机械原理机构自由度计算(课堂PPT)
合集下载
第二章自由度及机构运动简图ppt课件
如多个行星轮。
编辑版pppt
33
6.两构件构成高副,两处接触,且法线重合。 如等宽凸轮
注意: 法线不重合时,变
成实际约束!
n2
n1
A n1
A’ n2
编辑版pppt
W
n1
n2
A
A’
n1
n2
34
注意:各种出现虚约束的场合都是有条件的 ! 虚约束的作用: ①改善构件的受力情况,如多个行星轮。
②增加机构的刚度,如轴与轴承、机床导轨。 ③使机构运动顺利,避免运动不确定,如车轮。
编辑版pppt
30
⑦已知:AB=CD= B EF, 且AB ∥ CD 1 ∥ EF,试计算图示
平行四边形 机构的 A
自由度。
2C D3 F
E 4
虚约束
解: 重新计算:n=3, PL=4, PH=0
F=3n - 2PL - PH =3×3 -2×4 =1 特别注意:此例存在虚约束的几何条件是:
AB 、CD、EF三杆平行且相等。
机动示意图——定性地表示机构的组成及运动原理 而不严格按比例绘制的机构运动简图。
编辑版pppt
13
常用机构运动简图符号
在 机 架 上 的 电 机
齿 轮 齿 条 传 动
圆
带
锥
传
齿
动
轮
传
动
编辑版pppt
14
链
圆柱
传
蜗杆
动
蜗轮
传动
外啮 合圆 柱齿 轮传 动
凸 轮 传 动
编辑版pppt
15
内啮
棘பைடு நூலகம்
合圆
轮
编辑版pppt
20
经运动副相联后,构件自由度的变化:
机械基础绪论及自由度计算PPT幻灯片
• 在运动副引入的约束中,有些约束对机构自由度的影响是重复的。这些对机 构运动不起限制作用的重复约束,称为消极约束或虚约束,在计算机构自由 度时,应当除去不计。
• 自由度和约束的概念 运动时,常以固定件作为参考坐标系。
但由于第二个小齿轮的加入,使机构增加了一个虚约束。
这样在机构中,n=2,PL =2,PH =1,其自由度为F=3n-2PL-PH =3×2-2×2-1=1。
• 自由度 应当注意,对于虚约束,从机构的运动观点来看是多余的,但从增强构件刚度,改善机构受力状况等方面来看,都是必须的。
例如:滚动轴承、减速器等。
运动时,常以固定件作为参考坐标系。
• 运动副 两构件直接运接触动并能构产生件一定相相对对运于动的参联接考。 系所具有的
★ 机器的组成及机器中常用的机构和零件
机(构2):组具•成有机确独器定的相立各对种运运实动体动的间各具的种有实数确体定的目的组相合,对。运称动;为构件的自由度。
机械基础绪论及自由度计算
机械基础
绪论
★ 课程研究的内容性质和任务 ★ 机器的组成及机器中常用的机构和零件 ★ 课程的特点与学习方法
本课程研究的主要内容、性质和任务
课程的性质 本课程是一门技术基础课,它综合运用了
工程力学、金属工艺学、机械制图、公差配合 等先修课程知识,分析常用机构及通用零部件 的构成和使用问题,较之以往的先修课程更接 近工程实际,但也有别于专业课程,它主要是 研究各类机械所具有的共性问题,在汽车类专 业课程体系中占有重要位置。
分析机构或设计机构时,工程上常用规定的简单符号和线条,绘制出机构运 动简图,来表示机构的运动关系。如何绘制机构运动简图,也是本章要讨论 的内容。
机构是由若干构件组合而成的,但是若干构件不 一定能组成机构。
机构自由度计算(共42张PPT)
C4
绘制图示偏心泵的运动简图
3 2 1 4
甘肃工业大学专用
偏心泵
四 平面机构的自由度
1 θ1 2
3
S’3 S3
2 1 θ1
3 4 θ4
给定S3=S3(t),一个独立参数
θ1=θ1〔t〕唯一确定,该机
构仅需要一个独立参数。
假设仅给定θ1=θ1〔t〕,那么 θ2 θ3 θ4 均不能唯一确定。 假设同时给定θ1和θ4 ,那么θ3 θ2 能唯一确定,该机构需要两个 独立参数 。
定义:具有确定运动的运动链称为机构 。
机架-作为参考系的构件,如机床床身、车辆底 盘、飞机机身。
原〔主〕动件-按给定运动规律运动的构件。 从动件-其余可动构件。 机构的组成:
机构=机架+原动件+从动件
甘肃工业大学专用
1个
1个或几个
若干
三 平面机构运动简图
机构运动简图-用以说明机构中各构件之间的相对 运动关系的简单图形。
副
1
2
螺
旋
1
空副 2
间 运
1
动 副
球
面
1
副
球 销
2
副
甘肃工业大学专用
2 1
2 1
1
2
2 1
2 1
1 2
1 2
1 2
2 1
构件的表示方法:
甘肃工业大学专用
一般构件的表示方法
杆、轴构件
固定构件
同一构件
甘肃工业大学专用
两副构件
一般构件的表示方法
三副构件
甘肃工业大学专用
本卷须知:
画构件时应撇开构件的实际外形,而只考虑运动副的性质。 3. 运动链 运动链-两个以上的构件通过运动副 的联接而构成的系统。 闭式链、开式链
绘制图示偏心泵的运动简图
3 2 1 4
甘肃工业大学专用
偏心泵
四 平面机构的自由度
1 θ1 2
3
S’3 S3
2 1 θ1
3 4 θ4
给定S3=S3(t),一个独立参数
θ1=θ1〔t〕唯一确定,该机
构仅需要一个独立参数。
假设仅给定θ1=θ1〔t〕,那么 θ2 θ3 θ4 均不能唯一确定。 假设同时给定θ1和θ4 ,那么θ3 θ2 能唯一确定,该机构需要两个 独立参数 。
定义:具有确定运动的运动链称为机构 。
机架-作为参考系的构件,如机床床身、车辆底 盘、飞机机身。
原〔主〕动件-按给定运动规律运动的构件。 从动件-其余可动构件。 机构的组成:
机构=机架+原动件+从动件
甘肃工业大学专用
1个
1个或几个
若干
三 平面机构运动简图
机构运动简图-用以说明机构中各构件之间的相对 运动关系的简单图形。
副
1
2
螺
旋
1
空副 2
间 运
1
动 副
球
面
1
副
球 销
2
副
甘肃工业大学专用
2 1
2 1
1
2
2 1
2 1
1 2
1 2
1 2
2 1
构件的表示方法:
甘肃工业大学专用
一般构件的表示方法
杆、轴构件
固定构件
同一构件
甘肃工业大学专用
两副构件
一般构件的表示方法
三副构件
甘肃工业大学专用
本卷须知:
画构件时应撇开构件的实际外形,而只考虑运动副的性质。 3. 运动链 运动链-两个以上的构件通过运动副 的联接而构成的系统。 闭式链、开式链
机械原理自由度课件汇总.ppt
• 用途:分析现有机械,构思设计新机械。
运动副与构件的表示方法
1. 构件的种类
1)固定件或机架;2)原动件;3)从动件 *必须有一个机架,至少有一个原动件,其余为活动构件。
2. 运动副的表示方法
转动副符号
3. 构件的表示方法
移动副符号
.精品课件.
高副符号
13
.精品课件.
14
.精品课件.
15
.精品课件.
发生场合:有滚子的地方,就一定有局部自由度 解决方法:将滚子与安装滚子的构件固结在一起,将 二者视为一个构件。
.精品课件.
37
3.虚约束
在特定几何条件或结构条件下,某些运动副所引入的 约束可能与其它运动副所起的限制作用一致,这种不起独 立限制作用的重复约束为序约束 ,计算自由度时去掉。
虚约束经常出现场合: (1)两构件构成多个运动副时 两构件构成多个转动副,但其轴线相重合:为了改善构件 受力情况。
高副:点或线接触的运动副。接触面压强较高,易磨损。
常见低幅
常见高副
.精品课件.
6
(2)按相对运动形式分平面副和空间副
平面副
空间副
.精品课件.
7
运动链
• 由两个或两个以上构件通过运动副联接而 构成的系统。分两类:闭式和开式。
.精品课件.
8
开式运动链
.精品课件.
9
机构
原动件:按给定运动规律独
力运动的构件。
.精品课件.
47
(2)非圆形曲线
由于曲线各处曲率中心的位置不同,故在机构运动中随着 接触点的改变,曲率中心OO1相对于构件1、2的位置及 OO1间的距离也会随之改变。因此对于一般的高副机构, 在不同的位置有不同的瞬时替代机构。实例
《机械原理自由度》课件
机械故障诊断
通过运动分析诊断机械故障的原因 和位置。
控制系统设计
利用运动分析结果设计控制系统的 参数和策略。
机构运动分析的实例
平面四杆机构的运动分析
01
通过解析法计算平面四杆机构的自由度,并分析其运动特性。
凸轮机构的运动分析
02
利用实验法测量凸轮机构的位移、速度和加速度,分析其运动
规律。
机器人臂关节的运动分析
03
通过数值法模拟机器人臂关节的运动行为,优化关节的设计参
数。
04
机构动力学分析
机构动力学的基本概念
机构动力学是研究机 械系统中机构运动及 其与力的关系的学科 。
机构动力学的基本概 念包括力、力矩、加 速度、速度和位移等 。
它涉及到系统的平衡 、运动规律、动态响 应等方面的内容。
机构动力学分析的Байду номын сангаас法
空间机构自由度计算
总结词
空间机构自由度计算是机械原理中一个复杂的概念,它涉及到机构在空间中的 运动自由度数。
详细描述
空间机构的自由度计算公式为F=6n-(3PL + Ph),其中n为活动构件数,PL为低 副数,Ph为高副数。与平面机构不同,空间机构需要考虑三个方向的自由度, 因此计算更为复杂。
特殊机构自由度计算
通过建立平面连杆机构的运动学和动力学模型,分析其运动规律 和动态响应。
凸轮机构的动力学分析
研究凸轮机构的动态行为,包括从动件的运动规律和受力情况等。
齿轮机构的动力学分析
分析齿轮机构的动态特性,如振动、冲击和噪声等,以提高齿轮传 动的平稳性和可靠性。
05
机构优化设计
机构优化设计的目标和方法
目标
自由度的计算(经典PPT)
由m个构件组成的复合铰 链,共有(m-1)个转动副。
1
复合铰链数=构件数-1
1
2
3
2
3
一、复合铰链
F 3n 2 pl ph
复合铰链——由个m构件在一处 组成轴线重合的转动副。
24
C
3
实际有(m-1)个转动副。 F=3×5-2×6=3 ? F=3×5-2×7=1
B2
3 A1
D
4 E 5
6
如图所示F、B、D、C处是复合铰链
内燃机
键 轴
齿轮
机构的组成(2/16)
空间运动: 6个自由度 一个自由构件
平面运动: 3个自由度
2.运动副
机构的组成(3/16)
运动副 是两构件直接接触而构成的可动连接;
运动副元素是两构件参与接触而构成运动副的表面。
约束 两构件上组成运动副时相对运动受到限制,这种对 独立运动的限制称约束
自由度减少数目等于约束数目。引入约束数目与运动副种 类有关。根据引入约束数目分Ⅰ、Ⅱ……Ⅴ级副。
构件与零件的区别: 构件是运动单元体 零件是加工制造单元体
构件——运动单元体。
零件——制造单元体。
构件是由一个或若干个零件组成刚性系统。
固定构件——机架
构件
活动构件 主动件 从动件
主动件(或原动件。)
作用有驱动力(矩)的活动构件称为
输入运动或动力的主动件称为输入件。 输出运动或动力的从动件称为输出件。
此机构能动,须给定一个原动件
4)
n=4 pl=5 ph=1 p’=0 F’=0
F=3n-(2pl+ph-p’)-F’ =3*4-(2*5+1-0)-0=1
复合铰链:A(2)
1
复合铰链数=构件数-1
1
2
3
2
3
一、复合铰链
F 3n 2 pl ph
复合铰链——由个m构件在一处 组成轴线重合的转动副。
24
C
3
实际有(m-1)个转动副。 F=3×5-2×6=3 ? F=3×5-2×7=1
B2
3 A1
D
4 E 5
6
如图所示F、B、D、C处是复合铰链
内燃机
键 轴
齿轮
机构的组成(2/16)
空间运动: 6个自由度 一个自由构件
平面运动: 3个自由度
2.运动副
机构的组成(3/16)
运动副 是两构件直接接触而构成的可动连接;
运动副元素是两构件参与接触而构成运动副的表面。
约束 两构件上组成运动副时相对运动受到限制,这种对 独立运动的限制称约束
自由度减少数目等于约束数目。引入约束数目与运动副种 类有关。根据引入约束数目分Ⅰ、Ⅱ……Ⅴ级副。
构件与零件的区别: 构件是运动单元体 零件是加工制造单元体
构件——运动单元体。
零件——制造单元体。
构件是由一个或若干个零件组成刚性系统。
固定构件——机架
构件
活动构件 主动件 从动件
主动件(或原动件。)
作用有驱动力(矩)的活动构件称为
输入运动或动力的主动件称为输入件。 输出运动或动力的从动件称为输出件。
此机构能动,须给定一个原动件
4)
n=4 pl=5 ph=1 p’=0 F’=0
F=3n-(2pl+ph-p’)-F’ =3*4-(2*5+1-0)-0=1
复合铰链:A(2)
机械设计基础课件 第三章 平面机构自由度的计算
1个约束,2个自由度
5.自由度:构件的独立运动(参数) 平面运动 X,Y,α 约束:对独立运动所加的限制
实长(m) μl= 图长(mm)
机构:
(1)机架:某一构件相对固定(只有一个) (2)原动件:机构中按给定的运动规律独立运动的构件 (3)从动件:确定运动
机构的运动简图:机构用一些简单的线条和规定的符号表达,该图形具有确定的比例
第三章 平面机构的自由度计算
1.机械中每一种独立的运动单元体称为一个构件
2.凡使两个构件直接接触而又能有一定的相对运动的连接称为运动副
3.构成运动副时,两个构件上参与接触的部分(点,线或者面)称为运动副的元素
4.低副:两构件组成面接触的运动副(回转副和移动副)
2个约束,1个自由度
高副:两构件组成点或线接触的运动副
第一章 绪论
机械:机器和机构 机器:(1)构件的组合体
(2)各构件之间有确定的相对运动 (3)用来变换或传递能量,物料与信息,以减轻人做的有用功 机构:具有机器的前两个特点,传递运动和力的装置
构件和零件 构件:运动的最小单元 零件:加工的最小单元
机器是由若干机构组成 机构是由若干构件组成 机构由一个或若干个零件组成
F≤0 机构不能动 F﹥0 机构可以动
F﹥原动件数,运动不确定 F=原动件数,运动确定 F﹤原动件数,不能动
三角形构件的三个自由度均不受限制
轮系 第九章 轮系 行星轮系
只会遇见这种小滚子的局部自由度 焊死处理
虚约束特别容易被漏掉
第二条后面有一个例题 这个比较不容易被看出来
无非就是判断机构能不能动,原动件数目几个,是否合适, 拿到题之后,第一步先看,有没有复合铰链,局部自由度,虚约束
复 复
自由度的计算 PPT
低副(以转动副为例) 联接前:F=3×2=6
能动吗?
联接后:F=3×2-2×1=4
高副(以凸轮副为例)
联接前:F=3×2=6 联接后:F=3×2-1×1=5
一、平面运动链的自由度计算公式
F3n2pl ph
n——活动构件数 Pl——低副数 Ph——高副数
分析: 两杆(如门、风扇) F=3×1-2×1=1
机构的组成(7/14)
高副 两个独立相对运动。引入1个约束, 保留2个自由度
高副
n
t n2 t
21
1
约束特点:n方向移动
自由度数目 约束数目
2
1
机构的组成(13/1对可动的系统。
闭式运动链(简称闭链) 开式运动链(简称开链)
2
3
1
4
2 3
1 4
平面闭式运动链 空间闭式运动链
=3×4-2×5 -0 =2
机构自由度的计算(2/7)
2
3
1
4
3
2
4
1
5
3)曲柄滑块机构
F=3n-(2pl+ph) =3×3-2×4 -0 =1
机构自由度的计算(3/7)
4)凸轮机构
F=3n-(2pl+ph) =3×2-2×2 -1 =1
计算平面机构自由度时应注意的事项
1.要正确计算运动副的数目 (1)复合铰链 两个以上构件同时在一处以转 动副相联接就构成了复合铰链。
23
1
4
平面开式运动链
4
3
5
2 1
空间开式运动链
三、运动链
运动链:两个或两个以上的构件通过运动副联接而构成的系统。 开式运动链:运动链的各构件未构成首末封闭的系统
机构的自由度计算ppt课件
编辑版pppt
27
§1.5 平面机构的组成原理 和结构分析
• 组成原理 • 结构分类 • 结构分析
编辑版pppt
28
基本杆组:(低副)
构件组去掉机架和原动件后剩下的F=0 的最小运动链。
F=3n-2pl =0 级别 Ⅱ Ⅲ: n24
pl 3 6
编辑版pppt
29
结构分类:杆组为几级?什么形式?
• 无约束
编辑版pppt
19
平面运动副的约束
编辑版pppt
20
平面运动副的约束
高副约束1个自由度
编辑版pppt
21
§1.4 平面机构的自由度计算公式 n个活动构件(不包括机架), pl个低
副, ph个高副,则
自由度计算公式: F=3n-(2pl+ph)
编辑版pppt
22
举例 3
2
3
1
4
3
2
4
编辑版pppt
13
2.机构运动简图的绘制
绘制方法及步骤: (1)搞清机械的构造及运动情况,沿着运动传递路线,
查明组成机构的构件数目、运动副的类别及其位置; (2)选定视图平面; (3)选适当比例尺,作出各运动副的相对位置,再画
出各运动副和机构的符号,最后用简单线条连接即得 机构运动简图。
编辑版pppt
一构件和两个低副代替
凸轮机构:
编辑版pppt
36
举例 6
编辑版pppt
37
小结:掌握机构自由度的计算方法; 机构具有确定运动的条件; 基本杆组拆分的原则及方法。
编辑版pppt
38
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
机械原理 课件 §2-5 机构自由度计算
§2-5 机构自由度计算
机构的自由度F :相对参考系的独立运动的数目
F=6
F=3 3 F=3
2
y
F=0
机架
O
1
x
平面上的自由构件有三个自由度
未联接
x, y, z
.
机构自由度计算
用转动副与机架连接后剩一个自由度
n=2 pl=3 ph =0
平面低副引入2个约束 平面高副引入1个约束
y
F=2 F=4 F=1 F=3 机构自由度计算公式 F=3n - (2pl + ph ) 活动构件数:n 低副数: pl 高副数: ph
自由度计算注意事项
n=9 pl =11 ph =3 F’=2 p’=1
点划线
作业:2-16 (a)(b)(c)
.
平面机构的组成原理
研究低副机构
F=3n - 2pl
F=1
平面机构的组成原理
n=5 pl =7 F=1
n=2 pl =3 F=0
基本杆组:不可再分的自由度为0的用运动副连接的构件系统 机构由基本杆组联接于原动件和机架上而构成 n=2 , pl =3 F=3n - 2pl =0 n=3 , 无解 n=4 , pl =6 ……
3 1
n=3 pl =3 ph =1 F=2? n=7 pl =6? ph =0 F=9?
2
3 2 1
pl =10
F=1
.
3、虚约束 运动副引入了重复的约束
两构件之间存在多个 *导路互相平行的移动副 *轴线重合的转动副 *法线重合的高副 *不影响机构运动传递的重复部分
自由度计算注意事项
算 一 个 移 动 副
.
例
例:手动冲床 F=3*2-(2*3+0)=0
机构的自由度F :相对参考系的独立运动的数目
F=6
F=3 3 F=3
2
y
F=0
机架
O
1
x
平面上的自由构件有三个自由度
未联接
x, y, z
.
机构自由度计算
用转动副与机架连接后剩一个自由度
n=2 pl=3 ph =0
平面低副引入2个约束 平面高副引入1个约束
y
F=2 F=4 F=1 F=3 机构自由度计算公式 F=3n - (2pl + ph ) 活动构件数:n 低副数: pl 高副数: ph
自由度计算注意事项
n=9 pl =11 ph =3 F’=2 p’=1
点划线
作业:2-16 (a)(b)(c)
.
平面机构的组成原理
研究低副机构
F=3n - 2pl
F=1
平面机构的组成原理
n=5 pl =7 F=1
n=2 pl =3 F=0
基本杆组:不可再分的自由度为0的用运动副连接的构件系统 机构由基本杆组联接于原动件和机架上而构成 n=2 , pl =3 F=3n - 2pl =0 n=3 , 无解 n=4 , pl =6 ……
3 1
n=3 pl =3 ph =1 F=2? n=7 pl =6? ph =0 F=9?
2
3 2 1
pl =10
F=1
.
3、虚约束 运动副引入了重复的约束
两构件之间存在多个 *导路互相平行的移动副 *轴线重合的转动副 *法线重合的高副 *不影响机构运动传递的重复部分
自由度计算注意事项
算 一 个 移 动 副
.
例
例:手动冲床 F=3*2-(2*3+0)=0
自由度(原理)(共102张PPT)可修改全文
=1
2
3
4
②计算铰链五杆机构的自由度。
解:活动构件数n= 4
2
低副数P = 5 3)
5)
F运动>0副,分原类动:件数>F,构件不能运动或产L生破坏。
②低副-面接触的运动副,应力低 。
1
典型Ⅱ级组: n=2 p=3 二杆三副
高副数P = 0 (部分Ⅲ、IV 级杆组)
F=3n - 2PL - PH
H
5
第1章 平面机构的结构分析
1-1 机构组成及运动简图的绘制 1-2 平面机构自由度计算 1-3 机构组成原理和结构分析
1-1 机构组成及运动简图的绘制 一 机构组成 1 目的及内容
1)机构的组成及其具有确定运动的条件
目的是弄清机构包含哪几个部分?各部分如何相联才能保证具有确定的相 对运动?这对于设计新的机构显得尤其重要。
解:F=3n - 2PL - PH =3×9-2×12 - 2×1 =1
9)计算图示包装机送纸机构的自由度。 分析:
复合铰链: 位置D ,2个低副
局部自由度 2个 虚约束 1处, 去掉后
n= 6,PL= 7,PH= 3
F=3n - 2PL - PH
=3×6 -2×7 -3 =1
例8复2ຫໍສະໝຸດ 71356
1 箱体 2 活塞 3 连杆
4 曲轴 5、6 齿轮
7
凸轮 8 推杆
连杆机构 齿轮机构 凸轮机构
内燃机
箱体+
活塞、连杆、曲轴
连杆机构
齿轮
齿轮机构
凸轮、推杆
凸轮机构
内燃机的机构运动简图
◆ 画机构运动简图的方法
例题三、图示为一冲床。绕固定中心A转动的菱形盘1为原动件, 与滑块2在B点铰接,滑块2推动拨叉3绕固定轴C转动,拨叉3与 圆盘4为同一构件,当圆盘4转动时,通过连杆5使冲头6实 现冲压运动。试绘制其机构运动简图。
2
3
4
②计算铰链五杆机构的自由度。
解:活动构件数n= 4
2
低副数P = 5 3)
5)
F运动>0副,分原类动:件数>F,构件不能运动或产L生破坏。
②低副-面接触的运动副,应力低 。
1
典型Ⅱ级组: n=2 p=3 二杆三副
高副数P = 0 (部分Ⅲ、IV 级杆组)
F=3n - 2PL - PH
H
5
第1章 平面机构的结构分析
1-1 机构组成及运动简图的绘制 1-2 平面机构自由度计算 1-3 机构组成原理和结构分析
1-1 机构组成及运动简图的绘制 一 机构组成 1 目的及内容
1)机构的组成及其具有确定运动的条件
目的是弄清机构包含哪几个部分?各部分如何相联才能保证具有确定的相 对运动?这对于设计新的机构显得尤其重要。
解:F=3n - 2PL - PH =3×9-2×12 - 2×1 =1
9)计算图示包装机送纸机构的自由度。 分析:
复合铰链: 位置D ,2个低副
局部自由度 2个 虚约束 1处, 去掉后
n= 6,PL= 7,PH= 3
F=3n - 2PL - PH
=3×6 -2×7 -3 =1
例8复2ຫໍສະໝຸດ 71356
1 箱体 2 活塞 3 连杆
4 曲轴 5、6 齿轮
7
凸轮 8 推杆
连杆机构 齿轮机构 凸轮机构
内燃机
箱体+
活塞、连杆、曲轴
连杆机构
齿轮
齿轮机构
凸轮、推杆
凸轮机构
内燃机的机构运动简图
◆ 画机构运动简图的方法
例题三、图示为一冲床。绕固定中心A转动的菱形盘1为原动件, 与滑块2在B点铰接,滑块2推动拨叉3绕固定轴C转动,拨叉3与 圆盘4为同一构件,当圆盘4转动时,通过连杆5使冲头6实 现冲压运动。试绘制其机构运动简图。
机械原理课件—机构自由度的计算
34 2511
2, D处为局部自由度,E、F处 有一处为虚约束;
4
E
D
F
5
A1
2
B
3
C
3, 应有一个起始构件
例6如图所示为牛头刨床设计方案草图。 设计思路为:动力由曲柄1输入,使 摆动导杆3往复摆动,并带动滑枕4作 往复移动,以达到刨削的目的。试问 图示的构件组合是否能达到此目的? 如果不能,应如何改进?
解: 1,两处虚约束: 凸轮处和导轨E、F处; 一处复合铰链 B 处。
F 3n 2Pl Ph
F
36 27 2 2
G
2,该机构没有确定运动。成为机构的
CB E
A
条件:应有两个起始构件
D
例5 计算图示机构的自由度,并指出存在的复合铰链、局 部自由度和虚约束处。并说明成为机构的条件。
解: 1, F 3n 2Pl Ph
n
t
n
转动副引入2个约束 t
t
n
t
移动副引入2个约束
n 高副引入1个约束
结论:
平面低副引入2个约束 平面高副引入1个约束
由此得出平面自由度计算公式
机构的自由度:F= 3活动构件数-2低副数-1高副数
即: F =3n 2PL PH
2
例:
3
1
4
F=3n2PL PH
=3324 0 =1
F=3n2PLPH =32-22-1
7
1
3
8
例2
5
4
9
虚约束 局部自由度
5
F=3n-2PL-PH 局部自由局度 4 6
7
=37-29-1
3
=1
虚约束
F=3n-2PL-PH =36-2 8-1
2, D处为局部自由度,E、F处 有一处为虚约束;
4
E
D
F
5
A1
2
B
3
C
3, 应有一个起始构件
例6如图所示为牛头刨床设计方案草图。 设计思路为:动力由曲柄1输入,使 摆动导杆3往复摆动,并带动滑枕4作 往复移动,以达到刨削的目的。试问 图示的构件组合是否能达到此目的? 如果不能,应如何改进?
解: 1,两处虚约束: 凸轮处和导轨E、F处; 一处复合铰链 B 处。
F 3n 2Pl Ph
F
36 27 2 2
G
2,该机构没有确定运动。成为机构的
CB E
A
条件:应有两个起始构件
D
例5 计算图示机构的自由度,并指出存在的复合铰链、局 部自由度和虚约束处。并说明成为机构的条件。
解: 1, F 3n 2Pl Ph
n
t
n
转动副引入2个约束 t
t
n
t
移动副引入2个约束
n 高副引入1个约束
结论:
平面低副引入2个约束 平面高副引入1个约束
由此得出平面自由度计算公式
机构的自由度:F= 3活动构件数-2低副数-1高副数
即: F =3n 2PL PH
2
例:
3
1
4
F=3n2PL PH
=3324 0 =1
F=3n2PLPH =32-22-1
7
1
3
8
例2
5
4
9
虚约束 局部自由度
5
F=3n-2PL-PH 局部自由局度 4 6
7
=37-29-1
3
=1
虚约束
F=3n-2PL-PH =36-2 8-1
机构自由度计算PPT课件
机架、原动构件、从动构件 零件:单独加工的制造单元体
通用零件、专用零件
❖ 构件可以由一个零件组成 ❖ 也可以由几个零件组成
.
1 原动件
2 从动件 3
机架 4
机器的组成
(从运动观点看)由构件组成 (从制造观点看)由零件组成
机械
机器 机构
原动构件
构件 从动构件 机架
零件
通用零件 专用零件
零件
F=3n-2pl-ph
机构自由度=3×活动构件数-(2×低副数+1×高副数)
❖ 计算步骤:
确定活动构件数目 确定运动副种类和数目 确定特殊结构: 局部自由度、虚约束、复合铰链 计算、验证自由度
❖ 几种特殊结构的处理:
1、复合铰链—计算在内 2、局部自由度—排除 3、虚约束--重. 复约束—排除
❖ 空间低副: 螺旋副、球面副、圆柱副 (面接触) ❖ 空间高副: 球和圆柱与平面、球与圆柱副 (点、线接触)
❖ 运动副特性:运动副一经形成, 组成它的两个构件间的可能 的相对运动就确定。而且这种可能的相对运动, 只与运动 副类型有关, 而与运动副的具体结构无关。
❖ 工程上常用一些规定的符号代表运动副
❖ 在该机构中,齿轮3是齿轮2的对称部分,为虚约束 ❖ 计算时应将齿轮3及其引入的约束去掉来计算 ❖ 同理,将齿轮2当作虚约束去掉,完全一样 ❖ 目的:为了改善构件的受力情况
动画
1
2
3
F=3n-2PL-PH
5
=3 3-2 -3 2
4
=1 .
虚约束——结论
3
❖ 机构中的虚约束都是在一定的几何条件下出
3 几种特殊结构的处理
②
2
3
5
2
通用零件、专用零件
❖ 构件可以由一个零件组成 ❖ 也可以由几个零件组成
.
1 原动件
2 从动件 3
机架 4
机器的组成
(从运动观点看)由构件组成 (从制造观点看)由零件组成
机械
机器 机构
原动构件
构件 从动构件 机架
零件
通用零件 专用零件
零件
F=3n-2pl-ph
机构自由度=3×活动构件数-(2×低副数+1×高副数)
❖ 计算步骤:
确定活动构件数目 确定运动副种类和数目 确定特殊结构: 局部自由度、虚约束、复合铰链 计算、验证自由度
❖ 几种特殊结构的处理:
1、复合铰链—计算在内 2、局部自由度—排除 3、虚约束--重. 复约束—排除
❖ 空间低副: 螺旋副、球面副、圆柱副 (面接触) ❖ 空间高副: 球和圆柱与平面、球与圆柱副 (点、线接触)
❖ 运动副特性:运动副一经形成, 组成它的两个构件间的可能 的相对运动就确定。而且这种可能的相对运动, 只与运动 副类型有关, 而与运动副的具体结构无关。
❖ 工程上常用一些规定的符号代表运动副
❖ 在该机构中,齿轮3是齿轮2的对称部分,为虚约束 ❖ 计算时应将齿轮3及其引入的约束去掉来计算 ❖ 同理,将齿轮2当作虚约束去掉,完全一样 ❖ 目的:为了改善构件的受力情况
动画
1
2
3
F=3n-2PL-PH
5
=3 3-2 -3 2
4
=1 .
虚约束——结论
3
❖ 机构中的虚约束都是在一定的几何条件下出
3 几种特殊结构的处理
②
2
3
5
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=1 滚子的作用:滑动摩擦.滚动摩擦。
重庆大学专用
8
作者: 潘存云教授
⑦已知:AB=CD=EF,计算图示平行四边形
机构的自由度。
解:n= 4, PL= 6, PH=0 F=3n - 2PL - PH =3×4 -2×6
=0
B 1
A
2 EHale Waihona Puke 作者:潘存云教授C4
3
F
D
3.虚约束( formal constraint)
活动构件数 构件总自由度 低副约束数 高副约束数
n
3×n
2 × PL
1 × Ph
计算公式: F=3n-(2PL +Ph )
要求:记住上述公式,并能熟练应用。
例题①计算曲柄滑块机构的自由度。
解:活动构件数n= 3 低副数PL= 4 高副数PH= 0
1
2
F=3n - 2PL - PH
S3
=3×3 - 2×4
4 6 作者:潘存云教授 1E 7 C
2
3
B
8A
计算结果肯定不对!构件数不会错,肯定是低副数目搞错了!
重庆大学专用
.
4
作者: 潘存云教授
1.复合铰链 --两个以上的构件在同一处以转动 副相联。
两个低副
计算:m个构件, 有m-1转动副。
重庆大学专用
.
5
作者: 潘存云教授
例题④重新计算图示圆盘锯机构的自由度。
.
重庆大学专用
11
作者: 潘存云教授
3. 两 构 件 构 成 多 个 转 动 副 , 且同轴。
4. 运 动 时 , 两 构 件 上 的 两点距离始终不变。
作者:潘存云教授
E
F
5.对运动不起作用的对 称部分。如多个行星轮。
.
重庆大学专用
作者:潘存云教授
12
作者: 潘存云教授
上例:在B、C、D、E四处应各有 2 个运动副。
解:活动构件数n=7
低副数PL= 10
F=3n - 2PL - PH =3×7 -2×10-0 =1
D5
F
4 6 作者:潘存云教授 1E 7 C
2
3
B
8A
圆盘锯机构
重庆大学专用
.
6
作者: 潘存云教授
⑥计算图示两种凸轮机构的自由度。
解:n= 3, PL= 3, PH=1
重新计算:n=3, PL=4, PH=0
应用
F=3n - 2PL - PH =3×3 -2×4
=1 特别注意:此例存在虚约束的几何条件是:
重庆大学专用
AB=C. D=EF
10
作者: 潘存云教授
出现虚约束的场合: 1.两构件联接前后,联接点的轨迹重合,
作者:潘存云教授
2.两构件构成多个移动副,且 导路平行。
高副数PH= 1
1
F=3n - 2PL - PH =3×2 -2×2-1
=1
重庆大学专用
.
3
作者: 潘存云教授
§2-6 自由度计算中的特殊问题 例题④计算图示圆盘锯机构的自由度。
解:活动构件数n= 7
D5
F
低副数PL= 6
高副数PH=0
F=3n - 2PL - PH =3×7 -2×6 -0 =9
--对机构的运动实际不起作用的约束。
计算自由度时应去掉虚约束。
∵ FE=AB =CD ,故增加构件4前后E
点的轨迹都是圆弧,。
增加的约束不起作用,. 应去掉构件4。
重庆大学专用
9
作者: 潘存云教授
⑦已知:AB=CD=EF,计算图示平行四边形
机构的自由度。
B 2E
C
1
作者:潘存云教授
4
3
A
F
D 平行虚约束
=1
.
重庆大学专用
3
1
作者: 潘存云教授
例题②计算五杆铰链机构的自由度
解:活动构件数n= 4
2
3
低副数PL= 5 高副数PH= 0
1 θ1
4
F=3n - 2PL - PH =3×4 - 2×5
=2
重庆大学专用
.
2
作者: 潘存云教授
例题③计算图示凸轮机构的自由度。
解:活动构件数n= 2
3
2
低副数PL= 2
3
3
F=3n - 2PL - PH
2
2
=3×3 -2×3 -1
1
=2
1
对于右边的机构,有: F=3×2 -2×2 -1=1
事实上,两个机构的运动相同,且F=1
.
重庆大学专用
7
作者: 潘存云教授
2.局部自由度 定义:构件局部运动所产生的自由度。
出现在加装滚子的场合,
计算时应去掉。
3
3
2
2
1
1
或计算时去掉滚子和铰链: F=3×2 -2×2 -1
重庆大学专用
8
作者: 潘存云教授
⑦已知:AB=CD=EF,计算图示平行四边形
机构的自由度。
解:n= 4, PL= 6, PH=0 F=3n - 2PL - PH =3×4 -2×6
=0
B 1
A
2 EHale Waihona Puke 作者:潘存云教授C4
3
F
D
3.虚约束( formal constraint)
活动构件数 构件总自由度 低副约束数 高副约束数
n
3×n
2 × PL
1 × Ph
计算公式: F=3n-(2PL +Ph )
要求:记住上述公式,并能熟练应用。
例题①计算曲柄滑块机构的自由度。
解:活动构件数n= 3 低副数PL= 4 高副数PH= 0
1
2
F=3n - 2PL - PH
S3
=3×3 - 2×4
4 6 作者:潘存云教授 1E 7 C
2
3
B
8A
计算结果肯定不对!构件数不会错,肯定是低副数目搞错了!
重庆大学专用
.
4
作者: 潘存云教授
1.复合铰链 --两个以上的构件在同一处以转动 副相联。
两个低副
计算:m个构件, 有m-1转动副。
重庆大学专用
.
5
作者: 潘存云教授
例题④重新计算图示圆盘锯机构的自由度。
.
重庆大学专用
11
作者: 潘存云教授
3. 两 构 件 构 成 多 个 转 动 副 , 且同轴。
4. 运 动 时 , 两 构 件 上 的 两点距离始终不变。
作者:潘存云教授
E
F
5.对运动不起作用的对 称部分。如多个行星轮。
.
重庆大学专用
作者:潘存云教授
12
作者: 潘存云教授
上例:在B、C、D、E四处应各有 2 个运动副。
解:活动构件数n=7
低副数PL= 10
F=3n - 2PL - PH =3×7 -2×10-0 =1
D5
F
4 6 作者:潘存云教授 1E 7 C
2
3
B
8A
圆盘锯机构
重庆大学专用
.
6
作者: 潘存云教授
⑥计算图示两种凸轮机构的自由度。
解:n= 3, PL= 3, PH=1
重新计算:n=3, PL=4, PH=0
应用
F=3n - 2PL - PH =3×3 -2×4
=1 特别注意:此例存在虚约束的几何条件是:
重庆大学专用
AB=C. D=EF
10
作者: 潘存云教授
出现虚约束的场合: 1.两构件联接前后,联接点的轨迹重合,
作者:潘存云教授
2.两构件构成多个移动副,且 导路平行。
高副数PH= 1
1
F=3n - 2PL - PH =3×2 -2×2-1
=1
重庆大学专用
.
3
作者: 潘存云教授
§2-6 自由度计算中的特殊问题 例题④计算图示圆盘锯机构的自由度。
解:活动构件数n= 7
D5
F
低副数PL= 6
高副数PH=0
F=3n - 2PL - PH =3×7 -2×6 -0 =9
--对机构的运动实际不起作用的约束。
计算自由度时应去掉虚约束。
∵ FE=AB =CD ,故增加构件4前后E
点的轨迹都是圆弧,。
增加的约束不起作用,. 应去掉构件4。
重庆大学专用
9
作者: 潘存云教授
⑦已知:AB=CD=EF,计算图示平行四边形
机构的自由度。
B 2E
C
1
作者:潘存云教授
4
3
A
F
D 平行虚约束
=1
.
重庆大学专用
3
1
作者: 潘存云教授
例题②计算五杆铰链机构的自由度
解:活动构件数n= 4
2
3
低副数PL= 5 高副数PH= 0
1 θ1
4
F=3n - 2PL - PH =3×4 - 2×5
=2
重庆大学专用
.
2
作者: 潘存云教授
例题③计算图示凸轮机构的自由度。
解:活动构件数n= 2
3
2
低副数PL= 2
3
3
F=3n - 2PL - PH
2
2
=3×3 -2×3 -1
1
=2
1
对于右边的机构,有: F=3×2 -2×2 -1=1
事实上,两个机构的运动相同,且F=1
.
重庆大学专用
7
作者: 潘存云教授
2.局部自由度 定义:构件局部运动所产生的自由度。
出现在加装滚子的场合,
计算时应去掉。
3
3
2
2
1
1
或计算时去掉滚子和铰链: F=3×2 -2×2 -1