C#中堆和栈的区别分析

C#中堆和栈的区别分析
C#中堆和栈的区别分析

线程堆栈:简称栈 Stack

托管堆:简称堆 Heap

使用.Net框架开发程序的时候,我们无需关心内存分配问题,因为有GC这个大管家给我们料理一切。如果我们写出如下两段代码:

代码段1:

publicint AddFive(int pValue)

{

int result;

result =pValue+5;

return result;

}

线程堆栈:简称栈 Stack

托管堆:简称堆 Heap

使用.Net框架开发程序的时候,我们无需关心内存分配问题,因为有GC这个大管家给我们料理一切。如果我们写出如下两段代码:

代码段1:

publicint AddFive(int pValue)

{

int result;

result =pValue+5;

return result;

}

代码段2:

publicclass MyInt

{

publicint MyValue;

}

public MyIntAddFive(int pValue)

{

MyInt result =new MyInt();

result.MyValue =pValue+5;

return result;

}

问题1:你知道代码段1在执行的时候,pValue和result在内存中是如何存放,生命周期又如何?代码段2呢?

要想释疑以上问题,我们就应该对.Net下的栈(Stack)和托管堆(Heap)(简称堆)有个清楚认识,本立而道生。如果你想提高程序性能,理解栈和堆,必须的!

本文就从栈和堆,类型变量展开,对我们写的程序进行庖丁解牛。

C#程序在CLR上运行的时候,内存从逻辑上划分两大块:栈,堆。这俩基本元素组成我们

C#程序的运行环境。

一,栈vs 堆:区别?

栈通常保存着我们代码执行的步骤,如在代码段1中 AddFive()方法,intpValue变量,int result变量等等。而堆上存放的则多是对象,数据等。(译者注:忽略编译器优化)我们可以把栈想象成一个接着一个叠放在一起的盒子。当我们使用的时候,每次从最顶部取走一个盒子。栈也是如此,当一个方法(或类型)被调用完成的时候,就从栈顶取走(called a Frame,译注:调用帧),接着下一个。堆则不然,像是一个仓库,储存着我们使用的各种对象等信息,跟栈不同的是他们被调用完毕不会立即被清理掉。

如图1,栈与堆示意图

(图1)

栈内存无需我们管理,也不受GC管理。当栈顶元素使用完毕,立马释放。而堆则需要

GC(Garbage collection:垃圾收集器)清理。

二,什么元素被分配到栈?什么被分配到堆?

当我们程序执行的时候,在栈和堆中分配有四种主要的类型:值类型,引用类型,指针,指令。

值类型:

在C#中,继承自System.ValueType的类型被称为值类型,主要有以下几种(CLR2.0中支持类型有增加):

* bool

* byte

* char

* decimal

* double

* enum

* float

* int

* long

* sbyte

* short

* struct

* uint

* ulong

* ushort

引用类型:

以下是引用类型,继承自System.Object:

* class

* interface

* delegate

* object

* string

指针:

在内存区中,指向一个类型的引用,通常被称为“指针”,它是受CLR( Common Language Runtime:公共语言运行时)管理,我们不能显示使用。需要注意的是,一个类型的引用即指针跟引用类型是两个完全不同的概念。指针在内存中占一块内存区,它本身只代表一个内存地址(或者null),它所指向的另一块内存区才是我们真正的数据或者类型。如图2:

(图2)

指令:

后文对指令再做介绍。

三,如何分配?

我们先看一下两个观点:

观点1,引用类型总是被分配在堆上。(正确?)

观点2,值类型和指针总是分配在被定义的地方,他们不一定被分配到栈上。(这个理解起来有点难度,需要慢慢来)

上文提及的栈(Stack),在程序运行的时候,每个线程(Thread)都会维护一个自己的专属线程堆栈。

当一个方法被调用的时候,主线程开始在所属程序集的元数据中,查找被调用方法,然后通过JIT即时编译并把结果(一般是本地CPU指令)放在栈顶。CPU通过总线从栈顶取指令,驱动程序以执行下去。

下面我们以实例来详谈。

还是我们开篇所列的代码段1:

publicint AddFive(int pValue)

{

int result;

result =pValue+5;

return result;

}

当AddFive方法开始执行的时候,方法参数(parameters)则在栈上分配。如图3:

(图3)

注意:方法并不在栈中存活,图示仅供参考。

接着,指令指向AddFive方法内部,如果该方法是第一次执行,首先要进行JIT即时编译。如图4:

(图4)

当方法内部开始执行的时候,变量result被分配在栈上,如图5:

(图5)

方法执行完毕,而且方法返回后,如图6所示:

(图6)

在方法执行完毕返回后,栈上的区域被清理。如图7:

(图7)

以上看出,一个值类型变量,一般会分配在栈上。那观点2中所述又做何理解?“值类型和指针总是分配在被定义的地方,他们不一定被分配到栈上”。

原因就是如果一个值类型被声明在一个方法体外并且在一个引用类型中,那它就会在堆上进行分配。

还是代码段2:

publicclass MyInt

{

publicint MyValue;

}

public MyIntAddFive(int pValue)

{

MyInt result =new MyInt();

result.MyValue =pValue+5;

return result;

}

当线程开始执行AddFive方法的时候,参数被分配到栈上,如图8所示:

(图8)

由于MyInt是一个引用类型,所以它被分配到堆上,并且在栈中生成一个指针(result),如图9:

(图9)

AddFive方法执行完毕时的情况如图10:

(图10)

栈上内存被清理,堆中依然存在,如图11:

(图11)

当程序需要更多的堆空间时,GC需要进行垃圾清理工作,暂停所有线程,找出所有不可达到对象,即无被引用的对象,进行清理。并通知栈中的指针重新指向地址排序后的对象。现在我们应该知道,了解栈和堆,对我们开发出高性能程序的重要性。当我们使用引用类型的时候,一般是对指针进行的操作而非引用类型对象本身。但是值类型则操作其本身。

接下来,我们用例子说明这一点。

例1:

publicint ReturnValue()

{

int x=newint();

x =3;

int y=newint();

y =x;

y =4;

return x;

}

执行结果为3,稍作修改:

例2:

publicclass MyInt

{

publicint MyValue;

}

publicint ReturnValue2()

{

MyInt x =new MyInt();

x.MyValue =3;

MyInt y =new MyInt();

y =x;

y.MyValue =4;

return x.MyValue;

}

执行结果为4。

我们来分析下原因,其实例1的跟以下代码所起效用一样:

publicint ReturnValue()

{

int x=3;

int y=x;

y =4;

return x;

}

如图12所示,在栈上x和y分别占用一块内存区,互不干扰。

(图12)

而例2,与以下代码所起效用一样:

publicint ReturnValue2()

{

MyInt x;

x.MyValue =3;

MyInt y;

y =x;

y.MyValue =4;

return x.MyValue;

}

如图13所示,

(图13)

栈上的指针x和y指向堆上同一个区域,修改其一必会改变堆上的数据。

代码段2:

publicclass MyInt

{

publicint MyValue;

}

public MyIntAddFive(int pValue)

{

MyInt result =new MyInt();

result.MyValue =pValue+5;

return result;

}

问题1:你知道代码段1在执行的时候,pValue和result在内存中是如何存放,生命周期又如何?代码段2呢?

要想释疑以上问题,我们就应该对.Net下的栈(Stack)和托管堆(Heap)(简称堆)有个清楚认识,本立而道生。如果你想提高程序性能,理解栈和堆,必须的!

本文就从栈和堆,类型变量展开,对我们写的程序进行庖丁解牛。

C#程序在CLR上运行的时候,内存从逻辑上划分两大块:栈,堆。这俩基本元素组成我们C#程序的运行环境。

一,栈vs 堆:区别?

栈通常保存着我们代码执行的步骤,如在代码段1中 AddFive()方法,intpValue变量,int result变量等等。而堆上存放的则多是对象,数据等。(译者注:忽略编译器优化)我们可以把栈想象成一个接着一个叠放在一起的盒子。当我们使用的时候,每次从最顶部取走一个盒子。栈也是如此,当一个方法(或类型)被调用完成的时候,就从栈顶取走(called a Frame,译注:调用帧),接着下一个。堆则不然,像是一个仓库,储存着我们使用的各种对象等信息,跟栈不同的是他们被调用完毕不会立即被清理掉。

如图1,栈与堆示意图

(图1)

栈内存无需我们管理,也不受GC管理。当栈顶元素使用完毕,立马释放。而堆则需要

GC(Garbage collection:垃圾收集器)清理。

二,什么元素被分配到栈?什么被分配到堆?

当我们程序执行的时候,在栈和堆中分配有四种主要的类型:值类型,引用类型,指针,指令。

值类型:

在C#中,继承自System.ValueType的类型被称为值类型,主要有以下几种(CLR2.0中支持类型有增加):

* bool

* byte

* char

* decimal

* double

* enum

* float

* int

* long

* sbyte

* short

* struct

* uint

* ulong

* ushort

引用类型:

以下是引用类型,继承自System.Object:

* class

* interface

* delegate

* object

* string

指针:

在内存区中,指向一个类型的引用,通常被称为“指针”,它是受CLR( Common Language Runtime:公共语言运行时)管理,我们不能显示使用。需要注意的是,一个类型的引用即指针跟引用类型是两个完全不同的概念。指针在内存中占一块内存区,它本身只代表一个内存地址(或者null),它所指向的另一块内存区才是我们真正的数据或者类型。如图2:

(图2)

指令:

后文对指令再做介绍。

三,如何分配?

我们先看一下两个观点:

观点1,引用类型总是被分配在堆上。(正确?)

观点2,值类型和指针总是分配在被定义的地方,他们不一定被分配到栈上。(这个理解起来有点难度,需要慢慢来)

上文提及的栈(Stack),在程序运行的时候,每个线程(Thread)都会维护一个自己的专属线程堆栈。

当一个方法被调用的时候,主线程开始在所属程序集的元数据中,查找被调用方法,然后通过JIT即时编译并把结果(一般是本地CPU指令)放在栈顶。CPU通过总线从栈顶取指令,驱动程序以执行下去。

下面我们以实例来详谈。

还是我们开篇所列的代码段1:

publicint AddFive(int pValue)

{

int result;

result =pValue+5;

return result;

}

当AddFive方法开始执行的时候,方法参数(parameters)则在栈上分配。如图3:

(图3)

注意:方法并不在栈中存活,图示仅供参考。

接着,指令指向AddFive方法内部,如果该方法是第一次执行,首先要进行JIT即时编译。如图4:

(图4)

当方法内部开始执行的时候,变量result被分配在栈上,如图5:

(图5)

方法执行完毕,而且方法返回后,如图6所示:

(图6)

在方法执行完毕返回后,栈上的区域被清理。如图7:

(图7)

以上看出,一个值类型变量,一般会分配在栈上。那观点2中所述又做何理解?“值类型和指针总是分配在被定义的地方,他们不一定被分配到栈上”。

原因就是如果一个值类型被声明在一个方法体外并且在一个引用类型中,那它就会在堆上进行分配。

还是代码段2:

publicclass MyInt

{

publicint MyValue;

}

public MyIntAddFive(int pValue)

{

MyInt result =new MyInt();

result.MyValue =pValue+5;

return result;

}

当线程开始执行AddFive方法的时候,参数被分配到栈上,如图8所示:

(图8)

由于MyInt是一个引用类型,所以它被分配到堆上,并且在栈中生成一个指针(result),如图9:

(图9)

AddFive方法执行完毕时的情况如图10:

(图10)

栈上内存被清理,堆中依然存在,如图11:

(图11)

当程序需要更多的堆空间时,GC需要进行垃圾清理工作,暂停所有线程,找出所有不可达到对象,即无被引用的对象,进行清理。并通知栈中的指针重新指向地址排序后的对象。现在我们应该知道,了解栈和堆,对我们开发出高性能程序的重要性。当我们使用引用类型的时候,一般是对指针进行的操作而非引用类型对象本身。但是值类型则操作其本身。

接下来,我们用例子说明这一点。

例1:

java基础总结

第一章初识java 一、java语言的历史 ●第一代java语言:Oak 二、java语言的现状 ?Java SE:主要用于桌面程序的开发。 ?Java EE:主要用于网页程序的开发。 ?Java ME:主要用于嵌入式系统程序的开发。(安卓)三、java语言的特点 ●跨平台(不同的操作系统都可运行) ●简单(没有直接使用指针) ●面向对象(世间万物皆为对象) ●半编译半解释(java文件---class文件----虚拟机) ●分布式(多个客户端访问、通过服务器的配置分发到 不同的服务器) ●健壮(异常的处理) ●安全(任何语言都具备、虚拟机沙箱原理) ●多线程、高性能、动态 四、java语言与C、C++语言的不同与区别 ●自动内存管理:Java对于内存的分配是动态的,并具 有垃圾回收机制。 ●不在类外定义全局变量。 ●Java中将不再使用goto语句。

●Java中取消了指针。 ●运行时系统对类型转换进行类型相容性检查 ●Java不支持头文件,使用import与其它类通讯。 ●Java中不包含结构和联合;所有的内容都封装在类中。 ●Java中不支持宏,它通过final 关键字来声明一个常 量。 ●Java不支持多重继承,可以通过Java中的接口实现 多重继承的功能。 ●CC++ 一般情况下都是偏硬件的,java一般偏软件(应 用、基于浏览器) ●(补充).net、php (网页制作比较快捷)、在安全级 别要求高的企业一般使用java(银行、政府系统) 五、环境的搭建 1、默认路径如下 ●C:\Program Files\Java\jdk1.6.0_02:提供编程中需要 的api包 ●C:\Program Files\Java\jre1.6.0_02:虚拟机文件所在的 位置 2.安装后各个文件夹代表的含义

堆与栈

栈是由编译器在需要的时分配的,不需要时自动清除的变量存储区。里面的变量通常是局部变量、函数参数等。堆是有malloc()函数(C++语言为new运算符)分配为内存快,内存的释放由程序员手动控制,在C语言为free()完成(C++中为deleted)。堆和栈的主要区别有以下几点: (1)管理方式不同 栈编译器自动管理,无需程序员手工控制;而堆空间的申请释放工作由程序员控制,容易产生内存泄漏。 (2)空间的大小不同 栈是向低地址扩展的数据结构,是一块连续的内存区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先设定好,当申请的空间超过栈的剩余空间时,将提示溢出。因此,用户能从栈获得空间较小。 堆是向高地址扩展的数据结构,是不连续的内存区域。因为系统是用链表来存储空闲内存地址的,且链表的遍历方向是由低地址向高地址。由此可见,堆获得空间较灵活,也较大。栈中元素都是一一对应的,不会存在一个内存块从中弹出的情况。 (3)是否产生碎片 对于栈来讲,频繁的malloc/free(new/delete)势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低(虽然程序在退出后操作系统会对内存进行回收管理)。对于栈来讲,则不会存在这个问题。 (4) 增长方向不同 堆的增长方向是向上的,即向着内存地址增加的方向。栈的增长方向是向下的,即向着内存地址减小的方向。 (5)分配方式不同 堆都是程序中由malloc()函数动态申请分配并由free()函数释放的;栈的分配和释放是由编译器完成的,栈的动态分配由alloca()函数完成,但是栈的动态分配和对不同,它的动态分配是由编译器进行申请和释放的,无需手工实现。 (6)分配效率不同 栈是由机器系统提供的数据结构,计算机会在底层对栈提供支持;分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令进行。堆则是C函数库提供的,它的机制很复杂,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大的空间,如果没有足够大的空间(可能是由于内存碎片太多),就需要操作系统来重新整理内存空间,这样就有机会分到足够大小的内存,然后返回。 显然堆的效率要比栈低得多。 可执行代码运行时内存结构结构: (1)代码区(text segment)。代码区指令根据程序设计流程依次执行,对于顺序指令,则只会执行一次(每个进程),如果反复,则需要使用跳转指令,如果进行递归,则需要借助栈来实现。 代码区的指令包括操作码和要操作的对象(或对象地址引用)。如果是里技术(及具体的数值),将直接包含在代码中;如果是局部变量,将在栈区分配空间。然后引用该数的地址;如果是BSS去和数据区,在代码中同样是引用该数的地址。

java中堆和栈的区别

Java中堆与栈的区别 简单的说: Java把内存划分成两种:一种是栈内存,一种是堆内存。 在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配。 当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当超过变量的作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。 堆内存用来存放由new创建的对象和数组。 在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。 1. 栈(stack)与堆(heap)都是Java用来在Ram中存放数据的地方。与C++不同,Java 自动管理栈和堆,程序员不能直接地设置栈或堆。 2. 栈的优势是,存取速度比堆要快,仅次于直接位于CPU中的寄存器。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。另外,栈数据可以共享,详见第3点。堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。 3. Java中的数据类型有两种。 一种是基本类型(primitive types), 共有8种,即int, short, long, byte, float, double, boolean, char(注意,并没有string的基本类型)。这种类型的定义是通过诸如int a = 3; long b = 255L;的形式来定义的,称为自动变量。值得注意的是,自动变量存的是字面值,不是类的实例,即不是类的引用,这里并没有类的存在。如int a = 3; 这里的a是一个指向int类型的引用,指向3这个字面值。这些字面值的数据,由于大小可知,生存期可知(这些字面值固定定义在某个程序块里面,程序块退出后,字段值就消失了),出

C语言堆和栈

在计算机领域,堆栈是一个不容忽视的概念,我们编写的C语言程序基本上都要用到。 但对于很多的初学着来说,堆栈是一个很模糊的概念。堆栈:一种数据结构、一个在程序运 行时用于存放的地方,这可能是很多初学者的认识,因为我曾经就是这么想的和汇编语言中 的堆栈一词混为一谈。我身边的一些编程的朋友以及在网上看帖遇到的朋友中有好多也说不 清堆栈,所以我想有必要给大家分享一下我对堆栈的看法,有说的不对的地方请朋友们不吝 赐教,这对于大家学习会有很大帮助。 首先在数据结构上要知道堆栈,尽管我们这么称呼它,但实际上堆栈是两种数据结构:堆和栈。 堆和栈都是一种数据项按序排列的数据结构。 我们先从大家比较熟悉的栈说起吧,它是一种具有后进先出性质的数据结构,也就是说 后存放的先取,先存放的后取。这就如同我们要取出放在箱子里面底下的东西(放入的比较 早的物体),我们首先要移开压在它上面的物体(放入的比较晚的物体)。而堆就不同了,堆 是一种经过排序的树形数据结构,每个结点都有一个值。通常我们所说的堆的数据结构,是 指二叉堆。堆的特点是根结点的值最小(或最大),且根结点的两个子树也是一个堆。由于 堆的这个特性,常用来实现优先队列,堆的存取是随意,这就如同我们在图书馆的书架上取 书,虽然书的摆放是有顺序的,但是我们想取任意一本时不必像栈一样,先取出前面所有的 书,书架这种机制不同于箱子,我们可以直接取出我们想要的书。 然而我要说的重点并不在这,我要说的堆和栈并不是数据结构的堆和栈,之所以要说数 据结构的堆和栈是为了和后面我要说的堆区和栈区区别开来,请大家一定要注意。 下面就说说C语言程序内存分配中的堆和栈,这里有必要把内存分配也提一下,大家不 要嫌我啰嗦,一般情况下程序存放在Rom或Flash中,运行时需要拷到内存中执行,内存会分 别存储不同的信息,如下图所示:

Java中equals和==的区别

Java中equals和==的区别 1、java中equals和==的区别值类型是存储在内存中的堆栈(简称栈),而引用类型的变量在栈中仅仅是存储引用类型变量的地址,而其本身则存储在堆中。 2、==操作比较的是两个变量的值是否相等,对于引用型变量表示的是两个变量在堆中存储的地址是否相同,即栈中的内容是否相同。 3、equals操作表示的两个变量是否是对同一个对象的引用,即堆中的内容是否相同。 4、==比较的是2个对象的地址,而equals比较的是2个对象的内容,显然,当equals为true时,==不一定为true。 ==是判断两个变量或实例是不是指向同一个内存空间 equals是判断两个变量或实例所指向的内存空间的值是不是相同 除了String和封装器,equals()和“==”没什么区别 但String和封装器重写了equals(),所以在这里面,equals()指比较字符串或封装对象对应的原始值是否相等,"=="是比较两个对象是否为同一个对象

==是判断两个对象是否是同一个对象 equals是进行值的判断 String a = new String("aaa"); String b = new String("a"); b += "aa"; 则 a==b //错误 a.equals(b)//正确 equals 方法(是String类从它的超类Object中继承的)被用来检测两个对象是否相等,即两个对象的内容是否相等。 ==用于比较引用和比较基本数据类型时具有不同的功能:比较基本数据类型,如果两个值相同,则结果为true 而在比较引用时,如果引用指向内存中的同一对象,结果为true Eg:s1 = new String("sony"); //创建的是字符串对象 s1.equals("sony"); //返回 trues1 == "sony" //返回false //如果 s1 = "sony"; s1 == "sony" //返回true

堆变量和栈变量

全局,静态,new产生的变量都在堆中 动态分配的变量在堆中分配 局部变量在栈里分配 函数中声明的变量在栈中 用了new标示符在堆中 全局变量和static变量都在全局区 程序为栈变量分配动态内存,在程序结束时为栈变量分配的空间将自动释放;而为堆变量分配的空间则不会自动释放,若在程序中没有没有释放堆变量,它将一直占用系统内存。 堆栈是一种执行“后进先出”算法的数据结构。 设想有一个直径不大、一端开口一端封闭的竹筒。有若干个写有编号的小球,小球的直径比竹筒的直径略小。现在把不同编号的小球放到竹筒里面,可以发现一种规律:先放进去的小球只能后拿出来,反之,后放进去的小球能够先拿出来。所以“先进后出”就是这种结构的特点。 堆栈就是这样一种数据结构。它是在内存中开辟一个存储区域,数据一个一个顺序地存入(也就是“压入——push”)这个区域之中。有一个地址指针总指向最后一个压入堆栈的数据所在的数据单元,存放这个地址指针的寄存器就叫做堆栈指示器。开始放入数据的单元叫做“栈底”。数据一个一个地存入,这个过程叫做“压栈”。在压栈的过程中,每有一个数据压入堆栈,就放在和前一个单元相连的后面一个单元中,堆栈指示器中的地址自动加1。读取这些数据时,按照堆栈指示器中的地址读取数据,堆栈指示器中的地址数自动减 1。这个过程叫做“弹出pop”。如此就实现了后进先出的原则。 堆栈是计算机中最常用的一种数据结构,比如函数的调用在计算机中是用堆栈实现的。 堆栈可以用数组存储,也可以用以后会介绍的链表存储。 下面是一个堆栈的结构体定义,包括一个栈顶指针,一个数据项数组。栈顶指针最开始指向-1,然后存入数据时,栈顶指针加1,取出数据后,栈顶指针减1。 #define MAX_SIZE 100 typedef int DATA_TYPE; struct stack { DATA_TYPE data[MAX_SIZE]; int top; }; 在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。 栈,就是那些由编译器在需要的时候分配,在不需要的时候自动清楚的变量的存储区。里面的变量通常是局部变量、函数参数等。 堆,就是那些由new分配的内存块,他们的释放编译器不去管,由我们的应用程

JVM内存分配(栈堆)与JVM回收机制

Java 中的堆和栈 简单的说: Java把内存划分成两种:一种是栈内存,一种是堆内存。 在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配。 当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当超过变量的作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。 堆内存用来存放由new创建的对象和数组。 在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。 在堆中产生了一个数组或对象后,还可以在栈中定义一个特殊的变量,让栈中这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。 引用变量就相当于是为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。 具体的说: 栈与堆都是Java用来在Ram中存放数据的地方。与C++不同,Java自动管理栈和堆,程序员不能直接地设置栈或堆。 Java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。 栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。栈中主要存放一些基本类型的变量(,int, short, long, byte, float, double, boolean, char)和对象句柄。 栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义: int a = 3; int b = 3; 编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。接着处理int b = 3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。这样,就出现了a与b同时均指向3的情况。这时,如果再令a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响到b 的值。要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b, 它是由编译器完成的,它有利于节省空间。而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量。 String是一个特殊的包装类数据。可以用: String str = new String("abc"); String str = "abc"; 两种的形式来创建,第一种是用new()来新建对象的,它会在存放于堆中。每调用一次就会创建一个新的对象。 而第二种是先在栈中创建一个对String类的对象引用变量str,然后查找栈中有没有存放"abc",如果没有,则将"abc"存放进栈,并令str指向”abc”,如果已经有”abc”则直接令 str指向“abc”。 比较类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==,下面用例子说明上面的理论。 String str1 = "abc"; String str2 = "abc"; System.out.println(str1==str2); //true

堆与栈,静态变量和全局变量的区别

堆与栈,静态变量和全局变量的区别 堆与栈,静态变量和全局变量的区别 对和栈的主要的区别由以下几点: 1、管理方式不同; 2、空间大小不同; 3、能否产生碎片不同; 4、生长方向不同; 5、分配方式不同; 6、分配效率不同; 管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak。 空间大小:一般来讲在32位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M(好像是,记不清楚了)。当然,我们可以修改: 打开工程,依次操作菜单如下:Project->Setting->Link,在Category 中选中Output,然后在Reserve中设定堆栈的最大值和commit。 注意:reserve最小值为4Byte;commit是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。 碎片问题:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。 生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。 分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由alloca函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。 分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是C/C++函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。

WINDOWS堆栈区别[转]

WINDOWS堆栈区别[转] 堆和栈的区别(转贴) 非本人作也!因非常经典,所以收归旗下,与众人阅之!原作者不祥! 堆和栈的区别 一、预备知识—程序的内存分配 一个由C/C++编译的程序占用的内存分为以下几个部分 1、栈区(STACK)—由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。 2、堆区(HEAP)—一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。 3、全局区(静态区)(STATIC)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。- 程序结束后有系统释放 4、文字常量区—常量字符串就是放在这里的。程序结束后由系统释放 5、程序代码区—存放函数体的二进制代码。 二、例子程序 这是一个前辈写的,非常详细 //MAIN.CPP INT A = 0; 全局初始化区 CHAR *P1; 全局未初始化区 MAIN() { INT B; 栈 CHAR S[] = "ABC"; 栈 CHAR *P2; 栈 CHAR *P3 = "123456"; 123456\0在常量区,P3在栈上。 STATIC INT C =0;全局(静态)初始化区 P1 = (CHAR *)MALLOC(10); P2 = (CHAR *)MALLOC(20); 分配得来得10和20字节的区域就在堆区。 STRCPY(P1, "123456"); 123456\0放在常量区,编译器可能会将它与P3所指向的"123456"优化成一个地方。 } 二、堆和栈的理论知识 2.1申请方式 STACK: 由系统自动分配。例如,声明在函数中一个局部变量INT B; 系统自动在栈中为B开辟空间 HEAP: 需要程序员自己申请,并指明大小,在C中MALLOC函数 如P1 = (CHAR *)MALLOC(10); 在C++中用NEW运算符 如P2 = (CHAR *)MALLOC(10);

java复习

1.在Java中,负责对字节代码解释执行的是 A. 应用服务器 B. 虚拟机 C. 垃圾回收器 D. 编译器 2.定义字符串:String s1="hello";对下面程序描述正确的是:if(s1=="hello"){ System.out.println("s1 = hello"); }else{ System.out.println("s1 !=hello"); } A. 输出s1 !=hello B. 编译正确,运行错误 C. 产生编译错误 D. 输出s1=hello 3. 你怎样强制对一个对象立即进行垃圾收集? A. 调用System.gc() B. 调用System.gc(), 同时传递要进行垃圾收集对象的引用 C. 给这个对象的所有引用设置一个新的值(例如null) D. 垃圾收集是不能被强迫立即执行 4. 已知如下代码 public class staTest1 { static int a=10; static{a=a+5;} public static void main(String[] args) { System.out.println("a=:"+a); } static {a=a/3;} } 请问哪个情况是正确的? A、4行与9行不能通过编译,因为缺少方法名和返回类型 B、9行不能通过编译,因为只能有一个静态初始化器 C、编译通过,执行结果为:x=5 D、编译通过,执行结果为:x=15 5.已知如下代码: public class Test { long a[] = new long[10]; public static void main ( String arg[] ) { System.out.println ( a[6] ); }

关于堆栈的讲解(我见过的最经典的

一、预备知识—程序的内存分配 一个由c/C++编译的程序占用的内存分为以下几个部分 1、栈区(stack)—由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。 2、堆区(heap)—一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。 3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。- 程序结束后有系统释放 4、文字常量区—常量字符串就是放在这里的。程序结束后由系统释放 5、程序代码区—存放函数体的二进制代码。 二、例子程序 这是一个前辈写的,非常详细 //main.cpp int a = 0; 全局初始化区 char *p1; 全局未初始化区 main() { int b; 栈 char s[] = "abc"; 栈 char *p2; 栈 char *p3 = "123456"; 123456\0在常量区,p3在栈上。 static int c =0;全局(静态)初始化区 p1 = (char *)malloc(10); p2 = (char *)malloc(20); 分配得来得10和20字节的区域就在堆区。 strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。 } 二、堆和栈的理论知识 2.1申请方式 stack: 由系统自动分配。例如,声明在函数中一个局部变量int b; 系统自动在栈中为b开辟空间heap: 需要程序员自己申请,并指明大小,在c中malloc函数 如p1 = (char *)malloc(10); 在C++中用new运算符 如p2 = (char *)malloc(10); 但是注意p1、p2本身是在栈中的。

jvm内存结构

结构概览 JVM内存区域也称为Java运行时数据区域。其中包括:程序计数器、栈、堆、方法区等。 内存结构主要分为三大部分:堆内存,方法区和栈。 堆内存是JVM中最大的一块由年轻代和老年代组成,而年轻代内存又被分成三部分,Eden空间、From Survivor空间、To Survivor空间。 方法区存储类信息、常量、静态变量等数据,是线程共享的区域,为与Java堆区分,方法区还有一个别名Non-Heap(非堆);栈又分为java虚拟机栈和本地方法栈主要用于方法的执行。 JVM和系统调用之间的关系:

Java堆(Heap) Java堆(Java Heap)是Java虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。 Java堆是垃圾收集器管理的主要区域,因此很多时候也被称做“GC堆”。如果从内存回收的角度看,由于现在收集器基本都是采用的分代收集算法,所以Java堆中还可以细分为:新生代和老年代;再细致一点的有Eden空间、From Survivor空间、To Survivor空间等。 根据Java虚拟机规范的规定,Java堆可以处于物理上不连续的内存空间中,只要逻辑上是连续的即可,就像我们的磁盘空间一样。在实现时,既可以实现成固定大小的,也可以是可扩展的,不过当前主流的虚拟机都是按照可扩展来实现的(通过-Xmx和-Xms控制)。 简要归纳:新的对象分配是首先放在年轻代 (Young Generation) 的Eden区,Survivor区作为 Eden区和Old区的缓冲,在Survivor区的对象经历若干次收集仍然存活的,就会被转移到老年代Old中。 方法区(Method Area) 是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据(存放的是Class)。它有一个别名,叫非堆。

C++中堆和栈的区别

C++中堆和栈的区别,自由存储区、全局/静态存储区和常量存储区 文章来自一个论坛里的回帖,哪个论坛记不得了! 在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。 栈,就是那些由编译器在需要的时候分配,在不需要的时候自动清楚的变量的存储区。里面的变量通常是局部变量、函数参数等。 堆,就是那些由new分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个new就要对应一个delete。如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。 自由存储区,就是那些由malloc等分配的内存块,他和堆是十分相似的,不过它是用free来结束自己的生命的。 全局/静态存储区,全局变量和静态变量被分配到同一块内存中,在以前的C语言中,全局变量又分为初始化的和未初始化的(初始化的全局变量和静态变量在一块区域,未初始化的全局变量与静态变量在相邻的另一块区域,同时未被初始化的对象存储区可以通过void*来访问和操纵,程序结束后由系统自行释放),在C++里面没有这个区分了,他们共同占用同一块内存区。 常量存储区,这是一块比较特殊的存储区,他们里面存放的是常量,不允许修改(当然,你要通过非正当手段也可以修改,而且方法很多) 明确区分堆与栈 在bbs上,堆与栈的区分问题,似乎是一个永恒的话题,由此可见,初学者对此往往是混淆不清的,所以我决定拿他第一个开刀。 首先,我们举一个例子: void f() { int* p=new int[5]; } 这条短短的一句话就包含了堆与栈,看到new,我们首先就应该想到,我们分配了一块堆内存,那么指针p呢?他分配的是一块栈内存,所以这句话的意思就是:在栈内存中存放了一个指向一块堆内存的指针p。在程序会先确定在堆中分配内存的大小,然后调用operator new分配内存,然后返回这块内存的首地址,放入栈中,他在VC6下的汇编代码如下: 00401028 push 14h 0040102A call operator new (00401060) 0040102F add esp,4 00401032 mov dword ptr [ebp-8],eax 00401035 mov eax,dword ptr [ebp-8] 00401038 mov dword ptr [ebp-4],eax 这里,我们为了简单并没有释放内存,那么该怎么去释放呢?是delete p 么?澳,错了,应该是delete []p,这是为了告诉编译器:我删除的是一个数组,VC6就会根据相应的Cookie信息去进行释放内存的工作。 好了,我们回到我们的主题:堆和栈究竟有什么区别? 主要的区别由以下几点: 1、管理方式不同; 2、空间大小不同; 3、能否产生碎片不同; 4、生长方向不同;

Java中的堆和栈

Heap与stack的研究 Think in java第四章的内容是关于内存分配和初始化的,对这一章的学习带出了我以往学习中的一个模糊点:究竟什么是堆存储(Heap)?什么是栈存储(Stack)?有什么区别呢?翻了不少资料,补了这一课,觉得非常受用. 2.1 内存分配策略 按照编译原理的观点,程序运行时的内存分配有三种策略,分别是静态的,栈式的,和堆式的. 静态存储分配是指在编译时就能确定每个数据目标在运行时刻的存储空间需求,因而在编译时就可以给他们分配固定的内存空间.这种分配策略要求程序代码中不允许有可变数据结构(比如可变数组)的存在,也不允许有嵌套或者递归的结构出现,因为它们都会导致编译程序无法计算准确的存储空间需求. 栈式存储分配也可称为动态存储分配,是由一个类似于堆栈的运行栈来实现的.和静态存储分配相反,在栈式存储方案中,程序对数据区的需求在编译时是完全未知的,只有到运行的时候才能够知道,但是规定在运行中进入一个程序模块时,必须知道该程序模块所需的数据区大小才能够为其分配内存.和我们在数据结构所熟知的栈一样,栈式存储分配按照先进后出的原则进行分配。 静态存储分配要求在编译时能知道所有变量的存储要求,栈式存储分配要求在过程的入口处必须知道所有的存储要求,而堆式存储分配则专门负责在编译时或运行时模块入口处都无法确定存储要求的数据结构的内存分配,比如可变长度串和对象实例.堆由大片的可利用块或空闲块组成,堆中的内存可以按照任意顺序分配和释放. 2.2 堆和栈的比较 上面的定义从编译原理的教材中总结而来,除静态存储分配之外,都显得很呆板和难以理解,下面撇开静态存储分配,集中比较堆和栈: 从堆和栈的功能和作用来通俗的比较,堆主要用来存放对象的,栈主要是用来执行程序的.而这种不同又主要是由于堆和栈的特点决定的: 在编程中,例如C/C++中,所有的方法调用都是通过栈来进行的,所有的局部变量,形式参数都是从栈中分配内存空间的。实际上也不是什么分配,只是从栈顶向上用就行,就好像工厂中的传送带(conveyor belt)一样,Stack Pointer会自动指引你到放东西的位置,你所要做的只是把东西放下来就行.退出函数的时候,修改栈指针就可以把栈中的内容销毁.这样的模式速度最快,当然要用来运行程序了.需要注意的是,在分配的时候,比如为一个即将要调用的程序模块分配数据区时,应事先知道这个数据区的大小,也就说是虽然分配是在程序运行时进行的,但是分配的大小多少是确定的,不变的,而这个"大小多少"是在编译时确定的,不是在运行时. 堆是应用程序在运行的时候请求操作系统分配给自己内存,由于从操作系统管理的内存分配,所以在分配和销毁时都要占用时间,因此用堆的效率非常低.但是堆的优点在于,编译

堆内存与栈内存的区别

一、程序在编译的时候占用的内存分为以下几个部分: 1 、栈区(stack )—由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限. 2 、堆区(heap )—亦称动态内存分配.程序在运行的时候用malloc或new申请任意大小的内存,程序员自己负责在适当的时候用free或delete释放内存。动态内存的生存期可以由我们决定,如果我们不释放内存,程序将在最后才释放掉动态内存.但是,良好的编程习惯是:如果某动态内存不再使用,需要将其释放掉,否则,我们认为发生了内存泄漏现象。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表. 3 、全局区(静态区)(static )—全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。程序结束后由有系统释放. 4 、常量区—常量字符串就是放在这里的.程序结束后由系统释放. 5 、程序代码区—存放函数体的二进制代码. 例子程序: 这是一个前辈写的,非常详细 //main.cpp int a = 0; 全局初始化区 char *p1; 全局未初始化区 main() { int b; 栈 char s[] = "abc"; 栈 char *p2; 栈 char *p3 = "123456"; 123456\0在常量区,p3在栈上。 static int c =0;全局(静态)初始化区 p1 = (char *)malloc(10); p2 = (char *)malloc(20); 分配得来得10和20字节的区域就在堆区。 strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。 } 二、堆和栈的理论知识 2.1申请方式 stack: 由系统自动分配。例如,声明在函数中一个局部变量int b; 系统自动在栈中为b开辟空间heap:

堆栈详解(数据与内存中的存储方式)

堆栈详解(数据与内存中的存储方式) char* r = "hello word!";char b[]="hello word!"*r = 'w';*b='w';其实应该是语法错误,可是VC++6.0没有警告或者错误,r指向的是文字常量区,此区域是编译的时候确定的,并且程序结束的时候自动释放的,*r = 'w';企图修改文字常量区引起错误,b的区别在于其空间是在栈上分配的,因此没有错误。const char* r = "hello word!";*r = 'w';一个由 c/C++编译的程序占用的内存分为以下几个部分1、栈区(stack)—由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。2、堆区(heap)—一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。- 程序结束后有系统释放4、文字常量区—常量字符串就是放在这里的。程序结束后由系统释放5、程序代码区—存放函数体的二进制代码。二、例子程序//main.cppint a = 0; 全局初始化区char *p1; 全局未初始化区main(){int b; 栈char s[] = "abc"; 栈char *p2; 栈char *p3 = "123456"; 123456\0在常量区,p3

在栈上。static int c =0;全局(静态)初始化区p1 = (char *)malloc(10);p2 = (char *)malloc(20);分配得来得10和20字节的区域就在堆区。strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。}二、堆和栈的理论知识2.1申请方式stack:由系统自动分配。例如,声明在函数中一个局部变量int b; 系统自动在栈中为b开辟空间heap:需要程序员自己申请,并指明大小,在c中malloc函数如p1 = (char *)malloc(10);在C++中用new运算符如p2 = (char *)malloc(10);但是注意p1、p2本身是在栈中的。 2.2申请后系统的响应栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。2.3申请大小的限制栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的

Java中堆与栈的内存分配共5页word资料

Java中堆与栈的内存分配 文献标识码:A 1 栈内存与堆内存概述 在函数中定义的基本类型的变量和对象的引用变量都是在函数的栈内存中分配,当在一段代码中定义一个变量时,Java就在栈中为这个变量分配内存空间,当超过变量的作用域后,Java会自动释放掉为该变量分配的内存空间,该内存空间可以立即被另作它用。 堆内存用来存放由new创建的对象和数组,在堆中分配的内存,由Java 虚拟机的自动垃圾回收器来管理。在堆中产生一个数组或者对象之后,还可以在栈中定义一个特殊的变量,让栈中的这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或者对象,引用变相当于是为数组或者对象起的一个名称。引用变量是普通的变量,定义时在栈中分配,引用变量在程序运行到其作用域之外后被释放。而数组和对象本身在堆中分配,即使程序运行到使用new产生数组或者对象的语句所在的代码块之外,数组和对象本身占据的内存不会被释放,数组和对象在没有引用变量指向它的时候,才变为垃圾,不能在被使用,但仍然占据内存空间不放,在随后的一个不确定的时间被垃圾回收器释放掉。 2 Java中内存分配策略 程序运行时,内存的分配有三种策略,分别是静态的、栈式的和堆式的。 静态存储分配是指在编译时就能确定每个数据目标在运行时刻的存

储空间需求,因而在编译时就可以给其分配固定的内存空间。这种分配策略要求程序代码中不允许有可变数据结构的存在,也不允许有嵌套或者递归的结构出现,因为会导致编译程序无法计算准确的存储空间需求。 栈式存储分配也称为动态存储分配,是由一个类似于堆栈的运行栈来实现的,和静态存储分配相反。在栈式存储方案中,程序对数据区的需求在编译时是完全未知的,只有到运行的时候才能够知道。但是规定在运行中进入一个程序模块时,必须知道程序模块所需的数据区大小才能够为其分配内存。栈式存储分配按照先进后出的原则进行分配。 堆式存储分配专门负责在编译时或运行时模块入口处都无法确定存储要求的数据结构的内存分配,比如可变长度串和对象实例。堆由大片的可利用块或空闲块组成,堆中的内存可以按照任意顺序分配和释放。而静态存储分配要求在编译时能知道所有变量的存储要求,栈式存储分配要求在过程的入口处必须知道所有的存储要求。 3 堆和栈的比较 从堆和栈的功能和作用来看,堆主要用来存放对象的,栈主要是用来执行程序的。在程序设计中,所有的方法调用都是通过栈进行的,所有的局部变量,形式参数都是从栈中分配内存空间的。退出函数的时候,修改栈指针就可以把栈中的内容销毁。该模式速度最快,而且在编译的时候就已经为一个即将要调用的程序模块设置好数据区的大小,运行时再分配下去。 堆是应用程序在运行的时候请求操作系统分配给自己内存,由于是操作系统管理的内存分配,所以在分配和销毁时都要占用时间,因此用堆的效率非常低。但是堆的优点在于,编译器不必知道要从堆里分配多少存储

堆栈、栈(stack)和堆(heap)三者的区别

一、预备知识(程序的内存分配) 一个由C/C++编译的程序占用的内存分为以下几个部分: 1、栈区(stack):由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。 2、堆区(heap):一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,其分配方式倒是类似于链表。 3、全局区(静态区static):全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。程序结束后有系统释放。 4、文字常量区:常量字符串就是放在这里的。程序结束后由系统释放。 5、程序代码区:存放函数体的二进制代码。 看看下面的例子程序,这是一个前辈写的,非常详细。 //main.cpp int a = 0; 全局初始化区 char *p1; 全局未初始化区 main() { int b; 栈 char s[] = "abc"; 栈 char *p2; 栈 char *p3 = "123456"; 123456\0在常量区,p3在栈上。 static int c =0;全局(静态)初始化区 p1 = (char *)malloc(10); p2 = (char *)malloc(20); 分配得来得10和20字节的区域就在堆区。 strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。 } 二、堆和栈的理论知识 2.1、申请方式 stack:由系统自动分配。例如:声明在函数中一个局部变量int b,系统自动在栈中为b开辟空间。heap:需要程序员自己申请,并指明大小,在c中用malloc函数,如p1 = (char *)malloc(10); 在C++中用new运算符:如p2 = (char *)malloc(10); 但是注意p1、p2本身是在栈中的。 2.2 、申请后系统的响应 stack:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报错提示栈溢出。heap:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序。另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小。这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。 2.3、申请大小的限制 stack:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是

相关文档
最新文档