代数式(单项式、多项式、整式)知识点综合梳理

合集下载

整式知识点总结

整式知识点总结

整式知识点总结单项式和多项式统称为整式。

1.单项式:1)数与字母的乘积这样的代数式叫做单项式。

单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。

2)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。

3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2.多项式:1)几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

一个多项式有几项就叫做几项式。

2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

3.多项式的排列:1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

2)把一个多项式按某一个字母的`指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

初中数学《整式》知识点总结2整式的加减(合并同类项)1.合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

2.合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

3.合并同类项步骤:⑴.准确的找出同类项。

⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

⑶.写出合并后的结果。

初中数学《整式》知识点总结3一、代数式1.概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。

单独的一个数或字母也是代数式。

2.代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。

二、整式的运算1.同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。

同类项与系数无关,与字母排列的顺序也无关。

2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。

即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

九年级数学代数式知识点归纳

九年级数学代数式知识点归纳

九年级数学代数式知识点归纳九年级数学代数式知识点归纳一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式没有加减运算的整式叫做单项式。

(数字与字母的.积包括单独的一个数或字母)几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如,=x, =│x│等。

4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

7.算术平方根⑴正数a的正的平方根( [a与平方根的区别]);⑵算术平方根与绝对值① 联系:都是非负数,=│a│②区别:│a│中,a为一切实数; 中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数⑴ ( 幂,乘方运算)① a0时,②a0时, 0(n是偶数), 0(n是奇数)⑵零指数: =1(a0)负整指数: =1/ (a0,p是正整数)二、运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则2.分式的性质⑴基本性质: = (m0)⑵符号法则:⑶繁分式:①定义;②化简方法(两种)3.整式运算法则(去括号、添括号法则)4.幂的运算性质:① ② ③ = ;④ = ;⑤技巧:5.乘法法则:⑴单⑵单⑶多多。

代数式知识点

代数式知识点

第二章:代数式基础知识点:一、代数式1、代数式:用运算符号把数或表示数得字母连结而成得式子,叫代数式。

单独一个数或者一个字母也就是代数式。

2、代数式得值:用数值代替代数里得字母,计算后得到得结果叫做代数式得值。

3、代数式得分类:二、整式得有关概念及运算1、概念(1)单项式:像x、7、,这种数与字母得积叫做单项式。

单独一个数或字母也就是单项式。

单项式得次数:一个单项式中,所有字母得指数叫做这个单项式得次数.单项式得系数:单项式中得数字因数叫单项式得系数。

(2)多项式:几个单项式得与叫做多项式.多项式得项:多项式中每一个单项式都叫多项式得项。

一个多项式含有几项,就叫几项式.多项式得次数:多项式里,次数最高得项得次数,就就是这个多项式得次数。

不含字母得项叫常数项。

升(降)幂排列:把一个多项式按某一个字母得指数从小(大)到大(小)得顺序排列起来,叫做把多项式按这个字母升(降)幂排列.(3)同类项:所含字母相同,并且相同字母得指数也分别相同得项叫做同类项。

2、运算(1)整式得加减:合并同类项:把同类项得系数相加,所得结果作为系数,字母及字母得指数不变。

去括号法则:括号前面就是“+”号,把括号与它前面得“+”号去掉,括号里各项都不变;括号前面就是“–”号,把括号与它前面得“–"号去掉,括号里得各项都变号。

添括号法则:括号前面就是“+”号,括到括号里得各项都不变;括号前面就是“–”号,括到括号里得各项都变号。

整式得加减实际上就就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。

(2)整式得乘除:幂得运算法则:其中m、n都就是正整数同底数幂相乘:;同底数幂相除:;幂得乘方:积得乘方:。

单项式乘以单项式:用它们系数得积作为积得系数,对于相同得字母,用它们得指数得与作为这个字母得指数;对于只在一个单项式里含有得字母,则连同它得指数作为积得一个因式。

单项式乘以多项式:就就是用单项式去乘多项式得每一项,再把所得得积相加。

整式的乘除知识点归纳

整式的乘除知识点归纳

整 式 的 乘 除知识点归纳:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。

如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x5、同底数幂的乘法法则:n m n m a a a +=∙(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+∙+6、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m m n a a a )()(==如:23326)4()4(4== 已知:23a =,326b =,求3102a b +的值;7、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙-8、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

整式知识点汇总

整式知识点汇总

一、基本概念1.代数式:用基本的运算符号(指加、减、乘、除、乘方及今后要学的开方)把数或表示数的字母连接而成的式子叫做代数式。

. 2.单项式:数字与字母的积,这样的代数式叫做单项式(1)单独的一个数或一个字母也是单项式(2)单项式中的数字因数叫做这个单项式的系数(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数3.多项式:几个单项式的和叫做多项式(1)在多项式中,每个单项式叫做多项式的项,其中,不含字母的项叫做常数项(2)一般地,多项式里次数最高的项的次数,就是这个多项式的次数4.整式:单项式和多项式统称整式5.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项6.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.二、基本运算法则1.整式加减法法则:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项2.合并同类项法则:合并同类项时,把系数相加,字母和字母指数不变3同底数幂的相乘:同底数幂相乘,底数不变,指数相加。

4幂的乘方:幂的乘方,底数不变,指数相乘。

5积的乘方:积是乘方,等于把每一个因式分别乘方,再把幂相乘。

6整式的乘法:单项式与单项式相乘,把它们系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式与多项式相乘,就是把单项式与多项式的每一项相乘,再把所得的积相加。

多项式与多项式相乘,就是用多项式的每一项和另一个多项式的每一项相乘,再把所得的积相加。

7乘法公式平方差公式完全平方公式:8.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号9.同底数幂的除法法则同底数幂相除,底数不变,指数相减10.单项式除法法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式11.多项式除以单项式的除法法则多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

代数知识点

代数知识点

第一章整式的运算一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质:1、同底数幂的乘法:),(都是正整数n m a a a n m n m +=∙2、幂的乘方: ),(都是正整数)(n m a a m n n m =3、积的乘方:)()(都是正整数n b a ab n n n =4、同底数幂的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数六、零指数幂和负整数指数幂:1、零指数幂:);0(10≠=a a2、负整数指数幂:),0(1是正整数p a a a pp ≠=- 七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

5、多项式除以单项式:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

八、整式乘法公式:1、平方差公式: 22))((b a b a b a -=-+2、完全平方公式: 2222)(b ab a b a ++=+2222)(b ab a b a +-=-第三章 变量之间的关系1、变量、自变量、因变量:①两个变量x 与y ,y 随x 的改变而改变,那么x 是自变量(先变的量),y 是因变量(后变的量)。

代数式、整式的运算、因式分解、分式 常用知识点

代数式、整式的运算、因式分解、分式  常用知识点

第二部分 式与式的运算一、代数式、整式的运算、因式分解、分式 1.代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式.单独一个字母或一个数也是代数式,用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.2.单项式:只含有数或字母的乘法(含乘方)运算的代数式叫做单项式,单独一个字母或一个数也是单项式,所有字母的指数和叫做单项式的次数.3.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式中次数最高项的次数叫做多项式的次数.升幂排列: 降幂排列:4.整式:单项式与多项式统称为整式.5.整式的加法:合并同类项. 添括号:()a b c a b c -+=-- 去括号:()a b c a b c +-=+-6.整式的乘法: (1)单项式×单项式:()()()212312325a b c abab c ab c +--+⋅==.(2)单项式×多项式:()2a b a ab a -=-. (3)多项式×多项式:()()a b c d +⋅+()()a c d b c d =⋅++⋅+ac ad bc bd =+++(4)乘法公式()()22a b a b a b +-=- ① ()2222a b a ab b ±=±+ ②a 2+b 2=(a +b )2-2ab (a -b )2=(a +b )2-4ab . (a -b )(a 2+ab +b 2)=a 3-b 3 7.整式的除法()232226422624242a b a b a b a b a b a b --÷=÷== 8.因式分解:把一个多项式表示成几个整式的乘积的形式,叫做把这个多项式因式分解.多项式=( )·…·( ) 常用方法有: (1)提公因式法:如()ab ac ad a b c d ++=++;(2)公式法(利用乘法公式):如()()()22224222x y x y x y x y -=-=+-;(3)十字相乘法: 因式分解:243x x ++x 1 x 3所以:()()24313x x x x ++=++ 因式分解:223x x --x 1 x 3-所以:()()22313x x x x --=+- 9、分式:(1)概念:如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式. (2)分式运算的符号规律:a a a ab b b b --=-=-=--; a a a b b b--==-. (3)分式通分“根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

单项式、多项式、去括号知识点和练习

单项式、多项式、去括号知识点和练习

知识点一:单项式、多项式、整式1. 整式的概念1) 单项式:数字与字母的积组成的的代数式叫做单项式,单独的一个数或者一个字母也是单项式,如5,a ,-3a ,ab/2是单项式,而a+b 和不是单项式。

i. 单项式的系数:单项式中的数字因数叫做单项式的系数。

如-3a 的系数-3,ab/2的系数1/2 注意:单项式的系数一定不能忽略符号!ii. 单项式的次数:单项式中的所有字母的指数的和叫做单项式的次数。

如-2a 的次数为1,的次数是3,ab/5的次数是22) 多项式:几个单项式的和叫做多项式。

如a+b 、、x+1等等i. 多项式的项:多项式中每一个单项式叫做多项式的项,其中不含字母的项叫做常数项。

例如多项式中有三项,分别是,其中是常数项。

ii. 多项式的次数:多项式的次数由多项式中次数最高的项的次数决定,次数最高的项的次数就是该多项式的次数,例如:多项式的次数是3,的次数是5iii. 多项式的降(升)幂排列:把一个多项式按照某一字母的指数从大到小(或从小到大)的顺序排列起来,叫做把多项式按照这个字母的降(升)幂排列。

例题分析1.在代数式x x 3252-,y x 22π,x 1,5-,a ,0中,单项式的个数是( ) A.1 B.2 C.3 D.42. 1022223x x y π--+-是_____次_____项式,常数项是_____,最高次项是_____.3.当k = 时,多项式8313322+---xy y kxy x 中不含xy 项. 针对练习1. 下列语句中错误的是( )A 、数字0也是单项式B 、单项式-a 的系数与次数都是 1C 、21xy 是二次单项式D 、-32ab 的系数是 -32 2. 在代数式,2n m +2πx 2y ,x 1,-5,a ,0,π1中,单项式的是__________________,多项式有_____________3、多项式9322++xy x π中,次数最高的项是________,它是______次的,它的系数是_________.4、已知 –8x m y 2m+1+12 x 4y 2+4是一个七次多项式,则m=知识点二:同类项、去括号 1、同类项与合并同类项 1) 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

七年级上代数式知识点梳理+例题讲解+测试题

七年级上代数式知识点梳理+例题讲解+测试题

知识梳理用字母表示数:示出来。

代数式:1.用基本运算符号(+.-为代数式。

注:单独一个数或一个字母也是代数式。

Π是数字不是字母。

2.或省略不写,单项式:1.2.3.注:单独一个数或一个字母也是单项式。

多项式:1.几个单项式的和叫做多项式。

计算所得的结果叫0,5ba3+,a2+2ab+b2,aa5+,-k.一个字母也是单项式,-k;多项式:5ba3+,a2-k;【练1a2x+ax,x2-3x+4,-Πx,0单项式集合:{多项式集合:{整式集合:{一次整式集合:{二次整式集合:{【例2(1)单项式4yx -3Π(2)多项式ab-2a-100常数项是. (3)多项式2xy-xy2-13是,它是次【分析】.是.m│+2=5,可k的值.【重难点四】代数式求值【例4】当x=3,y=2,求22x 【分析】本题中,具体数值为x=3字母所对应数值带入求解可得。

解答:22x -4xy+3y原式=2×23-4×3×2+3×2=18-24+6 =0【练4】若2)2(+a +丨b-1丨=0【重难点五】整体代入思想求值【例5】若2=-b a ,求代数式5分析:本题中没有给出a 、b 间的关系,b a 22-是b a -的2解答:原式=)(25b a -+=5+2×2 =9的值。

【例6】【分析】根据程序框图的算法,输入一个数x 第一步先算x-1,第二步再算一、选择题1、代数式-23xy 3A .-2,4B .-6,2、若220x x +-=,则322x x +- A .2017 B .3、代数式 , ,, , A. 个B. 个4、某商店在甲批发市场以每包m场以每包n 元(m>n)A .盈利了 B .亏损了 5、图1中3,6,9,··称为正方形数.下列数既是三角形数又是正方形数的是 ( )A .2010B .2012C .2014D .2016,单项式-23πa 2b 的系数是x 的值为81,则第2016次输出的结果为3、已知A 是关于a 的三次多项式,B 是关于a 的二次多项式,则A +B 的的值是×4=43+4,…,若a b ×10=a b.220b -=;②212a b c x y -++是一a 2c -3a 2b)-4a 2c]-abc 的值.2、当x=-2时,代数式633-++cx bx ax 值为8,求当x=2时,代数式633-++cx bx ax 的值。

单项式和多项式知识点+例题讲解1

单项式和多项式知识点+例题讲解1

整式代数式代数式:用基本运算符号把数和字母连接而成的式子叫做代数式,如n,—1,2n+500,abc。

单独的一个数或一个字母也是代数式.单项式:表示数与字母的乘积的代数式叫单项式.单独的一个数或一个字母也是代数式. 单项式的系数:单项式中的数字因数单项式的次数:一个单项式中,所有字母的指数和多项式:几个单项式的和叫做多项式。

每个单项式叫做多项式的项,不含字母的项叫做常数项.多项式里次数最高项的次数,叫做这个多项式的次数。

常数项的次数为0。

整式:单项式和多项式统称为整式。

注意:分母上含有字母的不是整式。

代数式书写规范:①数与字母、字母与字母中的乘号可以省略不写或用“·"表示,并把数字放到字母前;②出现除式时,用分数表示;③带分数与字母相乘时,带分数要化成假分数;④若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来.合并同类项同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

合并同类项的步骤:(1)准确的找出同类项;(2)运用加法交换律,把同类项交换位置后结合在一起;(3)利用法则,把同类项的系数相加,字母和字母的指数不变;(4)写出合并后的结果。

去括号的法则(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变; (2)括号前面是“-”号,把括号和它前面的“—”号去掉,括号里各项的符号都要改变. 整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项。

整式加减的步骤:(1)列出代数式;(2)去括号;(3)合并同类项.知识点一:单项式的意义单项式:由数字或字母乘积组成的式子是单项式.单项式中的数字因数叫作单项式的系数(4x、vt、26a、3a、-n的系数分别是4、1、6、1、-1);单项式中所有字母的指数和是这个单项式的次数(4x、vt、26a、3a、-n 的次数分别是1、2、2、3、1).注意:单独的一个数或一个字母也是单项式。

单项式、多项式、去括号知识点和练习

单项式、多项式、去括号知识点和练习

知识点一:单项式、多项式、整式1. 整式的概念1) 单项式:数字与字母的积组成的的代数式叫做单项式,单独的一个数或者一个字母也是单项式,如5,a ,-3a ,ab/2是单项式,而a+b 和不是单项式。

i. 单项式的系数:单项式中的数字因数叫做单项式的系数。

如-3a 的系数-3,ab/2的系数1/2 注意:单项式的系数一定不能忽略符号!ii. 单项式的次数:单项式中的所有字母的指数的和叫做单项式的次数。

如-2a 的次数为1,的次数是3,ab/5的次数是22) 多项式:几个单项式的和叫做多项式。

如a+b 、、x+1等等i. 多项式的项:多项式中每一个单项式叫做多项式的项,其中不含字母的项叫做常数项。

例如多项式中有三项,分别是,其中是常数项。

ii. 多项式的次数:多项式的次数由多项式中次数最高的项的次数决定,次数最高的项的次数就是该多项式的次数,例如:多项式的次数是3,的次数是5iii. 多项式的降(升)幂排列:把一个多项式按照某一字母的指数从大到小(或从小到大)的顺序排列起来,叫做把多项式按照这个字母的降(升)幂排列。

例题分析1.在代数式x x 3252-,y x 22π,x 1,5-,a ,0中,单项式的个数是( ) A.1 B.2 C.3 D.42. 1022223x x y π--+-是_____次_____项式,常数项是_____,最高次项是_____.3.当k = 时,多项式8313322+---xy y kxy x 中不含xy 项. 针对练习1. 下列语句中错误的是( )A 、数字0也是单项式B 、单项式-a 的系数与次数都是 1C 、21xy 是二次单项式D 、-32ab 的系数是 -32 2. 在代数式,2n m +2πx 2y ,x 1,-5,a ,0,π1中,单项式的是__________________,多项式有_____________3、多项式9322++xy x π中,次数最高的项是________,它是______次的,它的系数是_________.4、已知 –8x m y 2m+1+12x 4y 2+4是一个七次多项式,则m=知识点二:同类项、去括号1、同类项与合并同类项1) 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

七年级上代数式、单项式、多项式

七年级上代数式、单项式、多项式

第一节 代数式、单项式、多项式一、基础知识1、代数式:用括号和运算符号把数或表示数的字母连接而成的式子叫代数式。

单独的数或字母也是代数式。

(1)代数式的书写:①代数式中出现乘号通常写作“*”或省略不写,但数与数相乘不遵循此原则。

②数字与字母相乘,数字写在字母前面,而有理数要写在无理数的前面。

③带分数应写成假分数的形式,除法运算写成分数形式。

④相同字母相乘通常不把每个因式写出来,而写成幂的形式。

⑤代数式不能含有“=、≠、<、>、≥、≤”符号。

(2)代数式的值:用数值代替代数式中的字母,按照代数式的运算关系计算出的结果,叫代数式的值。

注意:①代数式中省略了乘号,带入数值后应添加×。

②若带入的值是负数时,应添上括号。

③注意解题格式规范,应写“当…..时,原式=……..”.④在实际问题中代数式所取的值应使实际问题有意义。

2、单项式:由数与字母的乘积组成的代数式称为单项式,单独一个数或一个字母也是单项式,如a ,5。

单项式的特征:1、分母都不含字母。

2、不含数与字母或字母与字母的加减运算。

3、不含数与字母或字母与字母的开方运算。

3、单项式系数和次数:系数:与字母相乘的数字叫单项式的系数。

次数:所有字母的指数的和叫做单项式的次数。

注:①圆周率π是常数;②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b 等; ③单项式次数只与字母指数有关4、多项式:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中,不含字母的项,叫做常数项。

多项式5232+-x x 有三项,它们是23x ,-2x ,5,其中5是常数项多项式的特征:1、分母都不含字母。

2、不含字母的开方运算多项式的项与次数:一个多项式含有几项,就叫几项式。

多项式里,次数最高项的次数,就是这个多项式的次数。

一元N 次多项式最多有N+1项。

例:多项式5232+-x x 是一个二次三项式。

注:①多项式的次数不是所有项的次数之和;②多项式的每一项都包括它前面的符号5.降幂、升幂排列:把多项式235321x x x +--按x 的指数从大到小的顺序排列,可以写成322531x x x -++-,这叫做这个多项式按字母x 的降幂排列。

代数式知识点总结

代数式知识点总结

代数式知识点总结一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。

三、整式:单项式与多项式统称为整式。

1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。

特别地,单独一个数或者一个字母也是单项式。

2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。

四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

五、代数式书写要求:1.代数式中出现的乘号通常用“・”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)・2・a应写成2a(a+b);3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;4.在代数式中出现除法运算时,按分数的写法来写;5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。

六、系数与次数单项式的系数和次数,多项式的项数和次数。

1.单项式的系数:单项式中的数字因数叫做单项式的系数。

注意:(1)单项式的系数包括它前面的符号;(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。

初二代数式知识点总结 初二代数式复习知识点

初二代数式知识点总结 初二代数式复习知识点

初二代数式知识点总结初二代数式复习知识点初二代数式知识点总结:代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类初二代数式知识点总结:整式的有关概念(1)单项式:只含有数与字母的积的代数式叫做单项式.对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。

(2)多项式:几个单项式的和,叫做多项式对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析(3)多项式的降幂排列与升幂排列把一个多项式技某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列把—个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列,给出一个多项式,要会根据要求对它进行降幂排列或升幂排列.(4)同类项所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷.要会判断给出的项是否同类项,知道同类项可以合并.即其中的X可以代表单项式中的字母部分,代表其他式子。

初二代数式知识点总结:整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:(i)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。

括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号.(ii)合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.(2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质:多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加.多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.遇到特殊形式的多项式乘法,还可以直接算:(3)整式的乘方单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因“初二代数式知识点总结”。

代数式的知识点

代数式的知识点

代数式的知识点代数式是数学中非常重要的概念,它是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式。

代数式可以简单地分为整式、分式和根式。

整式包括单项式和多项式。

单项式是由数字和字母的积组成的代数式,单独的一个数或一个字母也叫做单项式。

比如 5、x、2xy 等都是单项式。

多项式则是几个单项式的和或差,例如 2x + 3y 、a² 2ab + b²等。

分式则是形如 A/B(A、B 是整式,B 中含有字母且 B 不等于 0)的式子。

比如 1/x 、(x + 1)/(x 1) 等。

分式的分母不能为 0,否则分式无意义。

根式是指含有开方运算的代数式,比如√x 、³√(x + 1) 等。

在根式中,被开方数要大于等于 0,否则根式无意义。

代数式的运算规则是我们必须要掌握的。

比如在整式的加减运算中,其实就是合并同类项。

同类项是指所含字母相同,并且相同字母的指数也相同的项。

例如 3x²y 和-5x²y 是同类项,可以合并为-2x²y 。

乘法运算中,单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式乘以多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

除法运算中,单项式除以单项式,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

在进行代数式的运算时,我们常常需要运用到一些公式,比如平方差公式:(a + b)(a b) = a² b²;完全平方公式:(a ± b)²= a² ± 2ab + b²。

代数式在解决实际问题中有着广泛的应用。

单项式 多项式 整式

单项式 多项式 整式

单项式多项式整式
单项式、多项式和整式都是代数式的一种。

代数式由算数符号和数(字母)组成,其中,算数符号有加减乘除和指数运算等。

代数式中包含字母的部分称为变量,变量可以代表不确定的或可变的数。

首先,我们来了解一下单项式。

单项式是只有一个项的代数式,例如:2x、3y²、4xy等。

在单项式中,常数和变量的乘积构成了一个项。

单项式可以通过加减乘除和指数运算进行运算。

其次,我们来介绍多项式。

多项式是由多个项的代数式,例如:3x²+2xy-4y+1等。

多项式中的每一项之间用加法或减法连接。

多项式的项可以是一个单项式,也可以是多个单项式相加减得到的。

同样,多项式也可以进行加减乘除和指数运算。

最后,我们讨论整式。

整式是由多项式经过加减乘除和指数运算得到的代数式。

例如:(2x²+3y)(x-2)+2xy²-5y+1等。

整式包含了加减乘除和指数运算的综合应用。

综上所述,单项式、多项式和整式都是代数式的一种,它们在数学中有着广泛的应用。

通过学习和理解这些概念,我们能够更好地解决各种与代数相关的问题。

在实际应用中,我们可以根据问题的具体情况选择合适的代数式进行计算和求解,进而推进数学的发展和应用。

总的来说,单项式、多项式和整式在代数学中具有重要的地位和作用。

它们是我们进一步学习代数和解决代数问题的基础,通过深入研究和应用,我们可以更好地理解代数的奥秘,并在实际生活中运用代数的知识解决问题。

(完整版)单项式、多项式、同类项概念复习(知识点复习+题型分类汇总(基础应用+能力提高+中考真题)),推荐文档

(完整版)单项式、多项式、同类项概念复习(知识点复习+题型分类汇总(基础应用+能力提高+中考真题)),推荐文档

单项式、多项式、同类项知识点梳理1、单项式单项式的有关定义:单项式:数字与字母积的代数式。

单项式的系数:单项式中的数字因数。

单项式的次数:单项式中所有的字母的指数和。

单项式的相关注意事项:1.单独一个字母或数字也是单项式。

2.单项式系数包括它前面的符号;3.只含有字母因式的单项式的系数是1或―1。

(单项式系数是1或-1时,1可省略不写,但“-1”时,“-”号不可省略。

)4.单独的一个数字是单项式,它的系数是它本身,次数是0。

5.单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

6.单项式的系数是带分数时,应化成假分数。

7.单项式的次数仅与字母有关,与单项式的系数无关。

8.圆周率π是常数,不是字母,如2πr的系数是2π,不是2.2、多项式单项式的有关定义:多项式:在数学中,由若干个单项式相加组成的代数式叫做多项式。

多项式的项:组成多项式中的单项式叫多项式的项,其中不含字母的项叫做常数项。

多项式的次数:多项式中次数最高项的次数叫多项式的次数。

单项式的相关注意事项:1.一个多项式有几项,就叫做几项式。

2.多项式的每一项都包括项前面的符号。

3.多项式没有系数的概念,但有次数的概念。

4.多项式的次数不是组成多项式的所有字母指数和。

3、同类项同类项:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项。

注意:同类项必须满足两个条件:1.所含字母全部相同2.每个相同字母的指数相同四、整式整式:单项式和多项式统称为整式。

注意:1.单项式或多项式都是整式。

2.整式不一定是单项式。

3.整式不一定是多项式。

4.分母中含有字母的代数式不是整式;而是今后将要学习的分式。

五、整式的加减运算基本步骤:去括号,合并同类项。

特别注意:1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.与﹣a与是同类项,那么。

初中七年级数学(上册)第二章知识点及习题

初中七年级数学(上册)第二章知识点及习题

第二章整式的加减知识点总结:一、单项式、多项式、整式的概念单项式:由数与字母的乘积组成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

多项式:几个单项式的和叫做多项式。

整式:单项式与多项式统称整式。

二、单项式的系数和次数1、单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。

如果一个单项式,只含有数字因数,是正数的单项式系数为1,是负数的单项式系数为—1。

2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

3、单项式的表示形式:(1)数与字母的乘积这样的代数式叫做单项式(2)单个字母也是单项式。

(3)单个的数是单项式(4)字母与字母相乘成为单项式(5)数与数相乘称为单项式三、多项式的项、常数项、次数在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中次数最高项的次数,就是这个多项式的次数。

一个多项式有几项就叫做几项式。

多项式中的符号,看作各项的性质符号。

一元N次多项式最多N+1项。

四、多项式的排列:1、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

2、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。

为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。

※在做多项式的排列的题时注意:(1) 由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

(2) 有两个或两个以上字母的多项式,排列时,要注意:a、先确认按照哪个字母的指数来排列。

b、确定按这个字母向里排列,还是向外排列。

五、同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项。

※掌握同类项的概念时注意:1.判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数式1. 代数式的概念用运算符号“+-×÷……把数与表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

如:5,a ,x 均是代数式。

①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。

等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;如:2x=5这个整体因为含有等号所以不是代数式,但是等号左边的2x 和右边的5却是代数式。

③代数式中的字母的限制:字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

1.下列式子中,是代数式的有:。

①a b c d +=+②0 ③2()1a b +-④2s R π=⑤32x +⑥23410x x ++=2.比a 多3的数是()A .3a -B .3a +C .3aD .3a 3.,ab 两数差的平方除以,a b 两数的平方差是()A .222()a b a b --B .222()a b a b -- C .222a b a b -- D .222a b a b -- 4.代数式2a -所表示的意义是()A .比2多a 的数B .比a 多2的数C .比2少a 的数D .比a 少2的数5.下列各题中,错误的是()A .代数式22x y +的意义是,x y 的平方和。

B .代数式5()x y +的意义是5与x y +的积。

C .x 的5倍与y 的和的一半,用代数式表示是52y x +。

D .x 的12与y 的13的差,用代数式表示是1123x y -。

6. 在式子x+2,3a 2b,m,S=,2R πc b a yx 2,3>+-中代数式有()A 、6个B 、5个C 、4个D 、3个7.一项工作,甲独做x 天完成,乙独做y 天完成,甲、乙合作a 天后还剩()A 、y x a +-1B 、yx a 11+C 、⎪⎪⎭⎫ ⎝⎛+-y x a 111D 、xy a -1 2.代数式的书写规范①代数式中数与字母相乘,字母与字母相乘,乘号通常使用“·”乘表示,或省略不写,如v ×t 通常写成v ·t 或 vt ;②数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ; ③数字与数字相乘,一般仍用“×”号,即“×”号不省略或写成“·”;5×8,不能省略乘号写成58也不能写成5·8;④带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如a ×211应写成23a ;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作4/(a-4),3÷a 写成a 3的形式.⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如(a ²-b ²)平方米○7a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .分数线具有“÷”号和括号的双重作用。

例1.下列式子中,符合书写要求的是()(A )5a b (B )2156a b (C )a b c ÷⨯(D )2mn 例2. 下列式子中,符号代数式书写要求的是()A .3aB .132xC .12a D .3x +人 例3. 下列式子中符合书写要求的是()A 、42ba B 、abc 312 C 、c b a ÷⨯ D 、ayz3 3.代数式的系数代数式中的数字中的数字因数叫做代数式的系数。

如3x ,4y 的系数分别为3,4。

● 单个字母的系数是1,如a 的系数是1;● 只含字母因数的代数式的系数是1或-1,如-ab 的系数是-1。

ab 的系数是14、代数式的项代数式6x 2-2x-7中6x 2、-2x 、-7是它的项,其中把不含字母的项叫做常数项在交待某一项时,应与前面的符号一起交待。

5、同类项所含字母相同,并且相同字母的指数也相同的项叫做同类项。

判断几个代数式是否是同类项有两个条件:● 所含字母相同;b.相同字母的指数也相同。

这两个条件缺一不可; ● 同类项与系数无关,与字母的排列顺序无关;● 几个常数项也是同类项。

6、合并同类项把代数式中的同类项合并成一项,叫做合并同类项。

①合并同类项的理论根据是逆用乘法分配律;②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

● 如果两个同类项的系数互为相反数,合并同类项后结果为0;● 不是同类项的不能合并,不能合并的项,在每步运算中都要写上; ● 只要不再有同类项,就是最后结果,结果还是代数式。

7、根据去括号法则去括号括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;比如+(2x+5),括号前面是正号,所以去括号后还是不变:2x+5括号前面是“-”号去掉,括号里各项都改变符号。

比如:-(2x-8),因为括号前面是负号,所以去括号后,括号内的每一项都要变为原来的相反数:-2x+88、根据分配律去括号:括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

①去括号时,要连同括号前面的符号一起去掉;②去括号时,首先要弄清楚括号前是“+”号还是“-”号;③改变符号时,各项都变号;不改变符号时,各项都不变号。

9.代数式的值用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

例1. 当x=1时,代数式13++qx px 的值为2005,求x=-1时,代数式13++qx px 的值.“整体”思想在数学解题中经常用到,请同学们在解题时恰当使用.例2. 如果,0)1(22=-++b a 那么代数式(a+b)2005的值为()A . –2005 B. 2005 C. -1 D. 1例3.某品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价为()A. 0.7a 元B.0.3a 元C.a 310元D.a 710元 10.数的一切运算规律也适用于代数式(1)加法交换律:a b b a +=+(2)加法结合律:()()a b c a b c ++=++(3)乘法交换律:ab ba =(4)乘法结合律:()()ab c a bc =(5)分配律:()a b c ab ac +=+11. 几个重要的代数式(m 、n 表示整数)(1)a 与b 的平方差是: _____; a 与b 差的平方是:________;(2)若a 、b 、c 是正整数,则两位整数是:____ ,则三位整数是:________;(3)若m 、n 是整数,则被5除商m 余n 的数是:_____ ;偶数是:___,奇数是:____;三个连续整数是: ______;(4)若b >0,则正数是:_____,负数是:______,非负数是:_____,非正数是:_____.11.归纳法(1)观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4------请你将猜想到的规律用自然数n(n ≥1)表示出来______________________.(2)如图,图1是个正五边形,分别连接这个正五边形各边中点得到图2,再分别连接图2小正五边形各边中点得到图3:123、能否分出246个三角形?简述你的理由。

12. 代数式综合应用某机关原有工作人员m 人,现精简机构,减少20%的工作人员,则剩下_____人.甲以a 千米/小时、乙以b 千米/小时(a >b )的速度沿同一方向前进,甲在乙的后面8千米处开始追乙,则甲追上乙需_____________小时.某工厂有煤m 吨,计划每天用煤n 吨,实际每天节约用煤b 吨,节约后可以多用()A 、⎪⎭⎫ ⎝⎛-+n m b n m 天B 、⎪⎭⎫ ⎝⎛--b n m n m 天C,⎪⎭⎫ ⎝⎛+-b n m n m 天D ⎪⎭⎫ ⎝⎛--n m b n m 天 一艘轮船从A 港顺水航行到B 港的速度为a ,从B 港逆水航行到A 港的速度为b ,则此轮船从A 港出发到B 港后再回到A 港的平均速度为()A 、b a ab +B 、b a ab +2C 、2b a +D 、ab b a 2+ 某校学生中男生人数为x ,女生人数为y ,教师人数与全校师生人数的比为1:11,则教师人数为()A、11yx+B、12yx+C、10yx+D、6yx+某餐饮公司为大庆路沿街20户居民提供早餐方便,决定在路旁建立一个快餐店P,点P选在何处,才能使这20户居民到P点的距离总和最小?求图1中阴影部分面积的代数式,并求出当x=3时阴影部分面积(π取3.14)某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米价1.3元;超过5千米,每千米价2.4元。

1、若某人乘坐了x(x>5)千米的路程,则他应支付的费用是多少?2、若他支付了15元车费,你能算出他乘坐的路程吗?x。

相关文档
最新文档