公式为:C = Q/V,其中Q表示电容器上的电荷,V表示电容器上的电位差。
3. 电容的意义电容是电器元件电学参数之一,是指电容器装有一定电荷时,电容器上的电压与电荷量的比值。
电容能够存储电荷,使电路在短时间内能够放电以及充电,是电路中不可或缺的元件。
二、电容的分类1. 固定电容和变量电容固定电容指的是电容值不可变的电容器,而变量电容指的是可以调节电容值的电容器。
2. 极板式电容和电介质式电容极板式电容是指由两个导体板构成的电容器,而电介质式电容则是利用电介质的电容性质来实现电容的存储。
3. 电解质电容和陶瓷电容电解质电容是指电容器的绝缘介质是电解质,它具有大的电容值以及较小的介质损耗,适用于直流工作电路;而陶瓷电容是指电容器绝缘介质是陶瓷,具有小的电容值和较大的介质损耗,适用于高频工作电路。
4. 固态电容和电解电容固态电容是由电解质涂层、铝箔和电介质薄膜组成的,可以实现超高电容密度;而电解电容是通过电解质的存在来存储电荷,其电容量大,但温度稳定性较差。
三、电容的工作原理电容利用导体之间存在电场来存储电荷,其存储电荷的量与电容器的电容值有关。
当在两个导体板之间加上电压时,其中一个导体板带正电荷,另一个导体板带负电荷,形成一个电场,电场中有电势能的储存。
四、电容的特性1. 零频率电容值电容器在不同频率下的电容值会有所不同,当频率为零时,称之为零频率电容值。
2. 耐压能力电容的耐压能力表示了电容器所能承受的最大电压值,如超过该电压值,容易造成电容故障。
3. 介质常数介质常数表示了电介质在储存电荷时的效率,介质常数越大,电容器的电容值也越大。
4. 温度稳定性电容的温度稳定性表示了电容器在不同温度下的电容值变化情况,温度稳定性好的电容器在不同温度下的电容值变化较小。
高二物理电容器知识点
高二物理电容器知识点电容器是物理学中重要的电学元件,广泛应用于电子设备和电路中。
了解和掌握电容器的知识对于高中物理学习非常重要。
本文将介绍高二物理中的电容器知识点。
一、电容器基本概念电容器是由两个导体之间通过电介质隔离而构成的装置。
其中一个导体带正电荷,另一个导体带负电荷,二者之间存在电势差。
电容器的单位是法拉(F),符号为C。
电容器的容量取决于导体之间的距离和电介质介电常数。
二、平行板电容器平行板电容器是最简单的电容器,由两块平行金属板组成,两板之间填充电介质。
电容器的容量与两板面积A、板间距离d和电介质介电常数k有关。
容量C可以用公式C = kε0A/d表示,其中ε0为真空中的介电常数。
三、电容器的充放电过程1. 充电过程:当平行板电容器接入电源时,电荷会从电源的正极流向电容器的一极板,同时另一极板上的电荷流入电源的负极,直到电容器两极板上的电压达到电源电压为止。
2. 放电过程:当断开电源连接时,电容器会通过外电路放出储存的电荷,直到两极板上的电势差降至零。
四、串联和并联电容器1. 串联电容器:当多个电容器连接在同一电路上,其模拟电压相等,但电荷分布不均匀。
串联电容器的总容量为各个电容器倒数之和的倒数,即1/C = 1/C1 + 1/C2 + ...2. 并联电容器:当多个电容器的正极和负极相连时,其模拟电压相等,电荷分布均匀。
并联电容器的总容量为各个电容器容量之和,即C = C1 + C2 + ...五、能量和电容器电容器可以储存电荷,它的能量由以下公式计算:E = 1/2CV²,其中E为能量,C为电容量,V为电压。
当电容器充电时,电能转化为储存在电场中的能量;在放电过程中,电场的能量转化为电能。
六、应用领域电容器在现代电子设备和电路中具有广泛应用,如滤波器、隔直流、信号传输和储存等。
电容器还可以作为存储器件,例如动态随机存取存储器(DRAM)。
总结:本文介绍了高二物理电容器的基本概念、平行板电容器、充放电过程、串联与并联电容器、能量和应用领域等知识点。
高二物理电容器知识点归纳总结
高二物理电容器知识点归纳总结电容器是物理学中重要的电学元器件之一,其应用广泛,涉及电路、电子设备等多个领域。
在高二物理学习中,掌握电容器的基本概念、性质以及相关公式是至关重要的。
本文将对高二物理电容器知识点进行归纳总结,以帮助同学们更好地理解和记忆相关内容。
一、电容器的基本概念电容器是由两个导体间隔一定距离而构成的电学装置,它能够储存电能,并且具有一定的容量指标。
电容器由两部分组成,分别是两个平行的金属板和介质。
其中,介质可以是空气、瓷瓶以及特殊的绝缘材料等。
二、电容器的定义和单位电容器的电容量可以用电容器所储存的电荷与电容器两极电压之比来描述。
电容量的国际单位是法拉(F),常用的单位有微法(μF)和皮法(pF)。
其中,1法拉等于1库仑/伏特。
三、电容量的计算公式对于平行板电容器,其电容量可用下式计算:C = ε0 × εr × S/d其中,C为电容量,ε0为真空中的介电常数(约为8.85 × 10^-12 F/m),εr为介质的相对介电常数,S为平板面积,d为平板之间的距离。
四、电容器的串并联电容器可以进行串联和并联的连接方式。
串联时,其总电容量Ct与各个电容器的倒数之和成反比;并联时,其总电容量Ct等于各个电容器的电容量之和。
五、电容器的充放电过程电容器充电时,电容器两极板上逐渐积累电荷,直到达到与电源电压相等的电压值。
电容器放电时,电容器内的电荷通过外接电路释放,直到电容器两极电压降至零。
六、电容器的能量储存电容器可以储存电能,其能量E与电容器的电荷量Q和电容器两极的电压V有关,计算公式如下:E = 1/2 × Q × V = 1/2 × C × V^2七、电容器的时间常数电容器的时间常数τ反映了充放电过程中电容器储存和释放电荷所需要的时间。
时间常数τ可由下式计算:τ = R × C其中,R为电路中的电阻,C为电容器的电容量。
电容器的电容(含动画)课件
调谐器通常由可变电容器组成,通过 调整电容器的电容量,可以实现对信 号频率的选择和调整。在无线电、电 视、广播等领域,调谐器被广泛应用 于信号的接收和发射。
05 电容器的动画演示
电容器充放电过程动画
要点一
总结词
详细描述电容器充放电过程中电荷的移动和分布情况,以 及电场的变化。
要点二
详细描述
电容器的温度系数
总结词:温度影响
详细描述:电容器的温度系数是指电容量随温度变化的程度。大多数电容器的温度系数为正值,即温度升高时电容量增大, 温度降低时电容量减小。但也有一些特殊类型的电容器具有负温度系数。了解电容器的温度系数对于电路设计和稳定性分析 非常重要。
04 电容器的实际应用
滤波器
总结词
滤波器是利用电容器的电抗特性,对特定频率的信号进行过 滤或抑制的电子元件。
详细描述
滤波器通常由电容器和电感器组成,通过调整电容器的电容 量和电感器的电感量,可以实现对特定频率信号的选择性传 输或抑制。在通信、音频、视频等领域,滤波器被广泛应用 于信号处理和噪声抑制。
耦合器
总结词
耦合器是一种利用电容器的耦合效应, 实现信号传输和隔离的电子元件。
电容器的电容值计算
总结词
解释如何计算电容器的电容值。
详细描述
电容器的电容值计算公式为C=εS/d,其中ε为介电常数,S为两极板之间的相对 面积,d为两极板之间的距离。
电容器的充放电过程
总结词
描述电容器充放电的过程和原理。
详细描述
当电容器充电时,电荷在电场力的作用下从电源正极流向电容器正极板,电子从 电源负极流向电容器负极板,电容器两极板之间形成电压差。当电容器放电时, 电荷和电子在电场力的作用下从电容器正极板和负极板流出,形成电流。
电容器和电荷的基本关系和计算
电容器和电荷的基本关系和计算电容器是一种能够存储电荷的装置,是电路中常见的基本元件之一。
电荷则是构成电流和静电场的基本要素之一。
在电路设计和分析中,了解电容器和电荷的基本关系以及计算方法非常重要。
本文将介绍电容器的基本概念、电荷的定义,以及电容器的电荷计算方法。
1. 电容器的基本概念电容器是由两个导体之间夹有绝缘材料(电介质)而构成的电容装置。
其中,两个导体分别被称为电容器的两个极板。
电介质通常由绝缘性能较好的材料构成,如薄膜电容器中的塑料薄膜或电容器中的氧化铝。
电容器的主要作用是存储电荷,并在电路中产生电场。
2. 电荷的定义电荷是物质的一种属性,是物质带有的电性。
根据电荷的属性,可以把电荷分为正电荷和负电荷。
正电荷和负电荷相互吸引,而同种电荷相互排斥。
通常用符号q表示电荷的大小。
国际单位制中,电荷的单位是库仑(C)。
3. 电容器的电荷计算电容器上的电荷量与电容器的电压之间有着密切的关系。
根据电容器的基本特性,电容器的电荷计算可以通过以下公式进行:q = C * V其中,q表示电容器上的电荷量,C表示电容器的电容量,V表示电容器上的电压。
在上述公式中,电容量C是电容器的一个重要参数,代表了电容器存储电荷的能力。
电容量通常用法拉(F)作为单位。
要计算某个电容器上的电荷量,就需要知道该电容器的电容量以及上面施加的电压。
4. 示例举个例子来说明电容器的电荷计算方法。
假设我们有一个电容量为10微法的电容器,上面施加了3伏的电压,那么如何计算它上面的电荷呢?根据前面介绍的电荷计算公式,可以得到:q = C * Vq = 10微法 * 3伏q = 30微库仑因此,电容量为10微法、电压为3伏的电容器上的电荷量为30微库仑。
5. 总结本文介绍了电容器和电荷的基本关系以及电容器的电荷计算方法。
电容器是一种能够存储电荷的装置,通过电容量和电压的乘积可以计算出电容器上的电荷量。
了解电容器和电荷的基本关系对于电路设计和分析非常重要,能够帮助我们更好地理解和应用电容器。
电容器静电平衡知识点总结
电容器静电平衡知识点总结一、电容器的基本概念1. 电容器是一种用于存储电荷的被动器件,它能够在两个导体之间储存能量和电荷。
2. 电容器的工作原理是利用两个导体之间的电场来存储电荷。
当电压施加到电容器的两个导体上时,会在导体之间形成一个电场,从而使得正负电荷分布在导体上,这就是电容器存储电荷的原理。
3. 电容器的容量是指在单位电压下所能存储的电荷量,通常以法拉(Farad)作为单位。
二、电容器的分类1. 固定电容器:电容值固定不变,常见的有陶瓷电容、铝电解电容等。
2. 变压电容器:电容值可以调节,通常用于电路中的可调节电容或变压电容。
3. 薄膜电容器:使用一层或多层金属薄膜作为电极,通过绝缘材料来隔开电极之间的电场。
4. 电解电容器:利用电解质来增大电容的电容器。
5. 电介质电容器:利用电介质来隔开电极之间的电场的电容器。
三、电容器的静电平衡1. 静电平衡是指电容器中电荷的分布达到稳定状态,导致电场内部达到平衡的状态。
2. 在电容器内部,电荷会在导体表面以及电介质内部分布,在达到静电平衡时,导体表面的电荷会使得电场在导体表面的垂直分布达到均衡,从而使得电荷分布达到平衡状态。
3. 电容器的静电平衡与电场的均衡有关,静电平衡时会形成封闭的电场线,在任何闭合路径上,静电场强度的环流都等于零,这就是电容器达到静电平衡的特征。
四、电容器的充放电过程1. 电容器的充电过程:当电压施加到电容器的两个导体上时,电容器内部会储存电荷,导致电容器内部形成一个电场,电压在导体表面形成等效电位,当充电达到一定程度时,电容器达到静电平衡状态。
2. 电容器的放电过程:当电容器的两个导体之间的电压突然断开时,电容器内部的电荷会开始流动,导致电容器放电,电荷会从一个导体转移到另一个导体,这就是电容器的放电过程。
3. 电容器的充放电过程是电容器的基本特性,充放电过程中,电容器内部的电荷会根据电压的变化而变化,这也是电容器储存电荷和能量的根本原理。
高中物理电容器知识点
高中物理电容器知识点在高中物理的学习中,电容器是一个重要的知识点。
它不仅在电学部分有着关键地位,也与实际生活中的许多电器设备息息相关。
一、电容器的基本概念电容器是一种能够储存电荷的装置。
它由两个彼此靠近又相互绝缘的导体组成,这两个导体分别称为电容器的两极。
常见的电容器有平行板电容器、圆柱形电容器和球形电容器等,其中平行板电容器在高中物理中研究得最多。
当给电容器的两极加上电压时,电容器就会储存电荷。
电容器储存电荷的能力用电容来表示,电容的定义式为:C = Q/U,其中 C 表示电容,Q 表示电容器所带的电荷量,U 表示电容器两极板间的电压。
电容的单位是法拉(F),但在实际应用中,常用的单位还有微法(μF)和皮法(pF)。
二、平行板电容器平行板电容器是由两块相互平行且彼此靠近的金属板组成,中间夹有绝缘物质(电介质)。
其电容的大小与极板的正对面积、极板间的距离以及电介质的介电常数有关。
平行板电容器的电容公式为:C =εS/4πkd ,其中ε 是电介质的介电常数,S 是极板的正对面积,d 是极板间的距离,k 是静电力常量。
从这个公式可以看出,当极板的正对面积越大、极板间的距离越小时,电容就越大;电介质的介电常数越大,电容也越大。
三、电容器的充电和放电电容器的充电过程:当把电容器接在电源上时,电源的正极与电容器的正极板相连,电源的负极与电容器的负极板相连。
在电场力的作用下,电子从电源的负极移动到电容器的负极板,正电荷从电源的正极移动到电容器的正极板,电容器两极板上的电荷逐渐增加,两极板间的电压也逐渐增大,直到等于电源电压,充电过程结束。
电容器的放电过程:当用导线把充电后的电容器两极板接通时,电容器两极板上的电荷在电场力的作用下通过导线中和,电容器两极板间的电压逐渐减小,直到为零,放电过程结束。
在充电和放电过程中,电路中会有电流产生,但电流是短暂的。
充电时电流逐渐减小,放电时电流逐渐减小。
四、电容器在电路中的作用电容器在直流电路中,当电路稳定后,电容器相当于断路;在交流电路中,由于电流的方向不断变化,电容器会不断地充电和放电,相当于通路。
电容知识点笔记总结
电容知识点笔记总结一、电容的基本概念电容是指储存电荷的器件,是电子电路中常用的被动元件之一。
电容器由两个导体板和其间的绝缘材料组成,当两个导体板上分别带有相等但异号的电荷时,就产生了电场,这种导致器件两个导体板上的电荷储存的器件就是电容器,电场的大小与存储的电荷量成正比,与两板间距离成反比。
二、电容的基本参数1.电容量电容器的电容量是指储存单位电压下的电荷量,单位是法拉(F)。
通常用微法(F)和皮法(pF)来表示。
2.电压电容器两极之间的电压就是电压。
3.极性极性是指电容器两极之间的正负性。
三、电容的类型1.固定电容2.变压电容3.可变电容4.超级电容四、电容与电感的区别电容和电感是电路中的两个主要元件。
它们的性质和原理有着明显的区别。
1.储存物质不同:电容储存的是电荷,而电感储存的是能量。
2.阻抗性质不同:电容对直流电有阻抗,而对交流电没有阻抗;而电感对交流电有阻抗,对直流电没有阻抗。
五、电容的应用1.隔直耦合2.交流滤波3.信号耦合4.定时器5.调谐电路六、电容的充电和放电1.电容的充电当一个电容器和电源连接,电容器两极之间形成电场,极板上带有异号的电荷,在连接的一瞬间,电流从电源流入电容器,当电容器上的电场强度达到电源电压值时,电流为零,电容器被充满。
2.电容的放电当电容器上的电荷以电流的形式流出,电容器极板上的电荷减少,直至电容器上的电荷被耗尽。
七、电容的串联与并联1.电容的串联电容的串联就是将多个电容器的正极和负极依次相连接,串联时电容的总电压等于各电容的电压之和,总电容等于各电容的倒数之和。
2.电容的并联电容的并联是将多个电容器的正极和负极分别相连,并联时电容的总电压等于各电容的电压之和,总电容等于各电容的和。
八、电容的存储和延迟1.电容的存储电容器可以储存电荷和电能。
2.电容的延迟电容器对交流电有延迟作用,因为交流电的频率很高,在电流周期内电容器储存的电量有一定的延迟。
九、电容的特性1.电容器的自愈振动特性当电容器正负极器件电压变化太快时,电容器两极之间就会产生振荡。
高考电容器必备知识点
高考电容器必备知识点电容器,作为电路中常见的元件之一,在高考物理考试中经常被涉及。
它是一种能够存储电能的装置,广泛应用于各种电子设备和电路中。
掌握电容器的相关知识点,不仅能够为高考提供有力的支持,还有助于理解电路的工作原理和实际应用。
本文将对高考电容器的必备知识点进行介绍和论述。
一、电容器的基本概念和符号电容器是由两个平行的金属板和之间的绝缘材料(电介质)组成。
当电容器两个板之间加上电压时,它会存储电荷和电能。
电容器的电容量用C表示,单位是法拉(F)。
常见的电容器符号是由两个平行的直线和其上画有曲线的平行线段组成的。
二、电容量和电容公式电容量是衡量电容器储存电荷能力的大小。
电容量与电容器的几何形状和电介质的物理性质有关。
对于平行板电容器,其电容量可以用以下公式计算:C = ε × A / d其中,C代表电容量,单位是法拉(F);ε代表电介质的相对介电常数;A表示电容器两个金属板的面积,单位是平方米;d是电容器两个金属板的间距,单位是米。
三、电容器的充电和放电过程当电容器两个板之间施加电压时,电容器开始充电。
在充电过程中,电荷从电压较高的金属板流向电压较低的金属板,电容器内部的电荷和电势能逐渐增加。
充电过程遵循指数增长的规律,可以用以下公式表示:Q = Q0 × (1 - e^(-t/RC))其中,Q代表电容器内的电荷量,Q0代表电容器内的最大电荷量,t代表充电时间,R代表电容器的电阻,C代表电容器的电容量。
当电容器两个板之间的电压断开时,电容器开始放电。
在放电过程中,电容器内的电荷和电势能逐渐减小,能量被释放出来。
放电过程遵循指数衰减的规律,可以用以下公式表示:Q = Q0 × (e^(-t/RC))充放电过程是电容器重要的工作方式,也是高考重点考察的内容。
四、电容器的能量和功率电容器可以存储电能,其能量和功率可以用以下公式计算:能量(W) = 0.5 × C × V^2其中,C代表电容量,V代表电容器的电压。
电容的基本知识概述
电容的基本知识概述电容是电学领域中的基本元件之一。
它的主要作用就是在电路中存储电荷,并且在电路中起到了配合和调节电流的作用。
在本文中,我们将对电容的基本知识进行概述,并且对电容的分类、特点、应用场景以及如何进行电容的选择等方面进行分析。
一、电容的基本概念电容是指当两个导体之间存在电位差时,在导体间存在的电荷与电位差比值的物理参数。
从结构上来看,电容是由两个绝缘材料之间的电介质和连接的两个导电体构成的。
当有电压,在这两个导电体上形成一定量的电荷,而电荷量的大小取决于电容的电容值。
在电路中,电容与电阻、电感共同组成了电学元件中的三要素。
二、电容的分类从电容器的电介质来看,电容可以分为两种:电解电容和非电解电容。
电解电容是电容器的极板上涂上了一层氧化物,并且这一涂层会与极板的金属反应,最终成为一层极薄的电介质。
而非电解电容则是不需要涂层金属,可以采用多种材料做为电介质,如纸介电容、聚酯薄膜电容、聚酰亚胺电容以及多层陶瓷电容等。
从电容器的外形尺寸来看,电容可以分为盘式电容、柱式电容、方形电容、固态电容等。
其中盘式电容通常应用于高容量、低电压的场合,而柱式电容通常应用于高电压场合。
从电容器的结构来看,电容可以分为一般电容和调节电容。
调节电容是由可变电容组成的,它在原有的容量基础上可以进行一定范围的调节,从而满足电路中的需要。
而一般电容是具有固定容量的电容器。
三、电容的特点1. 电容对于频率的响应与电容的大小成正比,对于电容中储存的电荷量也成正比。
2. 电容的电压和电荷量和寿命均与工作温度密切相关。
当温度升高时,电容的电容值会降低,而电压容量和寿命都会缩短。
3. 电容上的电荷一旦存在,即便是断电状态,电容器中还是会保有这些电荷,只有通过电路的方法才能去除电荷。
4. 电容一般是具有直流阻抗,但是也存在一定的交流电阻,随着频率的升高,一些电容所表现出来的特殊性质,比如被视为“理想电容”的效果,会被削弱。
四、电容的应用场景1. 电源滤波:电容可以在电源线中去除高频噪声。
电容器的分类与计算
电容器的分类与计算一、电容器的基本概念1.电容器的定义:电容器是一种能够容纳电荷的电子元件,它由两块金属板(电极)组成,中间隔以绝缘材料(电介质)。
2.电容器的作用:电容器在电路中可以储存电能、滤波、耦合、旁路、调谐等。
二、电容器的分类1.按照结构分类:a)固定电容器:内部电容量固定不变。
b)可变电容器:内部电容量可以调节。
c)微调电容器:电容量调节范围较小,通常用于精密电路。
2.按照介质分类:a)空气介质电容器:以空气为介质,体积较大,容量较小。
b)纸质电容器:以纸浆和绝缘漆为介质,体积较小,容量较大。
c)陶瓷电容器:以陶瓷材料为介质,体积较小,容量较大,性能稳定。
d)电解电容器:以金属氧化物和电解质溶液为介质,容量较大,但稳定性较差。
e)薄膜电容器:以塑料薄膜为介质,体积较小,容量较大,性能稳定。
3.按照安装方式分类:a)插件电容器:安装在电路板上的插件式电容器。
b)贴片电容器:直接贴附在电路板上的电容器。
三、电容器的计算1.电容量的计算公式:C = Q / U,其中C表示电容量(法拉),Q表示电容器两极板间的电荷量(库仑),U表示电容器两极板间的电压(伏特)。
2.电容器的耐压计算:电容器的耐压是指电容器两极板间能承受的最大电压,超过该电压可能会导致电容器损坏。
3.电容器的容抗计算:Xc = 1 / (2πfC),其中Xc表示电容器的容抗(欧姆),f表示电路中的交流电频率(赫兹),C表示电容量(法拉)。
四、电容器在电路中的应用1.储能:电容器可以储存电能,在需要时释放,如日光灯的启辉器。
2.滤波:电容器可以去除电路中的纹波,使输出电压更加稳定。
3.耦合:电容器可以用于信号的传递,防止信号的干扰和衰减。
4.旁路:电容器可以用于电路中的旁路,提高电路的响应速度。
5.调谐:电容器可以用于无线电发射和接收装置中的调谐,使电路的工作频率保持稳定。
五、电容器的安全使用与维护1.选用合适的电容器:根据电路的要求,选择合适的电容量、耐压、介质等参数的电容器。
高二物理电容器知识点总结
高二物理电容器知识点总结电容器是一种用来储存电荷的器件,它由两个导体板和介质组成。
在高二物理学习中,我们主要研究电容器的原理、性质和运用。
下面是对电容器的知识点总结:一、电容器的基本概念1. 电容:电容器存储电荷的能力。
单位是法拉(F)。
2. 电容器的结构:电容器由两个导体板和介质组成。
导体板之间的空间称为电容器的电介质。
3. 电容器的公式:电容C等于电容器两板间的电荷量Q与电容器的电压U之比,即C=Q/U。
二、平行板电容器1. 平行板电容器的结构:由两个平行的导体板组成,两板之间存在电场。
通常采用空气、玻璃或塑料等绝缘材料作为电介质。
2. 平行板电容器的电容公式:C=ε0A/d,其中ε0为真空介电常数,A为电容器板的面积,d为板间距离。
从公式可以看出,电容器的电容与电容器的面积成正比,与板间距离成反比。
3. 平行板电容器的电场:电容器中产生的电场形式均匀,大小为E=U/d,其中U为电容器的电压。
三、串联和并联电容器1. 串联电容器的总电容:若有n个电容器串联,则它们的总电容为1/C=1/C1+1/C2+...+1/Cn。
2. 并联电容器的总电容:若有n个电容器并联,则它们的总电容为C=C1+C2+...+Cn。
四、电容器的能量1. 电容器的电能:电容器储存的电荷形成带电的平行板,导致带电平行板之间存在电场,带电平行板之间的电势差即为电容器的电压,从而电容器具有电能。
2. 电容器的电能公式:W=1/2 CV^2,其中W为电容器的电能,C 为电容,V为电压。
3. 电容器的能量储存与释放:当电容器通过电源充电时,电荷从电源向电容器流动,电容器具有电能;当电容器断开电源连接时,电荷从电容器流出,电容器释放储存的电能。
五、电容器的时间特性1. 充电和放电:电容器充电时,电荷逐渐从电源移动到电容器,电容器的电压逐渐升高;电容器放电时,电荷从电容器流出,电容器的电压逐渐降低。
2. RC电路:由电阻和电容器组成的电路称为RC电路。
平行板电容器的电容计算公式
平行板电容器的电容计算公式一、电容器的基本概念1.电容器:电容器是一种能够储存电荷的电子元件,通常由两块金属板(导体)组成,之间隔有一层绝缘材料(电介质)。
2.电容:电容是电容器容纳电荷的能力,单位为法拉(F)。
二、平行板电容器1.结构:平行板电容器由两块平行的金属板组成,中间隔有一层绝缘材料。
2.电容计算公式:平行板电容器的电容计算公式为:C = εS / (4πkd)C:电容(法拉,F)ε:电介质的相对电容率(无量纲)S:金属板的面积(平方米,m²)k:库仑常数,约为9 × 10^9 N·m²/C²(牛顿·米²/库仑²,N·m²/C²)d:金属板之间的距离(米,m)三、影响平行板电容器电容大小的因素1.电介质材料:电介质的相对电容率越大,电容器的电容越大。
2.金属板的面积:金属板的面积越大,电容器的电容越大。
3.金属板之间的距离:金属板之间的距离越小,电容器的电容越大。
4.电荷量:电容器所带的电荷量越多,电容器的电容越大。
但电容器的电容与所带的电荷量无关,电容器所能容纳的电荷量取决于其电容和电压。
四、电容器的应用1.滤波器:利用电容器的频率特性,实现信号的滤波功能。
2.耦合和去耦:在电子电路中,利用电容器实现信号的耦合和去耦功能。
3.充放电:电容器可以储存电能,实现电路的充放电功能。
4.能量存储:电容器可以储存能量,广泛应用于能源存储和转换领域。
平行板电容器的电容计算公式是描述电容器电容大小的重要公式,掌握该公式及其影响因素,有助于我们更好地理解和应用电容器。
习题及方法:1.习题:一个平行板电容器,其金属板面积为2平方米,电介质为空气(相对电容率约为1),板间距离为0.01米,求该电容器的电容。
C = εS / (4πkd)将已知数值代入公式:C = 1 × 2 / (4π × 9 × 10^9 × 0.01)C ≈ 8.31 × 10^-12 F答案:该电容器的电容约为8.31 × 10^-12法拉。
高三物理电容器知识点归纳
高三物理电容器知识点归纳电容器是物理学中的一种重要器件,广泛应用于电子技术和电力系统中。
了解和掌握电容器的知识点对于高三物理学习至关重要。
本文将对高三物理电容器知识点进行归纳,以帮助同学们更好地理解和应用这一内容。
一、电容器基本概念电容器是由两块金属板和介质组成的器件。
两块金属板之间的介质可以是空气、瓷质、纸质或电解质等。
电容器的基本单位是法拉(Farad),简称F。
常用的电容量单位还有毫法拉(mF)、微法拉(μF)和皮法拉(pF)。
二、电容器的充放电过程1. 充电过程:当给电容器施加外部电压时,电容器会逐渐存储电荷,电场强度也会逐渐增加,直到两金属板之间的电场强度等于外部电场强度为止。
2. 放电过程:当断开对电容器的电源连接时,电容器内积累的电荷会通过外部电路释放出来,电容器内的电场强度逐渐减小。
三、电容器的电容量和电容公式电容量是电容器存储电荷的能力,用电荷量Q与电压V的比值表示,即C=Q/V。
根据电容公式,电容量与电容器的几何形状、介质属性和电容器之间的距离有关。
四、电容器的等效串联与并联1. 串联:若将多个电容器连接在一起,其中正级板与负级板分别相连,则它们的电荷量相等,而电压之和为总电压,即Q1=Q2=Q3,V=V1+V2+V3。
由此可以计算等效电容量。
2. 并联:若将多个电容器的正级板和负级板分别相连,则它们的电压相等,而电荷之和为总电荷量,即Q=Q1+Q2+Q3,V1=V2=V3。
由此可以计算等效电容量。
五、电容器的能量和功率1. 电容器能量:电容器的能量是指电容器中储存的电能,可用公式E=1/2C×V²计算,其中E表示能量,C表示电容量,V表示电压。
2. 电容器功率:电容器在充电和放电过程中会相互转换电能和热能。
电容器的功率可以用公式P=VI表示,其中P表示功率,V表示电压,I表示电流。
六、电容器在电路中的应用电容器在电路中起到很多重要作用,常见的应用包括:1. 存储电能:电容器可以存储电荷和电能,供电路中其他元件使用。
电容的介绍和深入认识
电容的介绍和深入认识电容是一种常见的电子元件,广泛应用于各个领域。
它具有存储电荷和传递电信号的功能,可以说是电路中不可或缺的一部分。
本文将从电容的基本概念、工作原理、种类、应用等方面进行介绍和深入认识。
一、电容的基本概念电容是指能够存储电荷的元件,其单位为法拉(F)。
根据电容的定义,我们可以得知,电容是由两个导体之间的绝缘介质隔开而形成的。
其中,两个导体分别为正极和负极,绝缘介质则是将两个导体隔离开的材料。
当电容器接通电源时,正极和负极之间的电荷会被储存起来,形成电场。
二、电容的工作原理电容的工作原理基于两个重要的物理现象:电荷存储和电场储能。
当电容器接通电源后,正极上的电子会被推向负极,从而形成了一个电场。
这个过程中,电荷会在导体上积累,直到电场强度达到平衡。
当电源断开时,电容器会释放储存的电荷,这个过程称为放电。
放电过程中,电场会崩溃,释放出储存在电容器中的能量。
三、电容的种类根据电容器的结构和性能,电容可以分为多种类型。
常见的电容有固定电容、可变电容、电解电容、陶瓷电容等。
1. 固定电容:固定电容是指其电容值无法调节的电容器。
它具有体积小、精度高、稳定性好等特点,广泛应用于电子电路中。
2. 可变电容:可变电容是指其电容值可以调节的电容器。
它通常由一个可旋转的电容器芯片和固定的接点组成。
通过旋转电容器芯片,可以改变电容器中的有效电容值,从而实现对电路中电容的调节。
3. 电解电容:电解电容是以电解液为介质的电容器。
它具有大电容值、体积较大、频率响应较差等特点。
电解电容广泛应用于电源滤波、直流电路耦合等场合。
4. 陶瓷电容:陶瓷电容是一种常见的电容器。
它具有体积小、价格低廉、频率响应好等特点。
陶瓷电容广泛应用于电子设备中的耦合、绕组等场合。
四、电容的应用电容在电子电路中有着广泛的应用。
以下列举几个常见的应用场景:1. 耦合电容:耦合电容用于将一个电路的交流信号传递到另一个电路中,起到隔直、通交的作用。
电容器的电容优质课课件
电容器的智能化技术将进一步发展,实现与物联网、人工智能等技术 的深度融合。
定制化服务的需求增加
随着电子设备种类的增多,电容器定制化服务的需求将不断增加,以 满足不同设备的特殊要求。
环保和可持续发展
未来电容器的发展将更加注重环保和可持续发展,采用更加环保的材 料和生产工艺,降低能耗和减少废弃物排放。
电容器的发展历程
18世纪
莱顿瓶的发明,标志着电容器的诞生。
20世纪
电子技术的飞速发展,推动了电容器产业的 壮大。
19世纪
法拉第电磁感应定律的发现,为电容器的发 展奠定了理论基础。
21世纪
新材料、新工艺的应用,使电容器的性能和 可靠性得到了进一步提升。
电容器的发展趋势
高性能化
小型化
随着电子设备对性能要求的不断提高,电 容器正向高性能化方向发展。
容量
根据实际需求选择合适的容量 ,容量过大会增加成本和体积 ,容量过小则可能无法满足电 路需求。
频率特性
根据电路的工作频率选择适合 的电容器类型,以确保电路性 能。
介质材料
根据电路的工作环境和性能要 求选择合适的介质材料。
电容器的使用注意事项
01
避免在潮湿、高温、高 磁场等恶劣环境下使用 电容器,以免影响其性 能和寿命。
充放电过程中的能量转换
总结词
电能与电场能的转换
详细描述
在充电过程中,电源将电能转换为电 场能并存储在电容器中;在放电过程 中,电容器将电场能释放出来,转换 为电能。
04 电容器的特性参数
容量(C)
总结词
容量是电容器存储电荷的能力,通常用法拉(F)作为单位。
详细描述
容量是电容器最重要的参数之一,它决定了电容器存储电荷 的能力。一般来说,容量越大的电容器能够存储的电荷越多 。
电容器知识点
电容器知识点【电容器知识点】电容器是电子元件中常见的一种 passi 导体,它能够储存电荷并且在电路中起到储能的作用。
本文将介绍电容器的基本概念、结构、工作原理,并探讨电容器在电路中的应用。
【1. 电容器的基本概念】电容器是由两个导体之间通过一种绝缘介质隔开而形成的装置。
导体之间的间隙称为电容间隙,而隔离导体的绝缘介质称为电介质。
电容器的基本单位为法拉(Farad),通常用字母 F 表示。
【2. 电容器的结构】电容器的结构通常分为两种类型:电解电容器和非电解电容器。
(1) 电解电容器:电解电容器是一种特殊的电容器,它由两个金属板和浸泡在电解质中的电介质构成。
金属板通常由铝箔或铝膜制成。
电解电容器具有极高的电容量和较低的成本,适用于大容量的电路。
(2) 非电解电容器:非电解电容器包括陶瓷电容器、聚酯电容器、聚丙烯电容器等。
这些电容器由两个金属层片或金属箔与电介质层组成。
它们具有体积小、品质因数高、稳定性好等特点,在微电子设备中广泛应用。
【3. 电容器的工作原理】电容器的工作原理基于电场的作用。
当电容器两极接入电源时,电源会导致正极板带正电荷,而负极板带负电荷。
两极之间的电介质会被电场极化,并储存电荷。
当电源断开连接时,电容器释放储存的电荷,维持电势差。
【4. 电容器在电路中的应用】电容器在电路中具有多种应用,下面介绍几个常见的例子:(1) 耦合电容器:耦合电容器用于耦合不同电路之间的信号,将一个电路的输出信号传递到另一个电路中。
它能够阻隔直流信号,只传递交流信号,起到隔离的作用。
(2) 滤波电容器:滤波电容器用于去除交流信号中频率过高或过低的成分,使电路输出的信号更为稳定。
在电源电路中,滤波电容器能够削弱电源中的纹波,提供平稳的直流电压。
(3) 能量储存电容器:电容器作为储存电荷的元件,被广泛应用于电子设备中。
例如,闪光灯电路中的电容器能够储存足够的能量,在需要时释放,产生明亮的闪光光源。
(4) 时序电容器:时序电容器用于控制电路中的时间延迟,实现定时功能。
电容器的基本概念与电量计算
电容器的基本概念与电量计算概念篇电容器是电路中常见的元件,它具有存储电荷的功能,用于稳定电压、滤波和储能等方面。
本文将介绍电容器的基本概念以及如何计算电容器的电量。
一、电容器的基本概念电容器由两个导体板和介质构成,介质可以是空气、塑料或氧化铝等。
导体板之间的介质阻挡了电荷的流动,但却能够存储电荷。
当电容器接入电源时,正负极之间形成电场,导致电荷在两板间堆积。
导体板的面积越大,板间距越小,电容器的电容量就越大。
二、电容器的电容量电容器的电容量用C表示,单位为法拉(F)。
电容量决定了电容器可以存储的电荷量。
在公式中,电容量与导体板的面积A和导体板之间的距离d成反比。
通过改变这两个参数,可以调节电容器的电容量。
公式如下:C = εA/d其中,C为电容量,ε为介电常数(介质的性质决定),A为导体板的面积,d为导体板之间的距离。
在电容器的电路符号中,用并联的两条线表示两个导体板,中间带有一条直线表示电容器的极性。
计算篇三、电荷与电容量的关系电容器的电量Q表示电容器存储的电荷量,单位为库仑(C)。
电量与电容量之间的关系由以下公式得到:Q = CV其中,Q为电量,C为电容量,V为电压。
当电容器接入电源时,电荷从电源流向导体板,导体板之间的电势差产生电场,使得电荷堆积在板上。
此时,电量等于电容量乘以电压。
四、如何计算电容器的电量1. 已知电容量和电压当已知电容量和电压时,可以通过以下公式计算电容器的电量:Q = CV例如,一个电容量为10微法的电容器接入电压为5伏的电源,则电量Q为:Q = 10 × 10^-6 × 5 = 50 × 10^-6 库仑2. 已知电容器的参数当已知电容器的参数(面积和板间距)时,可以通过以下步骤计算电容量和电量:- 确定导体板之间的距离d,单位为米。
- 确定导体板的面积A,单位为平方米。
- 选择或查找介电常数ε。
不同介质的介电常数不同。
- 计算电容量C:C = εA/d- 已知电压V后,计算电量Q:Q = CV例如,一个电容器的导体板间距为2毫米,面积为10平方厘米,介电常数为2.5,则电容量C为:C = 2.5 × 10^-8 × (10 × 10^-4) / 2 × 10^-3 = 0.0125 法拉如果电容器接入电压为12伏,可以通过以下公式计算电量Q:Q = 0.0125 × 12 = 0.15 库仑结论篇电容器作为电路中常用的元件,具有存储电荷的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1,电解电容器的构造腐蚀 Etching阳极和阴极金属箔是由高纯度的,很薄的只有0.02—0.1mm铝箔做成的,为了增加表面积和电容量,与电解液接触的表面积的增加是通过蚀刻金属箔去溶解铝,使整个铝箔的表面形成一个高密度的网状的有几十亿个精细微管道的结构.化成 Forming阳极箔上有电容器的电介质.电介质是一层很薄的铝氧化物,AL2O3,那是一个在阳极箔上的化学生长过程,这个过程叫“化成”.这个电压是最后电容器额定电压的135%-200%.阴极箔不用化成,它保持着很高的表面积和高密度的蚀刻模式.氧化膜的耐电压不足和电解液自身的闪火放电都会造成短路.卷绕 Winding电容元件的卷绕是一层隔离纸,一层阳极箔,另一层隔离纸和阴极箔.这些隔离纸防止箔之间接触形成短路,这些隔离物后来保留住电解液.在卷绕铝箔芯子或卷绕过程中为后来连接电容器端子附上箔.最好的方法是通过冷焊,把箔焊上带子,冷焊可以减少短路失效,有更好的高纹波电流性能和放电性能.内引出端面切口、与引出端铆接的箔条和电极箔剖面的切口都会有毛刺,从而造成相对电极间短路.电容器发热芯包膨胀和安全阀打开时的压力冲击,芯包发生变形,导致电极间短路.封口 Sealing电容元件被密封在一个罐子里.为了释放氢,密封圈不是密闭的,它经常是压力封闭的即将罐子的边沿滚进一个橡胶垫圈,一个橡胶末端插销或滚进压成石碳酸薄板的橡胶.太则紧密封会导致压力增加,太松则密封会因为电解液的可允许的流失而导致缩短寿命.2, 电容量电容量公差 Capacitance Tolerance电容量的公差是指可允许的电容量的最大值和最小值,用相对于额定电容量的百分数的增加和减少来表示,即ΔC/C.电容量的温度特性 Capacitance Temperature characteristics电容量随温度的变化而变化.这个变化的本身很小程度上是依赖于额定电压和电容的尺寸的.从25℃到限制的最高温度电容量的增加量小于5%.大部份电容在-20℃至-40℃時,容值下降很快 , 对於標稱-40℃的產品,在-40℃時低压的电容,电容值一般下降20%,高压电容下降40% .对于额定温度为-55℃的电容,在-40℃时电容值的下降量一般小于10%,在 -55℃时电容值的下降量一般小于20% . 电容量的频率特性 Capacitance frequency characteristics等效电容值随频率的增加而降低.根据电容量自谐振频率一般低于100kHz.電容量和電壓關係 Capacitance vs Voltage例如: 如果我们有一个20V 1.2F 尺寸为3×8.63的电容器,我想用400V 同样尺寸的电容器去代替,那我们选用的容量是多少?1.2×(400/20)1.5=13000uF --- 0.013F@400V即:C1*V1^1.5=C2*V2^1.53,电压额定DC电压 Rated DC voltage额定直流电压时标示在电容上的电压,它是包括纹波电压的最大峰值电压,这个电压可能在额定温度范围内在端子之间持续的被供给.较高额定电压的电容可能代替较低额定电压的电容所只要外形尺寸,DF和ESR的额定值是兼容的.工作电压(working voltage)简称WV应为标称安全值,也就是说应用电路中,不得超过此标称电压. 电解电容工作在远低于额定工作电压时,由于不能得到有效的足以维持电极跟电解液之间的退极化作用,会导致电解电容的极化而降低涟波电流,增大ESR,从而提早老化.但是这个说法的前提是“远低于额定工作电压”,综合一些长期的实践经验来看,选取额定工作电压标称值的2/3左右为正常工作电压,是比较合理的.额定浪涌电压 Rated surge voltage额定浪涌电压是最大的直流过电压,即25℃时时间不超过30秒偶然的间隔不少于5分钟电容可能承受的的电压.浪涌电压的测量 Surge voltage measurement在正常的室温下给电容通过一个1000Ω±10%的电阻加上额定浪涌电压(如果电容量是2500uF或更高,则使用2500,000/CΩ±10%的电阻,C是电容单位是uF).循环加电压1/2分钟开接着41/2分钟关,当处于关状态时,每个电容通过充电电阻或等效电阻放电.重复循环120小时.公布测试的必要条件是为了DCL,ESR,DF满足最初的条件,且没有机械损坏或电解液的泄漏的迹象.没有小滴或可视的流动的电解液残留物是允许的.瞬态过压 Transient over-voltage铝电解电容一般能承受限制能量的非常高的瞬态过压.超过电容浪涌电压额定值50V以上的应用将造成高的漏电流和固定电压工作模式就像齐纳二极管的反向击穿.如果电解液不能承受电压的压力,电容可能损坏短路,但是即使电解液能承受电压的压力,这种操作模式也不能维持很长时间,因为由电容所产生的氢气和压力的积累将造成损坏.冗余电压铝电解电容器先充电,再放电,而后将引线短接,再将其放置一段时间后,两端子间存在电压上升的现象;由这种现象所引起的电压称之为再生电压.当电压施加在介质之上时,在介质内部引起电子的转移,从而在介质内部产生感应电场,其方向与电压的方向相反,这种现象称之为极化反应.在施加电压引起介质极化后,如果两端子进行放电一直到端子间的电压为零,尔后将其开路放置一段时间后,一种潜在的电势将出现在两端子上,这样就引起了再生电压.再生电压在电容器开路放置10天~20天时达到峰值,然后逐渐降低,再生电压有随着元件变大而增大的趋势.如果电容器在产生再生电压后,两端子短路,瞬间高压放电可能引起组装线上的操作员工的恐惧感,并且,有可能导致一些低压驱动元件被击穿的危险,预防出现这种情况的措施是在使用前加100ohm~1Kohm的电阻进行放电,或者在产品包装中用铝箔覆盖引起两端子间短路放电.极性-反向电压 Polar-Reversed Voltage在电路设计和安装时要检查每一个电容的极性.在电容上会标示极性.尽管电容能持续承受1.5V的反向电压,超过这个值就会因为过热,压力过大或介质损坏而损坏电容.这会造成相关联的开路或短路故障和电容压力释放口的破裂.充电-放电 Charge-Discharge铝电解电容没有被设计成可以频繁快速的充电和放电,频繁快速的充电和放电会使电容因为过热,压力过大或崩溃而损坏,随后的故障是开路或短路.对于充电-放电的应用使用电容设计成这种应用,不要超过制造商所建议的放电速率.电压分配 Voltage Sharing在充电期间,每个串联电容的电压与实际的电容量的倒数成正比.但是达到最终电压时,每个电容上的电压与电容的漏电流的倒数成正比.当然串联回路上所有的漏电流是相同的,趋向于更高漏电流的电容将获得比较小的电压.因为漏电流随所提供的电压的增加而增加,较低的电压会造成较高的漏电阻抗,使电压趋向相同.测试高压母线上的串联电容,供给电容多出额定电压两倍的10%的电压,在整个温度范围内显示出良好的电压分配,没有电容电压曾经超过其额定值.电压的降额 Voltage Derating电压的降额用百分比来表示,即给定电压小于额定电压的百分比,如一个450V的电容工作在400V将有11%的电压降额.如用至少高于额定电压135%的化成电压和85℃的额定或更高温度鋁箔所制作的铝电解电容器,不需要过多的电压降额,降额可持续增加工作寿命.在应用中,在温度小于45℃时工作不需要降额.高于75℃,10%的降额是足够的.对于更高的温度和高的纹波电流,15% 或20%的降额是合适的.军事和空间的应用使用50%的电压降额.在正常室温下,照相闪光(photoflash)电容可以在满额定电压下被使用,因为它们是为这样的职责而设计的.至少10%的电压降额对于频闪(strobe)电容有好处,因为它们连续工作会使它们变热.4,温度工作温度范围 Operating Temperature Range它是环境温度范围,在这个温度下电容被设计能持续工作. 很大程度上化成电压决定了高温限制值.低温限制值很大程度上由电解液的低温电阻系数所决定. 105 ℃等级的化成电压要高于85 ℃.所以105 ℃等级的电容比85 ℃的电容具有更长的寿命或更高的承受纹波电流的能力.. 5, 纹波电流纹波电流 Ripple Current纹波电流是流进电容的交流电流.之所以称为纹波电流是因为其所关联的依附在电容的直流偏置电压上的交流电压的行进就像水上的纹波一样.纹波电流使电容发热,太高的温升将使电容超过它的最大可允许管芯的温度而很快损坏,但是工作于接近最大允许管芯温度将大大缩短预期的寿命.最大可允许的纹波电流决定于多大可被允许且仍能满足电容的负载寿命指标.对于铝电解电容工作于最大允许管芯温度其负载寿命指标典型值是1000到10,000小时.即六个星期到一年零七个星期,对于大多数的应用这个时间都太短了.纹波电流的技术规格 Ripple current specification纹波电流是由在额定温度下获得希望的温升所决定的.通常额定温度为85℃的电容允许的温升是10℃,最大允许管芯温度是95℃.通常额定温度为105℃的电容允许的温升是5℃,最大允许管芯温度是110℃.纹波电流额定值通常假定电容是对流冷却,整个罐子与空气接触.0.006W/℃/in2的对流系数是假设温升是从空气到外壳,管芯温度假设与外壳温度相同.功率损耗等于纹波电流的平方乘以ESR , ( P=I (square)*R) .通常使用25℃,120Hz的最大的ESR,但是既然ESR随温度的增加而减少,所以可使用低于最大ESR的值去计算功率损耗.这有一个例子,对于4700uF,450V,直径为3 inch(76mm),长为55/8 inchs(143mm) 的罐型电容,其25℃,120Hz 最大的ESR是30mΩ,假设你想要这种电容纹波电流额定值.罐型的面积-不包括端子末端-是60.1in2(388mm2).热导系数是(0.006)(60.1)=0.36W/℃.对于10℃的温升,外壳可能损耗3.6W.所以对于最大的ESR是30mΩ可允许的纹波电流是11A.(3.6=I square x 0.03)像这个例子里的大的罐型电容忽略了从外壳到管芯的温升就会严重的夸大了纹波电流的容量.纹波电流的温度特性 Ripple current temperature characteristics对于工作温度小于额定温度额定纹波电流会增加.在技术指标中会显示增加量.一般增加量决定于最大管芯温度(Tc),额定温度(Tr)和环境温度(Ta)即:纹波温度增量=[(Tc- Ta)/ (Tc- Tr)]1/2高的纹波电流会使工作寿命小于预期寿命,因为电容时间越长其ESR越大对于相同的纹波电流发热量会增加.这加速了磨损.纹波电流的频率特性 Ripple current frequency characteristics工作频率不是120Hz时,要校正额定纹波电流.在技术指标中会显示增加量.通常增加量决定于预期随频率的变化的ESR,但是就像上面所讨论的,ESR是温度,电容量,额定电压和频率复杂的函数.所以很难产生一个精确模拟其对频率依赖的纹波-频率的增量表.对于高纹波电流的应用要确认在你感兴趣的频率下的ESR,并计算总的功率损耗.电解电容器的寿命还与电容器长时间工作的交流电流与额定脉冲电流(一般是指在85℃的环境温度下测试值,但是有一些耐高温的电解电容器是在125℃时测试的数据)的比值有关.一般说来,这个比值越大,电解电容器的寿命越短,当流过电解电容器的电流为额定电流的3.8倍时,电解电容器一般都已经损坏.所以,电解电容器有它的安全工作区,对于一般应用,当交流电流与额定脉冲电流的比值在3.0倍以下时,对于寿命的要求已经满足.实际上d的变化范围在5%—20%之间,它造成纹波电流大小约是电容直流输出电流,的2-4倍.D的选择对电容器的影响很大,一个比较小的d值和高峰值的冲点线路能够产生一个比较大的纹波电流值.纹波电流和d的关系可在中看到,根据ESR和频率的关系,变换d将会导致电容的能耗,这个能耗正比于纹波电流,或正比于纹波电流的平方,或者是着两个值中的某一点.涟波电流对于石机的滤波电路来说,是一个很重要的参数.涟波电流Irac 是愈高愈好.他的高低与工作频率相关,频率越高Irac越大,频率越低Irac越小.传统的认为我们需要在低频时能够有很高的涟波电流,以求得到良好的大电流放电特性,使的低频更加结实饱满富有弹性,以及良好的控制驱动特性;实际上在高频时高的涟波电流对音色的正面帮助也很大,可以使高频有更好的延伸和减小粗糙感.在我们现有的摩滤波电容的文章中,推荐的大部分电容都是日本货,比如说elna,红宝石,nichicon(篮精灵),当然还有日本化工等品种,由于我们一入道就接触这些电容,因此先入为主的我们就认为这些电容就是最好的电容.当然,玩胆机的朋友,眼界更为开阔,他们决不轻易使用这些日本货,而是想方设法地去寻找欧美货.根据本人这些年的实践来看,在上面的那些日本货中,除了ENLA的极少数品种和欧美品种和能有一拼外,其他的品种根本不是欧美货的对手.在胆机用滤波电容中,美国的cornell dubilier的效果不错,它的直径是35mm,高度要比日本货高一倍,但是相同耐压的RIFA电容的直径是75mm,无法安装.cornell dubilier 电容的脚是2个较粗的接线柱,通过螺丝固定,而很多日本货是四个脚,直接焊接,因此在替换的时候仍然比较麻烦,我费了很大力气才把我的胆机上的四个滤波电容换好.6,等效串联電阻 ESR等效串联电阻 Equivalent Series Resistance等效串联电阻(ESR)是一个单一的电阻值,它代表了所有的电容的欧姆损耗与电容相串联.用于DC/DC开关稳压电源输入滤波电容器,因开关变换器是以脉冲形式向电源汲取电能,故滤波电容器中流过较大的高频电流,当电解电容器等效串联电阻(ESR)较大时,将产生较大损耗,导致电解电容器发热.而低ESR电解电容器则可明显减小纹波(特别是高频纹波)电流产生的发热. 电解电容器ESR较低,能有效地滤除开关稳压电源中的高频纹波和尖峰电压.ESR的高低,与电容器的容量、电压、频率及温度…都有关,ESR要求越低越好.当额定电压固定时,容量愈大 ESR愈低.当容量固定时,选用高额定电压的品种可以降低 ESR.低频时ESR高,高频时ESR低,高温也会使ESR上升.ESR的测量 ESR measurement对于铝电解电容,是在25℃时测试在一个测量桥式电路中等效串联电路中的电阻值作为ESR的值,测量桥式电路用120Hz没有谐波含量最大AC信号电压为1Vrms没有正向偏置电压的电源来供电.ESR的温度特性 ESR Temperature characteristics ESR随温度的的增加而降低.从25℃到限制的最高温度ESR大约降低35%到50%.但是在限制的最低温度时ESR的增加超过10倍.对于额定温度为-20℃或-40℃的电容,在-40℃时ESR的增加超过100倍.ESR的频率特性 ESR Frequency characteristics像DF一样,ESR随频率而变化.重写一次上面DF的公式,ESR可由下面的公式来模拟:ESR=10,000(DFif) /2лfC +ESRhf用ESR来表示,在低频时ESR随着频率的增加稳定的下降, 关电源的体积不断缩小,能量转换效率不断提高,使得开关电源的工作频率不断提高(从20kHz到500kHz,甚至达到1MHz以上),导致其输出部分的高频噪声加大,为了有效滤波,必须使用超低高频阻抗或低等效串联电阻(ESR)的电容器.D.3 损耗因数- Dissipation Factor(DF)Tan& (损耗角正切)在等效电路中,等效串联电阻ESR同容抗1/wC 之比称为Tan& ,其测量条件与电容量相同.Tan&=R(ESR)/(1/ wC)= wC R(ESR)其中:R(ESR)= ESR(120HZ) w =2 X 3.14 fF= 120HzTan& 随着测量频率的增加而变大,随着测量温度的下降而增大.损耗因数是测量损耗角的正切值并用百分数来表示.损耗因数也是ESR同容性电抗的比值,因此与ESR有关,用公式表示:DF=2лfC(ESR)/10,000DF是用百分数表示的没有单位的数值,测试频率f的单位是Hz,电容量C的单位是Uf,ESR的单位是Ω.DF的测试 DF measurementDF的测试是在25℃用120Hz没有谐波含量最大AC信号电压为1Vrms没有偏置电压的电源来供电下完成的.DF的值与温度和频率有关.DF的温度特性 DF Temperature characteristics损耗因数随温度的升高而降低.从25℃到最高温度限制值时DF大约降低50%,但是在最低温度限制值时,DF增加超过10倍.额定温度为-55℃的更好的器件的DF值在-40℃时增加量不到5倍.DF的频率特性 DF Frequency characteristics、损耗因数在高频时随频率的变化而变化.DF用以下的公式来模拟:DF=DFif+2лfC(ESRhf)/10,000DF是用百分数来表示的总的损耗因数,DFif是用百分数来表示的低频的损耗因数,ESRhf是高频时的ESR单位Ω,f是测试频率单位Hz,C是测试频率下的电容量单位uF.DFif是由功率损失所造成的,功率损失是由在铝氧化介质的分子排列方向的电场所产生的.ESRhf是由在薄膜,连接器和电解液/隔离物垫上的阻性损耗所造成的.电解液/隔离物垫上的电阻值经常起主导作用,它的电阻值随频率变化很小.DFif的范围大约是从1.5%到3%.ESRhf的范围是从0.002到10Ω,随温度而降低.上面DF的公式表明DF在低频时是个常数,在交越频率处跨越到降低的DF和固定的ESR,交越频率与电容量成反比.因此高电容量的电容其交越频率就低.随着频率的增加高电容量的电容比低电容量的电容DF降低的更多.DF值是高还是低,与温度、容量、电压、频率……都有关系;当容量相同时,耐压愈高,DF值就愈低.频率愈高,DF值愈高,温度愈高, DF值也愈高.DF 值一般不标注在电容器上或规格介绍上面.在DIY选取电容时,可优先考虑选取更高耐压的,比如工作电压为45V时,选用50V的就不很合理.尽管使用50V的从承受电压正常工作方面并无不妥,但从DF值方面考虑就欠缺一些.使用63V 或71V耐压的会有更好的表现的.当然再高了性价比上就不合算了.含浸 Impregnation电容器元件注入电解液,浸透纸隔离物并且渗透到蚀刻管道里.注入的方法可能会涉及到器件的浸入和真空压力周期的应用不管使用或不使用加热,或者在小单元情况下仅仅是简单的吸收.电解液是根据电压和工作温度范围用不同的公式表示的成分的复杂混合物.其基本的成分是具有可溶性和可导电性的盐-一种溶解物-以产生电的传导.普通的溶剂是乙烯乙二醇(EG), 二甲基的甲酰胺(DFM)和微克丁内酯(GBL).普通的溶解物是铵硼酸盐和其它的铵盐.EG典型应用于额定值为-20℃或-40℃的电容.DFM和GBL经常应用于额定值为-55℃的电容.在电解液里水起很大的作用.水增加了导电性因此减少了电容的阻抗.但是它降低了沸点因而妨碍了高温性能,减少了贮藏寿命.占几个百分点的水是必要的,因为电解液要维持铝氧化物电介质的完整性.当漏电流流动时,水被分解为氢和氧,氧被附着在阳极金属薄片上通过增加更多的氧来复原漏电流地点.氢通过电容的密封橡胶溢出.7,漏电流DCL漏电流 DC Leakage Current(DCL)DC漏电流是指在给定的额定电压下流过电容的直流电流值.漏电流的值依赖于给定的电压,充电周期和电容的温度.电容器的介质对直流电具有很大的阻碍作用.由于铝氧化膜介质上浸有电解液,在施加电压时,重新形成以及修复氧化膜的时候会产生一种很小的称之为漏电流的电流,刚施加电压时,漏电流较大,随着时间的延长,漏电流会逐渐减小并最终保持稳定.测试温度和电压对漏电留具有很大的影响.漏电流会随着温度和电压的升高而增大DCL的测试方法 DCL Method of measurement漏电流的测量是在25℃的温度下,提供额定电压并通过1000Ω的保护电阻同测量电路中的电容相串联.加电压5分钟以后,漏电流没有超过规格所给定的最大值.铝电解电容都存在漏电的情况,这是物理结构所决定的.漏电流当然是越小越好.电容器容量愈高,漏电流就愈大.降低工作电压可降低漏电流.选用更高耐压的品种也会有助于减小漏电流.相同条件下优先选取高耐压品种的确是一个简便可行的好方法;降低内阻、降低漏电流、降低损失角、增加寿命.真是好处多多,唯价格上会高一些.而漏电流值大小的控制是电容器三个参数中的重点,漏电流值大小是判断电容器质量的一个重要标志.影响铝电解电容漏电流值的主要因素有 :(1)所用原材料的纯度情况 , 包括正极箔的含杂质情况 , 负极箔纯度、去离子水的纯度 , 电解纸的杂质含量以及其它结构材料、密封材料等等 .(2)工作电解液的成分、粘度、 P H 值、比电阻 .(3)工作和贮存环境的影响 .(4)电容器生产的环境和制造工艺的控制 ,特别是老炼工艺 , 电容器内部氧化膜的修补过程等 .把相同容量的电解电容按照额定承受电压进行充电,放置一段时间后再检测电容器两端的电压下降程度.下降电压越少的漏电流就越小.DCL的温度特性 DCL Temperature characteristics随温度的增加而增加DCL的测试方法 DCL Method of measurement漏电流的测量是在25℃的温度下,提供额定电压并通过1000Ω的保护电阻同测量电路中的电容相串联.加电压5分钟以后,漏电流没有超过规格所给定的最大值.把相同容量的电解电容按照额定承受电压进行充电,放置一段时间后再检测电容器两端的电压下降程度.下降电压越少的漏电流就越小.DCL的电压特性 DCL Voltage characteristics漏电流的值随着提供的电压的降低会迅速的减少.8,外部气压 External Pressure对于固体电解液的电容没有关联.铝电解电容能在80000英尺(20320m)和3kPa低的气压下工作.最大的空气压力依赖于尺寸和电容的类型.超过最大值会通过压坏外壳,打开压力释放口或产生一个短路电路使电容损坏.9,电感 Inductance电感是等效串联电感,对于温度和频率相对独立.对于SMT 典型值的范围是从2到8nH,对于径向引线的类型其典型值的范围是从10到30nH,对于螺丝端子的类型其典型值的范围是从20 nH到50nH,对于轴向引线的类型其典型值高达200nH.这些低的值是通过制表区域和介质接触几何学的固有的低的电感量所获得的.电容元件具有小于2nH的典型的电感量.CDE 电感的简单计算公式: ( 直径/2) +5 < 电感 (nH)< 直径-810,绝缘和接地 Insulation and Grounding非固态电解液铝电解电容的铝外壳通过与电解液接触与负极相连.所产生的绝缘电阻从几个欧姆到几千个欧姆.对于轴向端子的电容和扁平组件封装外壳与负极端子连接.如果同外壳接触的器件有一定电平而不是负极端子,使用带绝缘套的电容.塑料绝缘(UL224VW-1 )能承受3000Vdc或2500Vac,60Hz1分钟,电压加在外壳和一个1/4英寸宽围绕绝缘套的金属薄膜之间.给电容安装上满意的尼龙螺母和间隔孔.在薄膜和电容外壳之间加电100V 2分钟以后,绝缘电阻不小于100MΩ.11,平衡电阻 Balancing Resistors在额定温度时,串联的两个电容漏电流的差异能被估计为0.0015CVr单位是uA,C是额定电容量单位是uF,Vb是通过两个电容的电压单位是Vdc.使用这种估计数值,使用下面的公式来为每个电容选取平衡电阻的值.R=(2Vr-Vb)/(0.0015CVr)R使平衡电阻单位是MΩ,Vr是你想要加在每一个电容上的最大电压,Vb是通过两个电容的最大母线电压.对于三个或更多的电容串联可使用下面的公式,n是串联电容的个数:R=(Vr-Vb/n)/(0.00075CVr)当两个电容串联时,电压的分配很少使用平衡电阻.在使用平衡电阻作为电压放电以前,应考虑到不使用平衡电阻通常会增加系统的可靠性因为不使用平衡电阻可降低电容周围的温度,除去比电容可靠性低的元器件就意味着保护.作为替代,。