【常考题】中考数学试题(含答案)
2024年中考数学卷含解析
2024年中考数学卷含解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°2.如图,以O为圆心的圆与直线y x=-+交于A、B两点,若△OAB 恰为等边三角形,则弧AB的长度为()A.23πB.πC.23πD.13π3.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A.方有两个相等的实数根B.方程有一根等于0C.方程两根之和等于0D.方程两根之积等于04.实数213-的倒数是()A.52-B.52C.35-D.35)A.±4B.4C.2D.±26.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A.平均数B.中位数C.众数D.方差7.如图,△ABC 中,DE 垂直平分AC 交AB 于E,∠A=30°,∠ACB=80°,则∠BCE 等于()A.40°B.70°C.60°D.50°8.如图,在△ABC 中,∠ACB=90°,沿CD 折叠△CBD,使点B 恰好落在AC 边上的点E 处.若∠A=24°,则∠BDC 的度数为()A.42°B.66°C.69°D.77°9.在Rt ABC ∆中,90︒∠=C ,2AC =,下列结论中,正确的是()A.2sin AB A=B.2cos AB A =C.2tan BC A =D.2cot BC A=10.如图,⊙O 与直线l 1相离,圆心O 到直线l 1的距离=4,将直线l 1绕点A 逆时针旋转30°后得到的直线l 2刚好与⊙O 相切于点C,则OC=()A.1B.2C.3D.411.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.8,9B.8,8.5C.16,8.5D.16,10.512.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A.280×103B.28×104C.2.8×105D.0.28×106二、填空题:(本大题共6个小题,每小题4分,共24分.)13.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t 2,那么飞机着陆后滑行_____秒停下.14.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.15.计算:2111x x x+=--___________.16.若反比例函数y=1m x-的图象在每一个象限中,y 随着x 的增大而减小,则m 的取值范围是_____.17.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.有意义,则x 的取值范围是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)12)﹣2(2)化简:22222()x x y x yx y x y x y +--÷++-.20.(6分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?21.(6分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)线段AC,AG,AH什么关系?请说明理由;设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.22.(8分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为人,参加球类活动的人数的百分比为(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为.(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.23.(8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)24.(10分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.25.(10分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.26.(12分)如图,已知点D在反比例函数y=mx的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=2 5.(1)求反比例函数y=mx和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA 与点M,求∠BMC的度数.27.(12分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理即可解答.【详解】连接OB,∵点B是弧AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选D.【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.2、C【解析】过点O作OE AB⊥,∵y x=-+,∴3,0)D ,3)C ,∴COD 为等腰直角三角形,45ODC ∠=︒,26sin 45322OE OD =⋅︒==,∵OAB △为等边三角形,∴60OAB ∠=︒,∴622sin 6023OE AO ==⋅=︒∴60122π22ππ36063AB r ︒=⋅=⋅=︒.故选C.3、C【解析】试题分析:根据已知得出方程ax 2+bx +c =0(a ≠0)有两个根x =1和x =﹣1,再判断即可.解:∵把x =1代入方程ax 2+bx +c =0得出:a +b +c =0,把x =﹣1代入方程ax 2+bx +c =0得出a ﹣b +c =0,∴方程ax 2+bx +c =0(a ≠0)有两个根x =1和x =﹣1,∴1+(﹣1)=0,即只有选项C 正确;选项A、B、D 都错误;4、D 【解析】因为213-=53,所以213-的倒数是35.故选D.5、B【解析】根据算术平方根的意义求解即可.【详解】=4,故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.6、B【解析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.故选B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7、D【解析】根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【详解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故选D.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.8、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=12∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故选C.9、C【解析】直接利用锐角三角函数关系分别计算得出答案.【详解】∵90︒∠=C,2AC=,∴2 cos ACAAB AB==,∴2cosABA=,故选项A,B 错误,∵tan 2BC BC A AC ==,∴2tan BC A =,故选项C 正确;选项D 错误.故选C.【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.10、B【解析】先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC=30°,然后根据含30度的直角三角形三边的关系可得到OC 的长.【详解】解:在Rt△ABO 中,sin∠OAB=OB OA =4=2,∴∠OAB=60°,∵直线l 1绕点A 逆时针旋转30°后得到的直线l 1刚好与⊙O 相切于点C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=12OA=1.故选B.【点睛】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.11、A【解析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.12、C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将280000用科学记数法表示为2.8×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【详解】由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即当t=1秒时,飞机才能停下来.故答案为1.【点睛】本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.14、127或2【解析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=12 7;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.15、x+1【解析】先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果.【详解】解:2111x x x+--=2111x x x ---211x x -=-()()111x x x +-=-1x =+.故答案是:x+1.【点睛】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.16、m>1【解析】∵反比例函数m 1y x-=的图象在其每个象限内,y 随x 的增大而减小,∴m 1->0,解得:m>1,故答案为m>1.17、﹣1【解析】【分析】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.【详解】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,整理得k 2+1k=0,解得k 1=0,k 2=﹣1,因为k≠0,所以k的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18、x2【解析】根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【详解】由题意得:2-x≥0,解得:x≤2,故答案为x≤2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)2;(2)x﹣y.【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x﹣y.点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.20、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元.【解析】(1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;(2)设每套运动服的售价为y 元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%”即可列不等式求解.【详解】(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=.答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+,y解这个不等式,得200答:每套运动服的售价至少是200元.【点睛】此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解. 21、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面或2或..积不变.②m的值为8【解析】(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.【详解】(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC ∽△ACG ,∴AH AC AC AG=,∴AC 2=AG •AH .(3)①△AGH 的面积不变.理由:∵S △AGH =12•AH •AG =12AC 2=12)2=1.∴△AGH 的面积为1.②如图1中,当GC =GH 时,易证△AHG ≌△BGC ,可得AG =BC =4,AH =BG =8,∵BC ∥AH ,∴12BC BE AH AE ==,∴AE =23AB =83.如图2中,当CH =HG 时,易证AH =BC =4,∵BC∥AH,∴BE BCAE AH=1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,设BM=BE=m,则CM=m,∴m m=4,∴m﹣1),∴AE,综上所述,满足条件的m的值为83或2或.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.22、(1)7、30%;(2)补图见解析;(3)105人;(3)1 2【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为1240×100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600×740=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=612=12.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、操作平台C离地面的高度为7.6m.【解析】分析:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.详解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH-∠HAF=118°-90°=28°,在Rt△ACF中,∵sin∠CAF=CF AC,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.24、(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.试题解析:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:.考点:列表法与树状图法.25、(1)13;(2)13.【解析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.【详解】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=1 3;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是31 93=.26、(1)6yx-=,2y x25=-(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC 的解析式;(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.本题解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=25,∴25OC OA =,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x 轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣6x,设直线AC 关系式为y=kx+b,∵过A(1,0),C(0,﹣2),∴052k b b =+⎧⎨-=⎩,解得252k b ⎧=⎪⎨⎪=-⎩,∴y=25x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC 和△BCD 中OA BCAOC DBC OC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x 轴,∴四边形AEBD 为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD 为等腰直角三角形,∴∠BMC=∠DAC=41°.27、共有7人,这个物品的价格是53元.【解析】根据题意,找出等量关系,列出一元一次方程.【详解】解:设共有x 人,这个物品的价格是y 元,83,74,x y x y -=⎧⎨+=⎩解得7,53,x y =⎧⎨=⎩答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程的应用.。
中考数学题库(含答案和解析)
中考数学题库(含答案和解析)一、选择题(本题共有10小题.每题3分.共30分)1.(3分)﹣2的绝对值等于()A.2 B.﹣2 C.D.±22.(3分)计算2a﹣a.正确的结果是()A.﹣2a3B.1 C.2 D.a3.(3分)要使分式有意义.x的取值范围满足()A.x=0 B.x≠0 C.x>0 D.x<0 4.(3分)数据5.7.8.8.9的众数是()A.5 B.7 C.8 D.9、5.(3分)如图.在Rt△ABC中.∠ACB=90°.AB=10.CD是AB边上的中线.则CD的长是()A.20 B.10 C.5 D.6.(3分)如图是七年级(1)班参加课外兴趣小组人数的扇形统计图.则表示唱歌兴趣小组人数的扇形的圆心角度数是()A.36°B.72°C.108°D.180°7.(3分)下列四个水平放置的几何体中.三视图如图所示的是()A.B.C.D.8.(3分)△ABC中的三条中位线围成的三角形周长是15cm.则△ABC的周长为()A.60cm B.45cm C.30cm D.cm 9.(3分)如图.△ABC是⊙O的内接三角形.AC是⊙O的直径.∠C =50°.∠ABC的平分线BD交⊙O于点D.则∠BAD的度数是()A.45°B.85°C.90°D.95°10.(3分)如图.已知点A(4.0).O为坐标原点.P是线段OA上任意一点(不含端点O.A).过P、O两点的二次函数y1和过P、A 两点的二次函数y2的图象开口均向下.它们的顶点分别为B、C.射线OB与AC相交于点D.当OD=AD=3时.这两个二次函数的最大值之和等于()A.B.C.3 D.4二、填空题(本题共有6小题.每题4分.共24分)11.(4分)当x=1时.代数式x+2的值是.12.(4分)因式分解:x2﹣36=.13.(4分)甲、乙两名射击运动员在一次训练中.每人各打10发子弹.根据命中环数求得方差分别是=0.6.=0.8.则运动员的成绩比较稳定.14.(4分)如图.在△ABC中.D、E分别是AB、AC上的点.点F在BC的延长线上.DE∥BC.∠A=46°.∠1=52°.则∠2=度.15.(4分)一次函数y=kx+b(k.b为常数.且k≠0)的图象如图所示.根据图象信息可求得关于x的方程kx+b=0的解为.16.(4分)如图.将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形.这个黑色菱形可分割成n个边长为1的小三角形.若=.则△ABC的边长是.三、解答题(本题共有8小题.共66分)17.(6分)计算:+(﹣2)2+tan45°.18.(6分)解方程组.19.(6分)如图.已知反比例函数y=(k≠0)的图象经过点(﹣2.8).(1)求这个反比例函数的解析式;(2)若(2.y1).(4.y2)是这个反比例函数图象上的两个点.请比较y1、y2的大小.并说明理由.20.(8分)已知:如图.在▱ABCD中.点F在AB的延长线上.且BF =AB.连接FD.交BC于点E.(1)说明△DCE≌△FBE的理由;(2)若EC=3.求AD的长.21.(8分)某市开展了“雷锋精神你我传承.关爱老人从我做起”的主题活动.随机调查了本市部分老人与子女同住情况.根据收集到的数据.绘制成如下统计图表(不完整)老人与子女同住情况百分比统计表老人与子女同住情况同住不同住(子女在本市)不同住(子女在市外)其他A50%B5%根据统计图表中的信息.解答下列问题:(1)求本次调查的老人的总数及a、b的值;(2)将条形统计图补充完整;(画在答卷相对应的图上)(3)若该市共有老人约15万人.请估计该市与子女“同住”的老人总数.22.(10分)已知.如图.在梯形ABCD中.AD∥BC.DA=DC.以点D 为圆心.DA长为半径的⊙D与AB相切于A.与BC交于点F.过点D 作DE⊥BC.垂足为E.(1)求证:四边形ABED为矩形;(2)若AB=4.=.求CF的长.23.(10分)为进一步建设秀美、宜居的生态环境.某村欲购买甲、乙、丙三种树美化村庄.已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.现计划用210000元资金.购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍.恰好用完计划资金.求这三种树各能购买多少棵?(3)若又增加了10120元的购树款.在购买总棵树不变的前提下.求丙种树最多可以购买多少棵?24.(12分)如图1.已知菱形ABCD的边长为2.点A在x轴负半轴上.点B在坐标原点.点D的坐标为(﹣.3).抛物线y=ax2+b (a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2).过点B作BE⊥CD于点E.交抛物线于点F.连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①是否存在这样的t.使△ADF与△DEF相似?若存在.求出t的值;若不存在.请说明理由;②连接FC.以点F为旋转中心.将△FEC按顺时针方向旋转180°.得△FE′C′.当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时.求t的取值范围.(写出答案即可)参考答案与试题解析一、选择题(本题共有10小题.每题3分.共30分)1.【分析】根据绝对值的性质.当a是正有理数时.a的绝对值是它本身a;即可解答.【解答】解:根据绝对值的性质.|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质.①当a是正有理数时.a的绝对值是它本身a;②当a是负有理数时.a的绝对值是它的相反数﹣a;③当a是零时.a的绝对值是零.2.【分析】根据合并同类项的法则:把同类项的系数相加.所得结果作为系数.字母和字母的指数不变.进行运算即可.【解答】解:2a﹣a=a.故选:D.【点评】此题考查了同类项的合并.属于基础题.关键是掌握合并同类项的法则.3.【分析】根据分母不等于0.列式即可得解.【解答】解:根据题意得.x≠0.故选:B.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.【分析】根据众数是一组数据中出现次数最多的数据解答即可.【解答】解:数据5、7、8、8、9中8出现了2次.且次数最多. 所以众数是8.故选:C.【点评】本题考查了众数的定义.熟记定义是解题的关键.需要注意.众数有时候可以不止一个.5.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半.即可求出CD的长.【解答】解:∵在Rt△ABC中.∠ACB=90°.AB=10.CD是AB边上的中线.∴CD=AB=5.故选:C.【点评】本题考查了直角三角形斜边上的中线的性质.在直角三角形中.斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点).6.【分析】根据扇形统计图整个圆的面积表示总数(单位1).然后结合图形即可得出唱歌兴趣小组人数所占的百分比.也可求出圆心角的度数.【解答】解:唱歌所占百分数为:1﹣50%﹣30%=20%.唱歌兴趣小组人数的扇形的圆心角度数为:360°×20%=72°.故选:B.【点评】此题考查了扇形统计图.解答本题的关键是熟练扇形统计图的特点.用整个圆的面积表示总数(单位1).用圆的扇形面积表示各部分占总数的百分数.7.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看.所得到的图形.即可得出答案.【解答】解:从主视图、左视图、俯视图可以看出这个几何体的正面、左面、底面是长方形.所以这个几何体是长方体;故选:D.【点评】本题考查了由三视图判断几何体.关键是根据三视图和空间想象得出从物体正面、左面和上面看.所得到的图形.8.【分析】根据三角形的中位线平行且等于底边的一半.又相似三角形的周长的比等于相似比.问题可求.【解答】解:∵△ABC三条中位线围成的三角形与△ABC相似. ∴相似比是.∵△ABC中的三条中位线围成的三角形周长是15cm.∴△ABC的周长为30cm.故选:C.【点评】本题主要考查三角形的中位线定理.要熟记相似三角形的周长比、高、中线的比等于相似比.面积比等于相似比的平方.9.【分析】根据圆周角定理以及推论和角平分线的定义可分别求出∠BAC和∠CAD的度数.进而求出∠BAD的度数.【解答】解:∵AC是⊙O的直径.∴∠ABC=90°.∵∠C=50°.∴∠BAC=40°.∵∠ABC的平分线BD交⊙O于点D.∴∠ABD=∠DBC=45°.∴∠CAD=∠DBC=45°.∴∠BAD=∠BAC+∠CAD=40°+45°=85°.故选:B.【点评】本题考查的是圆周角定理.即在同圆或等圆中.同弧或等弧所对的圆周角相等.直径所对的圆周角是直角.10.【分析】过B作BF⊥OA于F.过D作DE⊥OA于E.过C作CM⊥OA于M.则BF+CM是这两个二次函数的最大值之和.BF∥DE∥CM.求出AE=OE=2.DE=.设P(2x.0).根据二次函数的对称性得出OF=PF=x.推出△OBF∽△ODE.△ACM∽△ADE.得出=.=.代入求出BF和CM.相加即可求出答案.【解答】解:过B作BF⊥OA于F.过D作DE⊥OA于E.过C作CM⊥OA于M. ∵BF⊥OA.DE⊥OA.CM⊥OA.∴BF∥DE∥CM.∵OD=AD=3.DE⊥OA.∴OE=EA=OA=2.由勾股定理得:DE=.设P(2x.0).根据二次函数的对称性得出OF=PF=x.∵BF∥DE∥CM.∴△OBF∽△ODE.△ACM∽△ADE.∴=.=.∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x.即=.=.解得:BF=x.CM=﹣x.∴BF+CM=.故选:A.【点评】本题考查了二次函数的最值.勾股定理.等腰三角形性质.相似三角形的性质和判定的应用.主要考查学生运用性质和定理进行推理和计算的能力.题目比较好.但是有一定的难度.二、填空题(本题共有6小题.每题4分.共24分)11.【分析】把x=1直接代入代数式x+2中求值即可.【解答】解:当x=1时.x+2=1+2=3.故答案为:3.【点评】本题考查了代数式求值.明确运算顺序是关键.12.【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).【点评】本题主要考查利用平方差公式分解因式.熟记公式结构是解题的关键.13.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.即可求出答案.【解答】解:∵=0.6.=0.8.∴<.甲的方差小于乙的方差.∴甲的成绩比较稳定.故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量.方差越大.表明这组数据偏离平均数越大.即波动越大.数据越不稳定;反之.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.14.【分析】先根据三角形的外角性质求出∠DEC的度数.再根据平行线的性质得出结论即可.【解答】解:∵∠DEC是△ADE的外角.∠A=46°.∠1=52°.∴∠DEC=∠A+∠1=46°+52°=98°.∵DE∥BC.∴∠2=∠DEC=98°.故答案为:98.【点评】本题考查的是平行线的性质及三角形的外角性质.用到的知识点为:两直线平行.内错角相等.15.【分析】先根据一次函数y=kx+b过(2.3).(0.1)点.求出一次函数的解析式.再求出一次函数y=x+1的图象与x轴的交点坐标.即可求出答案.【解答】解∵一次函数y=kx+b过(2.3).(0.1)点.∴.解得:.一次函数的解析式为:y=x+1.∵一次函数y=x+1的图象与x轴交于(﹣1.0)点.∴关于x的方程kx+b=0的解为x=﹣1.故答案为:x=﹣1.【点评】本题考查了一次函数与一元一次方程.关键是根据函数的图象求出一次函数的图象与x轴的交点坐标.再利用交点坐标与方程的关系求方程的解.16.【分析】设正△ABC的边长为x.根据等边三角形的高为边长的倍.求出正△ABC的面积.再根据菱形的性质结合图形表示出菱形的两对角线.然后根据菱形的面积等于两对角线乘积的一半表示出菱形的面积.然后根据所分成的小正三角形的个数的比等于面积的比列式计算即可得解.【解答】解:设正△ABC的边长为x.则高为x.S△ABC=x•x=x2.∵所分成的都是正三角形.∴结合图形可得黑色菱形的较长的对角线为x﹣.较短的对角线为(x﹣)=x﹣1.∴黑色菱形的面积=(x﹣)(x﹣1)=(x﹣2)2.∴==.整理得.11x2﹣144x+144=0.解得x1=(不符合题意.舍去).x2=12.所以.△ABC的边长是12.故答案为:12.【点评】本题考查了菱形的性质.等边三角形的性质.熟练掌握有一个角等于60°的菱形的两条对角线的关系是解题的关键.本题难点在于根据三角形的面积与菱形的面积列出方程.三、解答题(本题共有8小题.共66分)17.【分析】分别进行二次根式的化简、零指数幂.然后代入tan45°=1.进行运算即可.【解答】解:原式=4﹣1+4+1=8.【点评】此题考查了实数的运算.解答本题关键是掌握零指数幂的运算.二次根式的化简.属于基础题.18.【分析】①+②消去未知数y求x的值.再把x=3代入②.求未知数y的值.【解答】解:①+②得3x=9.解得x=3.把x=3代入②.得3﹣y=1.解得y=2.∴原方程组的解是.【点评】本题考查了解二元一次方程组.熟练掌握加减消元法的解题步骤是关键.19.【分析】(1)把经过的点的坐标代入解析式进行计算即可得解;(2)根据反比例函数图象的性质.在每一个象限内.函数值y随x的增大而增大解答.【解答】解:(1)把(﹣2.8)代入y=.得8=.解得:k=﹣16.所以y=﹣;(2)y1<y2.理由:∵k=﹣16<0.∴在每一个象限内.函数值y随x的增大而增大.∵点(2.y1).(4.y2)都在第四象限.且2<4.【点评】本题考查了待定系数法求反比例函数解析式.反比例函数图象的增减性.是中学阶段的重点.需熟练掌握.20.【分析】(1)由四边形ABCD是平行四边形.根据平行四边形的对边平行且相等.即可得AB=DC.AB∥DC.继而可求得∠CDE=∠F.又由BF=AB.即可利用AAS.判定△DCE≌△FBE;(2)由(1).可得BE=EC.即可求得BC的长.又由平行四边形的对边相等.即可求得AD的长.【解答】(1)证明:∵四边形ABCD是平行四边形.∴AB=DC.AB∥DC.∴∠CDE=∠F.又∵BF=AB.∴DC=FB.在△DCE和△FBE中.∵∴△DCE≌△FBE(AAS)(2)解:∵△DCE≌△FBE.∴EB=EC.∵EC=3.∴BC=2EB=6.∵四边形ABCD是平行四边形.∴AD=BC.【点评】此题考查了平行四边形的性质与全等三角形的判定与性质.此题难度适中.注意数形结合思想的应用.21.【分析】(1)有统计图表中的信息可知:其他所占的比例为5%.又人数为25人.所以可以求出总人数.进而求出a和b的值;(2)有(1)的数据可将条形统计图补充完整;(3)用该老人的总数15万人乘以与子女“同住”所占的比例30%即为估计值.【解答】解:(1)老人总数为250÷50%=500(人).b=%=15%.a=1﹣50%﹣15%﹣5%=30%.(2)如图:(3)该市与子女“同住”的老人的总数约为15×30%=4.5(万人).【点评】本题考查了条形统计图、用样本估计总数的知识.解题的关键是从统计图中整理出进一步解题的信息.22.【分析】(1)根据AD∥BC和AB切圆D于A.求出DAB=∠ADE =∠DEB=90°.即可推出结论;(2)根据矩形的性质求出AB=DE=4.根据垂径定理求出CF=2CE.设AD=3k.则BC=4k.BE=3k.EC=k.DC=AD=3k.在△DEC中由勾股定理得出一个关于k的方程.求出k的值.即可求出答案.【解答】(1)证明:∵⊙D与AB相切于点A.∴AB⊥AD.∵AD∥BC.DE⊥BC.∴DE⊥AD.∴∠DAB=∠ADE=∠DEB=90°.∴四边形ABED为矩形.(2)解:∵四边形ABED为矩形.∴DE=AB=4.∵DC=DA.∴点C在⊙D上.∵D为圆心.DE⊥BC.∴CF=2EC.∵.设AD=3k(k>0)则BC=4k.∴BE=3k.EC=BC﹣BE=4k﹣3k=k.DC=AD=3k.由勾股定理得DE2+EC2=DC2.即42+k2=(3k)2.∴k2=2.∵k>0.∴k=.∴CF=2EC=2.【点评】本题考查了勾股定理.切线的判定和性质.矩形的判定.垂径定理等知识点的应用.通过做此题培养了学生的推理能力和计算能力.用的数学思想是方程思想.题目具有一定的代表性.是一道比较好的题目.23.【分析】(1)利用已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.即可求出乙、丙两种树每棵钱数;(2)假设购买乙种树x棵.则购买甲种树2x棵.丙种树(1000﹣3x)棵.利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵.得出等式方程.求出即可;(3)假设购买丙种树y棵.则甲、乙两种树共(1000﹣y)棵.根据题意得:200(1000﹣y)+300y≤210000+10120.求出即可.【解答】解:(1)已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.则乙种树每棵200元.丙种树每棵×200=300(元);(2)设购买乙种树x棵.则购买甲种树2x棵.丙种树(1000﹣3x)棵.根据题意:200×2x+200x+300(1000﹣3x)=210000.解得x=300∴2x=600.1000﹣3x=100.答:能购买甲种树600棵.乙种树300棵.丙种树100棵;(3)设购买丙种树y棵.则甲、乙两种树共(1000﹣y)棵.根据题意得:200(1000﹣y)+300y≤210000+10120.解得:y≤201.2.∵y为正整数.∴y最大取201.答:丙种树最多可以购买201棵.【点评】本题考查一元一次不等式组的应用.将现实生活中的事件与数学思想联系起来.读懂题列出不等式关系式即可求解.本题难点是(3)中总钱数变化.购买总棵树不变的情况下得出不等式方程.24.【分析】(1)根据已知条件求出AB和CD的中点坐标.然后利用待定系数法求该二次函数的解析式;(2)本问是难点所在.需要认真全面地分析解答:①如图2所示.△ADF与△DEF相似.包括三种情况.需要分类讨论:(I)若∠ADF=90°时.△ADF∽△DEF.求此时t的值;(II)若∠DF A=90°时.△DEF∽△FBA.利用相似三角形的对应边成比例可以求得相应的t的值;(III)∠DAF≠90°.此时t不存在;②如图3所示.画出旋转后的图形.认真分析满足题意要求时.需要具备什么样的限制条件.然后根据限制条件列出不等式.求出t的取值范围.确定限制条件是解题的关键.【解答】解:(1)由题意得AB的中点坐标为(﹣.0).CD的中点坐标为(0.3).分别代入y=ax2+b得.解得..∴y=﹣x2+3.(2)①如图2所示.在Rt△BCE中.∠BEC=90°.BE=3.BC=2∴sin C===.∴∠C=60°.∠CBE=30°∴EC=BC=.DE=又∵AD∥BC.∴∠ADC+∠C=180°∴∠ADC=180°﹣60°=120°要使△ADF与△DEF相似.则△ADF中必有一个角为直角.(I)若∠ADF=90°∠EDF=120°﹣90°=30°在Rt△DEF中.DE=.求得EF=1.DF=2.又∵E(t.3).F(t.﹣t2+3).∴EF=3﹣(﹣t2+3)=t2∴t2=1.∵t>0.∴t=1此时=2..∴.又∵∠ADF=∠DEF∴△ADF∽△DEF(II)若∠DF A=90°.可证得△DEF∽△FBA.则设EF=m.则FB=3﹣m∴.即m2﹣3m+6=0.此方程无实数根.∴此时t不存在;(III)由题意得.∠DAF<∠DAB=60°∴∠DAF≠90°.此时t不存在.综上所述.存在t=1.使△ADF与△DEF相似;②如图3所示.依题意作出旋转后的三角形△FE′C′.过C′作MN⊥x轴.分别交抛物线、x轴于点M、点N.观察图形可知.欲使△FE′C′落在指定区域内.必须满足:EE′≤BE且MN≥C′N.∵F(t.3﹣t2).∴EF=3﹣(3﹣t2)=t2.∴EE′=2EF=2t2.由EE′≤BE.得2t2≤3.解得t≤.∵C′E′=CE=.∴C′点的横坐标为t﹣.∴MN=3﹣(t﹣)2.又C′N=BE′=BE﹣EE′=3﹣2t2.由MN≥C′N.得3﹣(t﹣)2≥3﹣2t2.解得t≥或t≤﹣﹣3(舍).∴t的取值范围为:.【点评】本题是动线型中考压轴题.综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点.难度较大.对考生能力要求很高.本题难点在于第(2)问.(2)①中.需要结合△ADF与△DEF 相似的三种情况.分别进行讨论.避免漏解;(2)②中.确定“限制条件”是解题关键.。
2024年湖北省中考数学试题 (含答案)
2024年湖北省中考数学试卷一、选择题(每小题3分,共30分)1.在生产生活中,正数和负数都有现实意义.例如收入20元记作元,则支出10元记作()A.元B.元C.元D.元【答案】B【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:如果收入20元记作元,那么支出10元记作元,故选:B.2.如图,是由4个相同的正方体组成的立方体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】本题考查了简单组合体的三视图.根据主视图的意义,从正面看该组合体所得到的图形对每一项判断即可.【详解】解:从正面看该组合体,所看到的主视图与选项相同,故选:.3.的值是()A. B. C. D.【答案】D【解析】【分析】本题主要考查单项式与单项式的乘法.运用单项式乘单项式运算法则求出结果即可判断.【详解】解:,故选:D.4.如图,直线,已知,则()A. B. C. D.【答案】B 【解析】【分析】本题主要考查了平行线的性质,解题的关键是熟练掌握平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.根据同旁内角互补,,求出结果即可.【详解】解:∵,∴,∵,∴,故选:B . 5.不等式的解集在数轴上表示为()A. B.C. D.【答案】A 【解析】【分析】本题考查了一元一次不等式的解法即在数轴上表示不等式的解集.根据一元一次不等式的性质解出未知数的取值范围,在数轴上表示即可求出答案.【详解】解:,.在数轴上表示如图所示:故选:A .6.下列各事件是,是必然事件的是()A.掷一枚正方体骰子,正面朝上恰好是3B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯D.画一个三角形,其内角和为【答案】D 【解析】【分析】本题考查了随机事件和必然事件,解题的关键是掌握一定会发生的是必然事件,有可能发生,也有可能不发生的是随机事件,据此逐个判断即可.【详解】解:A 、掷一枚正方体骰子,正面朝上恰好是3,是随机事件,不符合题意;B 、某同学投篮球,一定投不中,是随机事件,不符合题意;C 、经过红绿灯路口时,一定红灯,是随机事件,不符合题意;D 、画一个三角形,其内角和为,是必然事件,符合题意;故选:D .7.《九章算术》中记载这样一个题:牛5头和羊2只共值10金,牛2头和羊5只共值8金,问牛和羊各值多少金?设每头牛值金,每只羊值金,可列方程为()A. B.C. D.【答案】A 【解析】【分析】本题考查了二元一次方程组的应用.根据未知数,将今有牛5头,羊2头,共值10金;牛2头,羊5头,共值8金,两个等量关系具体化,联立即可.【详解】解:设每头牛值x 金,每头羊值y 金,∵牛5头,羊2头,共值10金;牛2头,羊5头,共值8金,∴,故选:A .8.为半圆的直径,点为半圆上一点,且.①以点为圆心,适当长为半径作弧,交于;②分别以为圆心,大于为半径作弧,两弧交于点;③作射线,则()A. B. C. D.【答案】C 【解析】【分析】本题主要考查圆周角定理以及角平分线定义,根据直径所对的圆周角是直角可求出,根据作图可得,故可得答案【详解】解:∵为半圆的直径,∴,∵,∴,由作图知,是的角平分线,∴,故选:C9.平面坐标系中,点的坐标为,将线段绕点顺时针旋转,则点的对应点的坐标为()A. B. C. D.【答案】B【解析】【分析】本题考查坐标系下的旋转.过点和点分别作轴的垂线,证明,得到,,据此求解即可.【详解】解:过点和点分别作轴的垂线,垂足分别为,∵点坐标为,∴,,∵将线段绕点顺时针旋转得到,∴,,∴,∴,∴,,∴点的坐标为,故选:B.10.抛物线的顶点为,抛物线与轴的交点位于轴上方.以下结论正确的是()A. B. C. D.【答案】C【解析】【分析】本题考查了二次函数的性质以及二次函数图像与系数的关系.根据二次函数的解析式结合二次函数的性质,画出草图,逐一分析即可得出结论.【详解】解:根据题意画出函数的图像,如图所示:∵开口向上,与轴的交点位于轴上方,∴,,∵抛物线与轴有两个交点,∴,∵抛物线的顶点为,∴,观察四个选项,选项C符合题意,故选:C.二、填空题(每小题3分,共15分)11.写一个比大的数______.【答案】0【解析】【分析】本题考查了有理数比较大小.根据有理数比较大小的方法即可求解.【详解】解:.故答案为:0(答案不唯一).12.中国古代杰出的数学家祖冲之、刘徽、赵爽、秦九韶、杨辉,从中任选一个,恰好是赵爽是概率是______.【答案】【解析】【分析】本题主要考查运用概率公式求概率,根据概率公式即可得出答案.【详解】解:共有5位数学家,赵爽是其中一位,所以,从中任选一个,恰好是赵爽是概率是,故答案为:13.计算:______.【答案】1【解析】【分析】本题主要考查了分式的加减运算.直接按同分母分式加减运算法则计算即可.【详解】解:.故选:1.14.铁的密度约为,铁的质量与体积成正比例.一个体积为的铁块,它的质量为______.【答案】79【解析】【分析】本题考查了正比例函数的应用.根据铁的质量与体积成正比例,列式计算即可求解.【详解】解:∵铁的质量与体积成正比例,∴m关于V的函数解析式为,当时,,故答案为:79.15.为等边三角形,分别延长,到点,使,连接,,连接并延长交于点.若,则______,______.【答案】①.##30度②.##【解析】【分析】本题考查了相似三角形的判定和性质,等边三角形的判定和性质,勾股定理.利用三角形的外角性质结合可求得;作交的延长线于点,利用直角三角形的性质求得,,证明,利用相似三角形的性质列式计算即可求解.【详解】解:∵等边三角形,,∴,,∴,,,作交的延长线于点,∴,,∵,∴,∴,∴,即,解得,故答案为:,.三、解答题(75分)16.计算:【答案】3【解析】【分析】本题主要考查了实数混合运算,根据零指数幂运算法则,算术平方根定义,进行计算即可.【详解】解:.17.已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.【答案】证明见解析.【解析】【分析】利用SAS证明△AEB≌△CFD,再根据全等三角形的对应边相等即可得.【详解】∵四边形ABCD是平行四边形,∴AB//DC,AB=DC,∴∠BAE=∠DCF,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴BE=DF.【点睛】本题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握相关的性质是解题的关键.18.小明为了测量树的高度,经过实地测量,得到两个解决方案:方案一:如图(1),测得地与树相距10米,眼睛处观测树的顶端的仰角为:方案二:如图(2),测得地与树相距10米,在处放一面镜子,后退2米到达点,眼睛在镜子中恰好看到树的顶端.已知小明身高1.6米,试选择一个方案求出树的高度.(结果保留整数,)【答案】树的高度为8米【解析】【分析】本题考查了相似三角形的实际应用题,解直角三角形的实际应用题.方案一:作,在中,解直角三角形即可求解;方案二:由光的反射规律知入射角等于反射角得到相似三角形后列出比例式求解即可.【详解】解:方案一:作,垂足为,则四边形是矩形,∴米,在中,,∴(米),树的高度为米.方案二:根据题意可得,∵,∴∴,即解得:米,答:树的高度为8米.19.为促进学生全面发展,学校开展了丰富多彩的体育活动.为了解学生引体向上的训练成果,调查了七年级部分学生,根据成绩,分成了四组,制成了不完整的统计图.分组:,,,.(1)组的人数为______:(2)七年级400人中,估计引体向上每分钟不低于10个的有多少人?(3)从众数、中位数、平均数中任选一个,说明其意义.【答案】(1)12(2)180(3)见解析【解析】【分析】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)先根据C组人数除以所占百分比求出总人数,再减去B,C,D组人数即可得A的人数;(2)求出C,D组人数在样本中所占百分比,再乘以400即可得答案;(3)根据众数、中位数、平均数的意义进行解答即可.【小问1详解】解:(人),A组人数为:(人),故答案为:12;【小问2详解】解:(人),答:估计引体向上每分钟不低于10个的有180人;【小问3详解】解:从A,B,C,D组人数来看,最中间的两个数据是第20,21个,中位数落在B组,说明B组靠后的成绩处于中等水平;由于统计图中没有具体体现学生引体向上的训练成绩,只给出训练成绩的范围,无法计算出训练成绩的众数和平均数.20.一次函数经过点,交反比例函数于点.(1)求;(2)点在反比例函数第一象限的图象上,若,直接写出的横坐标的取值范围.【答案】(1),,;(2).【解析】【分析】本题主要考查了一次函数和反比例函数的综合,求反比例函数解析式,解题的关键是熟练掌握数形结合的思想.(1)利用一次函数经过点,点,列式计算求得,,得到点,再利用待定系数法求解即可;(2)利用三角形面积公式求得,得到,据此求解即可.【小问1详解】解:∵一次函数经过点,点,∴,解得,∴点,∵反比例函数经过点,∴;【小问2详解】解:∵点,点,∴,∴,,由题意得,∴,∴,∴的横坐标的取值范围为.21.中,,点在上,以为半径的圆交于点,交于点.且.(1)求证:是的切线.(2)连接交于点,若,求弧的长.【答案】(1)见解析(2)弧的长为.【解析】【分析】(1)利用证明,推出,据此即可证明结论成立;(2)设的半径为,在中,利用勾股定理列式计算求得,求得,再求得,利用弧长公式求解即可.【小问1详解】证明:连接,在和中,,∴,∴,∵为的半径,∴是的切线;【小问2详解】解:∵,∴,设的半径为,在中,,即,解得,∴,,,∴,∵,∴,∴弧的长为.【点睛】本题考查了切线的判定,勾股定理,三角函数的定义,弧长公式.正确引出辅助线解决问题是解题的关键.22.学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长.设垂直于墙的边长为米,平行于墙的边为米,围成的矩形面积为.(1)求与与的关系式.(2)围成的矩形花圃面积能否为,若能,求出的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时的值.【答案】(1);(2)能,(3)的最大值为800,此时【解析】【分析】本题主要考查一元二次方程的应用和二次函数的实际应用:(1)根据可求出与之间的关系,根据墙的长度可确定的范围;根据面积公式可确立二次函数关系式;(2)令,得一元二次方程,判断此方程有解,再解方程即可;(3)根据自变量的取值范围和二次函数的性质确定函数的最大值即可.【小问1详解】解:∵篱笆长,∴,∵∴∴∵墙长42m,∴,解得,,∴;又矩形面积;【小问2详解】解:令,则,整理得:,此时,,所以,一元二次方程有两个不相等的实数根,∴围成矩形花圃面积能为;∴∴∵,∴;【小问3详解】解:∵∴有最大值,又,∴当时,取得最大值,此时,即当时,的最大值为80023.如图,矩形中,分别在上,将四边形沿翻折,使的对称点落在上,的对称点为交于.(1)求证:.(2)若为中点,且,求长.(3)连接,若为中点,为中点,探究与大小关系并说明理由.【答案】(1)见详解(2)(3)【解析】【分析】(1)根据矩形的性质得,由折叠得出,得出,证明;(2)根据矩形性质以及线段中点,得出,根据代入数值得,进行计算,再结合,则,代入数值,得,所以;(3)由折叠性质,得直线,,是等腰三角形,则,因为为中点,为中点,所以,,所以,则,所以,证明,则,即可作答.【小问1详解】解:如图:∵四边形是矩形,∴,∴,∵分别在上,将四边形沿翻折,使的对称点落在上,∴,∴,∴,∴;【小问2详解】解:如图:∵四边形是矩形,∴,,∵为中点,∴,设,∴,在中,,即,解得,∴,∴,∵,∴,∴,解得,∵,∴;【小问3详解】解:如图:延长交于一点M,连接∵分别在上,将四边形沿翻折,使的对称点落在上,∴直线,,∴是等腰三角形,∴,∵为中点,∴设,∴,∵为中点,∴,∵,,∴,∴,,∴,在中,,∴,∴,在中,,∵,∴,∴,∴,∴,∴,【点睛】本题考查了矩形与折叠,相似三角形的判定与性质,勾股定理,全等三角形的判定与性质,正确掌握相关性质内容是解题的关键.24.如图1,二次函数交轴于和,交轴于.(1)求的值.(2)为函数图象上一点,满足,求点的横坐标.(3)如图2,将二次函数沿水平方向平移,新的图象记为与轴交于点,记,记顶点横坐标为.①求与的函数解析式.②记与轴围成的图象为与重合部分(不计边界)记为,若随增加而增加,且内恰有2个横坐标与纵坐标均为整数的点,直接写出的取值范围.【答案】(1);(2)或;(3)的取值范围为或.【解析】【分析】(1)利用待定系数法求解即可;(2)先求得,,作轴于点,设,分当点在轴上方和点在轴下方时,两种情况讨论,利用相似三角形的判定和性质,列式求解即可;(3)①利用平移的性质得图象的解析式为,得到图象与轴交于点的坐标,据此列式计算即可求解;②先求得或,中含,,三个整数点(不含边界),再分三种情况讨论,分别列不等式组,求解即可.【小问1详解】解:∵二次函数交轴于,∴,解得;【小问2详解】解:∵,∴,令,则,解得或,令,则,∴,,,作轴于点,设,当点在轴上方时,如图,∵,∴,∴,即,解得或(舍去);当点在轴下方时,如图,∵,∴,∴,即,解得或(舍去);∴或;【小问3详解】解:①∵将二次函数沿水平方向平移,∴纵坐标不变是4,∴图象的解析式为,∴,∴,∴;②由①得,则函数图象如图,∵随增加而增加,∴或,中含,,三个整数点(不含边界),当内恰有2个整数点,时,当时,,当时,,∴,∴,或,∴;∵或,∴;当内恰有2个整数点,时,当时,,当时,,∴,∴或,,∴;∵或,∴;当内恰有2个整数点,时,此情况不存在,舍去,综上,的取值范围为或.【点睛】本题主要考查了用待定系数法求二次函数的表达式及二次函数与线段的交点问题,也考查了二次函数与不等式,相似三角形的判定和性质.熟练掌握二次函数图象的性质及数形结合法是解题的关键.。
历年中考数学试题题库(含解析)
历年中考数学试题题库(含解析)一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列四个实数中,无理数是()A.2 B.C.0 D.﹣1【考点】26:无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、2是有理数,故A错误;B、是无理数,故B正确;C、0是有理数,故C正确;D、﹣1是有理数,故D正确;故选:B.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.(3分)如图所示的几何体是由4个小正方体搭成,则它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:从正面看第一层两个小正方形,第二层左边一个小正方形.故选:C.【点评】本题考查了简单组合体的三视图,主视图是从正面看得到的图形.3.(3分)下列运算正确的是()A.a3+a3=a6B.a3•a3=a9C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b2【考点】35:合并同类项;46:同底数幂的乘法;4C:完全平方公式;4F:平方差公式.【分析】直接利用合并同类项法则以及完全平方公式和平方差公式分别判断得出即可.【解答】解:A、a3+a3=2a3,故此选项错误;B、a3•a3=a6,故此选项错误;C、(a+b)2=a2+2ab+b2,故此选项错误;D、(a+b)(a﹣b)=a2﹣b2,正确.故选:D.【点评】此题主要考查了完全平方公式/合并同类项、平方差公式等知识,正确应用乘法公式是解题关键.4.(3分)下列选项中能由左图平移得到的是()A.B.C.D.【考点】Q1:生活中的平移现象.【分析】根据平移的性质,图形只是位置变化,其形状与方向不发生变化进而得出即可.【解答】解:能由左图平移得到的是:选项C.故选:C.【点评】此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.5.(3分)如图,点A、B、C是⊙O上,∠AOB=80°,则∠ACB的度数为()A.40°B.80°C.120°D.160°【考点】M5:圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=80°.∴∠ACB=∠AOB=40°.故选:A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.6.(3分)下列说法正确的是()A.哥哥的身高比弟弟高是必然事件B.今年中秋节有雨是不确定事件C.随机抛一枚均匀的硬币两次,都是正面朝上是不可能事件D.“彩票中奖的概率为”表示买5张彩票肯定会中奖【考点】X1:随机事件;X3:概率的意义.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、哥哥的身高比弟弟高是随机事件,故A错误;B、今年中秋节有雨是不确定事件,故B正确;C、随机抛一枚均匀的硬币两次,都是正面朝上是随机事件,故C错误;D、“彩票中奖的概率为”表示买5张彩票可能中奖,可能不中奖,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(3分)甲、乙两个同学在四次模拟试中,数学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,则成绩比较稳定的是()A.甲B.乙C.甲和乙一样D.无法确定【考点】W7:方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S 乙2=12.∴S甲2<S乙2.∴成绩比较稳定的是甲;故选:A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.(3分)如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点【考点】KG:线段垂直平分线的性质.【专题】12:应用题.【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等.∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选:A.【点评】此题考查了三角形的外心的概念和性质.熟知三角形三边垂直平分线的交点到三个顶点的距离相等,是解题的关键.9.(3分)一次函数y=x+2的图象不经过的象限是()A.一B.二C.三D.四【考点】F7:一次函数图象与系数的关系.【分析】根据k,b的符号确定一次函数y=x+2的图象经过的象限.【解答】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限.∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.【点评】本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1,难度不大.10.(3分)如图,设他们中有x个成人,y个儿童根据图中的对话可得方程组()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】题目中的等量关系为:1、大人数+儿童数=8;2、大人票钱数+儿童票钱数=195,据此求解.【解答】解:设他们中有x个成人,y个儿童,根据题意得:.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系并根据等量关系列出方程.二、填空题(共5小题,每小题3分,满分15分)11.(3分)a的相反数是﹣9,则a=9.【考点】14:相反数.【分析】根据相反数定义解答即可.【解答】解:∵a的相反数是﹣9.∴a=9.故答案为:9.【点评】此题考查了相反数的定义,只有符号不同的两个数,称为互为相反数,其中的一个数是另一个的相反数.12.(3分)如图,直线a∥b,∠1=70°,则∠2=70°.【考点】JA:平行线的性质.【分析】根据两直线平行同位角相等可得∠1=∠2=70°.【解答】解:∵a∥b.∴∠1=∠2.∵∠1=70°.∴∠2=70°.故答案为:70°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.13.(3分)茂名滨海新区成立以来,发展势头良好,重点项目投入已超过2000亿元,2000亿元用科学记数法表示为2×103亿元.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2000=2×103.故答案为:2×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为0.5米.【考点】KQ:勾股定理;M3:垂径定理的应用.【分析】由题意知,秋千摆至最低点时,点C为弧AB的中点,由垂径定理知AB ⊥OC,AD=BD=AB=1.5米.再根据勾股定理求得OD即可.【解答】解:∵点C为弧AB的中点,O为圆心由垂径定理知:AB⊥OC,AD=BD=AB=1.5米.在Rt△OAD中,根据勾股定理,OD==2(米).∴CD=OC﹣OD=2.5﹣2=0.5(米);故答案为0.5.【点评】本题考查了垂径定理的应用,勾股定理的应用,将实际问题抽象为几何问题是解题的关键.15.(3分)用边长为1的小正方形摆成如图所示的塔状图形,按此规律,第4次所摆成的周长是16,第n次所摆图形的周长是4n(用关于n的代数式表示)【考点】38:规律型:图形的变化类.【分析】由题意可知:第一次1个小正方形的时候,周长等于1个正方形的周长,是1×4=4;第二次3个小正方形的时候,一共有4条边被遮挡,相当于少了1个小正方形的周长,所搭图形的周长为2个小正方形的周长,是2×4=8;第三次6个小正方形的时候,一共有12条边被遮挡,相当于少了3个小正方形的周长,所搭图形的周长为3个小正方形的周长,是3×4=12;…由此得出第几次搭建的图形的周长就相当于几个小正方形的周长是4n,由此规律解决问题.【解答】解:第一次所摆图形周长是1×4=4;第二次所摆图形的周长是2×4=8;第三次所摆图形的周长是3×4=12;…第n次所摆图形的周长是n×4=4n.第4次所摆成的周长是4×4=16.故答案为:16,4n.【点评】此题考查图形的变化规律可,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律,解决问题.三、解答题(共10小题,满分75分)16.(7分)计算:|﹣2|﹣()0+(﹣1)2014.【考点】2C:实数的运算;6E:零指数幂.【专题】11:计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,最后一项利用乘方的意义计算即可得到结果.【解答】解:原式=2﹣1+1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.(7分)解不等式组:.【考点】CB:解一元一次不等式组.【分析】首先计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:由①得:x>1.由②得:x<2.不等式组的解集为:1<x<2.【点评】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)如图,在正方形ABCD中,点E在AB边上,点F在BC边的延长线上,且AE=CF(1)求证:△AED≌△CFD;(2)将△AED按逆时针方向至少旋转多少度才能与△CFD重合,旋转中心是什么?【考点】KD:全等三角形的判定与性质;LE:正方形的性质;R2:旋转的性质.【分析】(1)由正方形的性质就可以得出AD=CD,∠A=∠DCF=90°,再由SAS就可以得出结论;(2)由∠ADC=90°就可以得出△AED按逆时针方向至少旋转90度才能与△CFD 重合,旋转中心是点D.【解答】解:(1)∵四边形ABCD是正方形.∴AD=CD,∠A=∠DCB=∠ADC=90°.∴∠A=∠DCF=90°.在△AED和△CFD中..∴△AED≌△CFD(SAS);(2)∵∠ADC=90°.∴△AED按逆时针方向至少旋转90度才能与△CFD重合,旋转中心是点D.【点评】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用,旋转的旋转的运用,解答时证明三角形全等是关键.19.(7分)2014年3月31日是全国中小学生安全教育日,某校全体学生参加了“珍爱生命,预防溺水”专题活动,学习了游泳“五不准”,为了了解学生对“五不准”的知晓情况,随机抽取了200名学生作调查,请根据下面两个不完整的统计图解答问题:(1)求在这次调查中,“能答5条”人数的百分比和“仅能答3条”的人数;(2)若该校共有2000名学生,估计该校能答3条不准以上(含3条)的人数.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)能答5条的人数除以总人数得出能答5条”人数的百分比;用总人数乘以“仅能答3条”的人数所占的百分比即可求出“仅能答3条”的人数;(2)用该校的总人数乘以能答3条不准以上(含3条)的人数所占的百分比即可.【解答】解:(1)“能答5条”人数的百分比是×100%=20%.“仅能答3条”的人数是200×40%=80(人);(2)根据题意得:2000×(1﹣5%﹣10%)=1700(人).答:该校能答3条不准以上(含3条)的人数是1700人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7分)小聪计划中考后参加“我的中国梦”夏令营活动,需要一名家长陪同,爸爸、妈妈用猜拳的方式确定由谁陪同,即爸爸、妈妈都随机作出“石头”、“剪刀”、“布”三种手势(如图)中的一种,规定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,手势相同,不分胜负(1)爸爸一次出“石头”的概率是多少?(2)妈妈一次获胜的概率是多少?请用列表或画树状图的方法加以说明.【考点】X4:概率公式;X6:列表法与树状图法.【分析】(1)由随机作出“石头”、“剪刀”、“布”三种手势,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与妈妈一次获胜的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:爸爸一次出“石头”的概率是:;(2)画树状图得:∵共有9种等可能的结果,妈妈一次获胜的有3种情况.∴妈妈一次获胜的概率是:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)如图,某水上乐园有一个滑梯AB,高度AC为6米,倾斜角为60°,暑期将至,为改善滑梯AB的安全性能,把倾斜角由60°减至30°(1)求调整后的滑梯AD的长度;(2)调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:≈1.41,,≈2.45)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】本题中两个直角三角形有公共的边,那么可利用这条公共直角边进行求解.(1)求AD长的时候,可在直角三角形ADC内,根据30°的角所对的直角边是斜边的一半求解.(2)在直角三角形ABC中求得AB的长后用AD﹣AB即可求得增加的长度.【解答】解:(1)Rt△ABD中.∵∠ADB=30°,AC=6米.∴AD=2AC=12(m)∴AD的长度为12米;(2)∵Rt△ABC中,AB=AC÷sin60°=4(m).∴AD﹣AB=12﹣4≈5.1(m).∴改善后的滑梯会加长5.1m.【点评】本题主要考查了解直角三角形的应用,利用这两个直角三角形有公共的直角边求解是解决此类题目的基本出发点.22.(8分)如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2,将矩形OABC向上平移4个单位得到矩形O1A1B1C1.(1)若反比例函数y=和y=的图象分别经过点B、B1,求k1和k2的值;(2)将矩形O1A1B1C1向左平移得到O2A2B2C2,当点O2、B2在反比例函数y=的图象上时,求平移的距离和k3的值.【考点】G5:反比例函数系数k的几何意义;Q2:平移的性质.【分析】(1)将B(3,2)代入y=,即可求出k1的值;将B1(3,6)代入y=,即可求出k2的值;(2)设将矩形O1A1B1C1向左平移a个单位得到O2A2B2C2,根据向左平移,横坐标相减,纵坐标不变得到点O2(﹣a,4),B2(3﹣a,6),由点O2、B2在反比例函数y=的图象上,得出k3=﹣4a=6(3﹣a),解方程即可求出a与k3的值.【解答】解:(1)∵矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2.∴B(3,2).∵反比例函数y=的图象分别经过点B.∴k1=3×2=6;∵将矩形OABC向上平移4个单位得到矩形O1A1B1C1.∴B1(3,6).∵反比例函数y=的图象经过点B1.∴k2=3×6=18;(2)设将矩形O1A1B1C1向左平移a个单位得到O2A2B2C2,则O2(﹣a,4),B2(3﹣a,6).∵点O2、B2在反比例函数y=的图象上.∴k3=﹣4a=6(3﹣a).解得a=9,k3=﹣36.【点评】本题考查了反比例函数比例系数k的几何意义,反比例函数图象上点的坐标特征,平移的性质,难度适中.利用数形结合与方程思想是解题的关键.23.(8分)网络购物越来越方便快捷,远方的朋友通过网购就可以迅速品尝到茂名的新鲜荔枝,同时也增加了种植户的收入,种植户老张去年将全部荔枝按批发价卖给水果商,收入6万元,今年的荔枝产量比去年增加2000千克,计划全部采用互联网销售,网上销售比去年的批发价高50%,若按此价格售完,今年的收入将达到10.8万元.(1)去年的批发价和今年网上售价分别是多少?(2)若今年老张按(1)中的网上售价销售,则每天的销量相同,20天恰好可将荔枝售完,经调查发现,当网上售价每上升0.1元/千克,每日销量将减少5千克,将网上售价定为多少,才能使日销量收入最大?【考点】HE:二次函数的应用.【分析】(1)设去年的售价为x元,则今年的售价为(1+50%)x元,去年的产量为y千克,则今年的产量为(y+2000)千克,根据条件建立方程组求出其解即可;(2)由(1)的结论可以求出今年的产量,就可以求出日销售量,设日销售利润为W元,网上售价为a元,由利润问题的数量关系表示出W与a的数量关系,由二次函数的性质就可以求出结论.【解答】解:(1)设去年的售价为x元,则今年的售价为(1+50%)x元,去年的产量为y千克,则今年的产量为(y+2000)千克,由题意,得.解得:.则今年的售价为(1+50%)x=9元.答:去年的售价为6元,则今年的售价为9元;(2)由题意,得今年的产量为:10000+2000=12000千克.则网上日销售量为:12000÷20=600千克.设日销售收入为W元,网上售价为a元,由题意,得W=a(600﹣).W=﹣50a2+1050aW=﹣50(a﹣)2+.∴a=﹣50<0.∴a=时,W=.最大∴网上售价定为10.5元,才能使日销量收入最大为元.【点评】本题考查了列二元二次方程组解实际问题的运用,二元二次方程组的解法的运用,二次函数的运用,二次函数的性质的运用,解答时求出二次函数的解析式是关键.24.(8分)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB,OA交⊙O于点E.(1)证明:直线AB与⊙O相切;(2)若AE=a,AB=b,求⊙O的半径;(结果用a,b表示)(3)过点C作弦CD⊥OA于点H,试探究⊙O的直径与OH、OB之间的数量关系,并加以证明.【考点】MR:圆的综合题.【分析】(1)利用段垂直平分线的性质得出OC⊥AB,进而得出答案即可;(2)利用勾股定理得出OC2+AC2=OA2,进而得出⊙O的半径;(3)首先得出△HOC∽△COA,进而得出OC2=OH×OA,即可得出⊙O的直径与OH、OB之间的数量关系.【解答】(1)证明:如图所示:连接CO.∵OA=OB,AC=BC.∴OC⊥AB.∵OC为⊙O的半径.∴直线AB与⊙O相切;(2)解:在直角三角形OAC中用勾股定理就可以了.设半径为r,则OC=r,OA=a+r.AC=AB= b.在Rt△AOC中.OC2+AC2=OA2.则r2+b2=(a+r)2.解得:r=﹣;(3)d2=4OH×OB.理由:∵OA⊥CD,OC⊥AC.∴∠OCA=∠OHC.∵∠HOC=∠COA.∴△HOC∽△COA.∴=.即OC2=OH×OA.∵OC垂直平分AB.∴OA=OB.设直径为d,则OC=.∴()2=OH×OB.即d2=4OH×OB.【点评】此题主要考查了圆的综合以及相似三角形的判定与性质,得出△HOC∽△COA是解题关键.25.(8分)如图,在△ABC中,AB=AC,且点A的坐标为(﹣3,0),点C坐标为(0,),点B在y轴的负半轴上,抛物线y=﹣x2+bx+c经过点A和点C(1)求b,c的值;(2)在抛物线的对称轴上是否存在点Q,使得△ACQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由(3)点P是线段AO上的一个动点,过点P作y轴的平行线交抛物线于点M,交AB于点E,探究:当点P在什么位置时,四边形MEBC是平行四边形,此时,请判断四边形AECM的形状,并说明理由.【考点】HF:二次函数综合题.【分析】(1)直接利用待定系数法求出抛物线解析式得出即可;(2)利用当AQ=QC,以及当AC=Q1C时,当AC=CQ2=2时,当AQ3=AC=2时,分别得出符合题意的答案即可;(3)利用平行四边形的性质首先得出BC的长,进而表示出线段ME的长,进而求出答案,再利用梯形的判定得出答案.【解答】解:(1)∵点A的坐标为(﹣3,0),点C坐标为(0,),点B在y 轴的负半轴上,抛物线y=﹣x2+bx+c经过点A和点C.∴.解得:;(2)在抛物线的对称轴上存在点Q,使得△ACQ为等腰三角形.当AQ=QC,如图1.由(1)得:y=﹣x2﹣x+=﹣(x+1)2+.即抛物线对称轴为:直线x=﹣1,则QO=1,AQ=2.∵CO=,QO=1.∴QC=2.∴AQ=QC.∴Q(﹣1,0);当AC=Q1C时,过点C作CF⊥直线x=﹣1,于一点F.则FC=1.∵AO=3,CO=.∴AC=2.∴Q1C=2.∴FQ1=,故Q1的坐标为:(﹣1,+);当AC=CQ2=2时,由Q1的坐标可得;Q2(﹣1,﹣+);当AQ3=AC=2时,则QQ3=2,故Q3(﹣1,﹣2),根据对称性可知Q4(﹣1,2)(Q4和Q3关于x轴对称)也符合题意.综上所述:符合题意的Q点的坐标为:(﹣1,0);(﹣1,+);(﹣1,﹣+);(﹣1,﹣2),(﹣1,2);(3)如图2所示,当四边形MEBC是平行四边形,则ME=BC.∵AB=AC,且点A的坐标为(﹣3,0),点C坐标为(0,).∴B(0,﹣).则BC=2.设直线AB的解析式为:y=kx+e.故.解得:.故直线AB的解析式为:y=﹣x﹣.设E(x,﹣x﹣),M(x,﹣x2﹣x+).故ME=﹣x2﹣x++x+=﹣x2﹣x+2=2.解得:x1=0(不合题意舍去),x2=﹣1.故P点在(﹣1,0),此时四边形MEBC是平行四边形;四边形AECM是梯形.理由:∵四边形MEBC是平行四边形.∴MC∥AB.∵CO=,AO=3.∴∠CAO=30°.∵AC=AB,AO⊥BC.∴∠BAO=30°.∴∠BAC=60°.∴△ABC是等边三角形.∵AC=BC,ME=BC,所以AC=ME.∴四边形AECM是等腰梯形.【点评】此题主要考查了二次函数综合应用以及平行四边形的性质和梯形的判定、等腰三角形的判定等知识,利用分类讨论以及数形结合得出是解题关键.。
2024中考数学试题及答案
2024中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √2D. 1答案:C2. 已知a > 0,b < 0,且|a| > |b|,下列哪个不等式是正确的?A. a + b > 0B. a + b < 0C. a - b > 0D. a - b < 0答案:C3. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A4. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 下列哪个表达式不能简化为0?A. 5 - 5B. 3 + (-3)C. 2 × 0D. 1 - 1答案:C6. 如果一个数的平方等于16,那么这个数是多少?A. 4B. -4C. ±4D. 16答案:C7. 一个数的立方根和这个数本身相等,这个数可能是?A. 0B. 1C. -1D. 8答案:A8. 一个等差数列的首项为3,公差为2,那么第10项是多少?A. 23B. 21C. 19D. 17答案:A9. 一个二次方程x² - 5x + 6 = 0的根是什么?A. x = 2, 3B. x = -2, -3C. x = 2, -3D. x = -2, 3答案:A10. 以下哪个图形不是轴对称图形?A. 圆B. 矩形C. 三角形D. 正方形答案:C二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可能是______。
答案:±512. 一个多项式f(x) = x³ - 6x² + 11x - 6的因式分解是______。
答案:(x - 1)(x - 2)(x - 3)13. 一个正六边形的内角是______度。
答案:12014. 如果一个分数的分子和分母同时乘以2,那么这个分数的大小______。
【精选试卷】(必考题)中考数学专项练习经典习题(含答案解析)
一、选择题1.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .52.下列二次根式中,与3是同类二次根式的是( ) A .18B .13C .24D .0.33.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x ⨯+-=D .6060(125%)30x x⨯+-= 4.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=,则GAF ∠的度数为( )A .110B .115C .125D .1305.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S Vh h=≠,这个函数的图象大致是( )A .B .C .D .6.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1)7.如果√(2a −1)2=1−2a ,则a 的取值范围是( ) A .a <12 B .a ≤12 C .a >12 D .a ≥128.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃9.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°10.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°11.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为( )A.3 B.23C.32D.612.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果使草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是()A.2x2-25x+16=0B.x2-25x+32=0C.x2-17x+16=0D.x2-17x-16=0 13.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+14.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.15.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°16.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5 17.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.1818.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个19.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁20.如图,⊙O的半径为5,AB为弦,点C为AB的中点,若∠ABC=30°,则弦AB的长为()A.12B.5C.532D.5321.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°22.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)23.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.624.下列四个实数中,比1-小的数是( ) A .2-B .0C .1D .225.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()6,0- B .()6,0 C .()2,0- D .()2,026.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1B .2C .3D .427.如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是( )A .B .C .D .28.下列几何体中,其侧面展开图为扇形的是( )A .B .C .D .29.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上, OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)30.如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内OB 上一点,∠BMO=120°,则⊙C 的半径长为( )A.6 B.5 C.3 D.32【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.C4.A5.C6.A7.B8.B9.D10.D11.B12.C13.D14.B15.C16.C17.B18.C19.D20.D21.A22.D23.A24.A25.D26.B27.B28.C29.D30.C2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×12 BM•AM,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.2.B解析:B【解析】【分析】【详解】ABC =D 故选B .3.C解析:C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.4.A解析:A 【解析】 【分析】依据AB//CD ,EFC 40∠=,即可得到BAF 40∠=,BAE 140∠=,再根据AG 平分BAF ∠,可得BAG 70∠=,进而得出GAF 7040110∠=+=. 【详解】 解:AB//CD ,EFC 40∠=,BAF 40∠∴=, BAE 140∠∴=,又AG 平分BAF ∠,BAG 70∠∴=,GAF 7040110∠∴=+=,故选:A . 【点睛】本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关键.5.C解析:C 【解析】 【分析】 【详解】解:由题意可知:00v h >>, , ∴ (0)v s h h=≠中,当v 的值一定时,s 是h 的反比例函数, ∴函数 (0)v s h h=≠的图象当00v h >>,时是:“双曲线”在第一象限的分支. 故选C.6.A解析:A 【解析】 【分析】把点(3,1)代入直线y =kx ﹣2,得出k 值,然后逐个点代入,找出满足条件的答案. 【详解】把点(3,1)代入直线y =kx ﹣2,得1=3k ﹣2, 解得k =1, ∴y =x ﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y =x ﹣2中,只有(2,0)满足条件. 故选A . 【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.7.B解析:B 【解析】试题分析:根据二次根式的性质1可知:√(2a −1)2=|2a −1|=1−2a ,即2a −1≤0故答案为B.a ≤12.考点:二次根式的性质.8.B解析:B 【解析】 【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.9.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC ,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC ,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.10.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.11.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,==∴故选:B.【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 12.C解析:C【解析】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.13.D解析:D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.14.B解析:B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.15.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.16.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007=7×10﹣4故选C.【点睛】本题考查科学计数法,难度不大.17.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.考点:等腰三角形的性质.18.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.19.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 20.D解析:D【解析】【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【详解】连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为AB的中点,∴OC⊥AB,在Rt△OAE中,53∴AB=53,故选D.【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.21.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.22.D解析:D【解析】【分析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【详解】∵把A (12,y 1),B (2,y 2)代入反比例函数y=1x 得:y 1=2,y 2=12, ∴A (12,2),B (2,12), ∵在△ABP 中,由三角形的三边关系定理得:|AP-BP|<AB ,∴延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52,即P(52,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.23.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.24.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.25.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.26.B解析:B【解析】【分析】的大小,即可得到结果.【详解】46 6.25<<,2 2.5∴<<,的点距离最近的整数点所表示的数是2,故选:B.【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.27.B解析:B【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看第一列是一个小正方形,第二列是一个小正方形,第三列是两个小正方形,故选:B.【点睛】本题考查了简单几何体的三视图,从上边看上边看得到的图形是俯视图.28.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A、圆柱的侧面展开图是矩形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三个三角形拼成的图形,故D错误,故选C.【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.29.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。
2024年中考数学真题-附有答案
8. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( )
A B. C. D.
9. 如图,点 为 的对角线 上一点,AC=5,CE=1,连接 并延长至点 ,使得 ,连接 ,则 为( )
A. B. 3C. D. 4
三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.
17. (1)计算: ;
(2)先化简,再求值: ,其中 .
18. 【实践课题】测量湖边观测点 和湖心岛上鸟类栖息点 之间的距离
实践工具】皮尺、测角仪等测量工具
实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点 .测量 , 两点间的距离以及 和 ,测量三次取平均值,得到数据: 米, , 画出示意图,如图
16. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系 中,将点 中的 , 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中 , 均为正整数.例如,点 经过第1次运算得到点 ,经过第2次运算得到点 ,以此类推.则点 经过2024次运算后得到点________.
1
1
________
________
________
7
(1)求 、 的值,并补全表格;
(2)结合表格,当 图像在 的图像上方时,直接写出 的取值范围.
21. 如图,在四边形 中 , 以点 为圆心,以 为半径作 交 于点 ,以点 为圆心,以 为半径作 所交 于点 ,连接 交 于另一点 ,连接 .
(1)求证: 为 所在圆的切线;
【精选试卷】(必考题)中考数学专项练习经典练习卷(含答案解析)
一、选择题1.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1B .0,1C .1,2D .1,2,32.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-3.如果关于x 的分式方程11222ax x x-+=--有整数解,且关于x 的不等式组0322(1)x ax x -⎧>⎪⎨⎪+<-⎩的解集为x >4,那么符合条件的所有整数a 的值之和是( ) A .7 B .8 C .4 D .54.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1)5.下列计算正确的是( ) A .()3473=a ba b B .()232482--=--b a bab bC .32242⋅+⋅=a a a a aD .22(5)25-=-a a6.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃7.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒8.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°9.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .10.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BCDF CE= B .BC DFCE AD= C .CD BCEF BE= D .CD ADEF AF= 11.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70° 12.下列二次根式中的最简二次根式是( )A 30B 12C 8D 0.513.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( )A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣3414.如图,是由四个相同的小正方体组成的立体图形,它的左视图是()A.B.C.D.15.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A.25°B.75°C.65°D.55°16.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个17.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分18.已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是()①x=1是二次方程ax2+bx+c=0的一个实数根;②二次函数y =ax 2+bx +c 的开口向下;③二次函数y =ax 2+bx +c 的对称轴在y 轴的左侧; ④不等式4a+2b+c>0一定成立. A .①②B .①③C .①④D .③④19.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定20.定义一种新运算:1an nnbn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .2521.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭C .()()222323m n ++=D .()222349m n ++=22.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数 0 1 2 3 4 人数41216171关于这组数据,下列说法正确的是( ) A .中位数是2 B .众数是17C .平均数是2D .方差是223.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°24.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =kx(k≠0,x >0)上,若矩形ABCD 的面积为12,则k 的值为( )A .12B .4C .3D .625.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( )A .B .C .D .26.方程21(2)304m x mx --+=有两个实数根,则m 的取值范围( ) A .52m >B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠27.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A.60°B.50°C.45°D.40°28.下列各式化简后的结果为2的是()A6B12C18D3629.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.1069605076020500x x-=+B.5076010696020500x x-=+C.1069605076050020x x-=+D.5076010696050020x x-=+30.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100B.中位数是30C.极差是20D.平均数是30【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.C3.C 4.A 5.C 6.B 7.B 8.B 9.D 10.A 11.B 12.A 13.B 14.A 15.C 16.C 17.B 18.C 19.C 20.B 21.D 22.A 23.C 24.D 25.A 26.B 27.D 28.C 29.A 30.B2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k,由方程有实数根,得(-4)2-4×3k≥0,解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k的非负整数值为1,故选A.2.C解析:C【解析】【分析】【详解】∵A(﹣3,4),∴,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C .考点:菱形的性质;反比例函数图象上点的坐标特征.3.C解析:C 【解析】 【分析】解关于x 的不等式组0322(1)x ax x -⎧>⎪⎨⎪+<-⎩,结合解集为x >4,确定a 的范围,再由分式方程11222ax x x-+=--有整数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求出所有符合条件的值之和即可. 【详解】由分式方程11222ax x x-+=--可得1﹣ax+2(x ﹣2)=﹣1 解得x =22a-, ∵关于x 的分式方程11222ax x x-+=--有整数解,且a 为整数 ∴a =0、3、4关于x 的不等式组0322(1)x ax x -⎧>⎪⎨⎪+<-⎩整理得4x a x >⎧⎨>⎩ ∵不等式组0322(1)x ax x -⎧>⎪⎨⎪+<-⎩的解集为x >4∴a≤4于是符合条件的所有整数a 的值之和为:0+3+4=7 故选C . 【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.4.A解析:A 【解析】 【分析】把点(3,1)代入直线y =kx ﹣2,得出k 值,然后逐个点代入,找出满足条件的答案. 【详解】把点(3,1)代入直线y =kx ﹣2,得1=3k ﹣2, 解得k =1, ∴y =x ﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y =x ﹣2中,只有(2,0)满足条件. 故选A . 【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.5.C解析:C 【解析】 【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案. 【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a bab b --=-+,故该选项计算错误,C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误, 故选B. 【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.6.B解析:B 【解析】 【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解. 【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩解得35x ≤≤. 故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.7.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】 解:直线//m n ,21180ABC BAC ∴∠+∠∠+∠=+︒,30ABC =︒∠,90BAC ∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B .【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.8.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.9.D解析:D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0,∵对称轴为直线02b x a=->, ∴b <0, 二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】 考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.10.A解析:A【解析】【分析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB ∥CD ∥EF , ∴AD BC DF CE=. 故选A .【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.11.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a ∥b ,∴∠2=∠3=110°,故选B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.12.A解析:A【解析】【分析】根据最简二次根式的概念判断即可.【详解】A30B12=23C8=22,不是最简二次根式;D2 0.5=故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.13.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.14.A解析:A【解析】【分析】【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A.15.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.16.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C .考点:轴对称图形.17.B解析:B【解析】【分析】根据平均数的定义进行求解即可得.【详解】根据折线图可知该球员4节的得分分别为:12、4、10、6,所以该球员平均每节得分=1241064+++=8, 故选B .【点睛】本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法. 18.C解析:C【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确;根据二次函数的对称轴为x =-2b a,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确.故选:C.19.C解析:C【解析】12π(AA 1+A 1A 2+A 2A 3+A 3B)= 12π×AB ,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B 点。
【常考题】数学中考试题(带答案)
2.已知一个正多边形的内角是140°,则这个正多边形的边数是()
A.9B.8C.7D.6
3.如图,矩形ABCD的顶点A和对称中心均在反比例函数y= (k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()
A.12B.4C.3D.6
4.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )
【详解】
经过第二、三、四象限,
∴ , ,
∴ , ,
∴ ,
故答案为: .
【点睛】
本题考查一次函数图象与系数的关系;掌握一次函数 , 与 对函数图象的影响是解题的关键.
16.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【
14.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.
15.当直线 经过第二、三、四象限时,则 的取值范围是_____.
16.不等式组 的整数解是x=.
17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.
∴矩形ABCD的对称中心的坐标为(m+ , ),
∵对称中心在反比例函数上,
∴(m+ )× =k,
解方程得k=6,故选D.
点睛:本题考查了反比例函数图象上点的坐标特点,熟知反比例函数中k=xy位定值是解答本题的关键.
2024年中考数学试卷(附答案)
2024年中考数学试卷(附答案)学校:___________班级:___________姓名:___________考号:___________数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内. 2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效. 一、单项选择题(每小题2分,共12分) 1.若()3-⨯的运算结果为正数,则内的数字可以为( )A .2B .1C .0D .1-2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .主视图、左视图与俯视图都相同4.下列方程中,有两个相等实数根的是( ) A .()221x -=- B .()220x -= C .()221x -=D .()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2--B .()4,2-C .()2,4D .()4,26.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒二、填空题:本题共4小题,每小题5分,共20分. 7.当分式11x +的值为正数时,写出一个满足条件的x 的值为 . 8.因式分解:a 2﹣3a= .9.不等式组2030x x ->⎧⎨-<⎩的解集为 .10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .11.正六边形的每个内角等于 °.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒则EFBC的值为 .13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为 .14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .OA=1m ,OB=10m ,40AOD ∠=︒则阴影部分的面积为 2m (结果保留π).三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率. 17.如图,在ABCD 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE=BC .18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A,B,C,D,E,O均在格点上.图①中已画出四边形ABCD,图②中已画出以OE为半径的O,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.(2)在图②中,画出经过点E的O的切线.20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:(1)20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少元? (2)直接写出20192023-年全国居民人均可支配收入的中位数. (3)下列判断合理的是______(填序号).①20192023-年全国居民人均可支配收入里逐年上升趋势.②20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,2020年全国居民人均可支配收入最低.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin370.60︒= cos370.80︒= tan370.75︒=)五、解答题(每小题8分,共16分) 23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题. 【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】y,小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x,凳面的宽度为mm记录如下:【分析数据】如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少? 24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB=BC ,BD AC ⊥垂足为点D .若CD=2,BD=1,则ABCS =______.(2)如图②,在菱形A B C D ''''中4''=A C ,2B D ''=则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,FH=3,则EFGH S =四边形______;若EG a =,FH=b ,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想. 【理解运用】(4)如图④,在MNK △中,MN=3,KN=4,MK=5,点P 为边MN 上一点. 小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ; (ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧; (ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ . 请你直接写出MPKQ S 四边形的值. 六、解答题(每小题10分,共20分)25.如图,在ABC 中,∠C=90°,∠B=30°,AC=3cm ,AD 是ABC 的角平分线.动点P 从点A 出发,以/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2). Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.参考答案1.D【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=- ()313-⨯=- ()300-⨯= ()()313-⨯-= 四个算式的运算结果中,只有3是正数 故选:D . 2.B【分析】本题主要考查了科学记数法,科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案. 【详解】解:92040000000 2.0410⨯= 故选B . 3.A【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案. 【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段 故选:A . 4.B【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键. 分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A 、()2210x -=-<故该方程无实数解,故本选项不符合题意; B 、()220x -=解得:122x x ==,故本选项符合题意;C 、()221x -= 21x -=±解得123,1x x ==,故本选项不符合题意;D 、()222x -= 2x -=1222x x == 故选:B .5.C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,90OA B ''∠=︒ 据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2 ∴42OA OC ==, ∵四边形OABC 是矩形 ∴290AB OC ABC ===︒,∠∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''' ∴42OA OA A B AB '''====, 90OA B ''∠=︒ ∴A B y ''⊥轴 ∴点B '的坐标为()2,4 故选:C . 6.C【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解. 【详解】解:∵BE AD ∥ 50BEC ∠=︒ ∴50D BEC ∠=∠=︒ ∵四边形ABCD 内接于O ∴180ABC D ∠+∠=︒ ∴18050130ABC ∠=︒-︒=︒ 故选:C .7.0(答案不唯一)【分析】本题主要考查了根据分式的值的情况求参数,根据题意可得10x +>,则1x >-,据此可得答案. 【详解】解:∵分式11x +的值为正数 ∴10x +> ∴1x >-∴满足题意的x 的值可以为0 故答案为:0(答案不唯一).8.a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.23x <<##32x >>【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:2030x x ->⎧⎨-<⎩①② 解不等式①得:2x >解不等式②得:3x <∴原不等式组的解集为23x <<故答案为:23x <<.10.两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.120【详解】解:六边形的内角和为:(6-2)×180°=720° ∴正六边形的每个内角为:7201206︒=︒ 故答案为:12012.12【分析】本题主要考查了相似三角形的性质与判定,正方形的性质,先由正方形的性质得到45OAD ∠=︒ AD BC = 再证明EF AD ∥,进而可证明OEF OAD △∽△,由相似三角形的性质可得12EF OE AD OA ==,即12EF BC =. 【详解】解:∵正方形ABCD 的对角线AC BD ,相交于点O∴45OAD ∠=︒,AD=BC∵点E 是OA 的中点 ∴12OE OA = ∵45FEO ∠=︒∴EF AD ∥∴OEF OAD △∽△ ∴12EF OE AD OA ==,即12EF BC = 故答案为:12.13.()22220.5x x +=+【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键. 设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+∵AB B C '⊥由勾股定理得:222AC B C AB ''+=∴()22220.5x x +=+故答案为:()22220.5x x +=+.14.11π【分析】本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.利用阴影部分面积等于大扇形减去小扇形面积,结合扇形面积公式即可求解.【详解】解:由题意得:()224010111360S ππ-==阴影故答案为:11π.15.22a 6【分析】本题考查了整式的化简求值,平方差公式,先利用平方差公式化简,再进行合并同类项,最后代入求值即可.【详解】解:原式2211a a =-++22a =当a =原式22=⨯ 6=.16.13【分析】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画出树状图,可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,再由概率公式求解即可.【详解】解:将“滑雪”“滑雪圈”“雪地摩托”三个项目分别记为事件A 、B 、C ,可画树状图为:由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种 ∴幸运游客小明与小亮恰好抽中同一个项目的概率3193P ==. 17.证明见解析【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形∴AD BC ∥∴OAE OBC OCB E ==∠∠,∠∠∵点O 是AB 的中点∴OA OB =∴()AAS AOE BOC △≌△∴AE BC =.18.白色琴键52个,黑色琴键36个【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个由题意得:()1688x x ++=解得:36x =∴白色琴键:361652+=(个)答:白色琴键52个,黑色琴键36个.19.(1)见解析(2)见解析【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;(2)如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.【详解】(1)解:如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;易证明四边形ABCD 是矩形,且E 、F 分别为AB CD ,的中点;(2)解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求;易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ⊥.20.(1)36I R= (2)12A 【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当3R =Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为()0U I U R=≠ 把()94,代入()0U I U R=≠中得:()409U U =≠ 解得36U = ∴这个反比例函数的解析式为36I R =; (2)解:在36I R =中,当3R =Ω时 3612A 3I == ∴此时的电流I 为12A .21.(1)8485元 (2)35128元 (3)①【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【详解】(1)解:39218307338485-=元答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.(2)解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元∴20192023-年全国居民人均可支配收入的中位数为35128元;(3)解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.218.3m【分析】本题考查了解直角三角形的应用,正确理解题意和添加辅助线是解题的关键.先解Rt GAD 得到873tan DG AG DG EAD===∠,再解Rt GAC △ tan 8730.75654.75CG AG EAC =⋅∠=⨯=,即可求解CD .【详解】解:延长DC 交AE 于点G ,由题意得873m AB DG == 90DGA ∠=︒在Rt GAD 中45EAD ∠=︒ ∴873tan DG AG DG EAD===∠ 在Rt GAC △中37EAC ∠=︒∴tan 8730.75654.75CG AG EAC =⋅∠=⨯=∴873654.75218.3m CD DG CG =-=-≈答:吉塔的高度CD 约为218.3m .23.(1)在同一条直线上,函数解析式为:533y x =+ (2)36mm【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【详解】(1)解:设函数解析式为:()0y kx b k =+≠∵当16.5,115.5x y == 23.1,148.5x y ==∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩解得:533k b =⎧⎨=⎩ ∴函数解析式为:533y x =+经检验其余点均在直线533y x =+上∴函数解析式为533y x =+,这些点在同一条直线上;(2)解:把213y =代入533y x =+得:533213x +=解得:36x =∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.(1)2,(2)4,(3)152 12EFGH ab S =四边形 证明见详解,(4)10 【分析】(1)根据三角形的面积公式计算即可;(2)根据菱形的面积公式计算即可;(3)结合图形有,EFG EHG EFGH S S S =+四边形,即可得()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,问题随之得解; (4)先证明MNK △是直角三角形,由作图可知:MKN MPQ ∠=∠,即可证明KM PQ ⊥,再结合(3)的结论直接计算即可.【详解】(1)∵在ABC 中,AB=BC BD AC ⊥ 2CD =∴2AD CD ==∴4AC = ∴122ABC S AC BD =⨯⨯= 故答案为:2;(2)∵在菱形A B C D ''''中4''=A C 2B D ''= ∴142A B C D S B D A C ''''''''=⨯⨯=菱形 故答案为:4;(3)∵EG FH ⊥ ∴12EFG S EG FO =⨯⨯ 12EHG S EG HO =⨯⨯ ∵EFG EHG EFGH S S S =+四边形 ∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ∵5EG = 3FH = ∴11522EFGH S EG FH =⨯⨯=四边形 故答案为:152猜想:12EFGH ab S =四边形 证明:∵EG FH ⊥ ∴12EFG S EG FO =⨯⨯ 12EHG S EG HO =⨯⨯ ∵EFG EHG EFGH S S S =+四边形 ∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ∵EG a = FH b = ∴12EFGH ab S =四边形; (4)根据尺规作图可知:QPM MKN ∠=∠∵在MNK △中3MN = 4KN = 5MK =∴222MK KN MN =+∴MNK △是直角三角形,且90MNK ∠=︒∴90NMK MKN ∠+∠=︒∵QPM MKN ∠=∠∴90NMK QPM ∠+∠=︒∴MK PQ ⊥∵4PQ KN == 5MK =∴根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形. 【点睛】本题考查了等腰三角形的性质,菱形的性质,作一个角等于已知角的尺规作图,勾股定理的逆定理等知识,难度不大,掌握作一个角等于已知角的尺规作图方法,是解答本题的关键.25.(1)等腰三角形AQ t = (2)32t =(3))2223,023221,24S t S t S t t ⎧=<≤⎪⎪⎪⎪=+<<⎨⎪⎪=-≤<⎪⎪⎩【分析】(1)过点Q 作QH AD ⊥于点H ,根据“平行线+角平分线”即可得到QA QP =,由QH AP ⊥,得到12HA AP ==,解Rt AHQ △得到AQ t =; (2)由PQE 为等边三角形得到QE QP =,而QA QP =,则QE QA =,故223AE AQ t ===,解得32t =;(3)当点P 在AD 上,点E 在AC 上,重合部分为PQE ,过点P 作PG QE ⊥于点G 12PG AP == 则212S QE PG =⋅=,此时302t <≤;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,此时)tan 23CF CE E t =⋅∠-,因此)21232FCE SCE CF t =⋅=-,故可得2PQE FCE S S S =-=+△△322t <<;当点P 在DB 上,重合部分为PQC △, 此时PD =-)1PC CD PD t =+- 解直角三角形得1tan PC QC t PQC ==-∠,故)2112S QC PC t =⋅=-,此时24t ≤<,再综上即可求解.【详解】(1)解:过点Q 作QH AD ⊥于点H ,由题意得:AP =∵90C ∠=︒ 30B ∠=︒∴60BAC ∠=︒∵AD 平分BAC ∠∴30PAQ BAD ∠=∠=︒∵PQ AB ∥∴30APQ BAD ∠=∠=︒∴PAQ APQ =∠∠∴QA QP =∴APQ △为等腰三角形 ∵QH AP ⊥∴12HA AP == ∴在Rt AHQ △中cos AH AQ t PAQ==∠; (2)解:如图∵PQE 为等边三角形 ∴QE QP =由(1)得QA QP = ∴QE QA =即223AE AQ t === ∴32t =;(3)解:当点P 在AD 上,点E 在AC 上,重合部分为PQE ,过点P 作PG QE ⊥于点G∵30PAQ ∠=︒∴12PG AP == ∵PQE 是等边三角形 ∴QE PQ AQ t ===∴212S QE PG =⋅= 由(2)知当点E 与点C 重合时32t =∴2302S t ⎛⎫<≤ ⎪⎝⎭; 当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,如图∵PQE 是等边三角形∴60E ∠=︒而23CE AE AC t =-=-∴)tan 23CF CE E t =⋅∠-∴()))21123232322FCE S CE CF t t t =⋅=--=-∴)2223234PQE FCE S S S t =-=-=+当点P 与点D 重合时,在Rt ADC 中cos AC AD AP DAC ===∠ ∴2t =∴2322S t ⎫=+<<⎪⎭; 当点P 在DB 上,重合部分为PQC △,如图∵30DAC ∠=︒90DCA ∠=︒由上知DC =∴AD =∴此时PD =-∴)1PC CD PD t =+=-∵PQE 是等边三角形∴60PQE ∠=︒∴1tan PC QC t PQC ===-∠∴)2112S QC PC t =⋅=- ∵30B BAD ∠=∠=︒∴DA DB ==∴当点P 与点BAD DB =+=解得:4t =∴)()2124S t t =-≤<综上所述:)2223,023221,24S t S t S t t ⎧=<≤⎪⎪⎪⎪=+<<⎨⎪⎪=-≤<⎪⎪⎩. 【点睛】本题考查了直角三角形的性质,解直角三角形的相关计算,等腰三角形的判定与性质,等边三角形的性质,平行线的性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.26.(1)1,1,2k a b ===-(2)Ⅰ:0x ≤或1x ≥;Ⅱ:2t <或11t ≥;Ⅲ:10m -≤≤或12m ≤≤【分析】本题考查了二次函数与一次函数的图像与性质,待定系数法求函数解析式,一元二次方程的解,正确理解题意,利用数形结合的思想是解决本题的额关键.(1)先确定输入x 值的范围,确定好之后将x ,y 的值代入所给的y 关于x 的函数解析式种解方程或方程组即可;(2)Ⅰ:可知一次函数解析式为:3y x ,二次函数解析式为:223y x x =-+,当0x >时223y x x =-+对称为直线1x =,开口向上,故1x ≥时,y 随着x 的增大而增大;当0x ≤时3y x ,10k =>故0x ≤时,y 随着x 的增大而增大;Ⅱ:问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,考虑两个临界状态,当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,因此当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,11y =故当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点,因此当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即方程230ax bx t ++-=无解; Ⅲ: 可求点P 、Q 关于直线12x =对称,当1x =,2y =最小值当0x =时3y =最大值 当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,y=3,x=-1时,y=2,故①当12m >,由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,则12m ≤≤;②当12m <,由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,则10m -≤≤,综上:10m -≤≤或12m ≤≤. 【详解】(1)解:∵20x =-<∴将2x =-,1y =代入3y kx =+得:231k -+=解得:1k =∵20,30x x =>=>∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩ 解得:12a b =⎧⎨=-⎩; (2)解:Ⅰ,∵1,1,2k a b ===-∴一次函数解析式为:3y x ,二次函数解析式为:223y x x =-+当0x >时223y x x =-+,对称为直线1x =,开口向上∴1x ≥时,y 随着x 的增大而增大;当0x ≤时3y x 10k =>∴0x ≤时,y 随着x 的增大而增大综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=∴23ax bx t ++=,在04x <<时无解∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点 ∵对于223y x x =-+,当1x =时2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点 ∴当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点; 当4x = 168311y =-+=∴当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点 ∴当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点 ∴当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点 即:当2t <或11t ≥时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解; Ⅲ:∵,1P Q x m x m ==-+∴()1122m m +-+= ∴点P 、Q 关于直线12x =对称 当1x =,1232y =-+=最小值当0x =时3y =最大值∵当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时3y =,=1x -时2y = ∴①当12m >,如图:由题意得:11012m m -≤-+≤⎧⎨≤≤⎩∴12m ≤≤; ②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩ ∴10m -≤≤综上:10m -≤≤或12m ≤≤.。
中考数学试题及答案
中考数学试题及答案一、选择题1.下图是一个正方形,边长为10cm。
计算正方形的周长是多少? A.20cm B. 40cm C. 50cm D. 100cm2.已知正方形ABCD的边长为8cm,以A为圆心,以AD为半径画一个圆,求圆的面积是多少?A. 64π cm² B. 32π cm² C. 16π cm² D. 8π cm²3.若a:b=3:5,且a=15,则b的值是多少? A. 9 B. 25 C. 5 D. 754.小明参加马拉松比赛,他以每小时12km的速度比赛,若比赛用时3小时,他跑了多少公里? A. 36km B. 30km C. 24km D. 12km5.某天气预报显示,上午9点的温度为18℃,下午3点的温度为26℃,一天中温度的变化是多少? A. 8℃ B. 26℃ C. 44℃ D. 208℃二、填空题1.一条矩形围墙的长是12米,宽比长少2米,这条矩形围墙的宽是______米。
2.小明去商场买东西,他消费了100元,其中60%购买了一本书,剩下的钱他买了一件T恤,这件T恤的价格是______元。
3.已知函数y = 2x - 4,那么当x=5时,y的值是______。
4.一个矩形的面积是48平方厘米,长是6厘米,那么宽是______。
5.一块地的正方形面积是200平方米,那么它的边长是______米。
三、解答题1.现有一个蛋糕,小明吃了其中的1/4,小红吃了其中的1/3,小王吃了剩下的部分。
请问小王吃了蛋糕的几分之几?2.请计算:20 * (2 + 3) ÷ 4 - 6 = ______。
3.求方程2x + 4 = 10的解。
4.如果a + 8 = 20,求a的值。
5.简述三角形的直角边、斜边和角度之间的关系。
四、答案一、选择题:A、C、D、A、A二、填空题:10、40、6、8、14三、解答题: 1. 小王吃了蛋糕的1/2部分。
【必考题】数学中考试卷(含答案)
【必考题】数学中考试卷(含答案)一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.63.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm4.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.5.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③7.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下( )元 A .8B .16C .24D .328.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定 9.下列计算正确的是( )A .a 2•a=a 2B .a 6÷a 2=a 3C .a 2b ﹣2ba 2=﹣a 2bD .(﹣32a )3=﹣398a10.估6的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间11.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm12.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A .3B .154C .5D .152二、填空题13.分解因式:x 3﹣4xy 2=_____.14.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.15.不等式组125x ax x->⎧⎨->-⎩有3个整数解,则a的取值范围是_____.16.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.17.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.18.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx =在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.19.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是_____.20.分式方程32xx2--+22x-=1的解为________.三、解答题21.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整 (收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80 乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83 (整理数据)按如下分数段整理、描述这两组样本数据在表中,a = ,b = . (分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:在表中:x = ,y = .(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有 人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.22.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,AN 为ABC V 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明23.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?24.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 25.某校在宣传“民族团结”活动中,采用四种宣传形式:A .器乐,B .舞蹈,C .朗诵,D .唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题: (1)本次调查的学生共有 人; (2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.3.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.4.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.5.B解析:B【解析】试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.6.C解析:C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;③由抛物线的开口向下知a<0,∵对称轴为1>x=﹣>0,∴2a+b<0,故本选项正确;④对称轴为x=﹣>0,∴a、b异号,即b>0,∴abc<0,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.7.D解析:D【解析】【分析】设每块方形巧克力x元,每块圆形巧克力y元,根据小明身上的钱数不变得出方程3x+5y-8=5x+3y+8,化简整理得y-x=8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x+3y+8)-8x,化简得3(y-x)+8,将y-x=8代入计算即可.【详解】解:设每块方形巧克力x元,每块圆形巧克力y元,则小明身上的钱有(3x+5y-8)元或(5x+3y+8)元.由题意,可得3x+5y-8=5x+3y+8,,化简整理,得y-x=8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x+3y+8)-8x=3(y-x)+8=3×8+8=32(元).故选D.【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.8.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。
中考数学题库(含答案和解析)
中考数学题库(含答案和解析)一、选择题(本题有10小题.每小题3分.共30分) 1.实数﹣2的绝对值是A .﹣2B .2C .12D .12-【答案】B【解析】22-=.故选B 2A .4B .±4C .D .±【答案】C=故选C .3.不等式315x ->的解集是A .2x >B .2x <C .43x > D .43x < 【答案】A【解析】315x ->.移项得36x >.解得2x >.故选A . 4.下列事件中.属于不可能事件的是 A .经过红绿灯路口.遇到绿灯 B .射击运动员射击一次.命中靶心 C .班里的两名同学.他们的生日是同一天D .从一个只装有白球和红球的袋中摸球.摸出黄球 【答案】D【解析】从一个只装有白球和红球的袋中摸球.可能摸出白球或红球.不可能摸出黄球.故选D.5.将如图所示的长方体牛奶包装盒沿某些棱剪开.且使六个面连在一起.然后铺平.则得到的图形可能是【答案】A【解析】本题考查长方体的展开图问题.属于基础题.选项A符合题意.6.如图.已知点O是△ABC的外心.∠A=40°.连结BO.CO.则∠BOC 的度数是A.60°B.70°C.80°D.90°【答案】C【解析】本题考查同弧所对圆周角与圆心角的关系.∠BOC=2∠A=80°.选C.1<b.则a.b分别是7.已知a.b是两个连续整数.a≈.与0.7相邻的连续整数是0和1.选C.10.78.如图.已知在△ABC中.∠ABC<90°.AB≠BC.BE是AC边上的中线.按下列步骤作图:①分别以点B.C为圆心.大于线段BC长度一半的长为半径作弧.相交于点M.N;②过点M.N作直线MN.分别交BC.BE于点D.O;③连结CO.DE.则下列结论错误的是A.OB=OC B.∠BOD=∠COD C.DE∥AB D.DB=DE【答案】D【解析】∵OD垂直平分BC.所以OB=OC.故A正确;根据三线合一可知OD平分∠BOC.故B正确;易知DE是三角形的中位线.所以有DE∥AB.故C正确.综上.选D.9.如图.已知在矩形ABCD中.AB=1.BC点P是AD边上的一点C1也随之运动.若点P从点A运动到点D.则线段CC1扫过的区域的面积是A.πB.πC D.2π【答案】B【解析】如图.C1运动的路径是以B 为圆心.圆心角为120°的弧上运动.故线段CC 1扫过的区域是一个圆心角为120°的扇形+一个以为边长的等边三角形.故S =2π=.故选B .10.已知抛物线2y ax bx c =++(a ≠0)与x 轴的交点为A(1.0)和B(3.0).点P 1(1x .1y ).P 2(2x .2y )是抛物线上不同于A.B 的两个点.记△P 1AB 的面积为S 1.△P 2AB 的面积为S 2.有下列结论:①当122x x >+时.12S S >;②当122x x <-时.12S S <;③当1x 2221x ->->时.12S S >;④当12221x x ->+>时.12S S <.其中正确结论的个数是A .1B .2C .3D .4 【答案】A【解析】由于1S .2S 的底相同.当1x 2221x ->->时.P 1到AB 的距离>P 2到AB 的距离.故③正确.其他选项无法比较P 1.P 2与x 轴距离的远近.故选A .卷 II二、填空题(本题有6小题.每小题4分.共24分) 11.计算:122-⨯= . 【答案】1【解析】111022221--⨯===.12.如图.已知在Rt △ABC 中.∠ACB =90°.AC =1.AB =2.则sinB 的值是 .【答案】12【解析】sinB =AC 1AB2=.13.某商场举办有奖销售活动.每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位.设5个一等奖.15个二等奖.不设其他奖项.则只抽1张奖券恰好中奖的概率是 . 【答案】150【解析】设恰好中奖为时间A.则P(A)=5151100050+=. 14.为庆祝中国共产党建党100周年.某校用红色灯带制作了一个如图所示的正五角星(A.B.C.D.E 是正五边形的五个顶点).则图中∠A 的度数是 度.【答案】36【解析】首先根据正五边形的内角和计算公式.求出每个内角的度数为108°.即∠ABC =∠BAE =108°.那么等腰△ABC 的底角∠BAC =36°.同理可求得∠DAE =36°.故∠CAD =∠BAE ﹣∠BAC ﹣∠EAD =108°﹣36°﹣36°=36°.其实正五角星的五个角是36°.可以作为一个常识直接记住.15.已知在平面直角坐标系xOy 中.点A 的坐标为(3.4).M 是抛物线22y ax bx =++(a ≠0)对称轴上的一个动点.小明经探究发现:当b a的值确定时.抛物线的对称轴上能使△AOM 为直角三角形的点M 的个数也随之确定.若抛物线22y ax bx =++(a ≠0)的对称轴上存在3个不同的点M.使△AOM 为直角三角形.则b a的值是 .【答案】2或﹣8【解析】由题意知.以OA 的直径的圆与直线2bx a=-相切.则35222b a --=.解得b a=2或﹣8.16.由沈康身教授所著.数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图.三姐妹为了平分一块边长为1的祖传正方形地毯.先将地毯分割成七块.再拼成三个小正方形(阴影部分).则图中AB 的长应是 .1【解析】如图.CD =1.DG .则求得CG .根据△CDG ∽△DEG.可求得DE.∴AE =1.∴AB AE 1.三、解答题(本题有8小题.共66分) 17.(本小题6分)计算:(2)(1)(1)x x x x +++-. 【答案】21x +【解析】解:原式2221x x x =++-21x =+.18.(本小题6分)解分式方程:2113x x -=+.【答案】4x =【解析】解:213x x -=+4x =.经检验.4x =是原方程的解.19.(本小题6分)如图.已知经过原点的抛物线22y x mx =+与x 轴交于另一点A(2.0). (1)求m 的值和抛物线顶点M 的坐标; (2)求直线AM 的解析式.【答案】(1)﹣4.(1.﹣2);(2)24y x =-. 【解析】解:(1)∵抛物线22y x mx =+过点()2,0A .22220m ∴⨯+=.解得4m =-.224y x x ∴=-. 22(1)2y x ∴=--∴顶点M 的坐标是()1,2-.(2)设直线AM 的解析式为()0y kx b k =+≠. ∵图象过()()2,0,1,2A M -.202k b k b +=⎧∴⎨+=-⎩.解得24k b =⎧⎨=-⎩. ∴直线AM 的解析式为24y x =-.20.(本小题8分)为了更好地了解党的历史.宣传党的知识.传颂英雄事迹.某校团支部组建了:A .党史宣讲;B .歌曲演唱;C .校刊编撰;D .诗歌创作等四个小组.团支部将各组人数情况制成了如下统计图表(不完整).根据统计图表中的信息.解答下列问题:(1)求a和m的值;(2)求扇形统计图中D所对应的圆心角度数;(3)若在某一周各小组平均每人参与活动的时间如下表所示:求这一周四个小组所有成员平均每人参与活动的时间.【答案】(1)20.20;(2)36°;(3)2.6小时.【解析】解:(1)由题意可知四个小组所有成员总人数是1530%50÷=(人).∴=---=.a501015520m=÷⨯=.%1050100%20%m∴=.20(2)55036036÷⨯︒=︒.∴扇形统计图中D所对应的圆心角度数是36︒.(3)1(10 2.520315253) 2.6x=⨯⨯+⨯+⨯+⨯=(小时).50∴这一周四个小组所有成员平均每人参与活动的时间是2.6小时.21.(本小题8分)如图.已知AB是⊙O的直径.∠ACD是AD所对的圆周角.∠ACD =30°.(1)求∠DAB的度数;(2)过点D 作DE ⊥AB.垂足为E.DE 的延长线交⊙O 于点F .若AB =4.求DF 的长.【答案】(1)60°;(2)【解析】解:(1)连结BD .30ACD ∠=︒. 30B ACD ∴∠=∠=︒.AB 是O 的直径.90ADB ∴∠=︒.9060DAB B ∴∠=︒-∠=︒.(2)90,30,4ADB B AB ∠=︒∠=︒=.122AD AB ==. 60,DAB DE AB ∠=︒⊥.且AB 是直径.sin 60EF DE AD ︒∴===2DF DE =∴=22.(本小题10分)今年以来.我市接待的游客人数逐月增加.据统计.游玩某景区的游客人数三月份为4万人.五月份为5.76万人.(1)求四月和五月这两个月中.该景区游客人数平均每月增长百分之几;(2)若该景区仅有A.B 两个景点.售票处出示的三种购票方式如下表所示:据预测.六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时.丙种门票价格每下降1元.将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元.求景区六月份的门票总收人;②问:将丙种门票价格下降多少元时.景区六月份的门票总收入有最大值?最大值是多少万元? 【答案】(1)20%;(2)①798;②24.817.6【解析】解:(1)设四月和五月这两个月中.该景区游客人数的月平均增长率为x .由题意.得24(1) 5.76x +=解这个方程.得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中.该景区游客人数平均每月增长20%.(2)①由题意.得()()()()1002100.06803100.0416*******.06100.04⨯-⨯+⨯-⨯+-⨯+⨯+⨯=(万元)798答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m元.景区六月份的门票总收人为W 万元.由题意.得()()()() =-+-+-++W m m m m m10020.068030.0416020.060.04化简.得2=--+.W m0.1(24)817.6-<.0.10∴当24m=时.W取最大值.为817.6万元.答:当丙种门票价格降低24元时.景区六月份的门票总收人有最大值.为817.6万元.23.(本小题10分)已知在△ACD中.P是CD的中点.B是AD延长线上的一点.连结BC.AP.(1)如图1.若∠ACB=90°.∠CAD=60°.BD=AC.AP求BC的长;(2)过点D作DE∥AC.交AP延长线于点E.如图2所示.若∠CAD=60°.BD=AC.求证:BC=2AP;(3)如图3.若∠CAD=45°.是否存在实数m.当BD=m AC时.BC =2AP?若存在.请直接写出m的值;若不存在.请说明理由.【答案】(1)(2)略;(3. 【解析】(1)解:90,60ACB CAD ∠=∠=︒︒.2cos60ACAB AC ︒==. BD AC =. AD AC ∴=.ADC ∴是等边三角形. 60ACD ∴∠=︒Р是CD 的中点.AP CD ∴⊥.在Rt APC 中.AP =2sin 60APAC ∴==︒.tan 60BC AC =︒=∴(2)证明:连结BE .DE AC ∥.CAP DEP ∴∠=∠.,CP DP CPA DPE =∠=∠.()CPA DPE AAS ∴≌. 1,2AP EP AE DE AC ∴===. BD AC =.BD DE ∴=.又DE AC ∥.60BDE CAD ∴∠=∠=︒.BDE ∴是等边三角形.,60∴=∠=︒BD BE EBD=.BD ACAC BE∴=.又60,∠=∠=︒=.CAB EBA AB BA()∴≌. AE BCCAB EBA SAS∴=.BC AP∴=.2(3)存在这样的m m=,24.(本小题12分)已知在平面直角坐标系xOy中.点A是反比例函数1=(x>0)图象yx上的一个动点.连结AO.AO的延长线交反比例函数ky=(k>0.x<0)的x图象于点B.过点A作AE⊥y轴于点E.(1)如图1.过点B作BF⊥x轴于点F.连结EF.①若k=1.求证:四边形AEFO是平行四边形;②连结BE.若k=4.求△BOE的面积.(2)如图2.过点E作EP∥AB.交反比例函数k=(k>0.x<0)的yx图象于点P.连结OP.试探究:对于确定的实数k.动点A在运动过程中.△POE的面积是否会发生变化?请说明理由.【答案】(1)①略;②1;(2)不变.【解析】解:(1)①证明 设点A 的坐标为1(,)a a.则当1k =时.点B 的坐标为1(,)a a--.AE OF a ∴==.AE y ⊥轴.AE OF ∴∥.∴四边形AEFO 是平行四边形. ②解 过点B 作BD y ⊥轴于点D .AE y ⊥轴.AE BD ∴∥.AEO BDO ∴∽.2()AEO BDOS AO SBO∴=. ∴当4k =时.212()2AOBO=.即12AO BO =. 21BOEAOESS∴==.(2)解:不改变.理由如下:过点P 作PH x ⊥轴于点,H PE 与x 轴交于点G . 设点A 的坐标为1(,)a a.点P 的坐标为(,)k b b. 则1,,,k AE a OE PH ab ===-.由题意.可知AEO GHP ∽.四边形AEGO 是平行四边形.,AE EOGH b a GH PH=--=. 即1a a kb a b=---. 1b a k a b += 2()0b bk a a∴+-=.解得12b a -±=. ,a b 异号.0k ≥.12b a -∴=.1111()224POEb Sb a a ∴=⨯⨯-=-⨯=. ∴对于确定的实数k .动点A 在运动过程中.POE 的面积不会发生变化.。
【必考题】数学中考试卷(含答案)
【必考题】数学中考试卷(含答案)【必考题】数学中考试卷(含答案)第一题:计算下列各式的值:(1) $\frac{3}{4}-\frac{1}{2}+\frac{5}{6}$(2) $2\frac{1}{5}+\left(1\frac{1}{3}-\frac{5}{6}\right)$(3) $3\frac{2}{5}-\left(1\frac{1}{4}+\frac{3}{8}\right)$答案:(1) $\frac{3}{4}-\frac{1}{2}+\frac{5}{6}=\frac{9}{12}-\frac{6}{12}+\frac{10}{12}=\frac{13}{12}$(2) $2\frac{1}{5}+\left(1\frac{1}{3}-\frac{5}{6}\right)=\frac{11}{5}+\left(\frac{4}{3}-\frac{5}{6}\right)=\frac{11}{5}+\frac{8}{6}-\frac{5}{6}=\frac{71}{30}$(3) $3\frac{2}{5}-\left(1\frac{1}{4}+\frac{3}{8}\right)=\frac{17}{5}-\left(\frac{5}{4}+\frac{3}{8}\right)=\frac{44}{10}-\frac{13}{8}=\frac{47}{20}$第二题:已知$a=3,b=5$,求:(1) $2(a^2-b^2)+5(a+b)$(2) $\sqrt{4a^2+3b^2}$(1) $2(a^2-b^2)+5(a+b)=2(9-25)+5(3+5)=-32+40=8$(2) $\sqrt{4a^2+3b^2}=\sqrt{4\cdot 3^2+3\cdot 5^2}=\sqrt{4\cdot 9+3\cdot 25}=\sqrt{36+75}=\sqrt{111}$第三题:解方程:(1) $2x+5=17$(2) $3(2x-4)-5x=1$答案:(1) $2x+5=17$将方程中的常数项移到右边,得到$2x=17-5=12$再将方程两边同除以2,得到$x=\frac{12}{2}=6$所以方程的解为$x=6$(2) $3(2x-4)-5x=1$展开方程,并将同类项合并,得到$6x-12-5x=1$合并同类项,得到$x-12=1$将方程中的常数项移到右边,得到$x=1+12=13$所以方程的解为$x=13$求解下列不等式:(1) $2x+3>5x-1$(2) $4(x-3)>2x+7$答案:(1) $2x+3>5x-1$将方程中的常数项移到右边,得到$2x-5x>-1-3$合并同类项,得到$-3x>-4$将方程两边同除以$-3$,注意不等号方向的改变,得到$x<\frac{4}{3}$所以不等式的解为$x<\frac{4}{3}$(2) $4(x-3)>2x+7$展开方程,并将同类项合并,得到$4x-12>2x+7$合并同类项,得到$4x-2x>7+12$将方程两边合并同类项,并将常数项移到右边,得到$2x>19$将方程两边同时除以2,得到$x>\frac{19}{2}$所以不等式的解为$x>\frac{19}{2}$综上所述,本次数学中考试卷共含有四道题目,涉及到了基本的四则运算、方程的解和不等式的求解。
中考数学题库(含答案和解析)
中考数学题库(含答案和解析)一.选择题1.(3分)(2017•杭州)﹣22=()A.﹣2 B.﹣4 C.2 D.4【解答】解:﹣22=﹣4.故选B.2.(3分)(2017•杭州)太阳与地球的平均距离大约是150 000 000千米.数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×107【解答】解:将150 000 000用科学记数法表示为:1.5×108.故选A.3.(3分)(2017•杭州)如图.在△ABC中.点D.E分别在边AB.AC 上.DE∥BC.若BD=2AD.则()A.B.C.D.【解答】解:∵DE∥BC.∴△ADE∽△ABC.∵BD=2AD.∴===.则=.∴A.C.D选项错误.B选项正确.故选:B.4.(3分)(2017•杭州)|1+|+|1﹣|=()A.1 B. C.2 D.2【解答】解:原式1++﹣1=2.故选:D.5.(3分)(2017•杭州)设x.y.c是实数.()A.若x=y.则x+c=y﹣c B.若x=y.则xc=ycC.若x=y.则D.若.则2x=3y【解答】解:A、两边加不同的数.故A不符合题意;B、两边都乘以c.故B符合题意;C、c=0时.两边都除以c无意义.故C不符合题意;D、两边乘以不同的数.故D不符合题意;故选:B.6.(3分)(2017•杭州)若x+5>0.则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12 【解答】解:∵x+5>0.∴x>﹣5.A、根据x+1<0得出x<﹣1.故本选项不符合题意;B、根据x﹣1<0得出x<1.故本选项不符合题意;C、根据<﹣1得出x<﹣5.故本选项不符合题意;D、根据﹣2x<12得出x>﹣6.故本选项符合题意;故选D.7.(3分)(2017•杭州)某景点的参观人数逐年增加.据统计.2014年为10.8万人次.2016年为16.8万人次.设参观人次的平均年增长率为x.则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8【解答】解:设参观人次的平均年增长率为x.由题意得:10.8(1+x)2=16.8.故选:C.8.(3分)(2017•杭州)如图.在Rt△ABC中.∠ABC=90°.AB=2.BC=1.把△ABC分别绕直线AB和BC旋转一周.所得几何体的地面圆的周长分别记作l1.l2.侧面积分别记作S1.S2.则()A.l1:l2=1:2.S1:S2=1:2 B.l1:l2=1:4.S1:S2=1:2C.l1:l2=1:2.S1:S2=1:4 D.l1:l2=1:4.S1:S2=1:4【解答】解:∵l1=2π×BC=2π.l2=2π×AB=4π.∴l1:l2=1:2.∵S1=×2π×=π.S2=×4π×=2π.∴S1:S2=1:2.故选A.9.(3分)(2017•杭州)设直线x=1是函数y=ax2+bx+c(a.b.c是实数.且a<0)的图象的对称轴.()A.若m>1.则(m﹣1)a+b>0 B.若m>1.则(m﹣1)a+b<0 C.若m<1.则(m﹣1)a+b>0 D.若m<1.则(m﹣1)a+b<0【解答】解:由对称轴.得b=﹣2a.(m﹣1)a+b=ma﹣a﹣2a=(m﹣3)a当m<1时.(m﹣3)a>0.故选:C.10.(3分)(2017•杭州)如图.在△ABC中.AB=AC.BC=12.E为AC 边的中点.线段BE的垂直平分线交边BC于点D.设BD=x.tan∠ACB=y.则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【解答】解:过A作AQ⊥BC于Q.过E作EM⊥BC于M.连接DE.∵BE的垂直平分线交BC于D.BD=x.∴BD=DE=x.∵AB=AC.BC=12.tan∠ACB=y.∴==y.BQ=CQ=6.∴AQ=6y.∵AQ⊥BC.EM⊥BC.∴AQ∥EM.∵E为AC中点.∴CM=QM=CQ=3.∴EM=3y.∴DM=12﹣3﹣x=9﹣x.在Rt△EDM中.由勾股定理得:x2=(3y)2+(9﹣x)2.即2x﹣y2=9.故选B.二.填空题11.(4分)(2017•杭州)数据2.2.3.4.5的中位数是 3 .【解答】解:从小到大排列为:2.2.3.4.5.位于最中间的数是3.则这组数的中位数是3.故答案为:3.12.(4分)(2017•杭州)如图.AT切⊙O于点A.AB是⊙O的直径.若∠ABT=40°.则∠ATB= 50°.【解答】解:∵AT切⊙O于点A.AB是⊙O的直径.∴∠BAT=90°.∵∠ABT=40°.∴∠ATB=50°.故答案为:50°13.(4分)(2017•杭州)一个仅装有球的不透明布袋里共有3个球(只有颜色不同).其中2个是红球.1个是白球.从中任意摸出一个球.记下颜色后放回.搅匀.再任意摸出一个球.则两次摸出都是红球的概率是.【解答】解:根据题意画出相应的树状图.所以一共有9种情况.两次摸到红球的有4种情况.∴两次摸出都是红球的概率是.故答案为:.14.(4分)(2017•杭州)若•|m|=.则m= 3或﹣1 .【解答】解:由题意得.m﹣1≠0.则m≠1.(m﹣3)•|m|=m﹣3.∴(m﹣3)•(|m|﹣1)=0.∴m=3或m=±1.∵m≠1.∴m=3或m=﹣1.故答案为:3或﹣1.(2017•杭州)如图.在Rt△ABC中.∠BAC=90°.AB=15.AC=20. 15.(4分)点D在边AC上.AD=5.DE⊥BC于点E.连结AE.则△ABE的面积等于78 .【解答】解:∵在Rt△ABC中.∠BAC=90°.AB=15.AC=20.∴BC==25.△ABC的面积=AB•AC=×15×20=150.∵AD=5.∴CD=AC﹣AD=15.∵DE⊥BC.∴∠DEC=∠BAC=90°.又∵∠C=∠C.∴△CDE∽△CBA.∴.即.解得:CE=12.∴BE=BC﹣CE=13.∵△ABE的面积:△ABC的面积=BE:BC=13:25.∴△ABE的面积=×150=78;故答案为:78.16.(4分)(2017•杭州)某水果点销售50千克香蕉.第一天售价为9元/千克.第二天降价6元/千克.第三天再降为3元/千克.三天全部售完.共计所得270元.若该店第二天销售香蕉t千克.则第三天销售香蕉30﹣千克.(用含t的代数式表示.)【解答】解:设第三天销售香蕉x千克.则第一天销售香蕉(50﹣t ﹣x)千克.根据题意.得:9(50﹣t﹣x)+6t+3x=270.则x==30﹣.故答案为:30﹣.三.解答题17.(6分)(2017•杭州)为了了解某校九年级学生的跳高水平.随机抽取该年级50名学生进行跳高测试.并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值.不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.19 81.19~1.29 121.29~1.39 A1.39~1.49 10(1)求a的值.并把频数直方图补充完整;(2)该年级共有500名学生.估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【解答】解:(1)a=50﹣8﹣12﹣10=20.;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).18.(8分)(2017•杭州)在平面直角坐标系中.一次函数y=kx+b (k.b都是常数.且k≠0)的图象经过点(1.0)和(0.2).(1)当﹣2<x≤3时.求y的取值范围;(2)已知点P(m.n)在该函数的图象上.且m﹣n=4.求点P的坐标.【解答】解:设解析式为:y=kx+b.将(1.0).(0.﹣2)代入得:.解得:.∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得.y=6.把x=3代入y=﹣2x+2得.y=﹣4.∴y的取值范围是﹣4≤y<6.(2)∵点P(m.n)在该函数的图象上.∴n=﹣2m+2.∵m﹣n=4.∴m﹣(﹣2m+2)=4.解得m=2.n=﹣2.∴点P的坐标为(2.﹣2).19.(8分)(2017•杭州)如图.在锐角三角形ABC中.点D.E分别在边AC.AB上.AG⊥BC于点G.AF⊥DE于点F.∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3.AB=5.求的值.【解答】解:(1)∵AG⊥BC.AF⊥DE.∴∠AFE=∠AGC=90°.∵∠EAF=∠GAC.∴∠AED=∠ACB.∵∠EAD=∠BAC.∴△ADE∽△ABC.(2)由(1)可知:△ADE∽△ABC.∴=由(1)可知:∠AFE=∠AGC=90°.∴∠EAF=∠GAC.∴△EAF∽△CAG.∴.∴=20.(10分)(2017•杭州)在面积都相等的所有矩形中.当其中一个矩形的一边长为1时.它的另一边长为3.(1)设矩形的相邻两边长分别为x.y.①求y关于x的函数表达式;②当y≥3时.求x的取值范围;(2)圆圆说其中有一个矩形的周长为6.方方说有一个矩形的周长为10.你认为圆圆和方方的说法对吗?为什么?【解答】解:(1)①由题意可得:xy=3.则y=;②当y≥3时.≥3解得:x≤1;(2)∵一个矩形的周长为6.∴x+y=3.∴x+=3.整理得:x2﹣3x+3=0.∵b2﹣4ac=9﹣12=﹣3<0.∴矩形的周长不可能是6;∵一个矩形的周长为10.∴x+y=5.∴x+=5.整理得:x2﹣5x+3=0.∵b2﹣4ac=25﹣12=13>0.∴矩形的周长可能是10.21.(10分)(2017•杭州)如图.在正方形ABCD中.点G在对角线BD上(不与点B.D重合).GE⊥DC于点E.GF⊥BC于点F.连结AG.(1)写出线段AG.GE.GF长度之间的数量关系.并说明理由;(2)若正方形ABCD的边长为1.∠AGF=105°.求线段BG的长.【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形.∴A、C关于对角线BD对称.∵点G在BD上.∴GA=GC.∵GE⊥DC于点E.GF⊥BC于点F.∴∠GEC=∠ECF=∠CFG=90°.∴四边形EGFC是矩形.∴CF=GE.在Rt△GFC中.∵CG2=GF2+CF2.∴AG2=GF2+GE2.(2)作BN⊥AG于N.在BN上截取一点M.使得AM=BM.设AN=x.∵∠AGF=105°.∠FBG=∠FGB=∠ABG=45°.∴∠AGB=60°.∠GBN=30°.∠ABM=∠MAB=15°.∴∠AMN=30°.∴AM=BM=2x.MN=x.在Rt△ABN中.∵AB2=AN2+BN2.∴1=x2+(2x+x)2.解得x=.∴BN=.∴BG=BN÷cos30°=.22.(12分)(2017•杭州)在平面直角坐标系中.设二次函数y1=(x+a)(x﹣a﹣1).其中a≠0.(1)若函数y1的图象经过点(1.﹣2).求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点.探究实数a.b满足的关系式;(3)已知点P(x0.m)和Q(1.n)在函数y1的图象上.若m<n.求x0的取值范围.【解答】解:(1)函数y1的图象经过点(1.﹣2).得(a+1)(﹣a)=﹣2.解得a=﹣2.a=1.函数y1的表达式y=(x﹣2)(x+2﹣1).化简.得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简.得y=x2﹣x﹣2.综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时x2﹣x﹣2=0.解得x1=﹣1.x2=2.y1的图象与x轴的交点是(﹣1.0)(2.0).当y2=ax+b经过(﹣1.0)时.﹣a+b=0.即a=b;当y2=ax+b经过(2.0)时.2a+b=0.即b=﹣2a;(3)当P在对称轴的左侧时.y随x的增大而增大.(1.n)与(0.n)关于对称轴对称.由m<n.得x0<0;当时P在对称轴的右侧时.y随x的增大而减小.由m<n.得x0>1.综上所述:m<n.求x0的取值范围x0<0或x0>1.23.(12分)(2017•杭州)如图.已知△ABC内接于⊙O.点C在劣弧AB上(不与点A.B重合).点D为弦BC的中点.DE⊥BC.DE与AC的延长线交于点E.射线AO与射线EB交于点F.与⊙O交于点G.设∠GAB=ɑ.∠ACB=β.∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式.γ关于ɑ的函数表达式.并给出证明:(2)若γ=135°.CD=3.△ABE的面积为△ABC的面积的4倍.求⊙O 半径的长.【解答】解:(1)猜想:β=α+90°.γ=﹣α+180°连接OB.∴由圆周角定理可知:2∠BCA=360°﹣∠BOA.∵OB=OA.∴∠OBA=∠OAB=α.∴∠BOA=180°﹣2α.∴2β=360°﹣(180°﹣2α).∴β=α+90°.∵D是BC的中点.DE⊥BC.∴OE是线段BC的垂直平分线.∴BE=CE.∠BED=∠CED.∠EDC=90°∵∠BCA=∠EDC+∠CED.∴β=90°+∠CED.∴∠CED=α.∴∠CED=∠OBA=α.∴O、A、E、B四点共圆.∴∠EBO+∠EAG=180°.∴∠EBA+∠OBA+∠EAG=180°.∴γ+α=180°;(2)当γ=135°时.此时图形如图所示. ∴α=45°.β=135°.∴∠BOA=90°.∠BCE=45°.由(1)可知:O、A、E、B四点共圆.∴∠BEC=90°.∵△ABE的面积为△ABC的面积的4倍. ∴.∴.设CE=3x.AC=x.由(1)可知:BC=2CD=6.∵∠BCE=45°.∴CE=BE=3x.∴由勾股定理可知:(3x)2+(3x)2=62. x=.∴BE=CE=3.AC=.∴AE=AC+CE=4.在Rt△ABE中.由勾股定理可知:AB2=(3)2+(4)2.∴AB=5.∵∠BAO=45°.∴∠AOB=90°.在Rt△AOB中.设半径为r. 由勾股定理可知:AB2=2r2. ∴r=5.∴⊙O半径的长为5.。
中考数学题库(含答案和解析)
解得:
在数轴上表示其解集如下:
故选B
【点睛】本题考查的是一元一次不等式的解法.在数轴上表示不等式的解集.掌握“小于向左拐”是解本题的关键.
6.“方胜”是中国古代妇女的一种发饰.其图案由两个全等正方形相叠组成.寓意是同心吉祥.如图.将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形 .形成一个“方胜”图案.则点D. 之间的距离为()
13.小曹同学复习时将几种三角形的关系整理如图.请帮他在横线上____填上一个适当的条件.
中考数学题库(含答案和解析)
一、选择题(本题有10小题)
1.若收入3元记为+3.则支出2元记为()
A.1B.-1C.2D.-2
【答案】D
【解析】
【分析】根据正负数的意义可得收入为正.收入多少就记多少即可.
【详解】解:∵收入3元记 +3.
∴支出2元记为-2.
故选:D
【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时.通常把向指定方向变化的量规定为正数.而把向指定方向的相反方向变化的量规定为负数.
【答案】D
【解析】
【分析】根据同底数幂的乘法法则进行运算即可.
【详解】解:
故选D
【点睛】本题考查的是同底数幂的乘法.掌握“同底数幂的乘法.底数不变.指数相加”是解本题的关键.
4.如图.在⊙O中.∠BOC=130°.点A在 上.则∠BAC的度数为( )
A.55°B.65°C.75°D.130°
【答案】B
12.不透明的袋子中装有5个球.其中有3个红球和2个黑球.它们除颜色外都相同.从袋子中随机取出1个球.它是黑球的概率是_____.
【答案】
【解析】
中考数学题目试题及答案
中考数学题目试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 2D. -2答案:C2. 一个数的平方等于16,这个数是:A. 4B. -4C. 4或-4D. 2答案:C3. 以下哪个选项是方程2x - 3 = 7的解?A. x = 5B. x = 3C. x = 2D. x = 4答案:A4. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A5. 计算下列表达式的值:(3x - 2) + (5x + 6) =A. 8x + 4B. 8x - 4C. 3x + 8D. 5x + 4答案:A6. 一个三角形的两个内角分别是30度和60度,第三个内角是:A. 90度B. 60度C. 30度D. 120度答案:A7. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是10,这个数可以是:A. 10B. -10C. 0D. 10或-10答案:D9. 计算下列表达式的值:(2x^2 - 3x + 1) - (3x^2 - 2x + 4) =A. -x^2 + 5x - 3B. -x^2 + 5x + 3C. -x^2 - 5x + 3D. -x^2 - 5x - 3答案:A10. 一个数的平方根是4,这个数是:A. 16B. -16C. 4D. -4答案:A二、填空题(每题4分,共20分)1. 一个数的立方是-27,这个数是______。
答案:-32. 一个数的平方根是2,这个数是______。
答案:43. 一个数的倒数是2,这个数是______。
答案:1/24. 一个数的绝对值是5,这个数可以是______。
答案:5或-55. 一个数的平方是25,这个数可以是______。
答案:5或-5三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 11。
答案:3x - 7 = 113x = 18x = 62. 计算:(2x^2 - 3x + 5) / (x - 2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.解方程组:
x
2
3xy
2y2
0.
25.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产 76
件,每件利润 10 元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加 2 元
(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?
(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少 4 件.若生产的某档次
_____.(精确到 0.1 米)(参考数据:sin50°=0.8,tan50°=1.2, =1.732)
14.若 a , b 互为相反数,则 a2b ab2 ________.
15.在 Rt△ABC 中,∠C=90°,AC=6,BC=8,点 E 是 BC 边上的动点,连接 AE,过点 E 作 AE 的垂线交 AB 边于点 F,则 AF 的最小值为_______ 16.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区 覆盖总人口约为 4400000000 人,将数据 4400000000 用科学记数法表示为______. 17.正六边形的边长为 8cm,则它的面积为____cm2.
x
x 1
1
x
3
1
x
2
的解为(
)
A. x 1
B. x 2
C. x 1
D.无解
7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2 的度数是( )
A.40°
B.50°
C.60°
D.70°
8.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价 20%,后又降价
10%;乙超市连续两次降价 15%;丙超市一次性降价 30%.则顾客到哪家超市购买这种商品更
故选 D. 点睛:本题考查了分式方程的解,始终注意分母不为 0 这个条件.
7.D
解析:D 【解析】 【分析】 根据折叠的知识和直线平行判定即可解答. 【详解】
解:如图可知折叠后的图案∠ABC=∠EBC, 又因为矩形对边平行,根据直线平行内错角相等可得 ∠2=∠DBC, 又因为∠2+∠ABC=180°, 所以∠EBC+∠2=180°, 即∠DBC+∠2=2∠2=180°-∠1=140°. 可求出∠2=70°. 【点睛】 掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.
A. 2
B.0
C.1
D.2
3.在数轴上,与表示 6 的点距离最近的整数点所表示的数是 ( )
A.1
B.2
C.3
D.4
4.下列图形是轴对称图形的有( )
A.2 个
B.3 个
C.4 个
D.5 个
5.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图
是( ).
A.
B.
C.
D.
6.分式方程
③当 DC 13 61 时,请直接写出 t 的值. 12
23.如图,点 D 在以 AB 为直径的⊙O 上,AD 平分 BAC , DC AC ,过点 B 作⊙O 的
切线交 AD 的延长线于点 E. (1)求证:直线 CD 是⊙O 的切线.
(2)求证: CD BE AD DE .
x y 6,
10.A
解析:A 【解析】 【分析】 把 x=﹣1 代入方程计算即可求出 k 的值. 【详解】 解:把 x=﹣1 代入方程得:1+2k+k2=0, 解得:k=﹣1, 故选:A. 【点睛】 此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
11.A
解析:A 【解析】 【分析】
由平行四边形的性质可知: OA OC , OB OD ,再证明 OM ON 即可证明四边形 AMCN 是平行四边形.
【常考题】中考数学试题(含答案)
一、选择题 1.华为 Mate20 手机搭载了全球首款 7 纳米制程芯片,7 纳米就是 0.000000007 米.数据
0.000000007 用科学记数法表示为( ).
A. 7 10﹣7
B. 0.7 10﹣8
C. 7 10﹣8
D. 7 10﹣9
2.下列四个实数中,比 1小的数是( )
上的点,且∠EAF= ∠BAD,上述结论是否仍然成立,并说明理由.
(学以致用)
如图 3,在四边形 ABCD 中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E 是边
AB 上一点,当∠DCE=45°,BE=2 时,则 DE 的长为
.
22.如图,在平面直角坐标系中,直线 y kx 10 经过点 A(12, 0) 和 B(a, 5) ,双曲线
14.0【解析】【分析】先提公因式得 ab(a+b)而 a+b=0 任何数乘以 0 结果都 为 0【详解】解:∵=ab(a+b)而 a+b=0∴原式=0 故答案为 0【点睛】本题考查 了因式分解和有理数的乘法运算注意掌握任何数
故轴对称图形有 4 个. 故选 C. 考点:轴对称图形.
5.C
解析:C 【解析】 从上面看,看到两个圆形, 故选 C.
6.D
解析:D 【解析】 分析:分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到 分式方程的解. 详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验 x=1 是增根,分式方程无解.
合算( )
A.甲
B.乙
C.丙
D.一样
9.已知直线 m // n ,将一块含 30 角的直角三角板 ABC 按如图方式放置
( ABC 30),其中 A , B 两点分别落在直线 m , n 上,若 1 40,则 2 的度数
为( )
A.10
B. 20
C. 30
D. 40
10.若一元二次方程 x2﹣2kx+k2=0 的一根为 x=﹣1,则 k 的值为( )
C. BD AC
D. AMB CND
A. 2
B.1
C. 3 2
D. 2 2
二、填空题
13.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆 AB
的影子一部分落在水平地面 L 的影长 BC 为 5 米,落在斜坡上的部分影长 CD 为 4 米.测得
斜 CD 的坡度 i=1: .太阳光线与斜坡的夹角∠ADC=80°,则旗杆 AB 的高度
8.C
解析:C
【解析】 试题分析:设商品原价为 x,表示出三家超市降价后的价格,然后比较即可得出答案. 解:设商品原价为 x, 甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x; 乙超市售价为:x(1﹣15%)2=0.7225x; 丙超市售价为:x(1﹣30%)=70%x=0.7x; 故到丙超市合算. 故选 C. 考点:列代数式.
上,设点 M 坐标为(a,b),则 y=﹣abx2+(a+b)x 的顶点坐标为
.
20.若关于 x 的一元二次方程 kx2+2(k+1)x+k-1=0 有两个实数根,则 k 的取值范围是
三、解答题
21.(问题背景)
如图 1,在四边形 ABCD 中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点 E、F
y m (x 0) 经过点 B. x
(1)求直线 y kx 10 和双曲线 y m 的函数表达式; x
(2)点 C 从点 A 出发,沿过点 A 与 y 轴平行的直线向下运动,速度为每秒 1 个单位长 度,点 C 的运动时间为 t(0<t<12),连接 BC,作 BD⊥BC 交 x 轴于点 D,连接 CD, ①当点 C 在双曲线上时,求 t 的值; ②在 0<t<6 范围内,∠BCD 的大小如果发生变化,求 tan∠BCD 的变化范围;如果不发 生变化,求 tan∠BCD 的值;
【详解】
∵四边形 ABCD 是平行四边形, ∴ OA OC , OB OD , ∵对角线 BD 上的两点 M 、 N 满足 BM DN , ∴ OB BM OD DN ,即 OM ON , ∴四边形 AMCN 是平行四边形, ∵ OM 1 AC ,
2 ∴ MN AC , ∴四边形 AMCN 是矩形.
产品一天的总利润为 1024 元,该烘焙店生产的是第几档次的产品?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D 解析:D 【解析】 【分析】
由科学记数法知 0.000000007 7 109 ;
【详解】
解: 0.000000007 7 109 ;
故选:D. 【点睛】
本题考查科学记数法;熟练掌握科学记数法 a 10n 中 a 与 n 的意义是解题的关键. 2.A
∴tan∠DCF= ,
∴∠DCF=30°,∠CDF=60°. ∴DF=2(m),CF=2 (m), 在 Rt△DEF 中,因为∠DEF=50°,
所以 EF=
≈1.67(m)
∴BE=EF+FC+CB=1.67+2 +5≈10.13(m), ∴AB=BE•tan50°≈12.2(m),
故答案为 12.2m. 【点睛】 本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形 解决问题.
A.﹣1
B.0
C.1 或﹣1
D.2 或 0
11.如图,在平行四边形 ABCD 中, M 、 N 是 BD 上两点, BM DN ,连接 AM 、
MC 、 CN 、 NA,添加一个条件,使四边形 AMCN 是矩形,这个条件是( )
A. OM 1 AC 2
B. MB MO
12.cos45°的值等于( )
故选:A. 【点睛】 本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决 问题.