高中物理复习——弹簧专题
物理高中弹簧类问题

物理高中弹簧类问题引言:介绍弹簧的基本概念和特性,以及在物理学中的重要性。
弹簧是一种具有弹性的物体,广泛应用于各个领域,例如机械工程、建筑、汽车工业等。
一、弹簧的类型和结构(200字)1. 弹簧的分类:按照材料分为金属弹簧和非金属弹簧,按照形状分为螺旋弹簧、压缩弹簧、拉伸弹簧等。
2. 螺旋弹簧的结构:由圆柱形线圈组成,两端分别固定于支架上。
3. 弹簧的特性:弹性恢复力、变形能力、弹性系数等。
二、劲度和胡克定律(200字)1. 弹簧的劲度:衡量弹簧的硬度和变形能力的物理量。
2. 胡克定律的定义:弹簧恢复力与变形量成正比,方向与变形方向相反。
3. 胡克定律的公式:F = -kx,其中F为恢复力,k为弹簧系数,x为弹簧的变形量。
三、弹簧振动(200字)1. 弹簧的自由振动:弹簧在无外力作用下自行振动的现象。
2. 弹簧的固有频率:弹簧自由振动的频率与弹簧本身的参数有关。
3. 弹簧振动的应用:在钟表、汽车悬挂系统等领域中广泛运用。
四、弹簧的应用(200字)1. 机械工程中的应用:弹簧作为减震器、缓冲器等,能够减小机械设备的震动和冲击。
2. 建筑领域中的应用:弹簧可用于地震减振系统,减少地震对建筑物的影响。
3. 汽车工业中的应用:弹簧在汽车的悬挂系统中发挥重要作用,提供车辆的平稳行驶和舒适性。
4. 物理学实验中的应用:弹簧用于测量质量、重力加速度等物理量,是物理学实验中不可或缺的工具。
五、阻尼和共振(200字)1. 弹簧振动中的阻尼:弹簧振动过程中的能量损失。
2. 共振现象:当外界周期性力与弹簧固有频率一致时,将产生共振现象。
3. 阻尼和共振的影响:阻尼减小共振,而共振会增加振幅,对系统稳定性有一定影响。
结论:总结弹簧的基本概念和特性,以及其在不同领域中的应用。
弹簧作为一种重要的物理器件,对于我们理解和应用物理学知识具有重要意义。
通过学习弹簧类问题,我们能够更好地理解力学原理和振动现象的规律。
弹簧物理知识点总结图表

弹簧物理知识点总结图表弹簧是一种具有弹性的物体,它能够在受到外力作用后发生形变,并在外力撤去后恢复原状。
弹簧在工程中有广泛的应用,包括机械、汽车、航空航天等领域。
弹簧物理是物理学的一个重要分支,研究弹簧的力学性质和应用原理。
本文将对弹簧物理的知识点进行总结,希望能够对读者有所帮助。
弹簧的基本概念弹簧是一种具有弹性的物体,它能够在受到外力作用后发生形变,并在外力撤去后恢复原状。
弹簧通常由金属材料制成,如钢、铜等。
根据弹簧的形状和用途不同,可以分为压缩弹簧、拉伸弹簧和扭转弹簧等几种类型。
弹簧的力学性质弹簧的力学性质主要包括弹性系数、弹性极限、屈服极限等。
弹性系数是衡量弹簧刚度的物理量,通常用符号k表示。
弹簧的弹性系数与材料的种类、截面积和长度等因素有关,一般通过实验测定。
弹性极限是指在受到外力作用下,弹簧恢复原状的最大应力值。
屈服极限是指在受到外力作用下,弹簧开始发生塑性变形的应力值。
弹簧的应力分析在受力作用下,弹簧内部会产生应力,根据受力形式的不同,弹簧的应力分析也有所不同。
对于拉伸弹簧,其内部应力主要是拉应力,而对于压缩弹簧,则是压应力。
弹簧的应力分析是弹簧力学研究的重要内容,它不仅可以指导弹簧的设计和制造,还能够为弹簧的使用提供理论依据。
弹簧的位移分析在受到外力的作用下,弹簧会发生形变,其形变大小通常用位移来描述。
弹簧的位移分析是指在受力作用下,弹簧的长度、形状等参数如何发生改变的问题。
弹簧的位移分析对于弹簧的设计和应用至关重要,它能够为弹簧系统的稳定性和可靠性提供重要参考。
弹簧的振动弹簧系统在受到外力作用时会产生振动现象,这种振动通常可以用简谐振动来描述。
弹簧的振动是弹簧物理的重要内容之一,它在机械、汽车等领域有着广泛的应用。
弹簧的振动理论不仅可以指导弹簧系统的设计和优化,还可以为弹簧系统的故障诊断和预防提供理论依据。
弹簧的能量分析在受到外力作用时,弹簧会吸收能量并进行储存,在外力撤去后恢复原状并释放能量。
重点高中物理必修一弹簧问题

精心整理高中物理弹簧模型问题一、物理模型:轻弹簧是不计自身质量,能产生沿轴线的拉伸或压缩形变,故产生向内或向外的弹力。
二、模型力学特征:轻弹簧既可以发生拉伸形变,又可发生压缩形变,其弹力方向一定沿弹簧方向,弹簧两端弹力的大小相等,方向相反。
三、弹簧物理问题:1.弹簧平衡问题:抓住弹簧形变量、运动和力、促平衡、列方程。
2.弹簧模型应用牛顿第二定律的解题技巧问题:(1) 弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加速度,从而分析物体运动规律。
而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。
(2) 弹簧长度不变,弹力不变问题:当物体除受弹簧本身的弹力外,还受到其它外力时,当弹簧长度不发生变化时,弹簧的弹力是不变的,出就是形变量不变,抓住这一状态分析物体的另外问题。
(3) 弹簧中的临界问题:当弹簧的长度发生改变导致弹力发生变化的过程中,往往会出现临界问题:如“两物体分离”、“离开地面”、“恰好”、“刚好”……这类问题找出隐含条件是求解本类题型的关键。
3.弹簧双振子问题:它的构造是:一根弹簧两端各连接一个小球(物体),这样的装置称为“弹簧双振子”。
本模型它涉及到力和运动、动量和能量等问题。
本问题对过程分析尤为重要。
1.弹簧称水平放置、牵连物体弹簧示数确定【例1】物块1、2放在光滑水平面上用轻弹簧相连,如图1所示。
今对物块1、2分别施以相反的水平力F1、F2,且F1>F2,则:A .弹簧秤示数不可能为F1B .若撤去F1,则物体1的加速度一定减小C .若撤去F2,弹簧称的示数一定增大D .若撤去F2,弹簧称的示数一定减小即正确答案为A 、D【点评】对于轻弹簧处于加速状态时要运用整体和隔离分析,再用牛顿第二定律列方程推出表达式进行比较讨论得出答案。
若是平衡时弹簧产生的弹力和外力大小相等。
主要看能使弹簧发生形变的力就能分析出弹簧的弹力。
高考二轮物理复习专题:弹簧问题(附答案)

专题弹簧类问题(附参考答案)高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
2025届高考物理一轮复习课件:滑块-弹簧模型

确;4 s到12 s的时间内弹簧对AC的冲量为I弹=(mA+mC)(v2-v1)
=6×(-8)N·
s=-48 N·
s,12 s时B的速度为零,4 s到12 s的时间
内,对B由动量定理可得-I弹+I墙=0,得I墙=I弹=-48 N·
s,即大小
为48 N·
s,方向向左,故B错误;
目录
高中总复习·物理
物块B离开墙壁后,当B的速度与AC的速度相等时,由动量守恒定律
1
1
1
2
2
mBv4, (mA+mC)1 = (mA+mC)3 + mB4 2 ,解得v4=6
2
2
2
m/s,
故D正确。
目录
高中总复习·物理
目录
高中总复习·物理
(多选)如图所示,水平面内有两个光滑平行导
轨,导轨足够长,其间距为L。质量分别为m、2m
的环A、B套在导轨上,两环之间连接一轻弹簧,
3
2
2
2
m1-m2v0
解得 v1′=
m1+m2
2m1v0
v2′=
.
m1+m2
目录
高中总复习·物理
【典例4】
(多选)如图甲所示,物块A、B的质量分别是mA=4.0
kg和mB=2.0 kg,用轻弹簧拴接,放在光滑的水平地面上,物块B右侧
与竖直墙相接触。另有一物块C在t=0时刻以一定速度向右运动,在t
2
3
1
为L'= L+ L=2L=
,故弹簧与导轨间夹角为30°,故C正确;
2
2
sin30°
目录
高中总复习·物理
3
开始时,弹簧长度为L,而原长为 L,故弹簧压缩了 ,弹性势能记为
弹簧物理知识点总结高中

弹簧物理知识点总结高中一、弹簧的基本性质1.1 弹簧的形变与弹性力当外力作用于弹簧上时,会导致弹簧产生形变。
这种形变可以是拉伸或压缩,形变的大小和外力的大小成正比,这就是胡克定律的内容。
胡克定律可以用数学公式表示为:\[ F = kx \]其中,F 是外力的大小,k 是弹簧的弹性系数,x 是弹簧的形变。
在绝热过程中,胡克定律成立。
当外力消失时,弹簧会恢复到原来的状态,这是弹性力的作用。
弹性力的大小也可以用胡克定律来表示。
1.2 弹簧的应变能当弹簧发生形变时,产生了弹性力,这就说明了弹簧存储了一定的弹性势能。
对于一个形变为 x 处的弹簧,其弹性势能可以表示为:\[ U = \frac{1}{2}kx^2 \]这就是弹簧的应变能。
这个应变能是随着弹簧的形变而增加的,当外力消失时,这个应变能就会全部转化为机械能,这就是为什么我们可以利用弹簧来做一些机械装置。
二、弹簧振子2.1 单自由度弹簧振子单自由度弹簧振子是一种最简单的振动形式,它可以用于描述弹簧振动的一般规律。
其运动方程可以表示为:\[ m \frac{d^2x}{dt^2} + kx = 0 \]其中 m 是弹簧的质量,k 是弹簧的弹性系数,x 是弹簧的形变。
这个方程描述了单自由度弹簧振子的运动规律,它是一个二阶常系数线性微分方程。
2.2 多自由度弹簧振子对于多自由度的弹簧振子来说,其运动比较复杂。
多自由度弹簧振子的运动方程是一组偏微分方程,并且是非线性的。
对于这种情况,我们需要用到一些高级的数学工具和物理方法来进行分析。
2.3 阻尼弹簧振子阻尼弹簧振子是一种特殊的振动形式,它与阻尼振动有一些相似之处。
对于阻尼弹簧振子来说,其运动方程可以表示为:\[ m \frac{d^2x}{dt^2} + c \frac{dx}{dt} + kx = 0 \]其中 c 是阻尼系数。
阻尼弹簧振子的振动会逐渐减弱,最终停止振动。
这是因为阻尼的作用不断将机械能转化为热能。
高中物理弹力练习题

高中物理弹力练习题1. 弹簧振子问题在弹簧振子问题中,弹簧的弹力是恢复振动的力。
假设一个质点以振幅A在弹簧上振动,其角频率为ω。
那么该质点的振动方程可以表示为:x = A * sin(ωt + φ)其中x表示质点的位移,t表示时间,φ是一个相位常数。
2. 弹簧串联问题当多个弹簧被串联在一起时,它们会共同产生一个合力。
根据胡克定律,合力可以用下式计算:F = k * Δx其中F是合力,k是串联弹簧的弹性系数,Δx表示弹簧的伸长量。
3. 弹簧并联问题当多个弹簧并联在一起时,它们的伸长量将相等。
因此,并联弹簧的等效弹性系数可以通过下式计算:1/k = 1/k₁ + 1/k₂ + ... + 1/kₙ其中k₁、k₂、...、kₙ是每个弹簧的弹性系数。
4. 弹簧势能问题弹簧具有弹性,当被拉伸或压缩时,会储存弹性势能。
根据下式可以计算弹簧的势能:Ep = (1/2) * k * x²其中Ep表示弹簧的势能,k是弹簧的弹性系数,x表示弹簧的伸长量或压缩量。
5. 弹簧振子的能量问题在弹簧振子问题中,质点同时具有动能和势能。
根据机械能守恒定律,质点的总能量保持不变:Ec + Ep = constant其中Ec表示质点的动能,Ep表示质点的势能。
6. 弹性碰撞问题在弹性碰撞问题中,两个物体碰撞后会发生弹性变形并反弹开来。
根据动量守恒定律和动能守恒定律,可以解决该问题。
动量守恒定律可以表示为:m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'其中m₁和m₂分别表示两个物体的质量,v₁和v₂为碰撞前的速度,v₁'和v₂'为碰撞后的速度。
7. 牛顿第三定律牛顿第三定律指出:作用力与反作用力大小相等、方向相反、作用在不同物体上。
在弹力问题中,一个物体施加的弹力与另一个物体所受的弹力相等且方向相反。
总结:高中物理中的弹力练习题可以涉及弹簧振子、弹簧串联和并联、弹簧势能、弹簧振子的能量、弹性碰撞等问题。
高中物理弹簧问题分类全解析

高中物理弹簧问题分类全解析一、有关弹簧题目类型 1、平衡类问题 2、突变类问题3、简谐运动型弹簧问题4、功能关系型弹簧问题5、碰撞型弹簧问题6、综合类弹簧问题 二、分类解析 1、平衡类问题例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k 1B.m2g/k 2C.m1g/k 2D.m2g/k 2解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即当上面木块离开弹簧时,受重力和弹力,则【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。
细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。
物体静止在斜面上,弹簧秤的示数为4.9N 。
关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。
则1m 所受支持力N 和摩擦力f 正确的是ACA .12sin N m g m g F θ=+-B .12cos N m g m g F θ=+-C .cos f F θ=D .sin f F θ=2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。
若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少?解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功),W 弹=-mgx -W F =-4.5J所以弹性势能增加4.5焦耳点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功2、突变类问题例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求(1)烧断细绳瞬间,小球的加速度(2)在C处弹簧与小球脱开瞬间,小球的加速度解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2,解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得F AC =mgsinθ2/sin(θ1+θ2)则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。
高中物理弹簧问题总结

高中物理弹簧问题总结弹簧是高中物理中一个重要的概念,也是一个常见的物理实验中的元件。
学习弹簧的性质和应用能够帮助我们更好地理解和应用力学以及弹性力学的原理。
下面是对高中物理弹簧问题的总结:一、弹簧的性质:1. 弹簧的弹性特性:弹簧具有恢复形变的能力,当受到外力时会发生形变,但当外力消失时能够恢复到初始形态。
2. 弹簧的刚性:在一定范围内,弹簧所受的力与形变成正比,即服从胡克定律。
3. 弹簧的弹性系数:弹簧的刚度可以用弹性系数来描述,即弹簧的劲度系数。
弹簧劲度系数越大,弹簧越难被拉伸或压缩。
二、胡克定律和弹性势能:1. 胡克定律:胡克定律描述了弹簧受力和形变之间的关系,也称为弹性力的大小与伸长或压缩的长度成正比。
2. 弹性势能:弹性势能是指弹簧在形变过程中储存的能量,储存的能量正比于弹簧劲度系数和形变量的平方。
三、串联和并联弹簧:1. 串联弹簧:将多个弹簧依次连接在一起,使之共同受力。
串联弹簧的总劲度系数等于各弹簧劲度系数的倒数之和。
2. 并联弹簧:将多个弹簧同时连接到相同的两个点上,使之同时受力。
并联弹簧的总劲度系数等于各弹簧劲度系数的和。
四、弹簧振子:1. 单摆弹簧振子:在一个质点下挂一根弹簧,使其成为一个振动系统。
单摆弹簧振子的周期与振子的长度和弹簧的劲度系数有关。
2. 弹簧振子的周期:弹簧振子的周期与振动的物体质量和弹簧的劲度系数成反比,与振动物体的下挂点到弹簧上竖直线的距离无关。
五、弹簧天平和弹簧测力计:1. 弹簧天平:弹簧天平是利用胡克定律实现测量物体质量的工具。
根据物体的质量对弹簧产生的形变,可以推算出物体的质量。
2. 弹簧测力计:弹簧测力计是一种测量物体受力的仪器,根据胡克定律以及弹簧劲度系数可以推算出物体所受的力。
弹簧问题是高中物理中经常出现的问题之一,理解了弹簧的性质和应用,能够更好地解决相关的物理计算题目。
同时,对于实际生活中的弹簧应用也有很大的参考价值,比如弹簧减震器、弹簧秤等等。
高中物理弹簧问题总结

高中物理弹簧问题总结
弹簧是物理学中一个重要的概念,它在高中物理课程中也是一个常见的考点。
弹簧问题涉及到弹簧的弹性系数、弹簧的变形、弹簧振动等内容,需要我们掌握一定的知识和技巧才能解决。
在学习和应用弹簧问题时,我们需要注意以下几个方面的内容。
首先,我们需要了解弹簧的基本性质。
弹簧是一种具有弹性的物体,在受到外力作用时会发生形变,当外力消失时又会恢复原状。
弹簧的弹性系数是衡量其弹性的重要参数,通常用符号k表示。
弹簧的弹性系数越大,弹簧的变形就越小,弹力也就越大。
掌握这些基本概念对于解决弹簧问题至关重要。
其次,我们需要掌握弹簧的变形规律。
当外力作用于弹簧上时,弹簧会发生形变,根据胡克定律,弹簧的形变与作用力成正比。
这一点在解决弹簧问题时经常会用到,我们需要理解并熟练运用这一定律。
另外,弹簧的振动问题也是物理学中的重要内容。
弹簧振动不仅在物理学中有着重要的应用,而且在工程和生活中也有着广泛的应用。
了解弹簧的振动规律,掌握振动的周期、频率、振幅等概念,对于解决相关问题至关重要。
最后,在解决弹簧问题时,我们需要灵活运用所学知识,结合具体情况进行分析。
有时候,弹簧问题可能会和其他物理知识相结合,需要我们综合运用所学知识进行解决。
总之,高中物理弹簧问题涉及的内容较为复杂,需要我们对弹簧的基本性质、变形规律、振动规律等有着深入的理解和掌握。
只有在掌握了这些基本知识的基础上,我们才能更好地解决和应用弹簧问题。
希望同学们能够在学习物理的过程中,认真对待弹簧问题,多加练习,提高自己的解决问题的能力。
2025人教版高中物理必修一知识点-专题进阶课六 弹簧模型

专题进阶课六弹簧模型核心归纳1.胡克定律(1)内容:在弹性限度内,弹簧发生弹性形变时,弹力F的大小跟伸长或缩短的长度x 成正比。
(2)表达式:F=kx①k为劲度系数,由本身的材料、长度、绕圈横截面积等决定。
②x为形变量,即弹簧伸缩后的长度L与原长L0的差:x=|L-L0|,不能将x当作弹簧的长度L。
2.涉及弹簧的瞬时性问题(1)轻弹簧、橡皮条模型的形变量大,形变恢复需要较长时间,在瞬时性问题中,它们的自由端连接有物体时其弹力的大小不能突变,往往可以看成是不变的。
提醒:若弹簧只有一端有附着物时弹力突变为零。
(2)几类瞬时性问题比较:类别形变特点弹力方向能否突变橡皮条明显沿橡皮条收缩方向不能轻弹簧明显沿弹簧轴线方向不能轻绳微小沿绳收缩方向能轻杆微小不确定能3.轻弹簧连接体模型(1)同条件同加速度轻弹簧连接体模型的动力学计算问题:力的质量正比例分配原则法:一起加速运动的物体,物体间的相互作用力按质量正比例分配。
(2)轻弹簧连接体模型接触与脱离的临界极值问题刚好脱离时物体间的弹力恰好为零,两物体此时的速度、加速度均相同。
典题例析角度1涉及弹簧的牛顿第二定律【典例1】(2024·淄博高一检测)质量均为5kg的物块1、2放在水平面上并用轻质弹簧测力计相连,如图所示,物块1的表面光滑,物块2与地面间的动摩擦因数为0.2,整个系统在水平拉力F作用下向左做匀加速运动,此时弹簧测力计的示数为15N;若拉力变为2F,其他条件不变,重力加速度大小取g=10m/s2,则此时弹簧测力计的示数为()A.30NB.25NC.20ND.15N【解析】选B。
当拉力F作用时,对整体,加速度a=-B21+2,对物块2:F T-μm2g=m2a,F T=15N,联立得F=20N;若拉力变为2F,对整体,加速度a1=2-B21+2=3m/s2,对物块2:F T'-μm2g=m2a1,代入数据得F T'=25N,故选B。
高中物理弹力知识点

高中物理弹力知识点
弹力是指物体在受到外力作用后产生的反作用力。
以下是高中物理中与弹力相关的知
识点:
1. 弹簧定律:弹簧的伸长或压缩与所加力成正比,并与变形量的方向相反。
即弹力与
伸长或压缩的长度成正比。
2. 弹簧系数:弹簧系数(弹性系数)是弹簧质地决定的,表示单位长度的变形所需的
力大小。
它的倒数叫做弹性系数或弹性模量。
3. 弹性变形和塑性变形:物体的弹性变形是在外力作用下,物体发生的伸长或压缩,
当外力撤去后能恢复原来的形状。
而塑性变形则是在外力作用下,物体发生的永久性
变形。
4. 弹性能量:物体在弹性变形过程中所具有的能量,称为弹性能。
弹性能与弹簧系数
和变形量的平方成正比。
5. 弹簧势能和弹簧定数:弹簧势能是指弹簧由于被拉伸或压缩而具有的能量。
弹簧定
数是根据弹簧的弹性系数和长度计算得出。
6. 弹簧振子:由于弹簧的弹性特点,可以构成一种简谐振动的系统,称为弹簧振子。
弹簧振子的周期与振幅有关,但与质量无关。
7. 碰撞和弹力:在碰撞过程中,物体之间会产生弹力作用。
弹力的大小与物体的质量、碰撞的速度以及碰撞的角度有关。
8. 系数恢复力:当两个物体发生弹性碰撞时,恢复力与两个物体的质量、碰撞的速度
和碰撞的角度有关。
以上是高中物理弹力的主要知识点,希望能对你有所帮助。
高中物理弹簧问题专题

弹簧类问题的研究一、命题趋向与考点轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,引起足够重视。
二、知识概要与方法㈠弹簧问题的处理办法1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k = —(21kx 22 —21kx 12),弹力的功等于弹性势能增量的负值。
弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
㈡弹簧类问题的分类1.弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2.弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f =kx 或△f =k △x 来求解。
3.弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4.弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。
高考物理含弹簧的物理模型专题分析(答案)

含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当的比重,高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等。
几乎贯穿整个力学的知识体系。
对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件。
因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题者的亲睐。
题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量相关的弹簧问题。
1.静力学中的弹簧问题(1)胡克定律:F =kx ,ΔF =k ·Δx(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力。
例题1:一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2。
弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为CA .2121F F l l B .2121F F l l C .2121F F l l D .2121F F l l 例题2:如图所示,两木块A 、B 的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,两弹簧分别连接A 、B ,整个系统处于平衡状态。
现缓慢向上提木块A ,直到下面的弹簧对地面的压力恰好为零,在此过程中A 和B 的重力势能共增加了A .212221)(k k g m m B .)(2)(212221k k gm m C .)()(21212221k k k k g m m D .22221)(k g m m +12211)(k gm m m 解析:取A 、B 以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A 的力F 恰好为:F =(m 1+m 2)g设这一过程中上面和下面的弹簧分别伸长x 1、x 2,由胡克定律得:x 1=121)(k g m m ,x 2=221)(k g m m 故A 、B 增加的重力势能共为:ΔE P =m 1g(x 1+x 2)+m 2gx 2=22221)(k g m m +12211)(k gm m m 答案:D【点评】计算上面弹簧的伸长量时,较多的同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx =kF进行计算更快捷方便。
高中物理 力学 综合 弹簧小专题 含答案

弹簧小专题(一)1.如图所示,在倾角为θ的光滑固定斜面上,劲度系数分别为k1、k2的两个轻弹簧平行于斜面悬挂着,k1在上 k2在下,两弹簧之间有一质量为m1的重物,现用力F(未知)沿斜面向上缓慢推动m2,当两弹簧的总长等于两弹簧的原长之和时,求:(1)k1轻弹簧的形变量(2)m1上移的距离(3)推力F的大小.考点:共点力平衡的条件及其应用;力的合成与分解的运用.专题:共点力作用下物体平衡专题.分析:(1)由题,两弹簧的总长等于两弹簧的原长之和,则知,k1的伸长量与k2的压缩量相等,由m1重物平衡可求出k1轻弹簧的形变量.(2)先求出k1原来的伸长量,再由几何关系求出m1上移的距离.(3)根据两弹簧的形变量相等,由胡克定律列方程,求出F.2.如图所示,倾角为θ的光滑斜面ABC放在水平面上,劲度系数分别为k1、k2的两个轻弹簧沿斜面悬挂着,两弹簧之间有一质量为m1的重物,最下端挂一质量为m2的重物,此时两重物处于平衡状态,现把斜面ABC 绕A点缓慢地顺时针旋转90°后,重新达到平衡.试求:m1、m2沿斜面各移动的距离.考点:共点力平衡的条件及其应用;力的合成与分解的运用;胡克定律.专题:共点力作用下物体平衡专题.分析:在旋转前后,物体均处于平衡状态,则共点力的平衡条件可得出物体弹簧弹力,由胡克定律可求得弹簧的伸长量,则可得出旋转前后的距离.3.如图所示,在倾角为θ的光滑斜面上放有两块小木块,劲度系数为k1的轻质弹簧两端分别与质量为m1和m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在挡板上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢沿斜面向上提,直到下面那个弹簧的下端刚脱离挡板.在此过程中,下列说法正确的是()考点:共点力平衡的条件及其应用;力的合成与分解的运用.专题:共点力作用下物体平衡专题.分析:先根据平衡条件和胡克定律求出原来两根弹簧的压缩量.当下面的弹簧刚脱离挡板时,再求出弹簧k1的伸长量,由几何关系即可求出两物块上升的距离.解答:解:未施力将物块1缓慢上提时,根据平衡条件和胡克定律得两根弹簧的压缩量分别为:4.如图所示,倾角为θ的固定光滑斜面底部有一直斜面的固定档板C.劲度系数为k1的轻弹簧两端分别与质量均为m的物体A和B连接,劲度系数为k2的轻弹簧一端与A连接,另一端与一轻质小桶P相连,跨过光滑的滑轮Q放在斜面上,B靠在档板C处,A和B均静止.现缓慢地向小桶P内加入细砂,当B与档板C间挤压力恰好为零时,小桶P内所加入的细砂质量及小桶下降的距离分别为()5.如图所示,在倾角为θ的光滑斜劈P的斜面上有两个用轻质弹簧相连的物块A、B,C为一垂直固定在斜面上的挡板.A、B质量均为m,斜面连同挡板的质量为M,弹簧的劲度系数为k,系统静止于光滑水平面.现开始用一水平恒力F作用于P,(重力加速度为g)下列说法中正确的是()考点:牛顿第二定律;力的合成与分解的运用;胡克定律.专题:牛顿运动定律综合专题.分析:先对斜面体和整体受力分析,根据牛顿第二定律求解出加速度,再分别多次对物体A、B或AB整体受力分析,然后根据牛顿第二定律,运用合成法列式分析求解.解答:解:A、F=0时,对物体A、B整体受力分析,受重力、斜面的支持力N1和挡板的支持力N2,根据共点力平衡条件,沿平行斜面方向,有N2-(2m)gsinθ=0,故正确;B、开始时,系统静止于水平面上,合外力等于零,当力F从零开始缓慢增大时,系统所受合外力就是水平外力F,系统产生的水平加速度缓慢增大,物块A也产生水平向左的加速度,支持力的水平分力与弹簧弹力的水平分力不再平衡,二者水平合力向左,必有弹力减小,因此,力F从零开始增加时,A就相对斜面向上滑行,选项B错误;C、物体B恰好离开挡板C的临界情况是物体B对挡板无压力,此时,整体向左加速运动,对物体B受力分析,受重力、支持力、弹簧的拉力,如图考点:共点力平衡的条件及其应用;力的合成与分解的运用;胡克定律.专题:共点力作用下物体平衡专题.分析:当两个弹簧的总长度等于两弹簧原长之和时,上边弹簧的伸长量与下边弹簧的压缩量相等.对m1受力分析,有m1g=k1x+k2x,得出伸长量和压缩量x.对物体m2受力分析有:F N=m2g+k2x,再结合牛顿第三定律,求出物体对平板的压力F N′.解答:解:当两个弹簧的总长度等于两弹簧原长之和时,下面弹簧的压缩量应等于上面弹簧的伸长量,设为x,点评:求出本题的关键知道当两个弹簧的总长度等于两弹簧原长之和时,上边弹簧的伸长量与下边弹簧的压缩量相等.7.已知在弹性限度内,弹簧的伸长量△L与受到的拉力F成正比,用公式F=k•△L表示,其中k为弹簧的劲度系数(k为一常数).现有两个轻弹簧L1和L2,它们的劲度系数分别为k1和k2,且k1=3k2,现按如图所示方式用它们吊起滑轮和重物,如滑轮和重物的重力均为G,则两弹簧的伸长量之比△L1:△L2为()考点:探究弹簧测力计原理的实验.专题:信息给予题.分析:分析图中的装置可知,滑轮两侧的拉力均为G,再加上滑轮的重力也等于G,所以,顶端的弹簧承担的拉力为3G,将这一关系与劲度系数的关系都代入公式中,就可以求出弹簧伸长量之比.解答:解:读图分析可知,底端弹簧所受拉力为G,顶端弹簧所受拉力为3G,故选A.点评:正确分析两根弹簧所受拉力的情况是解决此题的关键,在得出拉力关系、劲度系数关系的基础上,代入公式即可顺利求取弹簧伸长量的比.8.如图所示,在水平地面上固定一倾角为θ的光滑绝缘斜面,斜面处于电场强度大小为E、方向沿斜面向下的匀强电场中.一劲度系数为k的绝缘轻质弹簧的一端固定在斜面底端,整根弹簧处于自然状态.一质量为m、带电量为q(q>0)的滑块从距离弹簧上端为S处静止释放,滑块在运动过程中电量保持不变.设滑块与弹簧接触过程没有机械能损失,弹簧始终处在弹性限度内,重力加速度大小为g.则()A.当滑块的速度最大时,弹簧的弹性势能最大B.当滑块的速度最大时,系统的机械能最大C.当滑块的加速度最大时,弹簧的弹性势能最大D.当滑块的加速度最大时,系统的机械能最大考点:机械能守恒定律;弹性势能.专题:机械能守恒定律应用专题.分析:滑块向下先做加速度减小的加速运动,然后做加速度增大的减速运动,到达最低点时,速度为0,此时加速度最大.在整个过程中,有动能、重力势能、弹性势能、电势能发生相互转化,动能、重力势能和弹性势能统称为系统的机械能,当电势能减小最多时,系统的机械能最大.解答:解:A、滑块向下先做加速度逐渐减小的加速运动,当加速度为0时,速度最大,然后做加速度逐渐增大的减速运动,到达最低点,速度减小到0,此时加速度最大,弹簧的弹性势能最大.故A错误,C正确. B、动能、重力势能和弹性势能统称为系统的机械能,根据能量守恒定律,电势能减小,系统的机械能增大,当滑块运动到最低点时,电场力做的正功最多,即电势能减小最多,此时系统机械能最大.故B错误,D正确.故选CD.点评:解决本题的关键知道滑块的运动是向下先做加速度减小的加速运动,然后做加速度增大的减速运动,到达最低点时,速度为0.知道在最低点时弹簧的弹性势能最大.在整个过程中,有动能、重力势能、弹性势能、电势能发生相互转化,当电势能减小最多时,系统的机械能最大.9.考点:牛顿第二定律;牛顿运动定律的应用-连接体.专题:牛顿运动定律综合专题.分析:(1)对小滑块受力分析,受重力、支持力和拉力;再根据牛顿第二定律求出合力的大小和方向,然后运用正交分解法列式求解;(2)小滑块对斜面体没有压力,则斜面体对小滑块也没有支持力,小滑块受到重力和拉力,物体的加速度水平向右,故合力水平向右,运用平行四边形定则求解合力,再根据牛顿第二定律求解加速度;(3)弹簧保持原长,弹力为零,小滑块受到重力和支持力,物体沿水平方向运动,加速度水平向左,合力水平向左,运用平行四边形定则求解合力,再根据牛顿第二定律求解加速度的大小.解答:解:(1)对小滑块受力分析,受重力、支持力和拉力,如图(3)弹簧保持原长,弹力为零,小滑块受到重力和支持力,物体沿水平方向运动,加速度水平向左,合力水平向左,运用平行四边形定则,如图点评:本题关键对小滑块受力分析后,根据牛顿第二定律,运用正交分解法或合成法列式求解.(1)求滑块从静止释放到与弹簧上端接触瞬间所经历的时间t1;(2)若滑块在沿斜面向下运动的整个过程中最大速度大小为v m,求滑块从静止释放到速度大小为v m的过程中弹簧的弹力所做的功W;(3)从滑块静止释放瞬间开始计时,请在乙图中画出滑块在沿斜面向下运动的整个过程中速度与时间关系v-t图象.图中横坐标轴上的t1、t2及t3分别表示滑块第一次与弹簧上端接触、第一次速度达到最大值及第一次速度减为零的时刻,纵坐标轴上的v1为滑块在t1时刻的速度大小,v m是题中所指的物理量.(本小题不要求写出计算过程。
高中物理复习——弹簧专题

一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型 . 由于 “轻弹簧” 质量不计, 选取任意小段弹簧, 其两端所受张力一定平衡, 否则, 这小段弹簧的加速度会无限大 . 故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力. 弹簧一端受力为 F ,另一端受力一定也为 F , 若是弹簧秤,则弹簧秤示数为F .【例 1】如图 3-7-1 所示,一个弹簧秤放在光滑的水平面上,外壳质量 m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力 F 1 和称外壳上的力 F 2 ,且 F 1 F 2 ,则弹簧秤沿水平方向的加 图 3-7-1速度为 ,弹簧秤的读数为.【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得:F 1 F 1 F 2F 2 ma ,即 am仅以轻质弹簧为研究对象,则弹簧两端的受力都F 1 ,所以弹簧秤的读数为 F 1 .说明 : F 2 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的 .F 1 F 2F 1【答案】 am二、质量不可忽略的弹簧【例 2】如图 3-7-2 所示,一质量为 M 、长为 L 的均质弹簧平放在光滑的水平面 , 在弹簧右端施加一水平力 F 使弹簧向右做加速运动 . 试分析弹簧上各部分的受力情况.图 3-7-2【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度aF , 取弹簧左部任意长度 x 为研究对象,设其质量为m 得弹簧上的弹力M为:T xmax F xMMFLL【答案】 xFT xL ( 弹簧弹力瞬时 ) 问题三、 弹簧的弹力不能突变弹簧 ( 尤其是软质弹簧 ) 弹力与弹簧的形变量有关, 由于弹簧两端一般与物体连接, 因弹 簧形变过程需要一段时间, 其长度变化不能在瞬间完成, 因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变 .【例 3】如图 3-7-3 所示,木块 A 与 B 用轻弹簧相连,竖直放在木块 C 上,三 者静置于地面, A 、B 、C 的质量之比是 1:2:3. 设所有接触面都光滑,当沿水平方向迅速抽出木块 C 的瞬时,木块 A 和 B 的加速度分别是a A = 与 a B =【解析】由题意可设A 、B 、C 的质量分别为 m 、2m 、3m ,以木块 A 为研究对象,抽出木块 C 前,木块 A 受到重力和弹力一对平衡力,抽出木块 C 的瞬时,木块 A 受到重力和弹力的大小和方向均不变,故木块 A 的瞬时加速度为 0. 以木块图 3-7-3 、 B 为研究对象,由平衡条件可知,木块C 对木块 B 的作用力 F CB 3mg . A以木块 B 为研究对象,木块 B 受到重力、弹力和 F CB 三力平衡,抽出木块 C 的瞬时,木 块 B 受到重力和弹力的大小和方向均不变, F CB 瞬时变为0,故木块 C 的瞬时合外力为 3mg ,竖直向下,瞬时加速度为 1.5g .【答案】 0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例 4】如图 3-7-4 所示,质量为 m 的小球用水平弹簧连接,并用倾角为 300 的光滑木板 AB 托住,使小球恰好处于静止状态 .当 AB突然向下撤离的瞬间,小球的加速度为 ( )A. 0图 3-7-4B. 大小为2 3g,方向竖直向下3C.大小为2 3g,方向垂直于木板向下3D. 大小为2 3g ,方向水平向右3【解析】末撤离木板前,小球受重力 G 、弹簧拉力 F 、木板支持力F N作用而平衡,如图3-7-5所示,有F N mg .cos撤离木板的瞬间,重力G 和弹力 F 保持不变 ( 弹簧弹力不能突变) ,而木板支持力F N立即消失 , 小球所受 G 和 F 的合力大小等于撤之前的F N(三力平衡),方向与 F N相反,故加速度方向为垂直木板向下,大小图 3-7-5F N 为 a g 2 3gm cos3【答案】 C.四、弹簧长度的变化问题设劲度系数为 k 的弹簧受到的压力为F1时压缩量为x1,弹簧受到的拉力为F2时伸长量为 x2,此时的“ - ”号表示弹簧被压缩 .若弹簧受力由压力F1变为拉力 F2,弹簧长度将由压缩量x1变为伸长量 x2,长度增加量为x1 x2.由胡克定律有:F1k ( x1 ) , F2kx2.则: F2( F1) kx2( kx1 ) ,即 F k x说明 : 弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x 表示的物理意义是弹簧长度的改变量,并不是形变量 .【例 5】如图 3-7-6所示,劲度系数为 k1的轻质弹簧两端分别与质量为m1、m2的物块1、2 拴接,劲度系数为k2的轻质弹簧上端与物块 2 拴接,下端压在桌面上 ( 不拴接 ) ,整个系统处于平衡状态. 现将物块 1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面. 在此过程中,物块 2的重力势能增加了,物块 1 的重力势能增加了.【解析】由题意可知,弹簧k2长度的增加量就是物块 2 的高度增加量,图 3-7-6弹簧 k2长度的增加量与弹簧k1长度的增加量之和就是物块 1 的高度增加量.由物体的受力平衡可知,弹簧k2的弹力将由原来的压力(m1m2 )g 变为0,弹簧 k1的弹力将由原来的压力m1 g 变为拉力 m2 g ,弹力的改变量也为(m1m2 ) g .所以 k1、 k2弹簧的伸长量分别为 : 1(m1m2 ) g 和1(m1m2 ) g k k21故物块 2 的重力势能增加了1m2 (m1m2 ) g2,物块 1 的重力势能增加了(11)m1( m1 m2 ) g2 k2k1k2【答案】1m (m m ) g2(11)m (m m) g2212k1k2112k2五、弹簧形变量可以代表物体的位移x 亦即物体弹簧弹力满足胡克定律F kx ,其中 x 为弹簧的形变量,两端与物体相连时的位移,因此弹簧可以与运动学知识结合起来编成习题.【例 6】如图 3-7-7 所示,在倾角为的光滑斜面上有两个用轻质弹簧相连接的物块A、B ,其质量分别为m A、m B,弹簧的劲度系数为k , C为一固定挡板,系统处于静止状态,现开始用一恒力F沿斜面方向拉 A使之向上运动,求 B 刚要离开C时 A 的加速度a和从开始到此时 A 的位移 d ( 重力加速度为 g ).【 解 析 】 系 统 静 止 时 , 设 弹 簧 压 缩 量 为 x 1 , 弹 簧 弹 力 为 F 1 , 分 析 A 受 力 可 知 :F 1 kx 1 m A g sin解得 : x 1 m A g sink在恒力 F 作用下物体 A 向上加速运动时, 弹簧由压缩逐渐变为伸长状态 . 设物体 B 刚要离开挡板 C 时弹簧的伸长量为x 2 ,分析物体 B 的受力有 : kx 2 m B g sin, 解得 x 2m B g sink设此时物体 A 的加速度为 a ,由牛顿第二定律有 : Fm A g sinkx 2m A a解得 : aF (m A m B )g sinm A因物体 A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有 d x 1x 2 ,即(m A m B )g sindk【答案】 d (m A m B )g sink六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应 . 一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量 x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势 能也是与原长位置对应的形变量相关 . 以此来分析计算物体运动状态的可能变化 . 结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,往往能达到事半功倍的 效果 . 此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简 谐运动 . 结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动 过程 .【例 7】如图 3-7-8 所示,质量为 m 的物体 A 用一轻弹簧与下方地面上质量也 为 m 的物体 B 相连,开始时 A 和 B 均处于静止状态, 此时弹簧压缩量为x 0 ,一条不可伸长的轻绳绕过轻滑轮, 一端连接物体 A 、另一端 C 握在手中, 各 段绳均刚好处于伸直状态,物体 A 上方的一段绳子沿竖直方向且足够长 . 现在 C 端施加水平恒力 F 使物体 A 从静止开始向上运动 .( 整个过程弹簧始终处在弹性限度以内 ).(1) 如果在 C 端所施加的恒力大小为 3mg ,则在物体 B 刚要离开地面时物体 图 3-7-8 A 的速度为多大 ? (2) 若将物体 B 的质量增加到 2m ,为了保证运动中物体 B 始终不离开地面,则 F 最大不超 过多少 ? 【解析】 由题意可知,弹簧开始的压缩量x 0 mg ,k物体 B 刚要离开地面时弹簧的伸长量也是x 0mg .k(1) 若 F3mg , 在弹簧伸长到 x 0 时,物体 B 离开地面, 此时弹簧弹性势能与施力前相等,F所做的功等于物体 A 增加的动能及重力势能的和 . 即: F 2x mg2x 01mv 2 得 : v 2 2gx 0(2) 所施加的力为恒力 2F 0 时,物体 B 不离开地面,类比竖直弹簧振子,物体 A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力 . 故物体 A 做简谐运动 .在最低点有: F 0mg kx 0 ma 1 , 式中 k 为弹簧劲度系数, a 1 为在最低点物体 A 的加速度 .在 最 高 点 , 物 体 B 恰 好 不 离 开 地 面 , 此 时 弹 簧 被 拉 伸 , 伸 长 量 为 2x 0 , 则 :k (2 x 0 ) mg F 0ma 2而 kx 0 mg ,简谐运动在上、下振幅处a 1a 2 ,解得:F 03mg2也可以利用简谐运动的平衡位置求恒定拉力F 0 . 物体 A 做简谐运动的最低点压缩量为x 0 ,最高点伸长量为 2x 0 ,则上下运动中点为平衡位置,即伸长量为所在处. 由 mg kx 0F 0,解2得 : F 03mg. 23mg【答案】2 2gx 02说明 : 区别原长位置与平衡位置 . 和原长位置对应的形变量与弹力大小、方向、弹性势能相 关, 和平衡位置对应的位移量与回复大小、方向、速度、加速度相关 . 八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律 综合应用 , 我们用公式 E P 1kx 2 计算弹簧势能, 弹簧在相等形变量时所具有的弹性势能相等2一般是考试热点 . 弹簧弹力做功等于弹性势能的减少量 . 弹簧的弹力做功是变力做功,一般可以用以下四种 方法求解 :(1) 因该变力为线性变化,可以先求平均力,再用功的定义进行计算 ;(2) 利用 F x 图线所包围的面积大小求解 ;(3) 用微元法计算每一小段位移做功,再累加求和;(4) 根据动能定理、能量转化和守恒定律求解.由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解 . 特别是涉及两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消或替代求解.【例 10】如图 3-7-13所示,挡板 P 固定在足够高的水平桌面上,物块 A 和 B 大小可忽略,它们分别带有Q A 和 Q B 的电荷量,质量分别为 m A 和 m B . 两物块由绝缘的轻弹簧相连,一个不可伸长的图 3-7-13 轻绳跨过滑轮,一端与 B 连接,另一端连接轻质小钩 . 整个装置处 于场强为 E 、方向水平向左的匀强电场中, A 、 B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及 A 、 B 间的库仑力 , A 、 B 所带电荷量保持不变, B 不会碰到滑轮 .(1) 若在小钩上挂质量为 M 的物块 C 并由静止释放,可使物块 A 对挡板 P 的压力恰为零,但不会离开 P , 求物块 C 下降的最大距离 h .(2) 若 C 的质量为 2M , 则当 A 刚离开挡板 P 时, B 的速度多大 ?【解析】 通过物理过程的分析可知,当物块 A 刚离开挡板 P 时,弹力恰好与 A 所受电场力平衡,弹簧伸长量一定,前后两次改变物块 C 质量,在第 (2)问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解.设开始时弹簧压缩量为x 1 ,由平衡条件 kx 1Q B E , 可得 x 1 Q B E①k设当 A 刚离开挡板时弹簧的伸长量为x 2 , 由 kx 2Q A E ,可得 :Q A E ②x 2故 C 下降的最大距离为 :kh x 1 x 2 ③ 由①②③三式可得 : hE(Q A Q B )④k(2) 由能量守恒定律可知,物块C 下落过程中, C 重力势能的减少量等于物块 B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和.当 C 的质量为 M 时,有: MgH Q B Eh E 弹 ⑤当C 的质量为2M 时,设A 刚 离 开 挡 板 时 B 的 速 度 为 v , 则 有 :2MgHQ B EhE 弹1(2M m B )v 2 ⑥2由④⑤⑥三式可得A 刚离开 P 时B 的速度为 :2MgE (Q A Q B ) ⑦vk (2 M m B )【答案】( 1)hE ( AB ) (2) v2MgE (Q AQ B )k QQk (2 M m B )【例 11】如图 3-7-14 所示,质量为 m 1 的物体 A 经一轻质弹簧与下方地面上的质量为 m 2 的物体 B 相连,弹簧的劲度系数为 k , 物体 A 、B 都处于静止状态 . 一不可伸长的轻绳一端绕过轻滑轮连接物体A ,另一端连接一轻挂钩 . 开始时各段绳都处于伸直状态,物体A 上方的一段绳沿竖直方向 . 现给挂钩挂一质量为m 2 的物体 C 并从静止释放,已知它恰好能使物体B 离开地面但不继续上升 .若将物体 C 换成另一质量为 ( m 1 m 2 ) 的物体 D ,仍从上述初始位置由静止释放,则这次物体 B 刚离地时物体D 的速度大小是多少 ?已知重力加速度为g开始时物体 A 、B 静止,设弹簧压缩量为图 3-7-14【解析】 x 1 ,则有: kx 1m 1g悬挂物体 C 并释放后,物体 C 向下、物体 A 向上运动,设物体 B 刚要离地时弹簧伸长量为 x 2 ,有 kx 2 m 2 gB 不再上升表明此时物体 A 、C 的速度均为零, 物体 C 己下降到其最低点 , 与初状态相比, 由机械能守恒得弹簧弹性势能的增加量为:E m 2 g (x 1 x 2 ) m 1 g(x 1 x 2 )物体1( m22C 换成物体D 后,物体 B 离地时弹簧势能的增量与前一次相同,由能量关系得:m 1 )v 2 1m 1v 2 ( m 2 m 1 )g (x 1 x 2 ) m 1 g( x 1 x 2 ) E 联 立 上 式 解 得 题 中 所 求 速 度 为 :22m 1 (m 12 2m ) g vm 2 )k(2 m 12m 1 (m 1 2【答案】 vm 2 ) g(2 m 1m 2 )k说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往往在一些题目中需要综合使用 . 九、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可 能是拉力,这类问题往往是一题多解 .【例 12】如图 3-7-15 所示,质量为 m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为1200,已知弹簧 a 、 b 对质点的作用力均为F ,则弹簧 c 对质点作用力的大小可能为( )A 、 0B 、 F mgC 、 F mgD 、 mgF图 3-7-15【解析】 由于两弹簧间的夹角均为 1200 ,弹簧 a 、 b 对质点作用力的合力 仍为 F ,弹簧 a 、 b 对质点有可能是拉力,也有可能是推力 , 因 F 与 mg 的大小关系不确定, 故上述四个选项均有可能 . 正确答案 :ABCD【答案】 ABCD十、弹簧振子弹簧振子的位移、速度、加速度、动能和弹性势能之间存在着特殊关系,弹簧振子类问题通常就是考查这些关系,各物理量的周期性变化也是考查的重点 . 十一、弹簧串、并联组合弹簧串联或并联后劲度系数会发生变化, 弹簧组合的劲度系数可以用公式计算, 高中物理不要求用公式定量分析, 但弹簧串并联的特点要掌握: 弹簧串联时, 每根弹簧的弹力相等 ;原长相同的弹簧并联时,每根弹簧的形变量相等.【例 14】 如图 3-7-17所示,两个劲度系数分别为k 1、 k 2 的轻弹簧竖直悬挂,下端用光滑细绳连接, 并有一光滑的轻滑轮放在细线上 ; 滑轮下端挂一重为 G 的物体后滑轮下降,求滑轮静止后重物下降的距离.【解析】 两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实为串联 ; 两弹簧的弹力均G,可得两弹簧的伸长量分别为x 1 G , x 2 G, 图 3-7-1722k 1 2k 2 两弹簧伸长量之和 x x 1x 2 ,故重物下降的高度为: x G (k 1 k 2 )h4k 1k 22【答案】 G (k 1 k 2 )4k 1k 2十三、物体沿弹簧螺旋运动【例 16】如图 3-7-19 所示,长度为 L 的光滑钢丝绕成高度为 H 的弹簧,将弹簧竖直放置 . 一中间有孔的小球穿过钢丝并从弹簧的最高点 A 由静止释放,求经多长时间小球沿弹簧滑到最低点 B .【解析】 小球沿光滑弹簧下滑时机械能守恒,可以假想在不改变弹簧上各处图图 3-7-18倾角的条件下将弹簧拉成一条倾斜直线,如图 3-7-203-7-19所示,小球沿此直线下 滑的时间与题中要求的时间相等 . 小球沿直线下滑的加速度为 a g sin由几何知识可得: sinH ; 由位移公式可知: L 1at 2 ,联立上式解得:L22t L图 3-7-20gH【答案】2 LgH弹簧类模型中的最值问题在高考复习中, 常常遇到有关“弹簧类” 问题, 由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
高一物理-弹簧专题

高一物理-弹簧类专题高中物理所涉及弹簧多为轻弹簧,即不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。
弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。
一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受力大小相同,弹簧读数始终等于任意一端弹力大小。
伸长量等于弹簧任意位置受到的力和劲度系数的比值(胡克定律)。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。
(灵活运用整体法隔离法);通过弹簧形变量的变化来确定物体位置。
(高度,水平位置)的变化弹簧长度的改变,取决于初末状态改变。
(压缩——拉伸变化)参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。
抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零的特点求解。
注:如果a相同,先整体后隔离。
隔离法求内力,优先对受力少的物体进行隔离分析。
2、瞬时性问题题型:改变外部条件(突然剪断绳子,撤去支撑物)针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析3、动态过程分析三点分析法(接触点,平衡点,最大形变点)竖直型:一般考察弹力与重力的平衡。
高考热点专题——有关弹簧问题的分析与计算

弹簧类问题在高中物理中占有相当重要的地位,且涉及到的物理问题多是一些综合性较强、物理过程又比较复杂的问题,从受力的角度看,弹簧上的弹力是变力;从能量的角度看,弹簧是个储能元件;因此,关于弹簧的问题,能很好的考察学生的分析综合能力,备受高考命题专家的青睐。
解决这些问题除了一般要用动量守恒定律和能量守恒定律这些基本规律之外,搞清物体的运动情景,特别是弹簧所具有的一些特点,也是正确解决这类问题的重要方法。
在有关弹簧类问题中,要特别注意使用如下特点和规律:1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2. 弹簧的弹力不能突变,它的变化要经历一个过程,这是由弹簧形变的改变要逐渐进行决定的。
在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3、弹簧上的弹力是变力,弹力的大小随弹簧的形变量发生变化,求弹力的冲量和弹力做功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。
弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值。
如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。
4、对于只有一端有关联物体,另一端固定的弹簧,其运动过程可结合弹簧振子的运动规律去认识,突出过程的周期性、对称性及特殊点的应用。
如当弹簧伸长到最长或压缩到最短时,物体的速度最小(为零),弹簧的弹性势能最大,此时,也是关联物的速度方向发生改变的时刻。
若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。
若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】12F F a m-=1F 二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度Fa M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:x x F x T ma M F L M L=== 【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a = 【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g . 【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0图 3-7-4图 3-7-2图 3-7-1 图 3-7-3B.,方向竖直向下 C.,方向垂直于木板向下D., 方向水平向右【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=. 撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为cos N F g a m θ=== 【答案】 C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =. 则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量. 【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++【答案】221221()m m m g k + 21121211()()m m m g k k ++五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).图 3-7-5图 3-7-7图 3-7-6【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin AB m m g d kθ+= 【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,往往能达到事半功倍的效果.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程. 【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mgx k =, 物体B 刚要离开地面时弹簧的伸长量也是0mgx k=.(1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得: v =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度. 在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:图 3-7-8032mgF =也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg k F +=,解得: 032mgF =.【答案】32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关.八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律综合应用,我们用公式212P E kx =计算弹簧势能,弹簧在相等形变量时所具有的弹性势能相等一般是考试热点.弹簧弹力做功等于弹性势能的减少量.弹簧的弹力做功是变力做功,一般可以用以下四种方法求解:(1)因该变力为线性变化,可以先求平均力,再用功的定义进行计算; (2)利用F x -图线所包围的面积大小求解;(3)用微元法计算每一小段位移做功,再累加求和; (4)根据动能定理、能量转化和守恒定律求解.由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.特别是涉及两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消或替代求解.【例10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块A 和B 大小可忽略,它们分别带有A Q +和B Q +的电荷量,质量分别为A m 和B m .两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B 连接,另一端连接轻质小钩.整个装置处于场强为E 、方向水平向左的匀强电场中,A 、B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力, A 、B 所带电荷量保持不变,B 不会碰到滑轮. (1)若在小钩上挂质量为M 的物块C 并由静止释放,可使物块A 对挡板P 的压力恰为零,但不会离开P ,求物块C 下降的最大距离h .(2)若C 的质量为2M ,则当A 刚离开挡板P 时, B 的速度多大?【解析】 通过物理过程的分析可知,当物块A 刚离开挡板P 时,弹力恰好与A 所受电场力平衡,弹簧伸长量一定,前后两次改变物块C 质量,在第(2)问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解.设开始时弹簧压缩量为1x ,由平衡条件1B kx Q E =,可得1B Q Ex k = ①设当A 刚离开挡板时弹簧的伸长量为2x ,由2A kx Q E =,可得: 2A Q Ex k= ② 故C 下降的最大距离为: 12h x x =+ ③ 由①②③三式可得: ()A B Eh Q Q k=+ ④ (2)由能量守恒定律可知,物块C 下落过程中,C 重力势能的减少量等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和. 当C 的质量为M 时,有:B MgH Q Eh E =+∆弹 ⑤图 3-7-13当C 的质量为2M 时,设A 刚离开挡板时B 的速度为v ,则有:212(2)2B B MgH Q Eh E M m v =+∆++弹 ⑥由④⑤⑥三式可得A 刚离开P 时B 的速度为:v =⑦【答案】(1)()A B Eh Q Q k=+(2)v =【例11】如图3-7-14所示,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,物体A B 、都处于静止状态.一不可伸长的轻绳一端绕过轻滑轮连接物体A ,另一端连接一轻挂钩.开始时各段绳都处于伸直状态,物体A 上方的一段绳沿竖直方向.现给挂钩挂一质量为2m 的物体C 并从静止释放,已知它恰好能使物体B 离开地面但不继续上升.若将物体C 换成另一质量为12()m m +的物体D ,仍从上述初始位置由静止释放,则这次物体B 刚离地时物体D 的速度大小是多少?已知重力加速度为g【解析】 开始时物体A B 、静止,设弹簧压缩量为1x ,则有:11kx m g = 悬挂物体C 并释放后,物体C 向下、物体A 向上运动,设物体B 刚要离地时弹簧伸长量为2x ,有22kx m g =B 不再上升表明此时物体A 、C 的速度均为零,物体C 己下降到其最低点,与初状态相比,由机械能守恒得弹簧弹性势能的增加量为:212112()()E m g x x m g x x ∆=+-+物体C 换成物体D 后,物体B 离地时弹簧势能的增量与前一次相同,由能量关系得:22211211211211()()()()22m m v m v m m g x x m g x x E ++=++-+-∆联立上式解得题中所求速度为:v =【答案】v =说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往往在一些题目中需要综合使用. 九、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.【例12】如图3-7-15所示,质量为m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b 、对质点的作用力均为F ,则弹簧c 对质点作用力的大小可能为 ( ) A 、0 B 、F mg + C 、F mg - D 、mg F -【解析】 由于两弹簧间的夹角均为0120,弹簧a b 、对质点作用力的合力仍为F ,弹簧a b 、对质点有可能是拉力,也有可能是推力,因F 与mg 的大小关系不确定,故上述四个选项均有可能.正确答案:ABCD 【答案】 ABCD 十、弹簧振子弹簧振子的位移、速度、加速度、动能和弹性势能之间存在着特殊关系,弹簧振子类问题通常就是考查这些关系,各物理量的周期性变化也是考查的重点. 十一、弹簧串、并联组合弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式图图 3-7-14图 3-7-15计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例14】 如图3-7-17所示,两个劲度系数分别为12k k 、的轻弹簧竖直悬挂,下端用光滑细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一重为G 的物体后滑轮下降,求滑轮静止后重物下降的距离.【解析】 两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实为串联;两弹簧的弹力均2G ,可得两弹簧的伸长量分别为112Gx k =,222G x k =,两弹簧伸长量之和12x x x =+,故重物下降的高度为:1212()24G k k x h k k +==【答案】1212()4G k k k k +十三、物体沿弹簧螺旋运动【例16】如图3-7-19所示,长度为L 的光滑钢丝绕成高度为H 的弹簧,将弹簧竖直放置.一中间有孔的小球穿过钢丝并从弹簧的最高点A 由静止释放,求经多长时间小球沿弹簧滑到最低点B .【解析】 小球沿光滑弹簧下滑时机械能守恒,可以假想在不改变弹簧上各处倾角的条件下将弹簧拉成一条倾斜直线,如图3-7-20所示,小球沿此直线下滑的时间与题中要求的时间相等.小球沿直线下滑的加速度为sin a g θ= 由几何知识可得:sin HL θ=;由位移公式可知:212L at =,联立上式解得:2t LgH= 【答案】2LgH弹簧类模型中的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。