高一数学必修一模拟试题及答案

合集下载

2021-2022高中数学必修一期末第一次模拟试题带答案

2021-2022高中数学必修一期末第一次模拟试题带答案

一、选择题1.关于x 的方程2||10x a x ++=有4个不同的解,则实数a 的取值范围是( ) A .()(),22,-∞-+∞B .(],2-∞-C .(),2-∞-D .()2,+∞2.已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)- C .(1,0)- D .[1,0)-3.函数121()()2x f x x =-的零点个数为 ( ) A .0B .1C .2D .34.已知定义在R 上的函数()f x 满足()()2f x f x +=,且当[)1,1x ∈-时,()2f x x =,若函数()log 1a g x x =+图象与()f x 的图象恰有10个不同的公共点,则实数a 的取值范围为( ) A .()4,+∞ B .()6,+∞ C .()1,4D .()4,65.已知函数 ()lg 2x xe ef x --=,则f (x )是( )A .非奇非偶函数,且在(0,+∞)上单调递增B .奇函数,且在R 上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减6.已知奇函数()f x 与偶函数()g x 满足()()2x x f x g x a a -+=-+,且()g b a =,则()2f 的值为( )A .2aB .2C .154D .1747.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭8.已知函数(1)f x +为偶函数,当0x >时,23()f x x x =+,则(2)f -=( ) A .4-B .12C .36D .809.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4D .3,2⎡⎫+∞⎪⎢⎣⎭10.已知集合A 、B 均为非空集合,定义{*|()A B x x A B =∈⋃且}()x A B ∉⋂,若{}1,0,1,2,3A =-,{}2|1,B x x t t A ==+∈,则集合*A B 的子集共( )A .64个B .63个C .32个D .31个11.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①1A .4B .3C .2D .112.已知3(,)|32y M x y x -⎧⎫==⎨⎬-⎩⎭,{(,)|20}N x y ax y a =++=,且M N ⋂=∅,则实数a =( ) A .6-或2-B .6-C .2或6-D .2二、填空题13.已知函数()1,0ln ,0x x f x x x +≤⎧=⎨>⎩,则函数()1y f f x ⎡⎤=-⎣⎦的零点个数为______. 14.M 是所有同时满足下列条件的函数()y f x =的集合:①()y f x =的定义域为(0,)+∞;②对任意00x >,001()22f x x =+或001()f x x x =+;若对一切()f x M ∈,关于x 的方程()f x a =恒有解,则实数a 的取值集合是___________15.已知函数()f x 满足()()1f x f x =-+,当()0,1x ∈时,函数()3xf x =,则13log 19f ⎛⎫= ⎪⎝⎭______. 16.设正数,x y 满足222log (3)log log x y x y ++=+,则x y +的取值范围是_____.17.若函数f (x )=(x +a )(bx +a )(常数a ,b ∈R)是偶函数,且它的值域为(,1]-∞,则a=_____. 18.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ .19.已知集合:A ={x |x 2=1},B ={x |ax =1},且A ∩B =B ,则实数a 的取值集合为______. 20.已知全集{}1,2,3,4,5,6U =,①A U ⊆;②若x A ∈,则2x A ∉;③若Ux A ∈,则2Ux A ∉,则同时满足条件①②③的集合A 的个数为______三、解答题21.已知函数()11f x x=-,实数a 、b 满足a b <. (1)在下面平面直角坐标系中画出函数()f x 的图象;(2)若函数在区间[],a b 上的值域为1,33⎡⎤⎢⎥⎣⎦,求+a b 的值;(3)若函数()f x 的定义域是[],a b ,值域是[](),0ma mb m >,求实数m 的取值范围. 22.2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生产生活造成严重影响.为降低疫情影响,某厂家拟尽快加大力度促进生产.已知该厂家生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()202C x x x =+万元).当年产量不小于80千件时,10000()51600C x x x=+-(万元).每千件商品售价为50万元.通过市场分析,该厂生产的产品能全部售完. (1)写出年利率()L x (万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?最大利润是多少?23.(Ⅰ)())()232323183π21π2-⎛⎫-+-- ⎪⎝⎭;(Ⅱ)解关于x 的不等式:12aa x >--. 24.已知函数()21log 1x f x x +=-, (1)求函数()y f x =的定义域; (2)证明:()y f x =是奇函数; (3)设()()()14h x f x f x =+,求函数()y h x =在[]3,7内的值域;25.已知函数()21ax bf x x +=+是()1,1-上的奇函数,且12.25f ⎛⎫= ⎪⎝⎭ (1)求()f x 的解析式;(2)判断()f x 的单调性,并加以证明;(3)若实数t 满足()()10f t f t ++>,求t 的取值范围. 26.已知集合2212x A x x ⎧+⎫=<⎨⎬-⎩⎭,{}254B x x x =>-,{}1,C x x m m =-<∈R ,(1)求AB ;(2)若()A B C ⋂⊆,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由2||10x a x ++=可得1a x x =--,转化为y a =与()1g x x x=--的图象有4个不同的交点,作出()1g x x x=--,数形结合即可求解. 【详解】由2||10x a x ++=可得22111||||x x a x x x x----===--, 令()1g x x x=--, 若关于x 的方程2||10x a x ++=有4个不同的解, 则y a =与()1g x x x=--的图象有4个不同的交点, ()1g x x x=--是偶函数, 当0x <时()()()111x x x x x x g x --=---=+-=,()1g x x x=+在(),1-∞-单调递增,在()1,0-单调递减, 所以()1g x x x=+的图象如图所示: 当1x =-时()max 1121g x =-+=--,若y a =与()1g x x x=--的图象有4个不同的交点, 由图知2a <-, 故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.B解析:B 【分析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可. 【详解】因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩, 当0x >时,()21f x x =-有一个零点12x =,所以只需当0x ≤时,202x xae a e +==-即有一个根即可, 因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-, 故选:B. 【点睛】已知函数有零点(方程有根),求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后利用数形结合求解.3.B解析:B 【解析】 函数()12(12)f x xx =-的零点,即令()0f x =,根据此题可得12(12)xx=,在平面直角坐标系中分别画出幂函数12y x=和指数函数(12)y x=的图像,可得交点只有一个,所以零点只有一个,故选B【考点定位】本小题表面上考查的是零点问题,实质上考查的是函数图象问题,该题涉及到的图像为幂函数和指数函数4.D解析:D 【分析】转化条件为函数()f x 是周期为2的周期函数,且函数()g x 、()f x 的图象均关于1x =-对称,由函数的对称性可得两图象在1x =-右侧有5个交点,画出图象后,数形结合即可得解. 【详解】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数, 又函数()log 1a g x x =+的图象可由函数log a y x =的图象向左平移一个单位可得, 所以函数()log 1a g x x =+的图象的对称轴为1x =-,当[)1,1x ∈-时,()2f x x =,所以函数()f x 的图象也关于1x =-对称,在平面直角坐标系中作出函数()y f x =与()y g x =在1x =-右侧的图象,数形结合可得,若函数()log 1a g x x =+图象与()f x 的图象恰有10个不同的公共点, 则由函数图象的对称性可得两图象在1x =-右侧有5个交点,则()()13log 415log 61a a a g g ⎧>⎪=<⎨⎪=>⎩,解得()4,6a ∈. 故选:D. 【点睛】关键点点睛:解决本题的关键是函数的周期性、对称性及数形结合思想的应用.5.A解析:A 【分析】本题考查函数的奇偶性和和单调性的概念及简单复合函数单调性的判定. 【详解】要使函数有意义,需使0,2x x e e -->即21,1,x xx e e e >∴>解得0;x >所以函数()f x 的为(0,);+∞定义域不关于原点对称,所以函数()f x 是非奇非偶函数;因为1,xxx y e y ee-==-=-是增函数,所以2x xe e y --=是增函数,又lg y x =是增函数,所以函数()lg 2x xe ef x --=在定义域(0,)+∞上单调递增.故选:A 【点睛】本题考查对数型复合函数的奇偶性和单调性,属于中档题.6.C解析:C 【分析】根据奇函数()f x 与偶函数()g x ,由()()2x xf xg x a a -+=-+得到()()2﹣﹣﹣=+xx g x f x a a ,两式相加、相减并结合()g b a =求得()f x 即可.【详解】∵奇函数()f x 与偶函数()g x ,()()()(),-∴=-=f x f x g x g x .又()()2﹣+=+-x x f x g x a a ,①()()2﹣---∴+=+x x f x g x a a ,()()2﹣∴=--+x x g x f x a a .② +①②,得()24g x =,()2g x ∴=. (),2g b a a =∴=. ()22﹣-∴=x x f x . 22115(2)22444f -∴=-=-=. 故选:C. 【点睛】本题主要考查函数奇偶性的综合应用,还考查了运算求解的能力,属于中档题.7.D解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.8.D解析:D 【分析】首先根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+,所以有(2)(4)f f -=,结合题中所给的函数解析式,代入求得结果. 【详解】∵函数(1)f x +为偶函数,所以图象关于y 轴对称,即(1)(1)f x f x +=-+, 构造(2)(31)(31)(4)f f f f -=-+=+=,而40>, 所以23(4)4+4=16(14)80f =⨯+=. 故选:D. 【点睛】思路点睛:该题考查的是有关函数的问题,解题思路如下: (1)根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+; (2)根据(1)(1)f x f x +=-+,得到(2)(4)f f -=; (3)结合当0x >时,23()f x x x =+,将4x =代入求得结果.9.B解析:B 【分析】求出(0)4f =-,再计算出最小值为32524f ⎛⎫=- ⎪⎝⎭,然后求出()4f m =-的值后可得m的范围. 【详解】2325()24f x x ⎛⎫=-- ⎪⎝⎭,()f x 在3,2⎛⎫-∞ ⎪⎝⎭上递减,在3,2⎛⎫+∞ ⎪⎝⎭上递增, (0)4f =-,又32524f ⎛⎫=- ⎪⎝⎭,所以32m ≥,由2()344f m m m =--=-解得0m =或3m =,因此332m ≤≤. 故选:B . 【点睛】方程点睛:本题考查二次函数的性质,掌握其对称轴、单调性是解题关键.由此可得二次函数2()f x ax bx c =++在区间[,]m n 上的最值求法: 设0a >,函数的对称轴0x x =(02bx a=-), 当0x m <时,min ()()f x f m =,0m x n ≤≤时,min 0()()f x f x =,0x n >时,min ()()f x f n =,当02m n x +≤时,max ()()f x f n =,当02m nx +>时,max ()()f x f m =. 0a <类似讨论.10.C解析:C 【分析】先求集合B ,再求并集、交集、补集,最后根据元素确定子集个数. 【详解】因为{}2|1,{1,2,5,10}B x x t t A ==+∈=, 所以{}{}1,0,1,2,3510,1,2,AB A B =-=,,*{1,0,3,5,10}A B ∴=-因此集合*A B 的子集有5232=个, 故选:C 【点睛】本题考查并集、交集、补集定义以及子集个数,考查综合本分析求解能力,属基础题.11.C解析:C 【分析】①②③都可以写成m a =+,a b 是否是有理数,④计算.【详解】①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,2122==-,12a ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++,,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素. 故选:C 【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型.12.A解析:A 【解析】 【分析】先确定集合M,N,再根据M N ⋂=∅确定实数a 的值. 【详解】由题得集合M 表示(32)3y x -=-上除去(2)3,的点集,N 表示恒过(10)-,的直线方程. 根据两集合的交集为空集:M N ⋂=∅.①两直线不平行,则有直线20ax y a ++=过(2)3,,将2x =,代入可得2a =-, ②两直线平行,则有32a-=即6a =-, 综上6a =-或2-, 故选:A . 【点睛】本题主要考查集合的化简和集合的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题13.【分析】先由可求得的值再由和两种情况结合的值可求得的值即可得解【详解】下面先解方程得出的值(1)当时可得可得;(2)当时可得可得或下面解方程和①当时由可得由可得(舍去)由可得;②当时由可得由可得或由 解析:7【分析】先由()10f f x ⎡⎤-=⎣⎦可求得()f x 的值,再由0x ≤和0x >两种情况结合()f x 的值,可求得x 的值,即可得解. 【详解】下面先解方程()10f f x ⎡⎤-=⎣⎦得出()f x 的值.(1)当()0f x ≤时,可得()()1110f f x f x -=+-=⎡⎤⎣⎦,可得()0f x =; (2)当()0f x >时,可得()()1ln 10f f x f x -=-=⎡⎤⎣⎦,可得()f x e =或()1f x e=. 下面解方程()0f x =、()f x e =和()1f x e=. ①当0x ≤时,由()10f x x =+=可得1x =-,由()1f x x e =+=可得1x e =-(舍去),由()11f x x e =+=可得11x e=-; ②当0x >时,由()ln 0f x x ==可得1x =,由()1ln f x x e==可得1e x e =或1e x e-=,由()ln f x x e ==可得e x e =或e x e -=.综上所述,函数()1y f f x =-⎡⎤⎣⎦的零点个数为7. 故答案为:7. 【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.14.【分析】根据条件可知当且仅当时对一切关于的方程恒有解由此求的取值范围【详解】对任意或当且仅当时对一切关于的方程恒有解此时则实数的取值集合是故答案为:【点睛】关键点点睛:本题考查方程有解求参数的取值范解析:{32±【分析】根据条件可知当且仅当000112=2x x x ++时,对一切()f x M ∈,关于x 的方程()f x a =恒有解,,由此求a 的取值范围. 【详解】对任意00x >,001()22f x x =+或0001()f x x x =+ 当且仅当000112=2x x x ++时,对一切()f x M ∈,关于x 的方程()f x a =恒有解,此时0=2x0()3f x =±,则实数a的取值集合是{3±故答案为:{32± 【点睛】关键点点睛:本题考查方程有解,求参数的取值范围,关键是利用题意,正确求解0x >时,000112=2x x x ++时满足题意. 15.【分析】由满足得到函数是以2为周期的周期函数结合对数的运算性质即可求解【详解】由题意函数满足化简可得所以函数是以2为周期的周期函数又由时函数且则故答案为:【点睛】函数的周期性有关问题的求解策略:求解 解析:2719-【分析】由()f x 满足()()1f x f x =-+,得到函数()f x 是以2为周期的周期函数,结合对数的运算性质,即可求解. 【详解】由题意,函数()f x 满足()()1f x f x =-+,化简可得()()2f x f x =+, 所以函数()f x 是以2为周期的周期函数,又由()0,1x ∈时,函数()3xf x =,且()()1f x f x =-+,则133339(log 19)(log 19)(log 192)(log )19f f f f =-=-+= 327log 193392727(log 1)(log )3191919f f =-+=-=-=-.故答案为:2719- 【点睛】函数的周期性有关问题的求解策略:求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期; 解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.16.【分析】由题设知再由得到所以设由此可求出的取值范围【详解】解:正数满足又所以左右加上得到所以由得到设即解得或即或根据定义域均大于零所以取值范围是故答案为:【点睛】本题考查对数的运算法则基本不等式的应 解析:[)6,+∞【分析】由题设知3x y xy ++=,再由2220x xy y -+,得到2224x xy y xy ++,所以2()4x y xy +,设x y a +=,由此可求出x y +的取值范围.【详解】 解:正数x ,y 满足222log (3)log log x y x y ++=+,22log (3)log x y xy ∴++=,3x y xy ∴++=,又2220x xy y -+,所以左右加上4xy 得到2224x xy y xy ++,所以2()4x y xy +,由3x y xy ++=得到2()34x y x y +++,设x y a +=即2412a a +,解得6a ≥或2a ≤-即(],2a ∈-∞-或[)6,+∞.根据定义域x ,y 均大于零,所以x y +取值范围是[)6,+∞. 故答案为:[)6,+∞. 【点睛】本题考查对数的运算法则,基本不等式的应用,解题时要认真审题,仔细解答,注意公式的灵活运用,属于中档题.17.【分析】根据函数f(x)=(x +a)(bx +a)(常数ab ∈R)是偶函数利用得到进而得到或然后分类讨论即可求解【详解】函数f(x)=(x +a)(bx +a)(常数ab ∈R)是偶函数明显可知该函数定义域 解析:±1【分析】根据函数f (x )=(x +a )(bx +a )(常数a ,b ∈R)是偶函数,利用()()f x f x -=,得到(1)0a b +=,进而得到0a =或1b =-,然后,分类讨论即可求解【详解】函数f (x )=(x +a )(bx +a )(常数a ,b ∈R)是偶函数,明显可知,该函数定义域为x ∈R ,令1x =和1x =-得(1)(1)()f a b a =++(1)(1)()f a a b =-=--,得22a b ab a a ab a b +++=--+⇒a ab ab a +=--(1)0a b ⇒+=,可得0a =或1b =-;若0a =,则2()f x bx =,若0b >,不满足()f x 的值域为(,1]-∞,0b =,明显不成立,0b <时,不满足()f x 的值域为(,1]-∞,所以,0a =时,不符题意;若1b =-时,22()()()f x x a a x a x =+-=-,由于20x -≤,则2()f x a ≤,所以,21a =,求得1a =±故答案为:±1 【点睛】关键点睛:解题的关键在于,利用()()f x f x -=,得到(1)0a b +=,然后,分别讨论0a =和1b =-两种情况进行分类讨论,主要考查学生分类讨论的思想,难度属于中档题 18.7【解析】由函数的周期为3可得因为若则可得出又根据为奇函数则又可得出又函数是定义在R 上的奇函数可得出从而在中令得出又根据是定义在R 上的奇函数得出从而得到即故从而共7个解解析:7 【解析】由函数的周期为3可得(3)()f x f x +=,因为(2)0f =, 若(0,6)x ∈,则可得出(5)=(2)0f f =, 又根据()f x 为奇函数,则(-2)=-(2)0f f =, 又可得出(4)=(1)(-2)=0f f f =,又函数()f x 是定义在R 上的奇函数,可得出(0)0f =, 从而(3)=(0)0f f =,在(3)()f x f x +=中, 令32x =-,得出33()()22f f -=,又根据()f x 是定义在R 上的奇函数,得出33()-()22f f -=, 从而得到33()-()22f f =,即3()02f =, 故933()(+3)()=0222f f f ==,从而93()()=(4)(1)(3)(5)(2)022f f f f f f f ======,共7个解.19.{-101}【分析】由已知得B ⊆A 从而B=∅或B={-1}或B={1}进而或=-1或由此能求出实数a 的取值集合【详解】∵A={x|x2=1}={-11}A∩B=B ∴B ⊆A ∴B=∅或B={-1}或B=解析:{-1,0,1} 【分析】由已知得B ⊆A ,从而B=∅或B={-1},或B={1},进而0a =,或1a =-1或11a=,由此能求出实数a 的取值集合. 【详解】∵A={x|x 2=1}={-1,1}, A∩B=B ,∴B ⊆A , ∴B=∅或B={-1},或B={1},∴0a =,或1a =-1或11a=,解得a=0或a=-1或a=1. ∴实数a 的取值集合为{-1,0,1}. 故答案为:{-1,0,1}. 【点睛】本题考查集合的求法,是基础题,解题时要认真审题,注意交集的性质的合理运用.20.8【分析】由条件可得:当则即则即但元素3与集合的关系不确定3属于时6属于的补集;3属于的补集时6属于;而元素5没有限制【详解】由①;②若则;③若则当则即则即但元素3与集合的关系不确定3属于时6属于的解析:8 【分析】由条件可得:当1A ∈,则2A ∉,即2UA ∈,则4UA ∉,即4A ∈,但元素3与集合A的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ;而元素5没有限制. 【详解】由①A U ⊆;②若x A ∈,则2x A ∉;③若Ux A ∈,则2Ux A ∉.当1A ∈,则2A ∉,即2UA ∈,则4UA ∉,即4A ∈,但元素3与集合A 的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ; 而元素5没有限制.{1,4,6},{2,3,5},{2,3},{1,4,5,6},{1,3,4},{2,4,5},{2,A ∴=6},{1,3,4,5},同时满足条件①②③的集合A 的个数为8个. 故答案为:8. 【点睛】本题考查了集合的运算性质、元素与集合的关系,考查了分类讨论思想方法、推理能力与计算能力,属于中档题.三、解答题21.(1)图象见解析;(2)1;(3)10,4⎛⎫ ⎪⎝⎭. 【分析】(1)化简函数()f x 的解析式,进而可作出函数()f x 的图象; (2)分别解方程()13f x =和()3f x =,结合图象可得出a 、b 的值,进而可求得结果; (3)由题意可知函数()f x 在区间[],a b 上单调递增,分析得出方程210mx x -+=在[)1,+∞上有两个不等的实根,利用二次函数的零点分布可得出关于实数m的不等式组,由此可解得实数m的取值范围.【详解】(1)由题意可得()(]()() 11,0,11111,,01,xxf xxxx⎧-∈⎪⎪=-=⎨⎪-∈-∞⋃+∞⎪⎩,则由图形变换可画出函数图象,如图:(2)当()13f x=时,此时1113x-=,解得32x=或34x=;当()3f x=时,此时113x-=,解得12x=-或14x=.由(1)中的图象可知,若使得函数()f x在区间[],a b上的值域为1,33⎡⎤⎢⎥⎣⎦,则[](),0,a b⊆+∞,由图象可得1344a b==,,所以1a b+=;(3)因为函数()f x的定义域是[],a b,值域是[](),0ma mb m>,分以下几种情况讨论:①若0a b<<,则0ma mb<<,由图象可知,函数()f x在[],a b上单调递增,函数()f x在[],a b上的值域为()(),f a f b⎡⎤⎣⎦,由图象可知()()f af b⎧>⎪⎨>⎪⎩,不合乎题意;②若01a b<<<,则函数()f x在[],a b上单调递减,所以函数()11f x x =-在[],a b 上的值域为()(),f b f a ⎡⎤⎣⎦,则()()1111f b ma bf a mba ⎧=-=⎪⎪⎨⎪=-=⎪⎩, 上述两个等式相减得1m ab =,将1m ab =代入11ma b-=可得10,矛盾; ③若01a b <<≤,则[]0,ma mb ∈,而0ma >,0mb >,矛盾; ④若1b a >≥,函数()f x 在[],a b 上单调递增,又函数()f x 在[)1,+∞上单调递增,所以()()fa ma fb mb ⎧=⎪⎨=⎪⎩,即1111ma a mb b⎧-=⎪⎪⎨⎪-=⎪⎩,则a 、b 为方程11mx x-=的两个根,即210mx x -+=在[)1,+∞上有两个不等实根, 可设()21g x mx x =-+,则有()14010112m g m m⎧⎪∆=->⎪=≥⎨⎪⎪>⎩,解得104m <<,所以实数m 的取值范围为10,4⎛⎫ ⎪⎝⎭. 【点睛】方法点睛:本题考查利用二次函数的零点分布求参数,一般要分析以下几个要素: (1)二次项系数的符号; (2)判别式; (3)对称轴的位置; (4)区间端点函数值的符号. 结合图象得出关于参数的不等式组求解.22.(1)2130200,0802()10000400,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+ ⎪⎪⎝⎭⎩;(2)30千件;250万元.【分析】(1)可得销售额为0.051000x ⨯万元,分080x <<和80x ≥即可求出;(2)当080x <<时,利用二次函数性质求出最大值,当80x ≥,利用基本不等式求出最值,再比较即可得出. 【详解】(1)∵每千件商品售价为50万元.则x 千件商品销售额50x 万元当080x <<时,2211()50202003020022L x x x x x x ⎛⎫=-+-=-+-⎪⎝⎭当80x 时,1000010000()5051600200400L x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭2130200,0802()10000400,80x x x L x x x x ⎧-+-<<⎪⎪∴=⎨⎛⎫⎪-+ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(30)2502L x x =--+ 此时,当30x =时,即()(30)250L x L =万元当80x时,10000()400400L x x x ⎛⎫=-+≤- ⎪⎝⎭400200200=-=此时10000x x=,即100x =,则()(100)200L x L =万元 由于250200>所以当年产量为30千件时,该厂在这一商品生产中所获利润最大,最大利润为250万元. 【点睛】关键点睛:本题考查函数模型的应用,解题的关键是理解清楚题意,正确的建立函数关系,再求最值时,需要利用函数性质分段讨论比较得出. 23.(Ⅰ)2;(Ⅱ)答案见解析. 【分析】(Ⅰ)利用指数幂的运算性质,即可得出结果.(Ⅱ)将分式不等式化简转化为()()()122020a x a x x ⎧⎡⎤-+-->⎪⎣⎦⎨-≠⎪⎩,分类讨论1a -,解一元二次不等式即可得出结果. 【详解】解:(Ⅰ)原式)2321812-⎛⎫=-+⎪⎝⎭()()2332431ππ=-+--+443π1π2=-+--+=.(Ⅱ)12a a x >--,则()102aa x -->-, 即()()1202a x a x -+->-,即()()()122020a x a x x ⎧⎡⎤-+-->⎪⎣⎦⎨-≠⎪⎩,①当10a -=,即1a =时,不等式为20x ->,解集为()2,+∞; ②当10a ->,即1a >时,原不等式与()2201a x x a ⎡-⎤⎛⎫-->⎪⎢⎥-⎝⎭⎣⎦同解, 当221a a -≥-,即01a ≤<时,与1a >矛盾,故此情况不存在; 当221a a -<-,即0a <或1a >时,即1a >时,不等式的解集为()2,2,1a a -⎛⎫-∞⋃+∞ ⎪-⎝⎭; ③当10a -<,即1a <时,原不等式与()2201a x x a ⎡-⎤⎛⎫-->⎪⎢⎥-⎝⎭⎣⎦同解, 当221a a ->-,即01a <<时,不等式的解集为22,1a a -⎛⎫⎪-⎝⎭; 当221a a -=-,即0a =时,不等式无解,即解集为∅; 当221a a -<-,即0a <或1a >时,即0a <时,不等式的解集为2,21a a -⎛⎫⎪-⎝⎭; 所以,综上所述: 当1a >时,解集为()2,2,1a a -⎛⎫-∞⋃+∞ ⎪-⎝⎭, 当1a =时,解集为()2,+∞,当01a <<时解集为22,1a a -⎛⎫⎪-⎝⎭,当0a =时,解集为∅, 当0a <时,解集为2,21a a -⎛⎫⎪-⎝⎭. 【点睛】本题考查利用指数幂的运算性质进行化简求值,考查含参数的分式不等式的解法和一元二次不等式的解法,考查分类讨论思想和计算能力. 24.(1)见解析;(2)见解析;(3)[]4,5 【分析】 (1)由不等式101x x +>-即可求出()f x 的定义域; (2)证明()()f x f x -=-可得()f x 为奇函数;(3)先求出()f x 在[]3,7上的值域,令()t f x =,求()14h t t t=+的值域. 【详解】 (1)由101x x +>-得:1x >或1x <-,()f x ∴的定义域为()(),11,-∞-+∞; (2)()()222111log log log 111x x x f x f x x x x -+-+-===-=---+-, ()f x ∴为奇函数;(3)()22log 11f x x ⎛⎫=+ ⎪-⎝⎭在[]3,7上单调递减,令()t f x =,则24log ,13t ⎡⎤∈⎢⎥⎣⎦, 而()14h t t t =+在10,2⎛⎤ ⎥⎝⎦单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增, 又()2411log 15,4342h h h h ⎛⎫⎛⎫⎛⎫<=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴函数()h x 在[]3,7内的值域为[]4,5.【点睛】本题主要考查了对数型函数的定义域,奇偶性,考查了复合函数的单调性,值域求解,属于中档题.25.(1)()2x f x x x=+,()1,1x ∈-;(2)()f x 在()1,1-上递增,证明见解析;(3)1,12⎛⎫ ⎪⎝⎭. 【分析】(1)由奇偶性知()00f =,进而结合1225f ⎛⎫= ⎪⎝⎭待定系数求解即可得函数解析式; (2)()f x 在()1,1-上递增,利用函数单调性的定义证明即可;(3)由奇偶性将问题转化为()()1f t f t ->-,再根据单调性解不等式111111t t t t -<-<⎧⎪-<<⎨⎪->-⎩即可.【详解】解:(1)因为函数()21ax b f x x +=+是()1,1-上的奇函数,12.25f ⎛⎫= ⎪⎝⎭ 所以()0,0012122152514b f a b f =⎧⎪⎧=⎪⎪+⇒⎨⎨⎛⎫== ⎪⎪⎪⎝⎭⎩+⎪⎩,解得10a b =⎧⎨=⎩, ∴ ()2x f x x x =+,()1,1x ∈-. (2)()f x 在()1,1-上递增,证明如下:任取()12,1,1x x ∈-,且12x x >,则()()()()()()221221121222221212111111x x x x x x f x f x x x x x +-+-=-=++++ ()()()()()()2212121212122222121211111x x x x x x x x x x x x x x ---+-==++++, ∵()12,1,1x x ∈-,∴1210x x ->,又12x x >,∴ 120x x ->,∴()()120f x f x ->,∴ ()()12f x f x >,即()f x 在()1,1-上递增.(3)()()10f t f t -+>可化为()()1f t f t ->-, ∴111021*********t t t t t t t t ⎧⎪-<-<<<⎧⎪⎪-<<⇒-<<⇒<<⎨⎨⎪⎪->-⎩⎪>⎩. ∴t 的取值范围1,12⎛⎫ ⎪⎝⎭. 【点睛】(1)本题是函数性质的综合运用,在解题中要熟练掌握函数奇偶性、单调性的的判定及性质,对于单调性的证明要掌握规范的解题步骤.(2)在解含“f ”号得不等式时,首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.26.(1){}12x x <<;(2)12m ≤≤【分析】(1)解不等式,可求出集合,A B ,进而求出二者的交集即可;(2)结合(1),由()A B C ⋂⊆,可得{}12x x <<⊆{}11x m x m -<<+,进而可列出不等关系,求解即可.【详解】(1)由2212x x +<-,得402x x +<-,等价于()()420x x +-<,解得42x -<<, 所以集合{}42A x x =-<<,由254x x >-,解得1x >或5x <-,所以{1B x x =>或}5x <-,所以A B ={}42x x -<<{1x x >或}5x <-{}12x x =<<.(2)因为()A B C ⋂⊆,所以{}12x x <<⊆{}1,x x m m -<∈R , 即{}12x x <<⊆{}11x m x m -<<+, 所以1112m m -≤⎧⎨+≥⎩,解得12m ≤≤. 综上所述,实数m 的取值范围是12m ≤≤.【点睛】本题考查分式不等式、一元二次不等式的解法,考查集合的交集,考查根据集合的包含关系求参数,考查学生的推理能力与计算求解能力,属于中档题.。

【北师大版】高中数学必修一期末第一次模拟试题及答案

【北师大版】高中数学必修一期末第一次模拟试题及答案

一、选择题1.已知函数()24xf x =-,()()()1g x a x a x a =-++同时满足:①x ∀∈R ,都有()0f x <或()0g x <,②(],1x ∃∈-∞-,()()0f x g x <,则实数a 的取值范围为( ) A .(-3,0) B .13,2⎛⎫--⎪⎝⎭C .(-3,-1)D .(-3,-1]2.已知定义在R 上的奇函数()f x 满足()()20f x f x +--=,且当[]0,1x ∈时,()()2log 1f x x =+,则下列结论正确的是( )①()f x 的图象关于直线1x =对称;②()f x 是周期函数,且2是其一个周期;③16132f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭;④关于x 的方程()0f x t -=(01t <<)在区间()2,7-上的所有实根之和是12. A .①④B .①②④C .③④D .①②③3.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m m E E -=-,其中星等为k m 的星的亮度为(1,2)k E k =.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的( )倍.(当||x 较小时,2101 2.3 2.7x x x ≈++) A .1.27B .1.26C .1.23D .1.224.已知函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R .则实数a 的取值范围是( ) A .5[1,]3B .5(1,]3C .(]5,1(,)3-∞-⋃+∞ D .()5,1[1,)3-∞-5.集合{}1002,x x x x R =∈的真子集的个数为( )A .2B .4C .6D .76.函数213()log 4f x x =-的单调减区间是( )A .(]()2,02,-+∞B .(]2,0-和(2,)+∞ C .(),20,2[)-∞-D .(,2)-∞-和[0,2)7.定义,min(,),a a ba b b a b≤⎧=⎨>⎩,例如:min(1,2)2--=-,min(2,2)2=,若2()f x x =,2()46g x x x =--+,则()min((),())F x f x g x =的最大值为( )A .1B .8C .9D .108.已知函数224()3f x x x =-+,()2g x kx =+,若对任意的1[1,2]x ∈-,总存在2[1x ∈,使得12()()g x f x >,则实数k 的取值范围是( ).A .1,12⎛⎫ ⎪⎝⎭B .12,33⎛⎫- ⎪⎝⎭C .1,12⎛⎫-⎪⎝⎭D .以上都不对9.已知函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭;当4x <时,1f x f x =+()(),则22log 3f +()=A .124 B .112C .18D .3810.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉ B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉11.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥12.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .511二、填空题13.规定[]t 为不超过t 的最大整数,如[]3.33=,[]2.43-=-.若函数()[][]()2f x x x x =-∈R ,则方程()()22f x f x -=的解集是______.14.若函数2()2ln f x x a x =-++在21,e e ⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数a 的取值范围为_____.15.函数()()12log 13y x x =-+的递增区间为______.16.已知函数()f x 满足()()1f x f x =-+,当()0,1x ∈时,函数()3xf x =,则13log 19f ⎛⎫= ⎪⎝⎭______. 17.已知二次函数()()22,f x x ax b a b R =++∈,,M m 分别是函数()f x 在区间[]0,2的最大值和最小值,则M m -的最小值是________ 18.函数y =的定义域是R ,则a 的取值范围是_________.19.已知集合{}1,2,5,7,13,15,16,19A =,设,i j x x A ∈,若方程(0)i j x x k k -=>至少有三组不同的解,则实数k 的所有可能取值是________ 20.设a ,b ,c 为实数,()()()2f x x a x bx c =+++,()()()211g x ax cx bx =+++,记集合(){}|0,S x f x x R ==∈,(){}|0,T x g x x R ==∈,若S ,T 分别为集合S ,T 的元素个数,则下列结论可能成立的是________.①1S =,0T =;②1S =,1T =;③2S =,2T =;④2S =,3T =.三、解答题21.新冠肺炎疫情发生后,某公司生产A 型抗疫商品,第一个月是为国内生产,当地政府决定对该型商品免税,该型商品出厂价为每件20元,月销售量为12万件;后来国内疫情得到有效控制,从第二个月开始,该公司为国外生产该型抗疫商品,当地政府开始对该型抗疫商品征收税率为%p (0100p <<,即销售1元要征收100p元)的税,于是该型抗疫商品出厂价就上升到每件100202p-元,预计月销售量将减少2p 万件.(1)将第二个月政府对该商品征收的税y (万元)表示成p 的函数,并指出这个函数的定义域;(2)要使第二个月该公司缴纳的税额不少于1万元的前提下,又要让该公司当月获得最大销售金额,p 应为多少?22.已知二次函数()2441f x kx kx k =-++.(1)若12,x x 是()f x 的两个不同零点,是否存在实数k ,使()()121211224x x x x ++=成立?若存在,求k 的值;若不存在,请说明理由. (2)设1k =-,函数()()28,048,0f x x t xg x x x t x ⎧--<=⎨--≥⎩,存在3个零点.(i)求t 的取值范围;(ii)设,m n 分别是这3个零点中的最小值与最大值,求n m -的最大值.23.(Ⅰ))2321812-⎛⎫-+ ⎪⎝⎭;(Ⅱ)解关于x 的不等式:12aa x >--.24.(1)0160.25371.586-⨯-+⎫⎛ ⎪⎝⎭(2)1324lg lg82493-+25.(1)已知()()43f x x a =-+时,当实数a 为何值时,()f x 是偶函数? (2)已知()g x 是偶函数,且()g x 在[)0,+∞是增函数,如果当[]1,2x ∈时()()6g x a g x +≤-恒成立,求实数a 的取值范围.26.已知全集为实数集R ,集合2{|},{|log 1}A x y y R B x x =∈=>.(1)求AB ;(2)设1a >,集合{|1},()R C x x a D C B A =<<=,若C D ⊆,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先判断当2x <时()0f x <,当2x ≥时()0f x ≥,问题转化为当2x ≥时,()0g x <恒成立且当1x ≤-时,()0g x >有解,分类讨论列出不等式可解出a 的范围. 【详解】∵()24xf x =-,∴当2x <时()0f x <,当2x ≥时()0f x ≥.因为x ∀∈R ,都有()0f x <或()0g x <且 (],1x ∃∈-∞-,()()0f x g x < 所以函数()g x 需满足:①当2x ≥时,()0g x <恒成立; ②当1x ≤-时,()0g x >有解.(1)当0a ≥时,显然()g x 不满足条件①;(2)当0a <时,方程()0g x =的两根为1x a =,21x a =--, ∵0a <,∴11a -->-,∴112a a <-⎧⎨--<⎩,解得31a -<<-. 故选:C . 【点睛】转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将问题转化为当2x ≥时,()0g x <恒成立且当1x ≤-时,()0g x >有解是解题的关键.2.A解析:A 【分析】由对称性判断①,由周期性判断②,周期性与奇偶性、单调性判断③,作出函数()y f x =的大致图象与直线y t =,由它们交点的性质判断④.【详解】由()()20f x f x +--=可知()f x 的图象关于直线1x =对称,①正确; 因为()f x 是奇函数,所以()()()2f x f x f x +=-=-,所以()()()42f x f x f x +=-+=,所以()f x 是周期函数,其一个周期为4,但不能说明2是()f x 的周期,故②错误; 由()f x 的周期性和对称性可得1644243333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.又当[]0,1x ∈时,()()2log 1f x x =+,所以()f x 在[]0,1x ∈时单调递增,所以1223f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即16132f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,③错误; 又[]0,1x ∈时,()()2log 1f x x =+,则可画出()f x 在区间[]2,8-上对应的函数图象变化趋势,如图易得()0f x t -=(01t <<)即()f x t =(01t <<)在区间()2,7-上的根分别关于1,5对称,故零点之和为()21512⨯+=,④正确. 故选:A. 【点睛】本题考查函数的奇偶性、对称性、单调性,考查函数的零点,掌握函数的基本性质是解题基础.函数零点问题常用转化为函数图象与直线的交点问题,利用数形结合思想求解.3.B解析:B 【分析】把已知数据代入公式计算12E E .【详解】由题意211 1.25 2.5(lg lg )E E -=-,12lg 0.1E E =, ∴0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈. 故选:B . 【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.4.A解析:A 【分析】当函数的值域为R 时,命题等价于函数()()22111y a x a x =-+++的值域必须包含区间()0+∞,得解 【详解】22()lg[(1)(1)1]f x a x a x =-+++的值域为R令()()22111y a x a x =-+++,则()()22111y a x a x =-+++的值域必须包含区间()0+∞,当210a -=时,则1a =± 当1a =时,21y x =+符合题意; 当1a =-时,1y =不符合题意;当1a ≠±时,()()222101410a a a ⎧->⎪⎨∆=+--≥⎪⎩,解得513a <≤ 513a ∴≤≤,即实数a 的取值范围是5[1,]3故选:A 【点睛】转化命题的等价命题是解题关键.5.D解析:D 【分析】分析指数函数2xy =与幂函数100y x=的图像增长趋势,当0x <时,有1个交点;当0x >时,有2个交点;即集合{}1002,x x x x R =∈有3个元素,所以真子集个数为3217-=【详解】分析指数函数2xy =与幂函数100y x =的图像增长趋势,当0x <时,显然有一个交点;当0x >时,当1x =时,110021>;当2x =时,210022<;故()1,2x ∈时,有一个交点;分析数据发现,当x 较小时,100y x=比2x y =增长的快;当x 较大时,2xy =比100y x =增长的快,即2x y =是爆炸式增长,所以还有一个交点.即2xy =与100y x=的图像有三个交点,即集合{}1002,x x xx R =∈有3个元素,所以真子集个数为3217-= 故选:D. 【点睛】结论点睛:本题考查集合的子集个数,集合A 中含有n 个元素,则集合A 的子集有2n 个,真子集有()21n-个,非空真子集有()22n-个.6.B解析:B 【分析】先分析函数的定义域,然后根据定义域以及复合函数的单调性判断方法确定出()f x 的单调递减区间. 【详解】因为240x ->,所以定义域为()()(),22,22,-∞--+∞,令()24u x x =-,13log y u =在()0,∞+上单调递减, 当(),2x ∈-∞-时,()u x 单调递减,所以()f x 单调递增; 当(]2,0x ∈-时,()u x 单调递增,所以()f x 单调递减; 当()0,2x ∈时,()u x 单调递减,所以()f x 单调递增;当()2,x ∈+∞时,()u x 单调递增,所以()f x 单调递减; 综上可知:()f x 的单调递减区间为(]2,0-和()2,+∞. 故选:B. 【点睛】本题考查对数型复合函数的单调区间的求解,难度一般.分析复合函数的单调性,注意利用判断的口诀“同增异减”,当内外层函数单调性相同时,整个函数为增函数,当内外层函数单调性相反时,整个函数为减函数.7.C解析:C 【分析】根据定义确定()F x 的解析式及单调性后可得最大值. 【详解】由2246x x x <--+得2230x x +-<,31x -<<,所以()22,3146,31x x F x x x x x ⎧-<<=⎨--+≤-≥⎩或,所以()F x 在(,3)-∞-和(0,1)上都是增函数,在(3,0)-和(1,)+∞上都是减函数,(3)9F -=,(1)1F =,所以max ()9F x =. 故选:C . 【点睛】关键点点睛:本题考查求函数的最大值.解题关键是根据新函数定义确定新函数的解析式,单调性.结合单调性易得最值.8.C解析:C 【分析】根据题意得1min 2min ()()g x f x >,再分别求函数的最小值即可得答案. 【详解】解:∵x ∈,∴2[1,3]x ∈, ∴224()3[1,2]f x x x =-∈+. 当0k >时,()[2,22]g x k k ∈-++,所以只需满足:12k <-+,解得01k <<; 当0k =时,()2g x =.满足题意.当0k <时,()[22,2]g x k k ∈-++,所以只需满足:122k <+,解得102k >>-. ∴1,12k ⎛⎫∈- ⎪⎝⎭.故选:C .结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .9.A解析:A 【分析】根据232log 34<+<,()()222log 33log 3f f +=+可得,又有23log 34+> 知,符合4?x >时的解析式,代入即得结果. 【详解】因为函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭; 当4x <时,1f x f x =+()(),所()()()()22222log 3log 121log 12log 24f f f f +==+=以=21log 242=124,故选A . 【点睛】本题主要考查分段函数的解析式、对数的运算法则,意在考查灵活应用所学知识解答问题的能力,属于中档题.10.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B.本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.11.C解析:C 【分析】讨论,B B =∅≠∅两种情况,分别计算得到答案. 【详解】当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤.综上所述:3m ≤ 故选C 【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误.12.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.二、填空题13.【分析】先计算出的取值再结合题目中的规定计算出结果【详解】由方程可得或若则故或由题目中的规定为不超过的最大整数当时可得当时可得;若则无解综上方程的解集是故答案为:【点睛】本题考查了新定义内容结合函数 解析:[)[)1,02,3-【分析】先计算出()f x 的取值,再结合题目中的规定计算出结果. 【详解】 由方程()()22fx f x -=,可得()2f x =或()1f x =-,若()2f x =,则[][]()22x x x -=∈R ,故[]2x =或[]1x =-,由题目中的规定[]t 为不超过t 的最大整数, 当[]2x =时,可得23x ≤<, 当[]1x =-时,可得10x -≤<;若()1f x =-,则[][]()21x x x -=-∈R 无解,综上方程()()22fx f x -=的解集是[)[)1,02,3-.故答案为:[)[)1,02,3-【点睛】本题考查了新定义内容,结合函数思想来解题,需要理清题意,抓住题目的核心,通常考查函数的性质、零点等问题.14.【分析】将问题转化为在上有两个解令利用导数判断的单调性及最值数形结合即可求得a 的范围【详解】令可得令则因为当时当时所以在上单调递减在上单调递增所以当时取得最小值又所以因为在上有两个解所以故答案为:【 解析:441,1(]e+ 【分析】将问题转化为22ln a x x =-在21,e e ⎡⎤⎢⎥⎣⎦上有两个解,令2()2ln g x x x =-,利用导数判断()g x 的单调性及最值,数形结合即可求得a 的范围.【详解】令()0f x =可得22ln a x x =-,令2()2ln g x x x =-,则2222()2x g x x x x-'=-=,因为当211x e 时,()0g x ',当1x e <时,()0g x '>, 所以()g x 在21,1e ⎡⎤⎢⎥⎣⎦上单调递减,在(1,]e 上单调递增, 所以当1x =时()g x 取得最小值(1)1g =, 又224114,()2g g e e e e ⎛⎫=+=-⎪⎝⎭,所以21()g g e e ⎛⎫< ⎪⎝⎭,因为()ag x 在21,e e ⎡⎤⎢⎥⎣⎦上有两个解,所以4114a e <+.故答案为:441,1(]e + 【点睛】本题考查函数的零点、利用导数求函数的最值,考查等价转化思想和数形结合思想,属于中档题.15.【分析】首先求出函数的定义域再根据复合函数的单调性计算可得【详解】解:则解得即函数的定义域为令则因为在上单调递增在上单调递减;在定义域上单调递减根据复合函数的单调性同增异减可知函数在上单调递增故答案 解析:()1,1-【分析】首先求出函数的定义域,再根据复合函数的单调性计算可得. 【详解】 解:()()12log 13y x x =-+则()()130x x -+>解得31x -<<即函数的定义域为()3,1- 令()()()()21314t x x x x =-+=-++,()3,1x ∈-,则12logy t =因为()t x 在()3,1--上单调递增,在()1,1-上单调递减;12log y t =在定义域上单调递减根据复合函数的单调性“同增异减”可知函数()()12log 13y x x =-+在()1,1-上单调递增故答案为:()1,1- 【点睛】本题考查复合函数的单调区间的计算,属于基础题.16.【分析】由满足得到函数是以2为周期的周期函数结合对数的运算性质即可求解【详解】由题意函数满足化简可得所以函数是以2为周期的周期函数又由时函数且则故答案为:【点睛】函数的周期性有关问题的求解策略:求解 解析:2719-【分析】由()f x 满足()()1f x f x =-+,得到函数()f x 是以2为周期的周期函数,结合对数的运算性质,即可求解. 【详解】由题意,函数()f x 满足()()1f x f x =-+,化简可得()()2f x f x =+, 所以函数()f x 是以2为周期的周期函数,又由()0,1x ∈时,函数()3xf x =,且()()1f x f x =-+,则133339(log 19)(log 19)(log 192)(log )19f f f f =-=-+= 327log 193392727(log 1)(log )3191919f f =-+=-=-=-.故答案为:2719- 【点睛】函数的周期性有关问题的求解策略:求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期; 解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.17.【分析】求出函数的对称轴通过讨论的范围求出函数的单调区间求出的最小值即可【详解】由题意二次函数其对称轴为当即时在区间上为增函数当即时在区间上为减函数当即时在区间上为减函数在区间上为增函数;当即时在区 解析:2【分析】求出函数的对称轴,通过讨论a 的范围,求出函数的单调区间,求出M m -的最小值即可. 【详解】由题意,二次函数()2222248a a f x x ax b x b ⎛⎫=++=++- ⎪⎝⎭,其对称轴为4a x =-,当04a-≤,即0a ≥时,()f x 在区间[]0,2上为增函数, ∴()228M f a b ==++,()0m f b ==,∴288M m a -=+≥,当24a-≥,即8a ≤-时,()f x 在区间[]0,2上为减函数, ∴()0M f b ==,()282m f a b ==++,∴828M m a -=--≥,当014a <-≤,即40a -≤<时,()f x 在区间0,4a ⎡⎤-⎢⎥⎣⎦上为减函数,在区间,24a ⎡⎤-⎢⎥⎣⎦上为增函数,∴()228M f a b ==++,248a a m f b ⎛⎫=-=- ⎪⎝⎭,∴()21828M m a -=+≥;当124a <-<,即84a -<<-时,()f x 在区间0,4a ⎡⎤-⎢⎥⎣⎦上为减函数,在区间,24a ⎡⎤-⎢⎥⎣⎦上为增函数,∴()0M f b ==,248a a m f b ⎛⎫=-=- ⎪⎝⎭,∴228a M m -=>.综上所述:M m -的最小值是2. 故答案为:2. 【点睛】本题考查了二次函数的性质,函数的单调性,最值问题,分类讨论思想,转化思想,属于中档题.18.【分析】根据函数的解析式可知当定义域为时说明在上恒成立则对进行分类讨论确定满足条件的的范围【详解】由题意可得在上恒成立①当时则恒成立符合题意;②当时则解得综上可得∴实数的取值范围为故答案为:【点睛】 解析:[)0,4【分析】根据函数的解析式,可知当定义域为R 时,说明210ax ax ++>在R 上恒成立,则对a 进行分类讨论,确定满足条件的a 的范围. 【详解】由题意可得210ax ax ++>在R 上恒成立. ①当0a =时,则10>恒成立,0a ∴=符合题意;②当0a ≠时,则2040a a a >⎧⎨-<⎩,解得04a <<.综上可得04a ≤<,∴实数a 的取值范围为[)0,4. 故答案为:[)0,4. 【点睛】不等式20ax bx c ++>的解是全体实数(或恒成立)的条件是:当0a =时,00b c >=,;当0a ≠时,0a >⎧⎨∆<⎩; 不等式20ax bx c ++<的解是全体实数(或恒成立)的条件是当0a =时,00bc <=,;当0a ≠时,00a <⎧⎨∆<⎩. 19.【分析】先将的可能结果列出然后根据相同结果出现的次数确定出的取值集合【详解】将表示为可得如下结果:其中为都出现了次所以若方程至少有三组不同的解则的取值集合为故答案为:【点睛】关键点点睛:解答本题的关 解析:{}3,6,14【分析】先将i j x x -的可能结果列出,然后根据i j x x -相同结果出现的次数确定出k 的取值集合. 【详解】将i j x x k -=表示为(),,i j x x k ,可得如下结果:()()()()()()()19,1,18,16,1,15,15,1,14,13,1,12,7,1,6,5,1,4,2,1,1, ()()()()()()19,2,17,16,2,14,15,2,13,13,2,11,7,2,5,5,2,3,()()()()()()19,5,14,16,5,11,15,5,10,13,5,8,7,5,2,19,7,12, ()()()()()()16,7,9,15,7,8,13,7,6,19,13,6,16,13,3,15,13,2, ()()()19,15,4,16,15,1,19,16,3,其中k 为3,6,14都出现了3次,所以若方程(0)i j x x k k -=>至少有三组不同的解, 则k 的取值集合为{}3,6,14, 故答案为:{}3,6,14 【点睛】关键点点睛:解答本题的关键是理解方程(0)i j x x k k -=>至少有三组不同的解的含义,即i j x x -的差值出现的次数不小于三次,由此可进行问题的求解.20.①②③【分析】①根据得到方程无实根推出或;再由此判断根的个数即可判断①;②取分别判断根的个数即可判断②;③取分别判断根的个数即可判断③;④当时方程有三个根所以由此求根的个数即可判断④【详解】①当时方解析:①②③ 【分析】①根据0T =,得到方程()()()2110=+++=g x ax cx bx 无实根,推出0a =,240b c -<或0a b c ===;再由此判断()0f x =根的个数,即可判断①;②取240a b c ≠⎧⎨-<⎩,分别判断()0f x =,()0g x =根的个数,即可判断②;③取20040a c b c ≠⎧⎪≠⎨⎪-=⎩分别判断()0f x =,()0g x =根的个数,即可判断③;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,由此求()0f x =根的个数,即可判断④.【详解】①当0T =时,方程()()()2110=+++=g x ax cx bx 无实根,所以0a =,240b c -<或0a b c ===;当0a b c ===时,()3f x x =,由()0f x =得0x =,此时1S =;当0a =,240b c -<时,()()2=++f x x x bx c ,由()0f x =得0x =,此时1S =;故①成立; ②当2040a b c ≠⎧⎨-<⎩时,由()()()20=+++=f x x a x bx c 得x a =-,即1S =;由()()()2110=+++=g x ax cx bx 得1x a=-;即1T =;存在②成立;③当20040a cbc ≠⎧⎪≠⎨⎪-=⎩时,由()()()20=+++=f x x a x bx c 得x a =-或2b x =-;由()()()2110=+++=g x ax cx bx 得 1x a =-或2=-x b;只需2b a ≠,即可满足2S =,2T =;故存在③成立;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,设0x 为()0g x =的一个根,则00x ≠,且200001111f a b c x x x x ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()03010g x x ==,故01x 为方程()0f x =的根.此时()0f x =有三个根,即3T =时,必有3S =,故不可能是2S =,3T =;④错;故答案为:①②③ 【点睛】本题主要考查方程根的个数与集合的综合,会判断方程根的个数即可,属于常考题型.三、解答题21.(1)2610p p y p-=-,定义域为()0,6;(2)2p =时,公司销售金额最大.【分析】(1)由题可得第二个月该商品销量为()122p -万件,月销售收入为100(122)202p p-⋅-万元,则可得出对该商品征收的税; (2)由1y ≥可得25p ≤≤,销售收入()100(6)()2510p g p p p-=≤≤-单调递减,即可求出最值. 【详解】解:(1)依题意,第二个月该商品销量为()122p -万件,月销售收入为100(122)202p p-⋅-万元,当地政府对该商品征收的税为100(122)(6)20210010p py p p p p=-⋅⋅=-⋅--(万元).所以所求函数为2610p p y p-=-. 由60p ->及0p >得,所求函数的定义域为()0,6.(2)由1y ≥得26110p p p-≥-化简得27100p p -+≤, 即(2)(5)0p p --≤,解得25p ≤≤, 所以当25p ≤≤,税收不少于1万元;第二个月,当税收不少于1万元时,公司的销售收入为()100(6)()2510p g p p p-=≤≤-,因为100(6)400()1001010p g p p p -==+--在区间[]2,5上是减函数,所以max ()(2)50g p g ==(万元). 所以当2p =时,公司销售金额最大. 【点睛】本题考查函数的实际应用,解题的关键是正确理解题目,建立正确的函数关系式,根据函数的单调性求最值. 22.(1) 不存在.理由见解析;(2) (i) 41t <<- 【分析】(1) .假设存在实数k 满足题意,由韦达定理可得:()()()21212121212 2224k x x x x x x x x k +++=++=+911144k k +==,解得12k =,又()216 161 160k k k k ∆=-+=->,即k 0<,综合可得假设不成立;(2) (i)作出函数()h x 的图象,观察图像即可求出t 的取值范围;(ii)设直线()41y t t =-<<与此图象的最左边和最右边的交点分别为,A B .即B A n m x x -=-=,因为25+=+510≤+=,代入运算可得解.【详解】解:(1)依题意可知,0k ≠.假设存在实数k ,使()()121211224x x x x ++=成立. 因为()f x 有两个不同零点,.所以()216 161 160k k k k ∆=-+=->,解得k 0<.由韦达定理得121211,4k x x x x k++==所以()()()21212121212 2224k x x x x x x x x k +++=++=+911144k k +== 解得12k =,而k 0<,故不存在. (2)因为1k =-,设()()h x g x t =+,则()2244,0,48,0x x x h x x x x ⎧--<=⎨-≥⎩,当0x <时,()214112()h x x =-++≤;当0x ≥时,()()24144h x x =--≥-.(i)作出函数()h x 的图象,如图所示,所以41t <<-.(ii)设直线()41y t t =-<<与此图象的最左边和最右边的交点分别为,A B . 由244x x t --=,得112A tm x ---== 由248x x t -=,得24B tn x ++== 所以314 B A t tn m x x +-++-=-=因为223251452)(24()t t t -++=+-++2552104≤+=,所以当32t =-时,1 4t t -++取得最大值10. 故n m -的最大值为3102+.【点睛】本题考查了函数的零点与函数图像的交点之间的关系,重点考查了重要不等式及数形结合的数学思想方法,属中档题.23.(Ⅰ)2;(Ⅱ)答案见解析. 【分析】(Ⅰ)利用指数幂的运算性质,即可得出结果.(Ⅱ)将分式不等式化简转化为()()()122020a x a x x ⎧⎡⎤-+-->⎪⎣⎦⎨-≠⎪⎩,分类讨论1a -,解一元二次不等式即可得出结果. 【详解】解:(Ⅰ)原式)2321812-⎛⎫=-+⎪⎝⎭()()2332431ππ=-+--+443π1π2=-+--+=.(Ⅱ)12a a x >--,则()102aa x -->-, 即()()1202a x a x -+->-,即()()()122020a x a x x ⎧⎡⎤-+-->⎪⎣⎦⎨-≠⎪⎩, ①当10a -=,即1a =时,不等式为20x ->,解集为()2,+∞; ②当10a ->,即1a >时,原不等式与()2201a x x a ⎡-⎤⎛⎫-->⎪⎢⎥-⎝⎭⎣⎦同解, 当221a a -≥-,即01a ≤<时,与1a >矛盾,故此情况不存在; 当221a a -<-,即0a <或1a >时,即1a >时,不等式的解集为()2,2,1a a -⎛⎫-∞⋃+∞ ⎪-⎝⎭; ③当10a -<,即1a <时,原不等式与()2201a x x a ⎡-⎤⎛⎫-->⎪⎢⎥-⎝⎭⎣⎦同解, 当221a a ->-,即01a <<时,不等式的解集为22,1a a -⎛⎫⎪-⎝⎭;当221a a -=-,即0a =时,不等式无解,即解集为∅; 当221a a -<-,即0a <或1a >时,即0a <时,不等式的解集为2,21a a -⎛⎫⎪-⎝⎭; 所以,综上所述: 当1a >时,解集为()2,2,1a a -⎛⎫-∞⋃+∞ ⎪-⎝⎭, 当1a =时,解集为()2,+∞,当01a <<时解集为22,1a a -⎛⎫⎪-⎝⎭, 当0a =时,解集为∅, 当0a <时,解集为2,21a a -⎛⎫⎪-⎝⎭. 【点睛】本题考查利用指数幂的运算性质进行化简求值,考查含参数的分式不等式的解法和一元二次不等式的解法,考查分类讨论思想和计算能力. 24.(1)110;(2)13lg5lg 222- 【分析】(1)利用指数幂的运算法则即得解; (2)利用对数的运算法则即得解. 【详解】(1)原式1111323334422()12223()33⨯=⨯+⨯+⨯-2108110=+=(2)原式153222124lg lg 2lg(57)273=-+⨯11(5lg 22lg 7)4lg 2(lg5+2lg7)22=--+ 11(5lg 22lg 7)4lg 2(lg5+2lg7)22=--+ 31lg 2lg522=-+【点睛】本题考查了指数与对数运算,考查了学生概念理解,数学运算能力,属于基础题. 25.(1)0a =;(2)62a -≤≤. 【分析】(1)当0a =时,由()43f x x =+判断,当0a ≠时,由()(),f a f a -的关系判断;(2)根据()g x 是偶函数,将()()6g x a g x +≤-,转化为 ()()6g x a g x +≤-,再根据()g x 在[)0,+∞是增函数,转化为[]1,2x ∈时,6x a x +≤-恒成立求解. 【详解】(1)当0a =时,()43f x x =+是偶函数,当0a ≠时,a a ≠-,而()()()420f a f a a --=≠,()f x 不可能是偶函数,所以当0a =时,()f x 是偶函数;(2)由()g x 是偶函数知()()g x a g x a +=+,()()66g x g x -=-,且x a +,60x -≥,因为()g x 在[)0,+∞是增函数,及()()6g x a g x +≤-,所以当[]1,2x ∈时,6x a x +≤-恒成立,即当[]1,2x ∈时,6x a x +≤-恒成立,即当[]1,2x ∈时,66x x a x -≤+≤-恒成立,即当[]1,2x ∈时,662a x -≤≤-恒成立, 所以62a -≤≤.【点睛】方法点睛:函数奇偶性与单调性求参数问题,当涉及到偶函数时,要利用()()()f x f x f x -==转化为求解.26.(1){|23}x x <≤; (2)(1,3].【分析】(1)可求出13{|}A x x =≤≤,{|2}Bx x ,进行交集的运算,即可求解; (2)进行并集、并集的运算求出集合D ,根据C D ⊆,且{|1}C x x a =<<,即可求得实数a 的取值范围.【详解】(1)由1030x x -≥⎧⎨-≥⎩,解得13x ≤≤,即集合13{|}A x x =≤≤, 集合2{|log 1}{|2}B x x x x =>=>,所以{|23}A B x x ⋂=<≤. (2)由(1)可得{|2}R C B x x =≤,所以(){|3}R D C B A x x ==≤, 因为C D ⊆,且{|1},1C x x a a =<<>,所以13a,所以实数a 的取值范围是(1,3]. 【点睛】本题主要考查了集合的标志,对数函数的单调性,以及集合的交集、并集和补集的运算等知识点的综合应用,着重考查推理与运算能力.。

【浙教版】高中数学必修一期末第一次模拟试卷(含答案)(1)

【浙教版】高中数学必修一期末第一次模拟试卷(含答案)(1)

一、选择题1.已知函数()f x 满足(2)()f x f x +=,且其图像关于直线1x =对称,若()0f x =在[0,1] 内有且只有一个根12x =,则()0f x =在区间[0,2017] 内根的个数为( ) A .1006B .1007C .2016D .20172.已知()f x 是定义在R 上的奇函数,且当0x <时,|2|()12x f x +=-,若关于x 的方程2()|1|f x a f -+2()0x a +=恰好有四个不同的根1x ,2x ,3x ,4x ,则()()()()12341111f x f x f x f x ----⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦的取值范围是( )A .160,81⎛⎫⎪⎝⎭B .10,16⎛⎫⎪⎝⎭C .116,1681⎡⎫⎪⎢⎣⎭D .11,164⎡⎫⎪⎢⎣⎭3.已知函数23()log f x x x=-,(0,)x ∈+∞,则()f x 的零点所在的区间是 A .(0,1) B .(1,2)C .(2,3)D .(3,4)4.下列各组函数中,表示同一个函数的是( )A .211x y x -=-与1y x =+B .y x =与log xa y a =(0a >且1a ≠)C .y =1y x =-D .lg y x =与21lg 2y x =5.已知0.20.33log 0.2,3,0.2a b c ===,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<6.已知函数()()213log f x x ax a =--对任意两个不相等的实数1x 、21,2x ⎛⎫∈-∞- ⎪⎝⎭,都满足不等式()()21210f x f x x x ->-,则实数a 的取值范围是( ) A .[)1,-+∞B .(],1-∞-C .11,2⎡⎤-⎢⎥⎣⎦D .11,2⎡⎫-⎪⎢⎣⎭7.下列命题中正确的是( )A .若函数()f x 的定义域为(1,4),则函数()2f x 的定义域为(2,1)(1,2)--⋃B .1y x =+和y =C .定义在R 上的偶函数()f x 在(0,)+∞和(,0)-∞上具有相反的单调性D .若不等式220ax bx ++>恒成立,则280b a -<且0a >8.对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零,则x 的取值范围是( )A .13x <<B .1x <或3x >C .12x <<D .1x <或2x >9.若定义运算,,b a b a b a a b≥⎧*=⎨<⎩,则函数()()()2242g x x x x =--+*-+的值域为( ) A .(],4-∞B .(],2-∞C .[)1,+∞D .(),4-∞10.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃11.设集合}{2230A x x x =+->,集合}{2210,0,B x x ax a =--≤>若A B 中恰含有一个整数 ,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .30,4⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞12.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈二、填空题13.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元. 14.函数()22|cos |cos 3x x f x =+-在区间[0,2]π内的零点个数是_____. 15.已知a b c 、、是不为1的正数,且0lga lgb lgc ++=,则 111111lgb lgc lgc lga lga lgba b c+++⨯⨯的值为_____16.关于x 的不等式()()222log 1log 2x x ->-的解集为______.17.若函数()22()42221f x x p x p p =----+在区间[]1,1-上至少存在一个实数c ,使()0f c >,则实数p 的取值范围为________.18.已知函数2123y kx kx =++的定义域为R ,则实数k 的取值范围是__________.19.已知集合{}1,2,5,7,13,15,16,19A =,设,i j x x A ∈,若方程(0)i j x x k k -=>至少有三组不同的解,则实数k 的所有可能取值是________ 20.已知全集U =R 集合1|1A x x ⎧⎫=≤⎨⎬⎩⎭,则UA_______.三、解答题21.已知a R ∈,函数21()log f x a x ⎛⎫=+⎪⎝⎭. (1)当5a =时,解不等式()0f x >;(2)若函数()()22log g x f x x =+只有一个零点,求实数a 的取值范围;22.对于定义域为D 的函数()f x ,若同时满足下列两个条件:①()f x 在D 上具有单调性;②存在区间[],a b D ⊆,使()f x 在区间,a b 上的值域也为,a b ,则称()f x 为D 上的“精彩函数”,区间,a b 为函数()f x 的“精彩区间”.(1)判断0,1是否为函数3y x =的“精彩区间”,并说明理由;(2)判断函数()()40f x x x x=+>是否为“精彩函数”,并说明理由;(3)若函数()g x m =是“精彩函数”,求实数m 的取值范围.23.已知函数()11xaf x e =++为奇函数. (1)求a 的值,并用函数单调性的定义证明函数()f x 在R 上是增函数; (2)求不等式()()2230f tf t +-≤的解集.24.计算:(1)()210.2513110.02781369-︒--⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭;. (2)()2lg32lg25lg8lg5lg20lg2103+++- 25.已知二次函数()2()f x ax bx a b R =+∈、满足:①()()11f x f x +=-;②对一切x ∈R ,都有()f x x ≤.(1)求()f x ;(2)是否存在实数(),m n m n <使得()f x 的定义域为[],m n 、值域为[]3,3m n ,如果存在,求出m ,n 的值;如果不存在,说明理由. 26.已知集合()(){}|250A x x x k =++<(1)若()53A ⊆-,,求k 的取值范围.(2)若{}2|20B x x x =-->,且{}2A B Z ⋂⋂=-(Z 为整数集合),求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】由(2)()f x f x +=,以及()(2)f x f x -=+,进而推出()f x 为偶函数,且()f x 是周期等于2的周期函数,根据1()02f =,求出3()02f =,从而得到函数()f x 在一个周期的零点个数,且函数()f x 在每两个整数之间都有一个零点,从而得到()0f x =在区间[0,2017]内根的个数.【详解】解:函数()f x 满足(2)()f x f x +=, 故函数()f x 是周期等于2的周期函数,其图象关于直线1x =对称,可得()(2)f x f x -=+, 即有()()f x f x -=,1()02f =, 1()02f ∴-=,再由周期性得13(2)()022f f -+==, 故函数()f x 在一个周期[0,2]上有2个零点, 即函数()f x 在每两个整数之间都有一个零点, ()0f x ∴=在区间[0,2017]内根的个数为2017.故选:D . 【点睛】利用函数的奇偶性与周期性相结合,求出函数在指定区间的零点个数,求解的关键在于周期性的应用.2.A解析:A 【分析】由奇函数得出()f x 的性质,作出函数图象,可知()f x t =的解的个数,令()t f x =,原方程变为2210t a t a -++=,根据()f x t =的解的情形,可得2210t a t a -++=有两不等实根且实根12,t t 都在(0,3)上,由二次方程根的分布可得a 的范围,应用韦达定理得1212,t t t t +,这样()()()()12341111f x f x f x f x ----⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦就可能用a 表示,并根据a 的求得结论. 【详解】由题意(0)0f =,0x >时,2()()21x f x f x -+=--=-,作出函数()f x 的图象,如图,若0a =,则方程2()|1|f x a f -+2()0x a +=为2()()0f x f x -=,()0f x =或()1f x =()0f x =三个解,()1f x =有两个解,原方程共有5个解,不合题意,设()t f x =,因此关于t 方程2210t a t a -++=必有两个不等实根,又12212100t t a t t a ⎧+=+>⎨=>⎩,所以120,0t t >>,从而103t <<,203t <<且12t t ≠.若其中一根为1,则由2110a a -++=,1a ≤-时,2110a a +++=无实数解,1a >-,2110a a --+=,0a =或1a =,不合题意.因此121,1t t ≠≠,由2222103209310140a a a a a a ⎧+<<⎪⎪⎪>⎨⎪-++>⎪∆=+->⎪⎩,解得113-<<a 且0a ≠.不妨设121()()f x f x t ==,342()()f x f x t ==, 则()()()()222212341212121111[(1)(1)][1()][11]f x f x f x f x t t t t t t a a ----=--=-++=-++⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦22()a a =-,∵113-<<a 且0a ≠.∴21449a a -≤-<且20a a -≠,∴2160,81a a ⎛⎫-∈ ⎪⎝⎭. 故选:A .【点睛】关键点点睛:本题考查方程根的分布问题,解题关键是两个:一是研究函数()f x 的性质,二是换元后得出二次方程,问题转化为二次方程根的分布,求出参数a 的范围.3.C解析:C 【分析】由题意结合零点存在定理确定()f x 的零点所在的区间即可. 【详解】由题意可知函数()23f x log x x=-在()0,+∞上单调递减,且函数为连续函数, 注意到()130f =>,()1202f =>,()231log 30f =-<,()34204f =-<, 结合函数零点存在定理可得()f x 的零点所在的区间是()2,3. 本题选择C 选项. 【点睛】应用函数零点存在定理需要注意: 一是严格把握零点存在性定理的条件;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件;三是函数f (x )在(a ,b )上单调且f (a )f (b )<0,则f (x )在(a ,b )上只有一个零点.4.B解析:B 【分析】分析各个选项中每组函数的定义域和对应关系,若定义域和对应关系均相同则为同一个函数,由此判断出正确选项. 【详解】A .211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,所以不是同一个函数;B .y x =与log xa y a =的定义域均为R ,且log xa y a =即为y x =,所以是同一个函数;C .y =(][),11,-∞-+∞,1y x =-的定义域为R ,所以不是同一个函数;D .lg y x =的定义域为()0,∞+,21lg 2y x =的定义域为{}0x x ≠,所以不是同一个函数, 故选:B. 【点睛】思路点睛:同一函数的判断步骤:(1)先判断函数定义域,若定义域不相同,则不是同一函数;若定义域相同,再判断对应关系;(2)若对应关系不相同,则不是同一函数;若对应关系相同,则是同一函数.5.B解析:B 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出,,a b c 的取值范围,从而可得结果 【详解】因为33log 0.2log 10<=,0.20331>=,...030002021<<=,a cb ∴<<. 故选:B . 【点睛】比较大小问题,常见思路有两个:一是利用中间变量;二是利用函数的单调性直接解答6.C解析:C 【分析】由题意可知,函数()()213log f x x ax a =--在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递增,利用复合函数的单调性可知,内层函数2u x ax a =--在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,且0>u 对任意的1,2x ⎛⎫∈-∞-⎪⎝⎭恒成立,进而可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】因为()()21210f x f x x x ->-,所以()()213f x log x ax a =--在1,2⎛⎫-∞- ⎪⎝⎭上是增函数, 令2u x ax a =--,而13log y u =是减函数,所以2u x ax a =--在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,且20u x ax a =-->在1,2⎛⎫-∞- ⎪⎝⎭上恒成立,所以212211022aa a ⎧≥-⎪⎪⎨⎛⎫⎛⎫⎪----≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得112a -≤≤. 故选:C. 【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,解题时还应注意真数要恒为正数,考查分析问题和解决问题的能力,属于中等题.7.A解析:A 【分析】利用抽象函数的定义域列不等式判断A ;利用特例法判断BCD. 【详解】因为函数()f x 的定义域为(1,4),由21412x x <<⇒<<或21x -<<-,所以函数()2f x 的定义域为(2,1)(1,2)--⋃,A 正确;1y x =+和1,11,1x x y x x +≥-⎧==⎨--<-⎩,对应法则不同,不表示同一函数,B 错; 偶函数()1f x =在(0,)+∞和(,0)-∞上不具有相反的单调性,C 错;0a b 时,不等式220ax bx ++>恒成立,但280b a -<且0a >不成立,D 错;故选:A. 【点睛】方法点睛:若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出,若已知函数()()f g x 的定义域为[],a b ,则()f x 的定义域为()g x 在[],x a b ∈时的值域.8.B解析:B 【分析】将函数()f x 的解析式变形为()2()244f x x a x x =-+-+,并构造函数()2()244g a x a x x =-+-+,由题意得出()()1010g g ⎧->⎪⎨>⎪⎩,解此不等式组可得出实数x 的取值范围 【详解】对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零设()()2244g a x a x x =-+-+,即()0g a >在[]1,1a ∈-上恒成立.()g a 在[]1,1a ∈-上是关于a 的一次函数或常数函数,其图象为一条线段.则只需线段的两个端点在x 轴上方,即()()2215601320g x x g x x ⎧-=-+>⎪⎨=-+>⎪⎩,解得3x >或1x < 故选:B 【点睛】关键点睛:本题考查不等式在区间上恒成立问题,解答本题的关键是构造函数()()2244g a x a x x =-+-+,将问题转化为()0g a >在[]1,1a ∈-上恒成立,从而得到()()1010g g ⎧->⎪⎨>⎪⎩,属于中档题.9.A解析:A 【分析】根据,,b a b a b a a b≥⎧*=⎨<⎩可得()g x 的解析式,画出图象可得答案. 【详解】由,,b a ba b a a b≥⎧*=⎨<⎩,得()()()222,[2,1]24224,(1,)(,2)x x g x x x x x x x -+∈-⎧=--+*-+=⎨--+∈+∞⋃-∞-⎩,当[2,1]x ∈-,()2[1,4g x x =-+∈], 当(1,)(,2)x ∈+∞-∞-,()2()154g x x =-++<,可得()4g x ≤- 故选:A. 【点睛】本题的关键点是根据已知定义求出函数解析式,然后画出图象求解.10.B解析:B 【分析】化简集合A ,B ,根据交集运算即可求值. 【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.11.A解析:A 【分析】先化简集合A ,再根据函数y =f (x )=x 2﹣2ax ﹣1的零点分布,结合A ∩B 恰有一个整数求解. 【详解】A ={x |x <﹣3或x >1},函数y =f (x )=x 2﹣2ax ﹣1的对称轴为x =a >0, 而f (﹣3)=6a +8>0,f (﹣1)=2a >0,f (0)<0,故其中较小的零点为(-1,0)之间,另一个零点大于1,f (1)<0, 要使A ∩B 恰有一个整数, 即这个整数解为2, ∴f (2)≤0且f (3)>0,即44109610a a --≤⎧⎨-->⎩, 解得:3443a a ⎧≥⎪⎪⎨⎪<⎪⎩, 即34≤a <43, 则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭. 故答案为:A.【点睛】本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,还考查了转化求解问题的能力,属于中档题.12.C解析:C【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可.【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++,举出可知集合S T T +=.故选:C .【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.1120【分析】明确折扣金额y 元与购物总金额x 元之间的解析式结合y =30>25代入可得某人在此商场购物总金额减去折扣可得答案【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式y ∵y =30>2解析:1120【分析】明确折扣金额y 元与购物总金额x 元之间的解析式,结合y =30>25,代入可得某人在此商场购物总金额, 减去折扣可得答案.【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式,y ()()006000.0560060011000.11100251100x x x x x ⎧≤⎪=-≤⎨⎪-+⎩,<,<,> ∵y =30>25∴x >1100∴0.1(x ﹣1100)+25=30解得,x =1150,1150﹣30=1120,故此人购物实际所付金额为1120元.【点睛】本题考查的知识点是分段函数,正确理解题意,进而得到满足条件的分段函数解析式是解答的关键.14.4【分析】根据角的范围确定余弦函数的符号去掉绝对值作函数图象利用数形结合求解函数的零点个数即可【详解】令则设则当时当时画出函数的图象易知函数的图象与直线有4个不同的交点故答案为:4【点睛】本题考查三 解析:4【分析】根据角的范围确定余弦函数的符号,去掉绝对值,作函数图象,利用数形结合求解函数的零点个数即可.【详解】令()0f x =,则22|cos |cos 3x x +=, 设()2|cos |cos g x x x =+,则当30,,222x πππ⎡⎤⎡⎤∈⋃⎢⎥⎢⎥⎣⎦⎣⎦时,()3cos g x x =, 当3,22x ππ⎛⎫∈ ⎪⎝⎭时,()cos g x x =-, 画出函数()y g x =的图象,,易知函数()y g x =的图象与直线23y =有4个不同的交点, 故答案为:4【点睛】 本题考查三角函数的求值,函数的零点个数的求法,考查转化思想以及计算能力,属于中档题.15.【分析】根据对数运算公式可以将转化得到的等量关系将此等量关系代入所求式子即可解决【详解】由可得故答案为:【点睛】本题考查对数的运算对数恒等式属于基础题 解析:11000【分析】根据对数运算公式,可以将0lga lgb lgc ++=转化,得到a ,b ,c 的等量关系,将此等量关系代入所求式子即可解决.【详解】由0lga lgb lgc ++=, 可得1bc a =,1ab c =,1ac b =, 111111111()()()lgb lgc lgc lga lga lgb lgb lga lgc a bc ac bc ab +++∴⨯⨯=. 11110101011111010101000b ac log log log b a c ==⨯⨯= 故答案为:11000【点睛】 本题考查对数的运算,对数恒等式,属于基础题.16.【分析】由对数函数的性质化对数不等式为一元二次不等式组求解【详解】由得解得∴不等式的解集为故答案为:【点睛】本题考查对数不等式的解法考查了对数函数的性质是基础题解析:(,1-∞-.【分析】由对数函数的性质化对数不等式为一元二次不等式组求解.【详解】由()()222log 1log 2x x ->-,得21220x x x ⎧->-⎨->⎩,解得1x <--∴不等式()()222log 1log 2x x ->-的解集为(,1-∞-.故答案为:(,1-∞-.【点睛】本题考查对数不等式的解法,考查了对数函数的性质,是基础题. 17.【分析】直接计算需分多种情况讨论故先求题干的否定即对于区间上任意一个x 都有只需满足列出不等式组求解即可得答案【详解】函数在区间上至少存在一个实数使的否定为:对于区间上任意一个x 都有则即整理得解得或所 解析:3(3,)2- 【分析】直接计算,需分多种情况讨论,故先求题干的否定,即对于区间[]1,1-上任意一个x ,都有()0f x ≤,只需满足(1)0(1)0f f ≤⎧⎨-≤⎩,列出不等式组,求解即可得答案. 【详解】函数()f x 在区间[]1,1-上至少存在一个实数c ,使()0f c >的否定为:对于区间[]1,1-上任意一个x ,都有()0f x ≤,则(1)0(1)0f f ≤⎧⎨-≤⎩,即2242(2)21042(2)210p p p p p p ⎧----+≤⎨+---+≤⎩, 整理得222390210p p p p ⎧+-≥⎨--≥⎩, 解得32p ≥或3p ≤-, 所以函数()f x 在区间[]1,1-上至少存在一个实数c ,使()0f c >的实数p 的取值范围是3(3,)2-. 故答案为:3(3,)2-【点睛】本题考查二次方程根的分布与系数的关系,解题的要点在于求解题干的否定,再求得答案,考查分析理解,求值计算的能力,属中档题. 18.【解析】解:当k=0时满足条件当时综上:点睛:定义域为分母在上都不为0注意分母不一定为二次所以先考虑二次项系数为零解析:0k ≤<3.【解析】解:当k=0时,13y =,满足条件当k 0≠时,24120k k -<综上:0k 3≤<.点睛:定义域为R ,分母在R 上都不为0,注意分母不一定为二次,所以先考虑二次项系数为零.19.【分析】先将的可能结果列出然后根据相同结果出现的次数确定出的取值集合【详解】将表示为可得如下结果:其中为都出现了次所以若方程至少有三组不同的解则的取值集合为故答案为:【点睛】关键点点睛:解答本题的关 解析:{}3,6,14【分析】先将i j x x -的可能结果列出,然后根据i j x x -相同结果出现的次数确定出k 的取值集合.【详解】将i j x x k -=表示为(),,i j x x k ,可得如下结果: ()()()()()()()19,1,18,16,1,15,15,1,14,13,1,12,7,1,6,5,1,4,2,1,1,()()()()()()19,2,17,16,2,14,15,2,13,13,2,11,7,2,5,5,2,3,()()()()()()19,5,14,16,5,11,15,5,10,13,5,8,7,5,2,19,7,12,()()()()()()16,7,9,15,7,8,13,7,6,19,13,6,16,13,3,15,13,2,()()()19,15,4,16,15,1,19,16,3,其中k 为3,6,14都出现了3次,所以若方程(0)i j x x k k -=>至少有三组不同的解, 则k 的取值集合为{}3,6,14,故答案为:{}3,6,14【点睛】关键点点睛:解答本题的关键是理解方程(0)i j x x k k -=>至少有三组不同的解的含义,即i j x x -的差值出现的次数不小于三次,由此可进行问题的求解.20.【分析】先解分式不等式确定集合A 再求补集即可【详解】则故答案为:【点睛】本题考查补集运算准确求得集合A 是关键是基础题解析:[0,1)【分析】先解分式不等式确定集合A,再求补集即可【详解】()1|1=,0[1,)A x x ⎧⎫=≤-∞⋃+∞⎨⎬⎩⎭,则[0,1)U A故答案为:[0,1)【点睛】本题考查补集运算,准确求得集合A 是关键,是基础题三、解答题21.(1)1(,)(0,)4-∞-+∞;(2)1{}[0,)4-+∞. 【分析】(1)当5a =时,得到21()log (5)f x x =+,根据()0f x >,得出不等式151x+>,即可求解; (2)化简()221log ()g x a x x=+⋅(其中0x >),根据函数()g x 只有一个零点,得到方程210ax x +-=在(0,)+∞上只有一个解,结合二次函数的性质,即可求解.【详解】(1)当5a =时,21()log (5)f x x =+,由()0f x >,即21log (5)0x +>,可得151x +>,解得14x <-或0x >, 即不等式()0f x >的解集为1(,)(0,)4-∞-+∞. (2)由()()22222112log log ()2log log ()g x f x x a x a x x x=+=++=+⋅(其中0x >),因为函数()()22log g x f x x =+只有一个零点,即()0g x =只有一个根, 即21()1a x x +⋅=在(0,)+∞上只有一个解,即210ax x +-=在(0,)+∞上只有一个解,①当0a =时,方程10x -=,解得1x =,复合题意;②当0a ≠时,设函数21y ax x =+-当0a >时,此时函数21y ax x =+-与x 轴的正半轴,只有一个交点,复合题意; 当0a <时,要使得函数21y ax x =+-与x 轴的正半轴只有一个交点, 则满足102140a a ⎧->⎪⎨⎪∆=+=⎩,解得14a =- , 综上可得,实数a 的取值范围是1{}[0,)4-+∞.【点睛】根据函数的零点求参数的范围的求解策略:转化:把已知函数的零点的存在情况转化为方程的解或两函数图象的交点的情况;列式:根据函数零点的存在性定理或结合函数的图象、性质列出方程(组)或不等式(组);结论:求出参数的取值范围或根据图象得出参数的取值范围;22.(1)是“精彩区间”,理由见解析;(2)不是“精彩函数”,理由见解析;(3)1744m -<≤- 【分析】 (1)先判断函数3y x =是否满足“精彩函数”的条件,从而可判断0,1是否为函数3y x=的“精彩区间”;(2)判断函数()()40f x x x x=+>是否满足“精彩函数”的条件即可; (3)由()g x 是“精彩函数”,可知()g x x =至少存在两个不等的实数解,可转化为()222140x m x m -++-=有两个不等的实数根,两实根都不小于4-和m ,结合二次函数的性质,求出m 的取值范围.【详解】(1)由题意,3y x =是R 上的增函数,易知3y x =在0,1上的值域为0,1,所以函数3y x =是“精彩区间”,0,1是该函数的“精彩区间”.(2)不是精彩函数,证明如下:因为函数()()40f x x x x =+>在区间()0,2上单调递减,在区间2,上单调递增, 所以函数()4f x x x =+在定义域0,上不单调,不满足“精彩函数”的第一个条件, 所以函数()()40f x x x x=+>不是“精彩函数”.(3)由题意,函数()g x m =的定义域为[)4,-+∞,且()g x 在定义域上为单调递增函数,因为函数()g x m 是“精彩函数”m x =至少存在两个不等的实数解, 方程整理得()222140x m x m -++-=, 所以该方程有两个不等的实数根,设为12,x x ,不妨设21x x >,则214x x >≥-,21 x x m >≥,令()()22214h x x m x m =-++-,由题意得,()()()()()()22222214402140416421402142m m h m m m m m h m m m ⎧∆=+-->⎪⎪=-++-≥⎪⎨-=+++-≥⎪⎪+>-⎪⎩,即()2417040402142m m m m +>⎧⎪+≤⎪⎪⎨+≥⎪+⎪>-⎪⎩,解得1744m -<≤-. 所以实数m 的取值范围是1744m -<≤-. 【点睛】本题考查新定义,考查函数与方程的综合应用,考查了函数基本性质的运用,考查了学生的推理能力与计算求解能力,属于中档题.23.(1)2a =-;证明见解析;(2)[]3,1-.【分析】(1)根据()f x 为奇函数求得a 的值.利用函数单调性的定义证得()f x 在R 上是增函数; (2)利用()f x 的奇偶性和单调性化简不等式()()222320f t t f t -+-≤,结合一元二次不等式的解法,求得不等式的解集.【详解】(1)由已知()()f x f x -=-, ∴1111x x a a e e -⎛⎫+=-+ ⎪++⎝⎭, ∴22011x x x ae a a e e ++=+=++, 解得2a =-. ∴2()11x f x e -=++. 证明:12,x x R ∀∈,且12x x <,则()()()()()211212122221111x x x x x x e e f x f x e e e e -----=-=++++, ∵12x x <,∴12x x e e <,∴210x x e e ->,又110x e +>,210x e +>,∴()()()()()2112122011x x x x e e f x f x e e ---=<++,∴()()12f x f x <,故函数()f x 在R 上是增函数.(2)∵()2(23)0f tf t +-≤, ∴()2(23)f t f t ≤--,而()f x 为奇函数,∴()2(32)f t f t ≤-, ∵()f x 为R 上单调递增函数,∴223t t ≤-+,∴2230t t +-≤,∴31t -≤≤,∴原不等式的解集为[]3,1-.【点睛】关键点点睛:根据奇函数的定义求出a ,利用定义证明函数为增函数,可将()2(23)0f t f t +-≤转化,脱去“f ”,建立不等式求解,考查了转化思想,属于中档题. 24.(1)29-;(2)0【分析】(1)由幂的运算法则计算;(2)根据对数运算法则计算.【详解】(1)原式1240.253271101()6(3)13631291000333-=-++-=-++-=- (2)原式2lg32lg52lg 2lg5(1lg 2)(lg 2)10=++++-2lg5lg 2(lg 2lg5)3330=+++-=-=【点睛】本题考查幂的运算和对数的运算,掌握幂的运算法则和对数运算法则是解题基础. 25.(1)21()2f x x x =-+;(2)存在,40m n =-⎧⎨=⎩. 【分析】(1)由(1)(1)f x f x +=-,得到20b a +=,再由()f x x ≤恒成立,列出方程组,求得,a b 的值,得到函数的解析式;(2)假设存在()m n m n <、,根据题意得到[],m n 必在对称轴的左侧,且()f x 在[],m n 单调递增,列出方程组,即可求解.【详解】(1)因为22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++,22(1)(1)(1)(2)f x a x b x ax a b x a b -=-+-=-+++,由()()11f x f x +=-可知,20a b +=,由于对一切x ∈R ,都有()f x x ≤即2()(1)0f x x ax b x -=+-≤,于是由二次函数的性质可得()()201400*a b a <⎧⎪⎨∆=--⨯≤⎪⎩由()*知()210b -≤,而()210b -≥,所以()210b -=即1b =, 将1b =代入20a b +=得12a =-, 所以21()2f x x x =-+; (2)因为221111()(1)2222f x x x x =-+=--+≤, 若存在满足条件的实数(),m n m n <则必有132n ≤,解得16n ≤, 又因为()f x 在(],1-∞上单调递增,所以()f x 在[],m n 上单调递增.所以()()33f m m f n n ⎧=⎪⎨=⎪⎩,22132132m m m n n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得40m n =-⎧⎨=⎩或04m n =⎧⎨=-⎩, 因为m n <,所以40m n =-⎧⎨=⎩, 故存在40m n =-⎧⎨=⎩满足条件. 【点睛】关键点点睛:本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质,以及根据函数的值域判断出函数在[,]m n 上的单调性是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.26.(1)[] 3,5-;(2)5 3,?2⎡⎫-⎪⎢⎣⎭.【分析】(1)对参数k 进行分类讨论,求得对应情况下不等式的解集,再根据集合之间的关系,求得k 的范围;(2)根据(1)中集合A 的解集,集合{}2A B Z ⋂⋂=-,对参数k 进行分类讨论,即可求得k 的范围.【详解】(1)对集合A : 当52k =时,不等式的解集为空集,即A =∅,满足()53A ⊆-,; 当52k <时,不等式的解集为5,2A k ⎛⎫=-- ⎪⎝⎭,若满足()53A ⊆-,, 只需3k -≤,解得3k ≥-,又52k <,故53,?2k ⎡⎫∈-⎪⎢⎣⎭; 当52k >时,不等式的解集为5,2A k ⎛⎫=-- ⎪⎝⎭,若满足()53A ⊆-,, 只需5k -≥-,解得5k ≤,又52k >,故5,52k ⎛⎤∈ ⎥⎝⎦ 综上所述若满足题意,则[]3,5k ∈-. (2)对集合B :220x x -->,解得()(),12,B =-∞-⋃+∞此时B Z ⋂是小于等于2-的整数和大于等于3的整数的集合.对集合A :由(1)知: 当52k =时,A =∅,不满足{}2A B Z ⋂⋂=-,故舍去; 当52k <时,5,2A k ⎛⎫=-- ⎪⎝⎭,若满足{}2A B Z ⋂⋂=-, 只需3k -≤,解得3k ≥-,又52k <,故可得53,?2k ⎡⎫∈-⎪⎢⎣⎭; 当52k >时,5,2A k ⎛⎫=-- ⎪⎝⎭,显然不满足{}2A B Z ⋂⋂=-,故舍去. 综上所述,若满足题意,则53,?2k ⎡⎫∈-⎪⎢⎣⎭. 【点睛】本题考查由集合之间的关系,求参数的范围,属中档题;本题中需要注意对参数的分类讨论,要做到不重不漏.。

【冲刺卷】高中必修一数学上期末模拟试题(附答案)

【冲刺卷】高中必修一数学上期末模拟试题(附答案)

【冲刺卷】高中必修一数学上期末模拟试题(附答案)一、选择题1.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能2.已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>3.已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为( )A .B .C .D .4.设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则BA =( )A .()0,1B .[)0,1C .(]0,1D .[]0,15.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >> B .y x z >>C .y z x >>D .x z y >>6.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有2121()()0f x f x x x -<-,则( ).A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-7.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃8.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.99.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y 11.已知3log 2a =,0.12b =,sin 789c =,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<12.曲线1(22)y x =-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 二、填空题13.已知函数()()22,03,0x x f x x x ⎧+≤⎪=⎨->⎪⎩,则关于x 的方程()()()()200,3f af x a x -=∈的所有实数根的和为_______.14.已知函数()1352=++f x ax bx (a ,b 为常数),若()35f -=,则()3f 的值为______15.若关于x 的方程42x x a -=有两个根,则a 的取值范围是_________ 16.若函数cos ()2||x f x x x =++,则11(lg 2)lg (lg 5)lg 25f f f f ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭______. 17.设,,x y z R +∈,满足236x y z ==,则112x z y+-的最小值为__________. 18.若点(4,2)在幂函数()f x 的图像上,则函数()f x 的反函数1()f x -=________.19.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___.20.已知函数222y x x -=+,[]1,x m ∈-.若该函数的值域为[]1,10,则m =________.三、解答题21.已知集合{}{}{}|2318,|215,|1A x x B x x C x x a x a =≤-≤=-<=≤≥+或. (1)求,AB A B ;(2)若()R C C A ⊆,求实数a 的取值范围.22.已知函数2()()21xx a f x a R -=∈+是奇函数.(1)求实数a 的值;(2)用定义法证明函数()f x 在R 上是减函数;(3)若对于任意实数t ,不等式()2(1)0f t kt f t -+-≤恒成立,求实数k 的取值范围. 23.已知集合,,.(1)若,求的值; (2)若,求的取值范围.24.设函数()3x f x =,且(2)18f a +=,函数()34()ax x g x x R =-∈. (1)求()g x 的解析式;(2)若方程()g x -b=0在 [-2,2]上有两个不同的解,求实数b 的取值范围.25.已知函数()212xxk f x -=+(x ∈R )(1)若函数()f x 为奇函数,求实数k 的值;(2)在(1)的条件下,若不等式()()240f ax f x +-≥对[]1,2x ∈-恒成立,求实数a的取值范围.26.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()2(21)0f kx f x +->恒成立,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】因为f (x ) 在R 上的单调增,所以由x 2+x 1>0,得x 2>-x 1,所以21121()()()()()0f x f x f x f x f x >-=-⇒+>同理得2313()()0,()()0,f x f x f x f x +>+> 即f (x 1)+f (x 2)+f (x 3)>0,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行2.D解析:D 【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:2log 1a e =>,()21ln 20,1log b e ==∈,12221log log 3log 3c e ==>, 据此可得:c a b >>. 本题选择D 选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.3.B解析:B 【解析】试题分析:设()ln(1)g x x x =+-,则()1xg x x'=-+,∴()g x 在()1,0-上为增函数,在()0,∞+上为减函数,∴()()00g x g <=,1()0()f x g x =<,得0x >或10x -<<均有()0f x <排除选项A ,C ,又1()ln(1)f x x x =+-中,10ln(1)0x x x +>⎧⎨+-≠⎩,得1x >-且0x ≠,故排除D.综上,符合的只有选项B.故选B. 考点:1、函数图象;2、对数函数的性质. 4.B解析:B 【解析】 【分析】先化简集合A,B,再求BA 得解.【详解】由题得{}10|22{|1}x A x x x -=≥=≥,{}|0B y y =≥.所以{|01}BA x x =≤<.故选B 【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.5.A解析:A 【解析】 【分析】利用指数函数、对数函数的单调性直接比较. 【详解】 解:0.1x 1.11.11=>=, 1.100y 0.90.91<=<=,22334z log log 103=<<,x ∴,y ,z 的大小关系为x y z >>. 故选A . 【点睛】本题考查三个数的大小的比较,利用指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.6.A解析:A 【解析】由对任意x 1,x 2 ∈ [0,+∞)(x 1≠x 2),有()()1212f x f x x x -- <0,得f (x )在[0,+∞)上单独递减,所以(3)(2)(2)(1)f f f f <=-<,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行7.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 8.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.9.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.10.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.11.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知343333log 2log 34a =<=<, 由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以3,1)2c ∈, 所以a c b <<,故选B.12.A解析:A 【解析】试题分析:241(22)y x x =--≤≤对应的图形为以0,1为圆心2为半径的圆的上半部分,直线24y kx k =-+过定点()2,4,直线与半圆相切时斜率512k =,过点()2,1-时斜率34k =,结合图形可知实数k 的范围是53(,]124考点:1.直线与圆的位置关系;2.数形结合法二、填空题13.【解析】【分析】由可得出和作出函数的图象由图象可得出方程的根将方程的根视为直线与函数图象交点的横坐标利用对称性可得出方程的所有根之和进而可求出原方程所有实根之和【详解】或方程的根可视为直线与函数图象 解析:3【解析】 【分析】 由()()20fx af x -=可得出()0f x =和()()()0,3f x a a =∈,作出函数()y f x =的图象,由图象可得出方程()0f x =的根,将方程()()()0,3f x a a =∈的根视为直线y a =与函数()y f x =图象交点的横坐标,利用对称性可得出方程()()()0,3f x a a =∈的所有根之和,进而可求出原方程所有实根之和. 【详解】()()()2003f x af x a -=<<,()0f x ∴=或()()03f x a a =<<.方程()()03f x a a =<<的根可视为直线y a =与函数()y f x =图象交点的横坐标, 作出函数()y f x =和直线y a =的图象如下图:由图象可知,关于x 的方程()0f x =的实数根为2-、3.由于函数()22y x =+的图象关于直线2x =-对称,函数3y x =-的图象关于直线3x =对称,关于x 的方程()()03f x a a =<<存在四个实数根1x 、2x 、3x 、4x 如图所示, 且1222+=-x x ,3432x x +=,1234462x x x x ∴+++=-+=, 因此,所求方程的实数根的和为2323-++=. 故答案为:3. 【点睛】本题考查方程的根之和,本质上就是求函数的零点之和,利用图象的对称性求解是解答的关键,考查数形结合思想的应用,属于中等题.14.【解析】【分析】由求得进而求解的值得到答案【详解】由题意函数(为常数)且所以所以又由故答案为:【点睛】本题主要考查了函数值的求解其中解答中根据函数的解析式准确运算是解答的关键着重考查了计算能力属于基解析:1-【解析】 【分析】由()35f -=,求得1532723a b -⋅-+=,进而求解()3f 的值,得到答案. 【详解】由题意,函数()1352=++f x ax bx (a ,b 为常数),且()35f -=, 所以()15332725f a b -=-⋅-+=,所以153273a b -⋅-=, 又由()1533272321f a b -=⋅++=-+=-. 故答案为:1-. 【点睛】本题主要考查了函数值的求解,其中解答中根据函数的解析式,准确运算是解答的关键,着重考查了计算能力,属于基础题.15.【解析】【分析】令可化为进而求有两个正根即可【详解】令则方程化为:方程有两个根即有两个正根解得:故答案为:【点睛】本题考查复合函数所对应的方程根的问题关键换元法的使用难度一般解析:1(,0)4-【解析】 【分析】令20x t =>,42x x a -=,可化为20t t a --=,进而求20t t a --=有两个正根即可. 【详解】令20x t =>,则方程化为:20t t a --=方程42x x a -=有两个根,即20t t a --=有两个正根,1212140100a x x x x a ∆=+>⎧⎪∴+=>⎨⎪⋅=->⎩,解得:104a -<<.故答案为: 1(,0)4-. 【点睛】本题考查复合函数所对应的方程根的问题,关键换元法的使用,难度一般.16.10【解析】【分析】由得由此即可得到本题答案【详解】由得所以则所以故答案为:10【点睛】本题主要考查利用函数的奇偶性化简求值解析:10 【解析】 【分析】由cos ()2||xf x x x=++,得()()42||f x f x x +-=+,由此即可得到本题答案. 【详解】 由cos ()2||xf x x x =++,得cos()cos ()2||2||x x f x x x x x--=+-+=+--,所以()()42||f x f x x +-=+,则(lg 2)(lg 2)42|lg 2|42lg 2f f +-=+=+,(lg5)(lg5)42|lg5|42lg5f f +-=+=+, 所以,11(lg 2)lg (lg 5)lg 42lg 242lg 51025f f f f ⎛⎫⎛⎫+++=+++= ⎪ ⎪⎝⎭⎝⎭. 故答案为:10 【点睛】本题主要考查利用函数的奇偶性化简求值.17.【解析】【分析】令将用表示转化为求关于函数的最值【详解】令则当且仅当时等号成立故答案为:【点睛】本题考查指对数间的关系以及对数换底公式注意基本不等式的应用属于中档题解析:【解析】 【分析】令236x y z t ===,将,,x y z 用t 表示,转化为求关于t 函数的最值. 【详解】,,x y z R +∈,令1236x y z t ==>=,则236log ,log ,log ,x t y t z t ===11log 3,log 6t t y z==,21122log log 2t x t z y+-=+≥当且仅当2x =时等号成立.故答案为: 【点睛】本题考查指对数间的关系,以及对数换底公式,注意基本不等式的应用,属于中档题.18.【解析】【分析】根据函数经过点求出幂函数的解析式利用反函数的求法即可求解【详解】因为点在幂函数的图象上所以解得所以幂函数的解析式为则所以原函数的反函数为故答案为:【点睛】本题主要考查了幂函数的解析式 解析:2(0)x x ≥【解析】 【分析】根据函数经过点(4,2)求出幂函数的解析式,利用反函数的求法,即可求解. 【详解】因为点(4,2)在幂函数()()f x x R αα=∈的图象上,所以24α=,解得12α=, 所以幂函数的解析式为12y x =, 则2x y =,所以原函数的反函数为12()(0)f x x x -=≥.故答案为:12()(0)f x x x -=≥ 【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.19.-1【解析】试题解析:因为是奇函数且所以则所以考点:函数的奇偶性解析:-1 【解析】试题解析:因为2()y f x x =+是奇函数且(1)1f =,所以, 则,所以.考点:函数的奇偶性.20.4【解析】【分析】根据二次函数的单调性结合值域分析最值即可求解【详解】二次函数的图像的对称轴为函数在递减在递增且当时函数取得最小值1又因为当时所以当时且解得或(舍)故故答案为:4【点睛】此题考查二次解析:4 【解析】 【分析】根据二次函数的单调性结合值域,分析最值即可求解. 【详解】二次函数222y x x -=+的图像的对称轴为1x =, 函数在(),1x ∈-∞递减,在[)1,x ∈+∞递增, 且当1x =时,函数()f x 取得最小值1,又因为当1x =-时,5y =,所以当x m =时,10y =,且1m >-, 解得4m =或2-(舍),故4m =. 故答案为:4 【点睛】此题考查二次函数值域问题,根据二次函数的值域求参数的取值.三、解答题21.(1){}{}|13,|3A B x x A B x x ⋂=≤<⋃=≤;(2)[]1,2a ∈ 【解析】 【分析】(1)首先求得[]()1,3,,3A B ==-∞,由此求得,A B A B ⋂⋃的值.(2)(),1R C C a a =+,由于()[],11,3a a +⊆,故113a a ≥⎧⎨+≤⎩,解得[]1,2a ∈.【详解】解:{}{}|13,|3A x x B x x =≤≤=<, (1){}{}|13,|3A B x x A B x x ⋂=≤<⋃=≤;(2)∵{}|1C x x a x a =≤≥+或,∴{}|1R C C x a x a =<<+, ∵()R C C A ⊆,∴113a a ≥⎧⎨+≤⎩,∴[]1,2a ∈.22.(1) 1a =;(2)证明见解析;(3) 13k k ≥≤-或 【解析】 【分析】(1)根据函数是奇函数,由(0)0f =,可得a 的值; (2)用定义法进行证明,可得函数()f x 在R 上是减函数;(3)根据函数的单调性与奇偶性的性质,将不等式()2(1)0f t kt f t -+-≤进行化简求值,可得k 的范围. 【详解】解:(1)由函数2()()21xx a f x a R -=∈+是奇函数,可得:(0)0f =,即:1(0)02a f -==,1a =; (2)由(1)得:12()21xx f x -=+,任取12x x R ∈,且12x x <,则122112*********(22)()()=2121(21)(21)xx x x x x x x f x f x -----=++++,12x x <,∴21220x x ->,即:2112122(22)()()=(21)(201)x x x x f x f x --++>, 12()()f x f x >,即()f x 在R 上是减函数;(3)()f x 是奇函数,∴不等式()2(1)0f t kt f t -+-≤恒成立等价为()2(1)(1)f t kt f t f t -≤--=-恒成立,()f x 在R 上是减函数,∴21t kt t -≥-,2(1)10t k t -++≥恒成立,设2()(1)1g t t k t =-++,可得当0∆≤时,()0g t ≥恒成立, 可得2(1)40k +-≥,解得13k k ≥≤-或, 故k 的取值范围为:13k k ≥≤-或. 【点睛】本题主要考查函数单调性的判断与证明及函数恒成立问题,体现了等价转化的数学思想,属于中档题. 23.(1) 或;(2) .【解析】 试题分析:(1)由题意结合集合相等的定义分类讨论可得:的值为或. (2)由题意得到关于实数a 的不等式组,求解不等式组可得 .试题解析: (1)若,则,∴. 若,则,,∴.综上,的值为或. (2)∵,∴∴. 24.(1)()24x xg x =-,(2)31,164b ⎡⎫∈⎪⎢⎣⎭【解析】试题分析:(1);本题求函数解析式只需利用指数的运算性质求出a 的值即可, (2)对于同时含有2,xxa a 的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题.试题解析:解:(1)∵()3xf x =,且(2)18f a +=∴⇒∵∴(2)法一:方程为令,则144t ≤≤- 且方程为在有两个不同的解.设2211()24y t t t =-=--+,y b =两函数图象在1,44⎡⎤⎢⎥⎣⎦内有两个交点由图知31,164b ⎡⎫∈⎪⎢⎣⎭时,方程有两不同解. 法二: 方程为,令,则144t ≤≤ ∴方程在1,44⎡⎤⎢⎥⎣⎦上有两个不同的解.设21(),,44f t t t b t ⎡⎤=-+-∈⎢⎥⎣⎦1=1-40413{0416(4)012b b f b f b ∆>⇒<⎛⎫∴≤⇒≥⎪⎝⎭≤⇒≥- 解得31,164b ⎡⎫∈⎪⎢⎣⎭考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类型(如一次函数,二次函数,指数函数等),就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求分段函数的解析式时,一定要明确自变量的所属范围,以便于选择与之对应的对应关系,避免出错. 25.(1)1k =(2)30a -≤≤ 【解析】 【分析】(1)根据()00f =计算得到1k =,再验证得到答案.(2)化简得到()()24f x f ax -≥-对[]1,2x ∈-恒成立,确定函数单调递减,利用单调性得到240x ax +-≤对[]1,2x ∈-恒成立,计算得到答案. 【详解】(1)因为()f x 为奇函数且定义域为R ,则()00f =,即002021k -=+,所以1k =.当1k =时因为()f x 为奇函数,()()12212121x x x x f x f x -----===-++,满足条件()f x 为奇函数.(2)不等式()()240f ax f x +-≥对[]1,2x ∈-恒成立即()()24f x f ax -≥-对[]1,2x ∈-恒成立,因为()f x 为奇函数,所以()()24f x f ax -≥-对[]1,2x ∈-恒成立(*)在R 上任取1x ,2x ,且12x x <,则()()()21121212122221212()()12121212x x x x x x x x f x f x ----=-=++++, 因为21x x >,所以1120x +>,2120x +>,21220x x ->, 所以()()120f x f x ->,即()()12f x f x >, 所以函数()f x 在区间(1,)-+∞上单调递减; 所以(*)可化为24x ax -≤-对[]1,2x ∈-恒成立, 即240x ax +-≤对[]1,2x ∈-恒成立. 令()24g x x ax =+-,因为()g x 的图象是开口向上的抛物线, 所以由()0g x ≤有对[]1,2x ∈-恒成立可得:()()10,20,g g ⎧-≤⎪⎨≤⎪⎩即140,4240,a a --≤⎧⎨+-≤⎩解得:30a -≤≤,所以实数a 的取值范围是30a -≤≤. 【点睛】本题考查了函数的奇偶性,单调性,恒成立问题,意在考查学生的综合应用能力. 26.(1)2a =,1b =;(2)单调递减,见解析;(3)(,1)-∞- 【解析】 【分析】(1)根据(0)0f =得到1b =,根据(1)(1)f f -=-计算得到2a =,得到答案. (2)化简得到11()221x f x =++,12x x <,计算()()210f x f x -<,得到是减函数. (3)化简得到212kx x <-,参数分离212x k x-<,求函数212()xg x x -=的最小值得到答案. 【详解】(1)因为()f x 在定义域R 上是奇函数.所以(0)0f =,即102b a-+=+,所以1b =.又由(1)(1)f f -=-,即111214a a-+-=++, 所以2a =,检验知,当2a =,1b =时,原函数是奇函数.(2)()f x 在R 上单调递减.证明:由(1)知11211()22221xx xf x +-==+++, 任取12,x x R ∈,设12x x <,则()()()()12211221112221212121x x x x x x f x f x --=-=++++,因为函数2x y =在R 上是增函数,且12x x <,所以12220x x -<,又()()1221210x x ++>,所以()()210f x f x -<,即()()21f x f x <, 所以函数()f x 在R 上单调递减.(3)因为()f x 是奇函数,从而不等式()2(21)0f kx f x +->等价于()2(21)(12)f kx f x f x >--=-,因为()f x 在R 上是减函数,由上式推得212kx x <-,即对一切1,32x ⎡⎤∈⎢⎥⎣⎦有212x k x -<恒成立,设221211()2()x g x x x x -==-⋅, 令1t x =,1,23t ⎡∈⎤⎢⎥⎣⎦则有2()2h t t t =-,1,23t ⎡∈⎤⎢⎥⎣⎦,所以min min ()()(1)1g x h t h ===-,所以1k <-,即k 的取值范围为(,1)-∞-. 【点睛】本题考查了函数解析式,单调性,恒成立问题,将恒成立问题通过参数分离转化为最值问题是解题的关键.。

【浙教版】高中数学必修一期末第一次模拟试卷含答案(4)

【浙教版】高中数学必修一期末第一次模拟试卷含答案(4)

一、选择题1.若函数2()f x x x a =--有四个零点,则关于x 的方程210ax x ++=的实根个数为( )A .0B .1C .2D .不确定 2.已知在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意R x ∈,()()220f x f x +--=;③当[]0,2x ∈时,()f x x =;④函数()()()12n n f x f x -=⋅,*n N ∈,若过点()1,0-的直线l 与函数()()4f x 的图象在[]0,2x ∈上恰有8个交点,在直线l 斜率k 的取值范围是( )A .80,11⎛⎫ ⎪⎝⎭B .110,8⎛⎫ ⎪⎝⎭C .80,19⎛⎫ ⎪⎝⎭D .190,8⎛⎫ ⎪⎝⎭ 3.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m mE E -=-,其中星等为k m 的星的亮度为(1,2)k E k =.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的( )倍.(当||x 较小时,2101 2.3 2.7x x x ≈++) A .1.27 B .1.26 C .1.23 D .1.224.已知函数()()2log 2x f x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( )A .{}|0m m =B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m = 5.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(50)11()t f t e --=+,当()0.1f t =时,标志着疫情将要大面积爆发,则此时t 约为( )(参考数据: 1.13e ≈)A .38B .40C .45D .476.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是A .B .C .D .7.已知函数(1)f x +为偶函数,当0x >时,23()f x x x =+,则(2)f -=( ) A .4- B .12 C .36 D .808.已知的2()(1)()f x x x x ax b =+++图象关于直线1x =对称,则()f x 的值域为( ) A .[]4,-+∞ B .9,4⎡⎫-+∞⎪⎢⎣⎭ C .9,44⎡⎤-⎢⎥⎣⎦ D .[]0,49.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( )A .[-1,+∞)B .(-∞,-1]∪[3,+∞)C .[-1,3]D .(-∞,3] 10.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,3 11.已知{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈.定义集合{}12121122(,)(,),(,),A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕的元素个数n 满足( )A .77n =B .49n ≤C .64n =D .81n ≥ 12.已知全集U =R ,集合91A x x ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个二、填空题13.已知函数()()3(0)0x x f x x x ≥⎧=⎨<-⎩,若函数()()()2|2|g x f x kx x k R =--∈恰有4个不同的零点,则k 的取值范围是______.14.已知函数241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,则函数(())3f f x =的零点的个数是________.15.如图,在面积为2的平行四边形OABC 中,AC CO ⊥,AC 与BO 交于点E .若指数函数()01x y a a a =>≠,经过点E ,B ,则函数()a f x x x=-在区间[]1,2上的最小值为________.16.设函数()f x 的定义域为D ,若存在0x D ∈,使得00(1)()(1)f x f x f +=+,则称0x 为函数()f x 的“可拆点”.若函数22()log 1a f x x =+在(0,)+∞上存在“可拆点”,则正实数a 的取值范围为____________.17.若函数()()21,f x ax bx a b =++∈R 满足:()()123f x f x x +-=+.设()f x 在[](),2t t t R +∈上的最小值为()g t ,则()g t =____.18.函数222421x x y x ++=+的值域为_________. 19.我们将b a -称为集合{|}M x a x b =≤≤的“长度”,若集合2{|}3M x m x m =≤≤+,{|0.5}N x n x n =-≤≤,且集合M 和集合N 都是集合{|01}x x ≤≤的子集,则集合M N ⋂的“长度”的最小值是________20.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若AB B ≠且A B ⋂≠∅,则m的取值范围是________ 三、解答题21.已知函数()f x 是定义在是R 上的偶函数,且当0x ≥时2()2.f x x x =-(1)求(0)f 及[](1)f f 的值; (2)求函数()f x 在()-0∞,上的解析式; (3)若关于x 的方程()0f x m -=有四个不同的实数根,求实数m 的取值范围 . 22.某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出()*x x N ∈名员工从事第三产业,调整后他们平均每人每年创造利润为310500x a ⎛⎫- ⎪⎝⎭万元()0a >,剩下的员工平均每人每年创造的利润可以提高0.2%x . (1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润条件下,若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?23.化简下列各式(1)()16200.251648202049-⎛⎫-⋅- ⎪⎝⎭(2))11420,0a b a b >>⎛⎫ ⎪⎝⎭ 24.(1)计算00.520.531222(0.01)54--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭; (2)已知11223x x -+=,求12222x x x x --+++-的值.25.已知函数()f x 为二次函数,满足()()139f f -==,且()03f =.(1)求函数()f x 的解析式; (2)设()()g x f x mx =-在[]1,3上是单调函数,求实数m 的取值范围.26.集合[]34,2,4x A y y x x ⎧⎫-==∈⎨⎬⎩⎭,{}|1B x x m =+≥. (1)若A B ⊆,求m 的取值范围;(2)设命题p :a A ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数.若p q ∧为真,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由()0f x =可得出2x x a =-,将问题转化为曲线2y x 与曲线y x a =-有4个交点,数形结合可求得实数a 的取值范围,进而结合判别式可判断出方程210ax x ++=的实数根个数.【详解】由()0f x =可得出2x x a =-,作出函数2y x 与函数y x a =-的图象如下图所示:,,x a x a y x a x a x a -≥⎧=-=⎨-+<⎩,若使得函数()2f x x x a =--有4个零点, 则直线y x a =-与y x a =-+均与函数2y x 的图象有两个交点,联立2y x a y x =-⎧⎨=⎩可得20x x a -+=,1140a ∆=->,解得14a <, 联立2y x a y x =-+⎧⎨=⎩可得20x x a +-=,2140a ∆=+>,解得14a >-, 当0a =时,则()()21f x x x x x =-=-,令()0f x =,可得0x =或1x =±, 此时,函数()y f x =只有3个零点,不合乎题意.综上所述,实数a 的取值范围是11,00,44⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭. 对于二次方程210ax x ++=,140a ∆=->,因此,关于x 的二次方程210ax x ++=有两个实根.故选:C.【点睛】方法点睛:本题考查根据方程实数根的个数求参数的取值范围,一般可采用1.直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,此时需要根据零点个数合理寻找“临界”情况,特别注意边界值的取舍.2.A解析:A【分析】先由条件①②,得到函数()f x 是周期为4的周期函数;根据③求出函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩,根据④得到()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象,结合图象,即可求出结果. 【详解】 因为函数()f x 是偶函数,由()()220f x f x +--=得()()()222f x f x f x +=-=-,即()()4f x f x +=,所以函数()f x 是周期为4的周期函数;若[]2,0x ∈-,则[]0,2x ∈;因为当[]0,2x ∈时,()f x x =,所以[]0,2x -∈时,()f x x -=-,因为函数()f x 是偶函数,所以()()f x x f x -=-=,即()f x x =-,[]2,0x ∈-, 则函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩, 因为()()()12n n f x f x -=⋅,*n N ∈,所以函数()()()48f x f x =,*n N ∈,故()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到, 作出()()4f x 的图象如图:易知过()1,0M -的直线l 斜率存在,设过点()1,0-的直线l 的方程为()1y k x =+, 则要使直线l 与()()4f x 的图象在[]0,2x ∈上恰有8个交点,则0MA k k <<, 因为7,24A ⎛⎫ ⎪⎝⎭,所以20871114MA k -==+,故8011k <<. 故选:A.【点睛】关键点点睛:求解本题的关键在于,根据条件,由函数基本性质,得到()()4f x 的图象,再由函数交点个数,利用数形结合的方法,即可求解.3.B解析:B【分析】 把已知数据代入公式计算12E E . 【详解】由题意211 1.25 2.5(lg lg )E E -=-,12lg0.1E E =, ∴0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈. 故选:B .【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.4.A解析:A【分析】若定义域为实数集R ,则20x m +>对于x ∈R 恒成立,可得0m ≥,若值域为实数集R ,令2x t m =+,则2log y t = 此时需满足2x t m =+的值域包括()0,∞+,可得0m ≤,再求交集即可.【详解】若()()2log 2x f x m =+定义域为实数集R , 则20x m +>对于x ∈R 恒成立,即2x m >-对于x ∈R 恒成立,因为20x >,所以20x -<,所以0m ≥,令2x t m =+,则2log y t =若()()2log 2x f x m =+值域为实数集R , 则2x t m =+的值域包括()0,∞+,因为t m >,所以0m ≤,所以0m =,故选:A【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.5.B解析:B【分析】根据()0.1f t =列式求解即可得答案.【详解】 解:因为()0.1f t =,0.22(50)11()t f t e --=+, 所以0.22(50)()0.111t f t e --==+,即0.22(50)011t e --=+,所以0.22(50)9t e --=,由于 1.13e ≈,故()21.1 2.29e e =≈,所以0.222().250t e e --=,所以()0.2250 2.2t --=,解得40t =.故选:B.【点睛】本题解题的关键在于根据题意得0.22(50)9t e --=,再结合已知 1.13e ≈得()21.1 2.29e e =≈,进而根据0.222().250t e e --=解方程即可得答案,是基础题.6.B解析:B【分析】利用对数函数的图象,以及函数的奇偶性和图象的变换,即可求解,得到答案.【详解】由题意,由函数()log a f x x =是增函数知,1a >,当0x ≥时,函数(1)log (1)a y f x x =+=+,将函数1()log ,()a f x a x >=的图象向左平移1个单位,得到函数log (1)a y x =+的图象, 又由函数(1)y f x =+满足(1)(1)f x f x -+=+,所以函数(1)y f x =+为偶函数, 且图象关于y 轴对称,故选B.【点睛】本题主要考查了对数函数的图象与性质,以及函数的图象变换的应用,其中解答中熟记对数函数的图象与性质和函数的图象变换是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.D解析:D【分析】首先根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+,所以有(2)(4)f f -=,结合题中所给的函数解析式,代入求得结果.【详解】∵函数(1)f x +为偶函数,所以图象关于y 轴对称,即(1)(1)f x f x +=-+,构造(2)(31)(31)(4)f f f f -=-+=+=,而40>,所以23(4)4+4=16(14)80f =⨯+=.故选:D.【点睛】思路点睛:该题考查的是有关函数的问题,解题思路如下:(1)根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+;(2)根据(1)(1)f x f x +=-+,得到(2)(4)f f -=;(3)结合当0x >时,23()f x x x =+,将4x =代入求得结果.8.B解析:B【分析】结合函数对称性与解析式可知1,0-是零点,则2,3也是零点,由对应关系求出解析式,利用换元法和二次函数性质即可求解【详解】因为函数()()()21f x x x x ax b =+++有两个零点1-,0,又因为其图象关于直线1x =对称,所以2,3也是函数()f x 的两个零点,即()()()()123f x x x x x =+⋅--,所以()()()22223f x x x x x =---,令()222111t x x x =-=--≥-,则()()223933124y t t t t t t ⎛⎫=-=-=--- ⎭≥⎪⎝,所以94y ≥-,即()f x 的值域为9,4∞⎡⎫-+⎪⎢⎣⎭. 故选:B【点睛】关键点睛:本题考查函数对称性的应用,换元法的应用,函数值域的求解,解题关键在于:(1)若函数对称轴为x a =,则有()()f a x f a x +=-;(2)换元法求解函数值域必须注意新元取值范围. 9.C解析:C【分析】根据函数()f x 的图象,得出值域为[2-,6],利用存在实数m ,使2()24f m a a =-成立,可得22246a a --,求解得答案.【详解】作出函数22|1|,7()ln ,x x e f x x e x e --⎧+-<=⎨⎩的图象如图: (7)6f -=,2()2f e -=-,∴值域为[2-,6],若存在实数m ,使得2()24f m a a =-成立,22246a a ∴--,解得13a -,∴实数a 的取值范围是[1-,3].故选:C【点睛】本题考查分段函数的性质,考查函数值域的求解方法,同时考查了数形结合思想的应用,属于中档题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质. 10.A解析:A【分析】 根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解.【详解】 由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=.故选:A.【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.11.A解析:A 【分析】先理解题意,然后分①当11x =±,10y =时,②当10x =,11y =±时, ③当10x =,10y =时,三种情况讨论即可. 【详解】解:由{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈, ①当11x =±,10y =时, 124,3,2,1,0,1,2,3,4x x +=----,123,2,1,0,1,2,3y y +=---,此时A B ⊕的元素个数为9763⨯=个,②当10x =,11y =±时, 123,2,1,0,1,2,3x x +=---,124,3,2,1,0,1,2,3,4y y +=----,这种情况和第①种情况除124,4y y +=-外均相同,故新增7214⨯=个, ③当10x =,10y =时, 123,2,1,0,1,2,3x x +=---,123,2,1,0,1,2,3y y +=---,这种情况与前面重复,新增0个,综合①②③可得:A B ⊕的元素个数为6314077++=个, 故选:A. 【点睛】本题考查了元素与集合关系的判断,重点考查了计数原理的应用,属中档题.12.B解析:B 【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果. 【详解】 因为91(0,9)A xx ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---, 所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B 【点睛】本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题.二、填空题13.【分析】由题意可知对任意的且为函数的一个零点构造函数可知函数与的图象有个交点分和两种情况讨论数形结合可求得实数的取值范围【详解】由题意可知对任意的且为函数的一个零点令则函数与的图象有个交点当时函数的 解析:()(),022,-∞+∞【分析】由题意可知,对任意的x ∈R ,()0f x ≥,且0x =为函数()g x 的一个零点,构造函数()()()0f x h x x x =≠,()222kx x p x kx x-==-,可知,函数()p x 与()h x 的图象有3个交点,分0k <和0k >两种情况讨论,数形结合可求得实数k 的取值范围.【详解】由题意可知,对任意的x ∈R ,()0f x ≥,且0x =为函数()g x 的一个零点, 令()()()()2010f x x x h x x x⎧>⎪==⎨<⎪⎩,()222kx x p x kx x -==-, 则函数()p x 与()h x 的图象有3个交点. 当0k <时,函数()p x 的零点为20x k=<,如下图所示:此时,函数()p x 与()h x 的图象有3个交点,合乎题意; 当0k >时,函数()p x 的零点为20x k=>, 则函数()p x 与()h x 在y 轴左侧的图象没有交点, 所以,函数()p x 与()h x 在y 轴右侧的图象必有3个交点,则直线2y kx =-与()02>=x x y 有两个交点,联立22y x y kx ⎧=⎨=-⎩,可得220x kx -+=,则方程220x kx -+=在()0,∞+上有两个不等的实根,可得28002k k ⎧∆=->⎪⎨>⎪⎩,解得22k >.综上所述,实数k 的取值范围是()(),022,-∞+∞.故答案为:()(),022,-∞+∞.【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.14.4【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查了分段函数解析:4 【分析】根据分段函数的解析式当0x ≤时,令()3f x =,则2413x x --+=,解得22x =-±0x >时,()31xf x =>,1x =,做出函数()f x ,1,22,22y y y ==-=--.【详解】241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,∴当0x ≤时,()()2241255f x x x x =--+=-++≤,令()3f x =,则2413x x --+=, 解得22x =-±,1220,4223,-<-+<-<--<-0x >时,()31xf x =>,令()3f x =得1x =,作出函数()f x ,1,22,22y y y ==-=--由图像可知,()f x 与1y =有两个交点,与22y =-+ 则(())3f f x =的零点的个数为4. 故答案为:4 【点睛】本题考查了分段函数的零点个数,考查了数形结合的思想,属于基础题.15.【分析】设点则点B 的坐标为由题意得则再根据平行四边形的面积求得由此得得函数的解析式从而得函数的的单调性与最值【详解】解:设点则点B 的坐标为∵∴∵平行四边形OABC 的面积又平行四边形OABC 的面积为2 解析:3-【分析】设点(),tE t a ,则点B 的坐标为()2,2tt a ,由题意得22tt aa =,则2t a =,再根据平行四边形的面积求得12t =,由此得4a =,得函数()f x 的解析式,从而得函数()f x 的的单调性与最值. 【详解】解:设点(),tE t a ,则点B 的坐标为()2,2tt a ,∵22t t a a =,∴2t a =,∵平行四边形OABC 的面积24t S OC AC a t t =⨯⨯==, 又平行四边形OABC 的面积为2,∴42t =,12t =,所以122a =,4a =, ∴()4f x x x=-在[]1,2为增函数,∴函数()f x 的最小值为()4111f =-=3-, 故答案为:3-. 【点睛】本题主要考查指数函数的图象和性质,考查利用函数的单调性求最值,属于中档题.16.【分析】首先根据定义列出的等式转化为再根据分离常数和换元法求的取值范围【详解】函数为可分拆函数存在实数使得且设当时等号成立即故答案为:【点睛】思路点睛:本题是一道以新定义为背景的函数性质的综合应用题解析:[3【分析】首先根据定义,列出()()()0011f x f x f +=+的等式,转化为()()20202111x a x +=++,再根据分离常数和换元法,求a 的取值范围. 【详解】 函数()22log 1af x x=+为“可分拆函数”,∴存在实数00x >,使得()2222200log log log 1211aa a x x =++++且0a >,()()222002111a a x x ∴=+++,()()()2220000002222000000021*********222222211x x x x x x a x x x x x x x +++--++∴====-++++++++, 设0422x t +=>,024t x -∴=, 2161622204204t a t t t t∴=-=-++++ ,20444t t ++≥=,当t =即32a ≤<. 故答案为:)32⎡⎣ 【点睛】思路点睛:本题是一道以新定义为背景的函数性质的综合应用题型,首先正确利用新定义,并正确表示()()20202111x a x +=++,利用01x >,转化为求函数的值域,即求a 的取值范围.17.【分析】根据题意求得ab 的值可得的解析式分别讨论三种情况结合二次函数图像与性质即可求得结果【详解】由题意得:所以所以解得所以为开口向上对称轴为的抛物线当即时在上单调递减所以当即时在上单调递减在上单调解析:22(3),30,31(1),1t t t t t ⎧+<-⎪-≤≤-⎨⎪+>-⎩【分析】根据题意,求得a ,b 的值,可得()f x 的解析式,分别讨论3t <-,31t -≤≤-,1t >-三种情况,结合二次函数图像与性质,即可求得结果. 【详解】由题意得:22(1)(1)(1)121f x a x b x ax a ax bx b +=++++=+++++,所以()()222111223ax a ax bx b ax bx ax a f b x x x f +++++---=++=-=++,所以223ax xa b =⎧⎨+=⎩,解得1,2a b ==,所以22()21(1)f x x x x =++=+,为开口向上,对称轴为1x =-的抛物线, 当21t +<-,即3t <-时,()f x 在[],2t t +上单调递减,所以2()(2)(3)g t f t t =+=+,当12t t ≤-≤+,即31t -≤≤-时,()f x 在[,1)t -上单调递减,在[1,2]t -+上单调递增,所以()(1)0g t f =-=;当1t >-时,()f x 在[],2t t +上单调递增,所以2()()(1)g t f t t ==+,综上:22(3),3()0,31(1),1t t g t t t t ⎧+<-⎪=-≤≤-⎨⎪+>-⎩故答案为:22(3),30,31(1),1t t t t t ⎧+<-⎪-≤≤-⎨⎪+>-⎩【点睛】求二次函数在区间[,]a b 上最值时,一般用分类讨论的方法求解,讨论对称轴位于区间的左右两侧,位于区间内,再根据二次函数图像与性质,求解即可,考查分析求解的能力,属中档题.18.【分析】将函数变形为关于的方程分析二次项的系数并结合与的关系求解出的取值范围从而值域可求【详解】因为所以所以当即时此时;当即时此时所以综上可知:所以的值域为故答案为:【点睛】易错点睛:利用判别式法求 解析:[]0,4【分析】将函数变形为关于x 的方程,分析二次项的系数并结合∆与0的关系求解出y 的取值范围,从而值域可求. 【详解】因为222421x x y x ++=+,所以222+42yx y x x +=+,所以()22420y x x y -++-=, 当20y -=,即2y =时,此时0x =;当20y -≠,即2y ≠时,此时()216420y ∆=--≥,所以[)(]0,22,4y ∈,综上可知:[]0,4y ∈,所以222421x x y x ++=+的值域为[]0,4, 故答案为:[]0,4. 【点睛】易错点睛:利用判别式法求解函数值域需要注意的事项: (1)原函数中分子分母不能约分; (2)原函数的定义域为实数集R .19.【分析】当集合的长度的最小值时与应分别在区间的左右两端由此能求出的长度的最小值【详解】由题的长度为的长度为当集合的长度的最小值时与应分别在区间的左右两端故的长度的最小值是故答案为:【点睛】本题考查交解析:16【分析】当集合M N ⋂的“长度”的最小值时,M 与N 应分别在区间[]0,1的左右两端,由此能求出M N ⋂的“长度”的最小值 【详解】由题,M 的“长度”为23,N 的“长度”为12, 当集合M N ⋂的“长度”的最小值时,M 与N 应分别在区间[]0,1的左右两端, 故M N ⋂的“长度”的最小值是2111326+-=, 故答案为:16【点睛】本题考查交集的“长度”的最小值的求法,考查新定义的合理运用20.【分析】根据集合的并集和集合的交集得到关于的不等式组解出即可【详解】解:若且则解得即故答案为:【点睛】本题考查了集合的交集并集的定义属于基础题 解析:[6,8)-【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可. 【详解】解:{|68}A x x =-,{|}B x x m =, 若A B B ≠且A B ⋂≠∅,则68m m -⎧⎨<⎩,解得68m -≤<,即[)6,8m ∈-故答案为:[)6,8-. 【点睛】本题考查了集合的交集、并集的定义,属于基础题.三、解答题21.(1)(0)0f =,[](1)1f f =-,(2)2()2f x x x =+,(3)(1,0)- 【分析】(1)根据题意,由函数的解析式,将0x =代入函数解析式即可求得(0)f 的值,同理可得(1)f 的值,利用函数的奇偶性分析可得[](1)f f 的值;(2)设0x <,则0x ->,则函数的解析式分析得()f x -的解析式,进而由函数的奇偶性分析可得答案;(3)若方程()0f x m -=有四个不同的实数根,则函数()y f x =与直线y m =有4个交点,作出函数()y f x =的图像,由数形结合分析即可得答案 【详解】解:(1)由题意得,2(0)0200f =-⨯=,2(1)1211f =-⨯=-,因为函数()f x 是定义在是R 上的偶函数, 所以(1)(1)1f f =-=-, 所以 [](1)(1)1f f f =-=-, (2)令0x <,则0x ->,则有22()()2()2f x x x x x -=---=+, 因为函数()f x 是定义在是R 上的偶函数, 所以2()()2f x f x x x =-=+, 所以当0x <时,2()2f x x x =+,(3)若方程()0f x m -=有四个不同的实数根,则函数()y f x =与直线y m =有4个交点,函数()y f x =的图像如图所示, 由图像可得10m -<< 所以实数m 的取值范围为(1,0)-【点睛】关键点点睛:此题考查函数奇偶性的应用,考查函数与方程的应用,解题的关键是把方程()0f x m -=有四个不同的实数根,等价转化为函数()y f x =与直线y m =有4个交点,然后作出函数图像,利用数形结合的思想求解即可,考查转化思想,属于中档题 22.(1)500名;(2)(0,5]. 【分析】(1)求出剩下1000x -名员工创造的利润列不等式求解; (2)求出从事第三产业的员工创造的年总利润为310500⎛⎫- ⎪⎝⎭x a x 万元,从事原来产业的员工的年总利润为110(1000)1500⎛⎫-+ ⎪⎝⎭x x 万元,列出不等关系,在(1)的条件下求出a 的范围. 【详解】解:(1)由题意,得()()10100010.2%101000x x -+≥⨯, 即25000x x -≤,又0x >,所以0500x <≤. 即最多调整500名员工从事第三产业.(2)从事第三产业的员工创造的年总利润为310500⎛⎫-⎪⎝⎭x a x 万元, 从事原来产业的员工的年总利润为110(1000)1500⎛⎫-+⎪⎝⎭x x 万元, 则311010(1000)1500500x a x x x ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭,所以223110002500500x ax x x x -+--.所以221000500++x ax x ,即210001500++x ax 在(0,500]x ∈时恒成立. 因为21000224500x x+=, 当且仅当21000500x x=,即500x =时等号成立,所以5a ≤, 又0a >,所以05a <≤.所以a 的取值范围为(0,5].【点睛】本题考查函数的应用,已知函数模型,直接根据函数模型列出不等式求解即可,考查了学生的数学应用意识,运算求解能力. 23.(1)98;(2)a b. 【分析】(1)首先将根式化为分数指数幂的形式,再利用分数指数幂的运算法则化简求值;(2)将根式化简为分数指数幂,再按照分数指数幂的运算公式化简. 【详解】(1)原式1111324472342814⎛⎫=⨯-⨯-⨯- ⎪⎝⎭()144277281=⨯--⨯-10872198=---=; (2)原式()1110812232233354331127272333333a b a b ab a b a bab b a a b a b -⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦====⋅⋅ 【点睛】关键点点睛:本题的关键是第二问,理解根式如何化简为分数指数幂的形式. 24.(1)1615;(2)15. 【分析】(1)利用幂的运算法则计算;(2)已知式平方得1x x -+,再平方可得22x x -+,然后代入求值. 【详解】(1)原式112219112111441004310-⎛⎫⎛⎫=+⨯-=+⨯-⎪⎪⎝⎭⎝⎭1615=(2)∵11223x x-+=,∴21112227x x x x --⎛⎫+=+-= ⎪⎝⎭, ()2221249247x x x x--+=+-=-=,故122272124725x x x x --+++==+--. 【点睛】 本题考查幂的运算法则,整数指数幂中多项的乘法公式在分数指数幂中仍然适用. 25.(1)()2243f x x x =-+;(2)8m ≥或0m ≤. 【分析】(1)设函数()2f x ax bx c =++(0a ≠),代入已知条件解得,,a b c ,得解析式; (2)由对称轴不在区间内可得.【详解】(1)设函数()2f x ax bx c =++(0a ≠) ∵()()139f f -==,且()03f = ∴99313a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得243a b c =⎧⎪=-⎨⎪=⎩∴()2243f x x x =-+. (2)由(1)()()2243g x x m x =-++,其对称轴为4144m m x +==+ ∵()()g x f x mx =-在[]1,3上单调函数, ∴134m +≥,或114m +≤,解得:8m ≥或0m ≤. 【点睛】 方法点睛:本题考查求二次函数的解析式,二次函数的单调性.二次函数解析式有三种形式:(1)一般式:2()f x ax bx c =++;(2)顶点式:2()()f x a x h m =-+;(3)交点式(两根式):12()()()f x a x x x x =--.26.(1)0m ≥;(2)∅.【分析】(1)由于A B ⊆,根据子集的定义,即可求出m 的取值范围;(2)根据p q ∧为真,得出p 真且q 真,分别求出命题p 和命题q 对应的a 的范围,取交集后,即可得出a 的取值范围.【详解】解:由题意得,集合[]1,2A =,{}|1B x x m =≥-,(1)∵A B ⊆,∴11m -≤,则0m ≥;(2)由题可知,∵p q ∧为真,∴p 真且q 真,命题p :[]1,2a ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数, 则抛物线对称轴大于等于5,即:5252a a ≥⇒≥, 则1252a a ≤≤⎧⎪⎨≥⎪⎩,解得:a ∈∅. 所以a 的取值范围为∅.【点睛】本题考查根据集合间的关系求参数范围,以及根据复合命题的真假性判断命题真假,进而求参数范围.。

2024版高一上册数学综合模拟试卷

2024版高一上册数学综合模拟试卷

2024版高一上册数学综合模拟试卷专业课试题部分一、选择题(每题1分,共5分)1. 下列数中,属于无理数的是()A. √9B. √16C. √3D. √12. 下列函数中,奇函数是()A. y=x^2B. y=x^3C. y=|x|D. y=2x3. 已知等差数列{an},a1=1,a3=3,则公差d为()A. 1B. 2C. 3D. 44. 平面直角坐标系中,点P(2, 3)关于x轴的对称点坐标为()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)5. 若a、b为实数,且a≠b,则下列等式中成立的是()A. (a+b)^2=a^2+b^2B. (ab)^2=a^2b^2C. (a+b)(ab)=a^2b^2D. (a+b)^2=a^2+2ab+b^2二、判断题(每题1分,共5分)1. 两个平行线的斜率相等。

()2. 一元二次方程的解一定是实数。

()3. 对角线互相垂直的四边形一定是矩形。

()4. 任何两个实数的和都是实数。

()5. 二项式定理的系数和为2^n。

()三、填空题(每题1分,共5分)1. 已知数列{an}的通项公式为an=3n2,则a5=______。

2. 若f(x)=x^22x+1,则f(1)=______。

3. 平行线l1:3x+4y+5=0和l2:3x+4y6=0之间的距离为______。

4. 已知三角形ABC,a=8, b=10, sinA=3/5,则三角形ABC的面积为______。

5. 概率公式P(A)=______/______。

四、简答题(每题2分,共10分)1. 简述等差数列的定义。

2. 解释什么是函数的单调性。

3. 如何求解一元二次方程的根?4. 请写出勾股定理的内容。

5. 简述概率的基本性质。

五、应用题(每题2分,共10分)1. 已知等差数列{an},a1=1,公差d=2,求前5项的和。

2. 解方程:2x^23x+1=0。

3. 已知三角形ABC,a=6, b=8, C=120°,求c的长度。

【浙教版】高中数学必修一期末第一次模拟试题(附答案)

【浙教版】高中数学必修一期末第一次模拟试题(附答案)

一、选择题1.已知函数 给出下列三个结论:① 当2=-a 时,函数()f x 的单调递减区间为(,1)-∞;② 若函数()f x 无最小值,则a 的取值范围为(0,)+∞;③ 若1a <且0a ≠,则b R ∃∈,使得函数()y f x b =-恰有3个零点1x ,2x ,3x ,且1231x x x =-. 其中,所有正确结论的个数是( )A .0B .1C .2D .32.已知函数1,0(),0x x m f x e x -⎧=⎪=⎨⎪≠⎩,关于x 的方程23()(23)()20mf x m f x -++=有以下结论:①存在实数m ,使方程有2个解;②当方程有3个解时,这3个解的和为0;③不存在实数m ,使方程有4个解;④当方程有5个解时,实数m 的取值范围是331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为( ) A .1 B .2 C .3 D .43.某工厂生产某产品2019年每月生产量基本保持稳定,2020年由于防疫需要2、3、4、5月份停产,6月份恢复生产时月产量仅为去年同期的一半,随着疫情缓解月产量逐步提高.该工厂如果想8月份产量恢复到去年同期水平,那么该工厂从6月开始月产量平均增长率至少需到达多少个百分点?( )A .25B .35C .42D .50 4.函数()2f x x =-的定义域是( ) A .(0,2) B .[2,)+∞ C .(0,)+∞ D .(,2)-∞5.已知1311531log ,log ,363a b c π-===,则,,a b c 的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .b c a << 6.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( ) A .-3 B .-1 C .1 D .37.已知函数f (x )满足f (x -1)=2f (x ),且x R ∈,当x ∈[-1,0)时,f (x )=-2x -2x +3,则当x ∈[1,2)时,f (x )的最大值为( )A .52B .1C .0D .-1 8.已知函数()2f x x ax b =-+-(a ,b 为实数)在区间[]22-,上最大值为M ,最小值为m ,则M m -( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,但与b 有关D .与a 无关,且与b 无关9.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( ) A .1811 B .3 C .4811 D .410.已知全集U =R ,集合91A x x ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个 11.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( )A .3m <B .23m ≤≤C .3m ≤D .23m << 12.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值 范围是( )A .{}a |0a 6≤≤B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤二、填空题 13.已知()()()23f x m x m x m =-++,()22xg x =-,若满足x R ∀∈,()0f x <和()0g x <至少有一个成立,则m 的取值范围是______.14.已知函数211x y x -=+的图像与函数2y kx =+的图像恰有两个交点,则实数k 的取值范围是______. 15.已知常数0a >,函数()22x x f x ax=+的图象经过点65P p ⎛⎫ ⎪⎝⎭,,15Q q ⎛⎫- ⎪⎝⎭,.若236p q pq +=,则a =______.16.若幂函数()2()57m f x m m x =-+在R 上为增函数则1log 2log 272lg5lg4m m m +-=_____.17.()f x 为定义在R 上的偶函数,2()()2=-g x f x x 在区间[0,)+∞上是增函数,则不等式()1246()f x f x x +-+>--的解集为___________. 18.已知函数()2(1)mf x m m x =--是幂函数,且()f x 在(0,)+∞上单调递增,则实数m =________.19.已知集合(){|221,}A k k k Z απαπ=≤≤+∈,{|55}B a α=-≤≤,则A B ⋂=__________.20.已知()2f x x ax b =++,集合(){}0A x f x =≤,集合(){}3B x f f x ⎡⎤=≤⎣⎦,若A B =≠∅,则实数a 的取值范围是______.三、解答题21.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可以近似地表示为:3221805040,[120,144)3120080000,[144,500)2x x x x y x x x ⎧-+∈⎪⎪=⎨⎪--∈⎪⎩且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.(1)当[200,300]x ∈时,判断该项目能否获利?如果获利,求出最大利润:如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?22.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为()G x (万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入()R x (万元)满足20.4 4.2(05)()11(5)x x x R x x ⎧-+≤≤=⎨>⎩,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数()y f x =的解析式(利润=销售收入-总成本);(2)工厂生产多少台产品时,可使盈利最多?23.设131()log 1ax f x x -=-为奇函数,a 为常数. (1)求a 的值. (2)若[2,4]x ∀∈,不等式1()3x f x x m ⎛⎫+>+ ⎪⎝⎭恒成立,求实数m 的取值范围. 24.已知函数()13x f x ⎛⎫= ⎪⎝⎭,函数()13log g x x =. (1)若函数()22y g mx mx =++的定义域为R ,求实数m 的取值范围;(2)是否存在非负实数,m n ,使得函数()2y g f x ⎡⎤=⎣⎦的定义域为[],m n ,值域为[]2,2m n ,若存在,求出,m n 的值;若不存在,则说明理由;(3)当[]1,1x ∈-时,求函数()()223y f x af x =-+⎡⎤⎣⎦的最小值()h a .25.已知定义在()0,∞+上的函数()f x 满足:①对任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+;②当且仅当1x >时,()0f x <成立.(1)求()1f ;(2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较1x ,2x 的大小关系,并说明理由; (3)若对任意的[]1,1x ∈-,不等式()()22333310x x x x f f m --⎡⎤+≤+-⎣⎦恒成立,求实数m 的取值范围. 26.设全集U =R ,函数2lg(4+3)y x x =-的定义域为A ,函数3[0]1y x m x =∈+,,的值域为B .(1)当4m =时,求U B A ; (2)若“U x A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】①画出函数的图象,直接判断函数的单调性;②分0,0,0a a a >=<三种情况讨论函数的图象,分析函数是否有最小值,得到实数a 的取值范围;③首先令()f x b =,解出三个零点,进而判断结论.【详解】①当2a =-时,()21,0ln ,0x x f x x x -+≤⎧=⎨>⎩,画出函数的图象,如下图,由图象可知当(),0x ∈-∞时,函数单调递减,当()0,1x ∈时函数单调递减,但函数在(),1-∞时,函数并不单调递减,故①不正确;②当0a >时,0x ≤时,函数1y ax =+单调递增,并且当x →-∞时,y →-∞,所以函数没有最小值;当0a =时,()1,0ln ,0x f x x x ≤⎧=⎨>⎩,ln 0x ≥,函数的最小值是0; 当0a <时,0x ≤时,函数1y ax =+单调递减,函数的最小值是1,当0x >时,ln 0x ≥,ln y x =的最小值是0,综上可知函数的最小值是0,综上,若函数没有最小值,只需满足0a >,故②正确;对于③,令()f x b =,当0x ≤时,1ax b +=,当0x >时,ln x b =,不妨设1230x x x ≤<<,110b x a -=≤,2b x e -=,3b x e =, 则231x x =,令111b x a-==-,可得1b a =-, 当0a <时,11b a =->,则三个零点1231x x x =-,当01a <<时,011b a <=-<,则三个零点1231x x x =-.综上可知③正确;故选:C【点睛】思路点睛:本题考查分段函数,函数性质和函数图象的综合应用,本题的关键是对a 的讨论,画出函数的图象,比较容易判断前两个命题,最后一个命题的关键是解出3个零点,并能判断231x x =,从而只需验证是否11x =-即可.2.C解析:C【分析】将方程的解的个数转化为函数()y f x =的图象与直线23y =和1y m =的交点总数,数形结合即可得解. 【详解】由题意,23()(23)()20[3()2][()1]0mf x m f x f x mf x -++=⇒--=, 解得2()3f x =或1()f x m=, 则方程解的个数即为函数()y f x =的图象与直线23y =和1y m=的交点总数, 作出函数()f x 的图象,如图,由()f x 的图象可知,2()3f x =有两个非零解, 由1(0)f m =得1()f x m=至少有一个解0,故①错; 当方程有3个解时,10m <或11m ≥或123m =,由函数的对称性可得这3个解的和为0, 故②对;不存在实数m ,使方程有4个解,故③对;当方程有5个解时,则函数()y f x =的图象与直线23y =和1y m =共有五个交点, 所以直线1y m=与函数()y f x =的图象有三个交点,数形结合可得101123m m ⎧<<⎪⎪⎨⎪≠⎪⎩,解得331,,22m ⎛⎫⎛⎫∈+∞ ⎪ ⎪⎝⎭⎝⎭,故④对. 故正确结论有3个.故选:C .【点睛】方法点睛:解决函数零点(方程的根)的问题常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.C解析:C【分析】设该工厂从6月开始月产量平均增长率至少需到达x ,8月份产量去年同期水平为a ,则21(1)2a x a +=.由此能求出该工厂从6月开始月产量平均增长率至少需到达多少个百分点.【详解】设该工厂从6月开始月产量平均增长率至少需到达x ,8月份产量去年同期水平为a, 则21(1)2a x a +=. 解得10.41442%x =≈≈.∴该工厂从6月开始月产量平均增长率至少需到达42个百分点.故选:C .【点睛】本题考查百分点的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.4.A解析:A【分析】根据函数的形式,直接列解析式有意义的不等式,求出函数的定义域.【详解】由题意得,函数的定义域需满足02>0x x >⎧⎨-⎩,解得:02x << 所以函数的定义域是()0,2.故选:A .【点睛】方法点睛:常见的具体函数求定义域:(1)偶次根号下的被开方数大于等于0;(2)分母不为0;(3)对数函数中真数大于0.5.D解析:D【分析】根据指数函数和对数函数性质,借助0和1进行比较.【详解】 由对数函数性质知151log 16>,13log 03π<,由指数函数性质知13031-<<,∴b c a <<.故选:D .【点睛】方法点睛:本题考查指数式、对数式的大小比较,比较指数式大小时,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小. 6.A解析:A【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值.【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题. 7.B解析:B【分析】首先设[)1,2x ∈,利用函数满足的关系式,求函数的解析式,并求最大值. 【详解】设[)1,2x ∈,[)21,0x -∈-,()()()222222323f x x x x x ∴-=----+=-++,()()()()211214f x f x f x f x -=--=-=⎡⎤⎣⎦,()()()()2211122311444f x f x x x x ∴=-=-++=--+,[)1,2x ∈,()f x ∴在区间[)1,2单调递减,函数的最大值是()11f =.故选:B【点睛】思路点睛:一般利用函数的周期,对称性求函数的解析式时,一般求什么区间的解析式,就是将变量x 设在这个区间,根据条件,转化为已知区间,再根据关系时,转化求函数()f x 的解析式.8.B解析:B【解析】函数()2f x x ax b =-+-的图象是开口朝上且以直线2a x =- 为对称轴的抛物线, ①当22a-> 或22a -<-,即4a -< ,或4a >时, 函数f x () 在区间[]2,2-上单调, 此时224M m f f a -=--=()(), 故M m - 的值与a 有关,与b 无关 ②当 022a ≤-≤ ,即40a -≤≤ 时, 函数f x ()在区间[2]2a--,上递增,在[2]2a -, 上递减, 且22f f -<()() , 此时2322424a a M m f f a -=---=--()(), 故M m - 的值与a 有关,与b 无关③当 202a -≤-≤,即04a ≤≤时, 函数f x ()在区间[2]2a-,上递减,在[2]2a --,上递增, 且22f f <-()() 此时222424a a M m f f a -=--=-+()(),故M m - 的值与a 有关,与b 无关 综上可得M m - 的值与a 有关,与b 无关故选B【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.9.C解析:C【分析】首先根据题意画出()h x 的图象,再根据图象即可得到()h x 的最小值.【详解】分别画出2y x ,83y x =,6y x =-的图象, 则函数()h x 的图象为图中实线部分.由图知:函数()h x 的最低点为A ,836y x y x ⎧=⎪⎨⎪=-⎩,解得1848,1111⎛⎫ ⎪⎝⎭A . 所以()h x 的最小值为4811. 故选:C.【点睛】本题主要考查根据函数的图象求函数的最值,考查了数形结合的思想,属于中档题. 10.B解析:B【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果. 【详解】因为91(0,9)A x x ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---, 所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B【点睛】 本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题. 11.C解析:C 【分析】由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤. 故选:C. 【点睛】本题主要考查了了集合的包含关系求解参数的取值范围问题,其中解答中熟记集合件的基本关系,合理分类讨论列出方程组是解答的根据,着重考查分类讨论思想,以及运算能力.12.C解析:C 【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.二、填空题13.【分析】先判断函数的取值范围然后根据和至少有一个成立则可求得的取值范围【详解】解:当时又或在时恒成立即在时恒成立则二次函数图象开口只能向下且与轴交点都在的左侧即解得实数的取值范围是:故答案为:【点睛 解析:()4,0-【分析】先判断函数()g x 的取值范围,然后根据()0f x <和()0<g x 至少有一个成立.则可求得m 的取值范围.【详解】 解:()22x g x =-,当1x 时,()0g x ,又x R ∀∈,()0f x <或()0<g x ,()(2)(3)0f x m x m x m ∴=-++<在1x 时恒成立,即(2)(3)0m x m x m -++<在1x 时恒成立,则二次函数(2)(3)y m x m x m =-++图象开口只能向下,且与x 轴交点都在(1,0)的左侧,∴3121mmm<⎧⎪--<⎨⎪<⎩,即412mmm⎧⎪<⎪>-⎨⎪⎪<⎩,解得40m-<<,∴实数m的取值范围是:(4,0)-.故答案为:(4,0)-.【点睛】利用指数函数和二次函数的图象和性质,根据条件确定()(2)(3)0f x m x m x m=-++<在1x时恒成立是解决本题的关键,综合性较强,难度较大.14.且【分析】先化简函数再由过定点(02)在同一坐标系中作出两个函数的图象利用数形结合法求解【详解】在同一坐标系中作出两个函数的图象如图所示:因为函数的图像与函数的图像恰有两个交点所以且故答案为:且【点解析:04k<≤且1k≠【分析】先化简函数()211,1111,11x x x xf xx x x--≥<-⎧==⎨+--<<⎩或,再由()2g x kx=+过定点(0,2),在同一坐标系中作出两个函数的图象,利用数形结合法求解.【详解】()211,1111,11x x x xf xx x x--≥<-⎧==⎨+--<<⎩或,()2g x kx=+,在同一坐标系中作出两个函数的图象,如图所示:因为函数211xyx-=+的图像与函数2y kx=+的图像恰有两个交点,所以04k <≤ 且1k ≠, 故答案为:04k <≤ 且1k ≠, 【点睛】本题主要考查函数的零点与方程的根,还考查了数形结合的思想方法,属于中档题.15.6【分析】直接利用函数的关系式利用恒等变换求出相应的a 值【详解】函数f (x )=的图象经过点P (p )Q (q )则:整理得:=1解得:2p+q=a2pq 由于:2p+q=36pq 所以:a2=36由于a >0故解析:6 【分析】直接利用函数的关系式,利用恒等变换求出相应的a 值. 【详解】函数f (x )=22xx ax+的图象经过点P (p ,65),Q (q ,15-).则:226112255p q pq ap aq +=-=++, 整理得:22222222p q p q p qp q p q aq ap aq ap a pq+++++++++=1, 解得:2p+q =a 2pq , 由于:2p+q =36pq , 所以:a 2=36, 由于a >0, 故:a=6. 故答案为6 【点睛】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.16.3【分析】利用幂函数的定义与性质求得将代入利用对数的运算法则化简得解【详解】在上为增函数解得(舍去)故答案为:3【点睛】正确理解幂函数的定义求得的值和熟练运用对数恒等式是关键解析:3 【分析】利用幂函数的定义与性质求得3m =,将3m =代入,利用对数的运算法则化简得解. 【详解】()()257m f x m m x =-+在R 上为增函数,25710m m m ⎧-+=∴⎨>⎩,解得3,2m m ==(舍去), 1log2log 2lg 5lg 4mm m∴+-=31log 23l l og 3g1003+=故答案为:3. 【点睛】正确理解幂函数的定义求得m 的值和熟练运用对数恒等式是关键.17.;【分析】根据题意判断出为偶函数且在上先减再增把转化为进行求解即可【详解】由为偶函数可知也为偶函数且在上先减再增由可知即可知解得故答案为:【点睛】关键点睛利用函数的性质得到的单调性通过化简把问题转化解析:3,2⎛⎫-∞- ⎪⎝⎭; 【分析】根据题意,判断出()g x 为偶函数,且在R 上先减再增,把(1)(2)46f x f x x +-+>--转化为(1)(2)g x g x +>+,进行求解即可 【详解】由()f x 为偶函数,可知()g x 也为偶函数,且在R 上先减再增, 由(1)(2)46f x f x x +-+>--,可知22(1)2(1)(2)2(2)f x x f x x +-+>+-+,即(1)(2)g x g x +>+, 可知12x x +>+,解得32x <-. 故答案为:3,2⎛⎫-∞- ⎪⎝⎭【点睛】关键点睛,利用函数的性质,得到()g x 的单调性,通过化简把问题转化为(1)(2)g x g x +>+,进而利用()g x 的单调性求解,属于中档题18.2【分析】由函数是幂函数求得或结合幂函数的性质即可求解【详解】由题意函数是幂函数可得即解得或当时函数此时在上单调递增符合题意;当时函数此时在上单调递减不符合题意故答案为:【点睛】本题主要考查了幂函数解析:2 【分析】由函数()2(1)mf x m m x =--是幂函数,求得2m =或1m =-,结合幂函数的性质,即可求解. 【详解】由题意,函数()2(1)mf x m m x =--是幂函数,可得211m m --=,即220m m --=,解得2m =或1m =-,当2m =时,函数()2f x x =,此时()f x 在(0,)+∞上单调递增,符合题意;当1m =-时,函数()1f x x -=,此时()f x 在(0,)+∞上单调递减,不符合题意,故答案为:2.【点睛】本题主要考查了幂函数的定义及图像与性质的应用,其中解答中熟记幂函数的定义,结合幂函数的图象与性质进行判定是解答的关键,着重考查运算能力.19.或【分析】分别讨论时集合A 与集合B 的交集即可求解【详解】当时当时当时当时或故答案为: 或【点睛】本题主要考查了集合的交集分类讨论的思想属于中档题解析:{|5ααπ-≤≤- 或0}απ≤≤ 【分析】分别讨论1,0,k =-时集合A 与集合B 的交集即可求解. 【详解】(){|221,}A k k k Z απαπ=≤≤+∈,∴当1k =-时,2παπ-≤≤-,当0k =时,0απ≤≤, 当1k时,5α<,当2k ≤-时,5α<-{|55}B a α=-≤≤,A B ∴={|5ααπ-≤≤-或0}απ≤≤故答案为:{|5ααπ-≤≤- 或0}απ≤≤ 【点睛】本题主要考查了集合的交集,分类讨论的思想,属于中档题.20.【分析】根据设则设再根据则是的解集的子集求解【详解】因为设则设的解集为:所以是方程的两个根由韦达定理得:又因为所以所以即解得故答案为:【点睛】本题主要考查一元二次不等式的解法的应用还考查了转化求解的解析:⎡⎤⎣⎦【分析】根据A ≠∅,设{}01A x x x x =≤≤,则()204a b f x -≤≤,设 ()t f x =,再根据A B =,则2,04a b ⎡⎤-⎢⎥⎣⎦是()3f t ≤的解集的子集求解. 【详解】因为A ≠∅,设{}01A x x x x =≤≤,则()204a b f x -≤≤,设 ()t f x =, ()3f t ≤的解集为:()0|0t t t ≤≤ , 所以0,0t t t ==是方程23t at b ++=的两个根, 由韦达定理得:0,3t a b =-=,又因为A B =,所以2004a tb ≤-≤,所以2304a a -≤-≤,即22124120a a a ⎧≥⎨--≤⎩, 解得6a ≤≤.故答案为:⎡⎤⎣⎦【点睛】本题主要考查一元二次不等式的解法的应用,还考查了转化求解的能力,属于中档题三、解答题21.(1)不能获利,政府每月至少需要补贴5000元才能使该项目不亏损,(2)400 【分析】(1)先确定该项目获得的函数,再利用配方法确定不会获利,从而可求政府每月至少需要补贴的费用;(2)确定食品残渣的每吨的平均处理成本函数,分别求出分段函数的最小值,即可求得结论 【详解】解:(1)当[200,300]x ∈时,该项目获利为S ,则2211200(20080000)(400)22S x x x x =--+=--,所以当[200,300]x ∈时,0S <,因此该项目不会获利,当300x =时,S 取得最大值5000-,所以政府每月至少需要补贴5000元才能使项目不亏损,(2)由题意可知,生活垃圾每吨的平均处理成本为21805040,[120,144)3180000200,[144,500)2x x x y x x x x ⎧-+∈⎪⎪=⎨⎪+-∈⎪⎩,当[120,144)x ∈时,21(120)2403y x x =-+, 所以当120x =时,yx取得最小值240; 当[144,500)x ∈时,1800002002002002y x x x =+-≥=,当且仅当1800002x x =,即400x =时,yx取得最小值200, 因为240200>,所以当每月处理量为400吨时,才能使每吨的平均处理成本最低 【点睛】关键点点睛:此题考查基本不等式在最值问题中的应用,函数模型的选择与应用,考查函数模型的构建,考查函数的最值,解题的关键是根据题意确定函数关系式,属于中档题22.(1)()f x 20.4 3.2 2.8(05)8.2(5)x x x x x ⎧-+-≤≤=⎨->⎩(2)当工厂生产4百台时,可使赢利最大为3.6万元. 【分析】(1)先求出()()G x R x ,,再根据()()()f x R x G x =-求解;(2)先求出分段函数每一段的最大值,再比较即得解. 【详解】解:(1)由题意得() 2.8G x x =+.()()20.4 4.20511(5)x xx R x x ⎧-+≤≤=⎨>⎩,()()()f x R x G x ∴=- ()20.4 3.2 2.8058.2(5)x x x x x ⎧-+-≤≤=⎨->⎩(2)当5x >时,函数()f x 递减,()()5 3.2f x f ∴<= (万元).当05x ≤≤时,函数()()20.44 3.6f x x =--+, 当4x =时,()f x 有最大值为3.6(万元). 所以当工厂生产4百台时,可使赢利最大为3.6万元. 【点睛】本题主要考查函数的解析式的求法,考查分段函数的最值的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力. 23.(1)1a =-;(2)89m <. 【分析】(1)由奇函数的性质()()0f x f x ,代入运算后可得1a =±,代入验证即可得解;(2)转化条件为131log 113xx x m x +<⎛⎫- ⎝+⎪⎭-对于[2,4]x ∀∈恒成立,令()[]131log ,2,4113xx g x x x x ⎛⎫-+=+⎝⎭∈- ⎪,结合函数的单调性求得()min g x 即可得解.【详解】(1)因为131()log 1axf x x -=-为奇函数, 则1113331111()()log log log 1111ax ax ax ax f x f x x x x x +-⎡+-⎤⎛⎫⎛⎫-+=+= ⎪⎪⎢⎥------⎝⎭⎝⎭⎣⎦ ()21231log 01ax x -==-, 则()22111ax x -=-,所以21a =即1a =±, 当1a =时,()11331()log log 11xf x x -==--,不合题意; 当1a =-时,131()log 1x f x x +=-,由101xx +>-可得1x >或1x <-,满足题意; 故1a =-;(2)由1()3xf x x m ⎛⎫+>+ ⎪⎝⎭可得131log 113xx x m x ⎛⎫>+ +⎪⎭+⎝-,则131log 113xx x m x +<⎛⎫- ⎝+⎪⎭-对于[2,4]x ∀∈恒成立,令()[]131log ,2,4113x x g x x x x ⎛⎫-+=+⎝⎭∈- ⎪,因为函数12111x y x x +==+--在[2,4]上单调递减, 所以函数131log 1xy x +=-在[2,4]上单调递增, 所以()g x 在[2,4]上单调递增,所以()()1min 32log 182993g x g -===+, 所以89m <. 【点睛】关键点点睛:解决本题的关键是将恒成立问题转化为求函数的最值.24.(1)08m ≤<;(2)存在,0,2m n ==;(3)答案不唯一,见解析. 【分析】(1)根据函数定义域为R ,转化为220mx mx ++>恒成立,分类讨论求解;(2)根据二次函数单调性可得2222m mn n ⎧=⎨=⎩,求解即可;(3)换元,令11,333xt ⎛⎫⎡⎤=∈ ⎪⎢⎥⎝⎭⎣⎦,分类讨论求二次函数的最小值即可. 【详解】(1)∵定义域为R ,即220mx mx ++>恒成立 ∴0m =, 或00m >⎧⎨∆<⎩得08m << 综上得08m ≤< (2)2yx 的定义域为[],m n ,值域为[]2,2m n∴222(0)2m mm n n n ⎧=≤<⎨=⎩ ,解得0,2m n ==. (3)令11,333xt ⎛⎫⎡⎤=∈ ⎪⎢⎥⎝⎭⎣⎦,则223y t at =-+ 若13a ≤,则228()39a h a =-+; 若133a <<,则2()3h a a =-; 若3a ≥,则()612h a a =-+;【点睛】关键点点睛:涉及指数型复合函数的单调性最值问题,多采用换元法,能够使问题简捷,突出问题本质,大多转化为二次函数,利用二次函数的图象和性质,体现转化思想,属于中档题.25.(1)()10f =;(2)12x x >,理由见解析;(3)5m <≤ 【分析】(1)令1x y ==,代入可得(1)f ;(2)记12x kx =,代入已知等式,由12()()f x f x <可得()0f k <,从而有1k >,得结论12x x >;(3)根据函数的性质,不等式变形为()223333100xxx x m --+≥+->恒成立,然后设33x x t -=+后转化为一元二次不等式和一元不次不等式恒成立,再转化为求函数的最值,可求得参数范围. 【详解】(1)令1x y ==,则(1)(1)(1)f f f =+,所以()10f =.(2)12x x >,理由如下:记12x kx =,则()()()122()f x f kx f k f x ==+, 由()()12f x f x <可得:()0f k <,则1k >,故12x x >. (3)由(2)得()223333100xxx x m --+≥+->恒成立,令10332,3x xt -⎡⎤=+∈⎢⎥⎣⎦,则222332x x t -+=-, 原不等式可化为:22100t mt -≥->, 由2210t mt -≥-恒成立可得:min 8m t t ⎛⎫≤+⎪⎝⎭,8t t +≥=8t t=,即t =时等号成立,所以m ≤. 由100mt ->恒成立可得:max 10m t ⎛⎫>⎪⎝⎭,102,3t ⎡⎤∈⎢⎥⎣⎦,则2t =时,max 105t ⎛⎫= ⎪⎝⎭,于是5m >.综上:实数m的取值范围是5m <≤. 【点睛】方法点睛:本题考查抽象函数的单调性,考查不等式恒成立问题,在解决不等式恒成立时,利用已求得的结论(函数的单调性),把问题进行转化,再用换元法转化为一元二次不等式和一元一次不等式恒成立,然后又由分离参数法转化为求函数的最值. 26.(1)U B A =[35,3].(2)02m << 【分析】(1)先解不等式得集合A ,再根据单调性求分式函数值域得集合B ,最后根据补集以及并集概念求结果;(2)根据充要关系确定两集合之间包含关系,结合数轴列不等式解得结果. 【详解】(1)由2430+x x ->,解得1x <或3x >,所以1[]3UA =,,又函数31y x =+在区间[0]m ,上单调递减,所以3[3]1y m ∈+,,即3[3]1B m =+,, 当4m =时,3[3]5B =,,所以[3]35U B A =,. (2)首先要求0m >,而“Ux A ∈”是“x B∈”的必要不充分条件,所以,即3[3]1m +,[1]3,,从而311m >+, 解得02m << 【点睛】本题考查函数定义域、值域,集合补集与并集以及根据充要关系求参数,考查基本分析求解能力,属基础题.。

【浙教版】高中数学必修一期末模拟试题及答案(3)

【浙教版】高中数学必修一期末模拟试题及答案(3)

一、选择题1.用二分法求方程x 2–2=0在(1,2)内近似解,设f (x )=x 2–2,得f (1)<0,f (1.5)>0, f (1.25)<0,则方程的根在区间( ) A .(1.25,1.5)B .(1,1.25)C .(1, 1.5)D .不能确定2.已知函数,0()ln ,0x e x f x x x ⎧≤=⎨>⎩,若函数g (x )=f (x )+2x +ln a (a >0)有2个零点,则数a 的最小值是( )A .1eB .12C .1D .e3.已知定义在R 上的奇函数()f x 满足()()20f x f x +--=,且当[]0,1x ∈时,()()2log 1f x x =+,则下列结论正确的是( )①()f x 的图象关于直线1x =对称;②()f x 是周期函数,且2是其一个周期;③16132f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭;④关于x 的方程()0f x t -=(01t <<)在区间()2,7-上的所有实根之和是12. A .①④B .①②④C .③④D .①②③4.已知函数)()lnf x x =,则120212020a f ⎛⎫= ⎪⎝⎭,20201log 2021b f ⎛⎫= ⎪⎝⎭,()2021log 2020c f =的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>5.已知235log log log 0x y z ==<,则2x 、3y 、5z的大小排序为 A .235x y z <<B .325y x z <<C .523z x y <<D .532z y x<<6.函数()log (3)a f x ax =-在[]13,上单调递增,则a 的取值范围是( ) A .()1+∞, B .()01,C .103⎛⎫ ⎪⎝⎭,D .()3+∞, 7.高斯函数属于初等函数,以大数学家约翰·卡尔·弗里德里希·高斯的名字命名,其图形在形状上像一个倒悬着的钟,高斯函数应用范围很广,在自然科学、社会科学、数学以及工程学等领域都能看到它的身影,设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.14-=-,[]4.84=.则函数21()122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为( ) A .{}0,1B .{}1,1-C .{}1,0-D .{}1,0,1-8.已知53()1f x ax bx =++且(5)7,f =则(5)f -的值是( ) A .5-B .7-C .5D .79.定义在(0,)+∞上的函数()f x 满足:()()1122120x f x x f x x x -<-且()24f =,则不等式()80f x x->的解集为( ) A .(2,)+∞ B . ()0,2C .(0,4)D .(,2)-∞10.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃11.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①1A .4B .3C .2D .112.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是( )A .11B .12C .15D .16二、填空题13.函数()11f x x =-,()g x kx = ,若方程()()f x g x =有3个不等的实数根,则实数k 的取值范围为________.14.若函数()231f x x x a x =+--恰有4个零点,则实数a 的取值范围为______. 15.已知正实数a 满足8(9)a a a a =,则log 3a =____________.16.已知函数()212log y x ax a =-+在()3,+∞上是减函数,则a 的取值范围是______. 17.已知存在[1,)x ∈+∞,不等式2212a x x x ≥-+成立,则实数a 的取值范围是__________.18.函数1,1()32,12x a x f x a x x ⎧+>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 取值范围为________.19.若集合{,,,}{1,2,3,4}a b c d =,且下列四个关系:(1)1a =;(2)1b ≠;(3)3c =;(4)4d ≠有且只有一个是正确的,则符合条件的有序数组(,,,)a b c d 的个数是___________.20.已知集合{}{}2|21,|20xA y yB x x x ==+=--<,则()R C A B =__________.三、解答题21.已知1a >,函数()log (3)log (1)a a f x x x =-++. (1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最大值为2,求a 的值.22.小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为()W x 万元,在年产量不足8万件时,()2W x x x =+(万元).在年产量不小于8万件时,()100638W x x x=+- (万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完. (1)写出年利润()L x (万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? 23.已知函数()ln(32)f x x =+,()ln(32)g x x =-.设函数()()()F x f x g x =-. (1)求函数()F x 的定义域; (2)判断()F x 奇偶性并证明; (3)若()0F x >成立,求x 的取值范围.24.已知函数()x f x a =(0a >且1a ≠),满足(2)(1)6f f +=; (1)求()f x 的解析式;(2)若方程()(2),[0,1]m f x f x x =-∈有解,求m 的取值范围;(3)已知()g x 为奇函数,()h x 为偶函数,函数()()()f x g x h x =+;若存在[1,2]x ∈使得2()(2)0ag x h x +≤,求a 的取值范围.25.已知a R ∈,奇函数()f x 与偶函数()g x 的定义域均为(,0)(0,)-∞+∞,且满足()()2af xg x x x-=+-. (1)分别求()f x 和()g x 的解析式: (2)若对任意[1,),()()0x f x g x ∞∈++>恒成立,试求实数a 的取值范围.26.已知集合A x y ⎧⎫⎪==⎨⎪⎩,集合1228xB x ⎧⎫=<<⎨⎬⎩⎭.(1)求A B ;(2)若集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据零点存在定理,结合条件,即可得出结论. 【详解】已知(1)0,(1.5)0,(1.25)0f f f <><, 所以(1,25)(1.5)0f f ⋅<,可得方程的根落在区间(1.25,1.5)内, 故选A. 【点睛】该题考查的是有关判断函数零点所在区间的问题,涉及到的知识点有二分法,函数零点存在性定理,属于简单题目.2.A解析:A 【分析】令()0g x =,将问题转化为函数()f x 与函数()2ln 0y x a a =-->的图象有两个不同的交点来求解. 【详解】令()0g x =得()2ln f x x a =--,若()g x 有两个零点,则函数()f x 与函数()2ln 0y x a a =-->的图象有两个不同的交点.画出函数()f x 与函数()2ln 0y x a a =-->的图象如下图所示,当直线过点()0,1时,两个函数图象有两个交点,此时1120ln a a e=-⨯-⇒=.由图可知,当直线向下平移时,可使两个函数图象有两个交点,所以1ln 1a a e -≤⇒≥,所以a 的最小值为1e. 故选:A【点睛】本小题主要考查函数零点问题的求解,考查数形结合的数学思想方法,属于中档题.3.A解析:A 【分析】由对称性判断①,由周期性判断②,周期性与奇偶性、单调性判断③,作出函数()y f x =的大致图象与直线y t =,由它们交点的性质判断④.【详解】由()()20f x f x +--=可知()f x 的图象关于直线1x =对称,①正确; 因为()f x 是奇函数,所以()()()2f x f x f x +=-=-,所以()()()42f x f x f x +=-+=,所以()f x 是周期函数,其一个周期为4,但不能说明2是()f x 的周期,故②错误; 由()f x 的周期性和对称性可得1644243333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.又当[]0,1x ∈时,()()2log 1f x x =+,所以()f x 在[]0,1x ∈时单调递增,所以1223f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即16132f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,③错误; 又[]0,1x ∈时,()()2log 1f x x =+,则可画出()f x 在区间[]2,8-上对应的函数图象变化趋势,如图易得()0f x t -=(01t <<)即()f x t =(01t <<)在区间()2,7-上的根分别关于1,5对称,故零点之和为()21512⨯+=,④正确. 故选:A. 【点睛】本题考查函数的奇偶性、对称性、单调性,考查函数的零点,掌握函数的基本性质是解题基础.函数零点问题常用转化为函数图象与直线的交点问题,利用数形结合思想求解.4.D解析:D 【分析】先判断出()f x 在R 上单调递减,再利用指数对数函数的单调性求出120212020,20201log 2021, 2021log 2020的范围,即可根据单调性比较大小.【详解】210x x +->恒成立,()f x ∴定义域为R ,))()lnlnf x x x ===-,其中y x 单调递增,则()f x 单调递减,102021202020120>=,202020201log log 102021<=,2021202120210log 1log 2020log 20211=<<=,b c a ∴>>. 故选:D. 【点睛】关键点睛:本题考查利用函数的单调性比较大小,解题的关键是判断出)()ln f x x =在R 上单调递减,进而可利用单调性比较.5.A解析:A 【解析】x y z ,, 为正实数,且235log log log 0x y z ==<,111235235k k k x y z ---∴===,,,可得:1112352131,51k kk x y z ---=>=>=>,. 即10k -> 因为函数1kf x x -=() 单调递增,∴235x y z<<.故选A.6.D解析:D 【分析】由题意可得可得1a >,且30a ->,由此求得a 的范围. 【详解】 解:函数()log (3)a f x ax =-在[]13,上单调递增,而函数()3t x ax =-在[]13,上单调递增,根据复合函数的单调性可得1a >,且30a ->,解得3a >,即()3a ∈+∞,故选:D . 【点睛】本题主要考查对数函数的定义域、单调性,复合函数的单调性,属于基础题.7.C解析:C 【分析】先求出函数()21122x x f x =-+的值域,再根据题干中要求即可得出()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域. 【详解】()21121111=122122212x x x x xf x +-=--=-+++, ()121,x +∈+∞,()10,112x∴∈+, ()11,012x∴-∈-+, 1111,21222x⎛⎫∴-∈- ⎪+⎝⎭, 即函数()21122x xf x =-+的值域为11,22⎛⎫- ⎪⎝⎭, 由高斯函数定义可知:函数()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为{}1,0- 故选:C. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.8.A解析:A 【解析】()()53531,1f x ax bx f x ax bx =++∴-=--+,()()()()2,552f x f x f f +-=∴+-=,()5275f -=-=-,故选A. 9.B解析:B 【分析】构造新函数()()g x xf x =,得出函数()g x 在(0,)+∞为单调递减函数,把()80f x x->,转化为()()220f xf x -<,得到()()2g x g >,结合单调性和定义域,即可求解. 【详解】 由题意,定义在(0,)+∞上的函数()f x 满足()()1122120x f x x f x x x -<-,设()()g x xf x =,可得()()12120g x g x x x -<-,所以函数()g x 在(0,)+∞为单调递减函数,因为()24f =,则()228f =, 不等式()80f x x ->,可化为()80xf x x-<,即()80xf x -<,即()()220f xf x -<,即()()2g x g >,可得20x x <⎧⎨>⎩,解得02x <<,所以不等式()80f x x->的解集为()0,2. 故选:B. 【点睛】本题主要考查了利用函数的单调性求解不等式,其中解答中根据已知条件,构造新函数,利用新函数的单调性和特殊点的函数值,得出不等式关系式是解答的关键,着重考查构造思想,以及推理与运算能力.10.B解析:B 【分析】化简集合A ,B ,根据交集运算即可求值. 【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.11.C解析:C 【分析】①②③都可以写成m a =+,a b 是否是有理数,④计算.【详解】①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,2122==-,12a ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++,,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素. 故选:C 【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型.12.A解析:A 【分析】可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论.【详解】由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个, 且2,4不能同时出现,同时出现共有4个, 所以满足题意的集合M 的个数为11个,故选A. 【点睛】本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.二、填空题13.【分析】作出函数的图象及与函数的图象求出相切时的值即可得答案;【详解】分别作出函数的图象即当与相切时方程有3个不等的实数根两函数图象有3个交点由图可知时符合题意故答案为:【点睛】利用数形结合思想作出 解析:4k >【分析】 作出函数()11f x x =-的图象及与函数()g x kx =的图象,求出相切时k 的值即可得答案; 【详解】分别作出函数的图象, 即21101kx kx kx x -=⇒-+=- 当()g x kx =与()11f x x =-相切时, 24040k k k k ⎧∆=-=⇒=⎨≠⎩,, 方程()()f x g x =有3个不等的实数根,∴两函数图象有3个交点,由图可知4k >时符合题意, 故答案为:4k >.【点睛】利用数形结合思想,作出两函数的图象,首先找到临界位置,即相切位置.14.【分析】函数恰有四个不同的零点即方程恰有四个互异的实数根即可判断从而或原方程恰有四个不同的实数根当且仅当两个方程各有两个不同的实数根列出不等式组解得即可;【详解】解:函数恰有四个不同的零点即方程恰有 解析:()()0,19,⋃+∞【分析】函数2()|3||1|f x x x a x =+--恰有四个不同的零点,即方程2|3||1|x x a x +=-恰有四个互异的实数根,即可判断0a >,从而()231x x a x +=-或()231x x a x +=--,原方程恰有四个不同的实数根,当且仅当两个方程各有两个不同的实数根,列出不等式组解得即可; 【详解】 解:函数2()|3||1|f x x x a x =+--恰有四个不同的零点,即方程2|3||1|x x a x +=-恰有四个互异的实数根,显然0a >,否则若0a =方程只有两个实数根0和3-,若0a <时,方程无解;因此()231x x a x +=-,所以()231x x a x +=-或()231x x a x +=--,原方程恰有四个不同的实数根,当且仅当两个方程各有两个不同的实数根,即2122010901090a a a a a >⎧⎪∆=-+>⎨⎪∆=++>⎩,解得01a <<或9a >,即()()0,19,a ∈+∞故答案为:()()0,19,⋃+∞.【点睛】本题考查函数方程思想,转化化归思想,属于中档题.15.【分析】利用已知式两边同时取以e 为底的对数化简计算再利用换底公式代入计算即可【详解】正实数a 满足两边取对数得即故解得故故答案为:【点睛】本题解题关键是对已知指数式左右两边同时取以e 为底的对数化简计算 解析:716-【分析】利用已知式两边同时取以e 为底的对数,化简计算ln a ,再利用换底公式ln 3log 3ln a a=代入计算即可. 【详解】正实数a 满足8(9)aaa a =,两边取对数得8ln ln(9)aaa a =,即ln 8ln(9)a a a a =,故()ln 8ln9ln a a =+,解得16ln ln 37a =-,故ln 3ln 37log 316ln 16ln 37a a ===--.故答案为:716-. 【点睛】本题解题关键是对已知指数式左右两边同时取以e 为底的对数,化简计算得到ln a 的值,再结合换底公式即突破难点.16.【分析】函数为复合函数且原函数为减函数根据题意需要满足一元二次函数在上是增函数且在上恒大于或等于零然后求解关于a 的不等式即可得到结果【详解】令则原函数化为此函数为定义域内的减函数要使函数在上是减函数解析:9,2⎛⎤-∞ ⎥⎝⎦ 【分析】函数为复合函数,且原函数为减函数,根据题意需要满足一元二次函数2x ax a -+在()3,+∞上是增函数,且在()3,+∞上恒大于或等于零,然后求解关于a 的不等式即可得到结果. 【详解】令2t x ax a =-+,则原函数化为12()log g t t =,此函数为定义域内的减函数,要使函数()212log y x ax a =-+在()3,+∞上是减函数,则函数2t x ax a =-+在()3,+∞上是增函数,且在()3,+∞上恒大于或等于零,即有232330aa a ⎧≤⎪⎨⎪-+≥⎩,解得92a ≤. 故答案为:9,2⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了复合函数的单调性,需要掌握复合函数的同增异减,本题还要注意对数函数的定义域是求解的前提,这里容易漏掉,需要掌握此类题目的解题方法.17.【分析】问题转化为即可由令问题转化为求的最大值根据二次函数的性质求出的最大值从而求出的范围即可【详解】若存在不等式成立即即可由令问题转化为求的最大值而的最大值是2故故故答案为:【点睛】方法点睛:本题解析:1[,)2+∞【分析】问题转化为22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x=-+,[1,)x ∈+∞,问题转化为求()f x 的最大值,根据二次函数的性质求出()f x 的最大值,从而求出a 的范围即可. 【详解】若存在[1,)x ∈+∞,不等式2212a x x x -+成立,即22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x =-+,[1,)x ∈+∞,问题转化为求()f x 的最大值, 而2117()2()48f x x=-+,[1,)x ∈+∞的最大值是2, 故221()22min x x x =-+,故12a, 故答案为:1[,)2+∞ 【点睛】方法点睛:本题考查函数的有解问题, 一般通过变量分离,将不等式有解问题转化为求函数的最值问题:()f x m >有解max ()f x m ⇔>; ()f x m <有解min ()f x m ⇔<.18.【分析】根据指数函数和一次函数的性质得出关于的不等式组即可求解【详解】由题意函数是上的单调递增函数可得解得即实数取值范围故答案为:【点睛】利用函数的单调性求解参数的取值范围:根据函数的单调性将题设条解析:8[,6)3【分析】根据指数函数和一次函数的性质,得出关于a 的不等式组,即可求解. 【详解】由题意,函数1,1()32,12x a x f x a x x ⎧+>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 可得13021322a a a a ⎧⎪>⎪⎪->⎨⎪⎪+≥-+⎪⎩,解得863a ≤<,即实数a 取值范围8[,6)3.故答案为:8[,6)3. 【点睛】利用函数的单调性求解参数的取值范围:根据函数的单调性,将题设条件转化为函数的不等式(组),即可求出参数的值或范围; 若分段函数是单调函数,则不仅要保证在各区间上单调性一致,还要确保在整个定义域内是单调的.19.6【分析】利用集合的相等关系结合(1);(2);(3);(4)有且只有一个是正确的通过分析推理即可得出结论【详解】若(1)正确则(2)也正确不合题意;若(2)正确则(1)(3)(4)不正确即则满足条解析:6 【分析】利用集合的相等关系,结合(1)1a =;(2)1b ≠;(3)3c =;(4)4d ≠有且只有一个是正确的,通过分析推理即可得出结论. 【详解】若(1)正确,则(2)也正确不合题意;若(2)正确,则(1)(3)(4)不正确,即1,1,3,4a b c d ≠≠≠=, 则满足条件的有序组为: 2,3,1,4a b c d ====;或3,2,1,4a b c d ====; 若(3)正确,则(1)(2)(4)不正确,即1,1,3,4a b c d ≠===, 则满足条件的有序组为: 2,1,3,4a b c d ====;若(4)正确,则(1)(2)(3)不正确,即1,1,3,4a b c d ≠=≠≠, 则满足条件的有序组为: 2,1,4,3a b c d ==== 或3,1,4,2a b c d ====或4,1,2,3a b c d ====,所以符合条件的有序数组(,,,)a b c d 的个数是6个. 故答案为6 【点睛】本题考查集合的相等关系,考查分类讨论思想,正确分类是关键,属于中档题.20.【分析】求函数的值域求得集合解一元二次不等式求得集合由此求得【详解】根据指数函数的性质可知所以有解得即所以故答案为【点睛】本小题主要考查集合交集补集的运算考查指数型函数值域的求法考查一元二次不等式的 解析:(]1,1-【分析】求函数的值域求得集合A ,解一元二次不等式求得集合B ,由此求得()R C A B ⋂. 【详解】根据指数函数的性质可知,211xy =+>,所以()1,A =+∞,有()()22210x x x x --=-+<解得12x -<<,即()1,2B =-,所以()R C A B =(]1,1-.故答案为(]1,1-. 【点睛】本小题主要考查集合交集、补集的运算,考查指数型函数值域的求法,考查一元二次不等式的解法,属于基础题.三、解答题21.(1)(1,3)-;(2)零点为1+1-3)2a =. 【分析】(1)由函数的解析式可得3010x x ->⎧⎨+>⎩,解可得x 的取值范围,即可得答案,(2)根据题意,由函数零点的定义可得()log (3)log (1)log [(3)(1)]0a a a f x x x x x =-++=-+=,即(3)(1)1x x -+=,解可得x 的值,即可得答案,(3)根据题意,将函数的解析式变形可得2()log (3)log (1)log [(3)(1)]log (23)a a a a f x x x x x x x =-++=-+=-+-,设223t x x =-++,分析t 的最大值可得()f x 的最大值为log 4a ,则有log 42a =,解可得a 的值,即可得答案.【详解】解:(1)根据题意,()log (3)log (1)a a f x x x =-++, 必有3010x x ->⎧⎨+>⎩,解可得13x ,即函数的定义域为(1,3)-,(2)()log (3)log (1)a a f x x x =-++,若()log (3)log (1)0a a f x x x =-++=, 即log [(3)(1)]0a x x -+=,即(3)(1)1x x -+=,解可得:1x =+1x =- 即函数()f x的零点为11(3)2()log (3)log (1)log [(3)(1)]log (23)a a a a f x x x x x x x =-++=-+=-+-,设223t x x =-++,(1,3)x ∈-, 则2(1)44t x =--+≤,有最大值4, 又由1a >,则函数()f x 有最大值log 4a , 则有log 42a =,解可得2a =,故2a =.22.(1)()2143,08310035(),8x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩;(2)当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元. 【分析】(1)根据年利润=年销售收入-固定成本-流动成本,分08x <<和8x ≥两种情况得到()L x 的解析式即可;(2)当08x <<时,根据二次函数求最大值的方法来求()L x 的最大值,当8x ≥时,利用基本不等式来求()L x 的最大值,最后综合即可. 【详解】(1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得,当08x <<时,()2211534333L x x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭,当8x ≥时, ()1001005638335L x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭, 所以()2143,08310035(),8x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩;(2)当08x <<时,()()21693L x x =--+, 此时,当6x =时,()L x 取得最大值()69L =万元, 当8x ≥时,()10035L x x x =⎛⎫-+⎪⎝⎭35352015≤-=-=,此时,当且仅当100x x=,即10x =时,()L x 取得最大值15万元, 因为915<,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大, 最大利润为15万元. 【点睛】关键点睛:本题考查函数模型的选择与应用,考查分段函数,考查基本不等式的应用,解题关键是熟练掌握二次函数的性质和基本不等式,属于常考题. 23.(1)33,22⎛⎫- ⎪⎝⎭;(2)奇函数,证明见解析;(3)302x <<【分析】(1)由320320x x +>⎧⎨->⎩可解得结果;(2)()F x 是奇函数,根据奇函数的定义可证结论正确; (3)根据对数函数的单调性可解得结果. 【详解】(1)由320320x x +>⎧⎨->⎩,解得3322x -<<,所以函数()F x 的定义域为33(,)22-.(2)()F x 是奇函数. 证明如下:x ∀∈33(,)22-,都有x -∈33(,)22-,因为 ()ln(32)ln(32)()F x x x F x -=--+=-, ∴()F x 是奇函数.(3)由()0F x >可得()()0f x g x ->,得ln(32)ln(32)0x x +-->, 即ln(32)ln(32)x x +>-,由对数函数的单调性得32320x x ,解得302x <<.【点睛】易错点点睛:利用对数函数的单调性解对数不等式时,容易忽视函数的定义域. 24.(1)()2x f x =;(2)[2,0]-;(3)17,12⎛⎤-∞- ⎥⎝⎦. 【分析】(1)根据(2)(1)6f f +=求解出a 的值,即可求解出()f x 的解析式;(2)采用换元法构造函数2(),[1,2]F t t t t =-∈,将m 的取值范围与()F t 的最值联系在一起,由此求解出结果;(3)先根据函数的奇偶性求解出()(),h x g x 的解析式,然后采用分离参数法得到1222222x x x x a --⎡⎤≤--+⎢⎥-⎣⎦,采用换元法求解出1222222xx x x --⎡⎤--+⎢⎥-⎣⎦的最大值,从而求解出a 的取值范围.【详解】(1)因为(2)(1)6f f +=,所以260,2a a a +-==或3a =-(舍去),所以()2x f x =;(2)由(1)知,()2x f x =,所以()222222x x x xm =-=-,令2,[1,2]xt t =∈,令2(),[1,2]F t t t t =-∈,所以()F t 的对称轴为12t =,且()F t 为开口向下的二次函数,所以()F t 在[]1,2上单调递减,所以()()ma min x (2)2,(1)0F t F F t F -====,所以m 的取值范围为[2,0]-; (3)因为()g x 为奇函数,()h x 为偶函数,所以()(),()()g x g x h x h x -=--=.由题()()()f x g x h x =+知,2()()2()()x x g x h x g x h x -⎧=+⎨=-+-⎩,即2()()2()()x x g x h x g x h x -⎧=+⎨=-+⎩解得2222(),()22x x x xh x g x --+-==将上式代入2()(2)0ag x h x +≤,得()()221222202x xxx a ---++≤,易知()22222212211222222222222xx x xx x xx xxx x a -------++⎡⎤≤-⋅=-⋅=--+⎢⎥---⎣⎦. 令12,[1,2]2x xt x =-∈,则315,24t ⎡⎤=⎢⎥⎣⎦,122a t t ⎛⎫≤-+ ⎪⎝⎭, 因为存在[1,2]x ∈使得2()(2)0ag x h x +≤,所以max12132173222122a t t ⎛⎫⎪⎡⎤⎛⎫≤-+=-+=- ⎪ ⎪⎢⎥⎝⎭⎣⎦ ⎪⎝⎭所以a 的取值范围是17,12⎛⎤-∞- ⎥⎝⎦.【点睛】方法点睛:不等式在指定区间上有解或恒成立求解参数范围问题的处理方法: (1)分类讨论法:根据参数的临界值作分类讨论;(2)分离参数法:将自变量和参数分离开来,自变量部分构造新函数,分析新函数的最值与参数的关系. 25.(1)(),()2,(,0)(0,)af x xg x x x∞∞=+=∈-⋃+;(2)3a >-. 【分析】(1)利用函数的奇偶性,列方程组,求函数的解析式;(2)由(1)知,()()2,[1,)af xg x x x x∞+=++∈+,方法一,讨论a 的正负,以及函数的单调性,转化为求函数的最小值大于0,求a 的取值范围;方法二,利用参变分离,()22a x x >-+,转化为求函数最大值,即求a 的取值范围. 【详解】(1)由已知条件()()2af xg x x x-=+-——① ①式中以x -代替x ,得()()2af xg x x x---=---——② 因为()f x 是奇函数,()g x 是偶函数,故()(),()()f x f x g x g x -=--=②可化为()()2af xg x x x--=---——③ ①-③,得22()2a f x x x=+ 故(),()2,(,0)(0,)af x xg x x x∞∞=+=∈-⋃+ (2)由(1)知,()()2,[1,)af xg x x x x∞+=++∈+ 当0a ≥时,函数()()f x g x +的值恒为正; 当0a <时,函数()()2af xg x x x+=++在[1,)+∞上为增函数 故当1x =时,()f x 有最小值3a + 故只需30a +>,解得30a -<<. 综上所述,实数a 的取值范围是(3,)-+∞ 法二:由(1)知,()()2a f x g x x x+=++ 当[1,)x ∈+∞时,()()0f x g x +>恒成立,等价于()22a x x >-+而二次函数()222(1)1y x x x =-+=-++在[1,)+∞上单调递减1x =时,max 3y =-故3a >- 【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围.26.(1)()3,0-;(2)312a -<<-或1a >. 【分析】(1)由已知条件分别计算出集合A 和集合B ,然后再计算出A B 的结果.(2)由已知条件()A B C ⋂⊇,则分类讨论C =∅和C ≠∅两种情况,求出实数a 的取值范围. 【详解】(1)已知集合A x y ⎧⎫⎪==⎨⎪⎩,则230x x -->,解得30x -<<,即()3,0A =-,集合1228x B x ⎧⎫=<<⎨⎬⎩⎭,解得31x -<<,即()3,1B =-,所以()3,0A B ⋂=-(2)因为集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,由(1)得()3,0A B ⋂=-, 则当C =∅时,21a a >+,即1a >,当C ≠∅时,212310a a a a ≤+⎧⎪>-⎨⎪+<⎩,得312a -<<-,综上,312a -<<-或1a >.【点睛】本题考查了集合的交集运算和子集运算,在含有参量的子集题目中需要注意分类讨论,尤其不要漏掉空集情况,然后求解不等式组得到结果.本题较为基础.。

新高中必修一数学上期末模拟试题(含答案)

新高中必修一数学上期末模拟试题(含答案)

新高中必修一数学上期末模拟试题(含答案)一、选择题1.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦2.若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞ B .(1,8) C .(4,8)D .[4,8)3.已知131log 4a =,154b=,136c =,则( ) A .a b c >> B .a c b >>C .c a b >>D .b c a >>4.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a << B .b a c <<C .a c b <<D .c a b <<5.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( )A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞⎪⎝⎭6.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃7.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 8.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭9.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7- C .()()2,02,-+∞D .[)(]7,22,7--10.设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,∞+D .[)0,∞+ 11.下列函数中,既是偶函数又存在零点的是( ) A .B .C .D .12.下列函数中,在区间(1,1)-上为减函数的是 A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=二、填空题13.定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f (4)=0,则不等式f (x )≥0的解集是___.14.若函数()1f x mx x =--有两个不同的零点,则实数m 的取值范围是______. 15.已知幂函数(2)my m x =-在(0,)+∞上是减函数,则m =__________. 16.设,,x y z R +∈,满足236x y z ==,则112x z y+-的最小值为__________. 17.若点(4,2)在幂函数()f x 的图像上,则函数()f x 的反函数1()f x -=________. 18.对于函数()y f x =,若存在定义域D 内某个区间[a ,b ],使得()y f x =在[a ,b ]上的值域也为[a ,b ],则称函数()y f x =在定义域D 上封闭,如果函数4()1xf x x=-+在R 上封闭,则b a -=____. 19.若函数()(21)()xf x x x a =+-为奇函数,则(1)f =___________.20.若函数()()22f x x x a x a =+--在区间[]3,0-上不是单调函数,则实数a 的取值范围是______.三、解答题21.定义在()(),00,-∞⋃+∞上的函数()y f x =满足()()1f xy f x f y ⎛⎫=- ⎪⎝⎭,且函数()f x 在(),0-∞上是减函数.(1)求()1f -,并证明函数()y f x =是偶函数;(2)若()21f =,解不等式4121f f x x ⎛⎫⎛⎫--≤ ⎪ ⎪⎝⎭⎝⎭. 22.已知函数22()21x xa f x ⋅+=-是奇函数. (1)求a 的值;(2)求解不等式()4f x ≥;(3)当(1,3]x ∈时,()2(1)0f txf x +->恒成立,求实数t 的取值范围.23.已知函数22()log (3)log (1)f x x x =-++. (1)求该函数的定义域;(2)若函数()y f x m =-仅存在两个零点12,x x ,试比较12x x +与m 的大小关系. 24.已知定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,()20201f =,且当1x >时,()0f x >. (1)求()1f ;(2)求证:()f x 在定义域内单调递增;(3)求解不等式12f<. 25.已知1()f x ax b x=++是定义在{|0}x x ∈≠R 上的奇函数,且(1)5f =. (1)求()f x 的解析式; (2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义加以证明. 26.某支上市股票在30天内每股的交易价格P (单位:元)与时间t (单位:天)组成有序数对(),t P ,点.(),t P 落在..如图所示的两条线段上.该股票在30天内(包括30天)的日交易量Q (单位:万股)与时间t (单位:天)的部分数据如下表所示:(Ⅰ)根据所提供的图象,写出该种股票每股的交易价格P 与时间t 所满足的函数解析式;(Ⅱ)根据表中数据确定日交易量Q 与时间t 的一次函数解析式;(Ⅲ)若用y (万元)表示该股票日交易额,请写出y 关于时间t 的函数解析式,并求出在这30天中,第几天的日交易额最大,最大值是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增,且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增, 所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.2.D解析:D 【解析】 【分析】根据分段函数单调性列不等式,解得结果. 【详解】因为函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 所以140482422a a a aa ⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选:D 【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.3.C解析:C 【解析】 【分析】首先将b 表示为对数的形式,判断出0b <,然后利用中间值以及对数、指数函数的单调性比较32与,a c 的大小,即可得到,,a b c 的大小关系. 【详解】因为154b=,所以551log log 104b =<=,又因为(133331log log 4log 3,log 4a ==∈,所以31,2a ⎛⎫∈ ⎪⎝⎭, 又因为131133336,82c ⎛⎫⎛⎫⎛⎫ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,所以3,22c ⎛⎫∈ ⎪⎝⎭, 所以c a b >>. 故选:C.【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.4.D解析:D 【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.5.A解析:A 【解析】 【分析】利用函数()y f x =是(),-∞+∞上的增函数,保证每支都是增函数,还要使得两支函数在分界点1x =处的函数值大小,即()23141a a -⨯-≤,然后列不等式可解出实数a 的取值范围. 【详解】由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数, 则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <; 且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A. 【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点:(1)确保每支函数的单调性和原函数的单调性一致; (2)结合图象确保各支函数在分界点处函数值的大小关系.6.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 7.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.8.A【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.9.B解析:B 【解析】 【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(]2,7,再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-⋃.【详解】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤< 时,()f x 在[7,0)-上单调递增,且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<,所以不等式()0f x >的解集为(2,0)(2,7]-⋃ 【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.10.D解析:D【分析】分类讨论:①当x 1≤时;②当x 1>时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可. 【详解】当x 1≤时,1x 22-≤的可变形为1x 1-≤,x 0≥,0x 1∴≤≤. 当x 1>时,21log x 2-≤的可变形为1x 2≥,x 1∴≥,故答案为[)0,∞+. 故选D . 【点睛】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.11.A解析:A 【解析】 由选项可知,项均不是偶函数,故排除,项是偶函数,但项与轴没有交点,即项的函数不存在零点,故选A. 考点:1.函数的奇偶性;2.函数零点的概念.12.D解析:D 【解析】 试题分析:11y x=-在区间()1,1-上为增函数;cos y x =在区间()1,1-上先增后减;()ln 1y x =+在区间()1,1-上为增函数;2x y -=在区间()1,1-上为减函数,选D.考点:函数增减性二、填空题13.-40∪4+∞)【解析】【分析】由奇函数的性质可得f (0)=0由函数单调性可得在(04)上f (x )<0在(4+∞)上f (x )>0结合函数的奇偶性可得在(-40)上的函数值的情况从而可得答案【详解】根解析: [-4,0]∪[4,+∞) 【解析】 【分析】由奇函数的性质可得f (0)=0,由函数单调性可得在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,结合函数的奇偶性可得在(-4,0)上的函数值的情况,从而可得答案. 【详解】根据题意,函数f (x )是定义在R 上的奇函数,则f (0)=0,又由f (x )在区间(0,+∞)上单调递增,且f (4)=0,则在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,又由函数f (x )为奇函数,则在(-4,0)上,f (x )>0,在(-∞,-4)上,f (x )<0, 若f (x )≥0,则有-4≤x≤0或x≥4, 则不等式f (x )≥0的解集是[-4,0]∪[4,+∞); 故答案为:[-4,0]∪[4,+∞). 【点睛】本题考查函数的单调性和奇偶性的综合应用,属于基础题.14.【解析】【分析】令可得从而将问题转化为和的图象有两个不同交点作出图形可求出答案【详解】由题意令则则和的图象有两个不同交点作出的图象如下图是过点的直线当直线斜率时和的图象有两个交点故答案为:【点睛】本 解析:0,1【解析】 【分析】 令0f x,可得1mx x =-,从而将问题转化为y mx =和1y x =-的图象有两个不同交点,作出图形,可求出答案. 【详解】由题意,令()10f x mx x =--=,则1mx x =-, 则y mx =和1y x =-的图象有两个不同交点, 作出1y x =-的图象,如下图,y mx =是过点()0,0O 的直线,当直线斜率()0,1m ∈时,y mx =和1y x =-的图象有两个交点. 故答案为:0,1.【点睛】本题考查函数零点问题,考查函数图象的应用,考查学生的计算求解能力,属于中档题.15.-3【解析】【分析】根据函数是幂函数可求出m 再根据函数是减函数知故可求出m 【详解】因为函数是幂函数所以解得或当时在上是增函数;当时在上是减函数所以【点睛】本题主要考查了幂函数的概念幂函数的增减性属于解析:-3 【解析】 【分析】根据函数是幂函数可求出m,再根据函数是减函数知0m <,故可求出m. 【详解】 因为函数是幂函数所以||21m -=,解得3m =-或3m =. 当3m =时,3y x =在(0,)+∞上是增函数; 当3m =-时,y x =在(0,)+∞上是减函数, 所以3m =-. 【点睛】本题主要考查了幂函数的概念,幂函数的增减性,属于中档题.16.【解析】【分析】令将用表示转化为求关于函数的最值【详解】令则当且仅当时等号成立故答案为:【点睛】本题考查指对数间的关系以及对数换底公式注意基本不等式的应用属于中档题解析:【解析】 【分析】令236x y z t ===,将,,x y z 用t 表示,转化为求关于t 函数的最值. 【详解】,,x y z R +∈,令1236x y z t ==>=,则236log ,log ,log ,x t y t z t ===11log 3,log 6t t y z==,21122log log 2t x t z y+-=+≥当且仅当2x =时等号成立.故答案为: 【点睛】本题考查指对数间的关系,以及对数换底公式,注意基本不等式的应用,属于中档题.17.【解析】【分析】根据函数经过点求出幂函数的解析式利用反函数的求法即可求解【详解】因为点在幂函数的图象上所以解得所以幂函数的解析式为则所以原函数的反函数为故答案为:【点睛】本题主要考查了幂函数的解析式 解析:2(0)x x ≥【解析】 【分析】根据函数经过点(4,2)求出幂函数的解析式,利用反函数的求法,即可求解. 【详解】因为点(4,2)在幂函数()()f x x R αα=∈的图象上,所以24α=,解得12α=, 所以幂函数的解析式为12y x =, 则2x y =,所以原函数的反函数为12()(0)f x x x -=≥.故答案为:12()(0)f x x x -=≥ 【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.18.6【解析】【分析】利用定义证明函数的奇偶性以及单调性结合题设条件列出方程组求解即可【详解】则函数在R 上为奇函数设即结合奇函数的性质得函数在R 上为减函数并且由题意可知:由于函数在R 上封闭故有解得:所以解析:6 【解析】 【分析】利用定义证明函数()y f x =的奇偶性以及单调性,结合题设条件,列出方程组,求解即可. 【详解】44()()11x xf x f x x x--=-==-+-+,则函数()f x 在R 上为奇函数设120x x ≤<,4()1xf x x=-+ ()()()2112121212444()()01111x x x x f x f x x x x x --=-+=>++++,即12()()f x f x > 结合奇函数的性质得函数()f x 在R 上为减函数,并且(0)0f = 由题意可知:0,0a b <>由于函数()f x 在R 上封闭,故有4141()()a bab f a b f b aa b-=-⎧⎪=⎧⎪⇒⎨⎨=⎩-=+⎪⎪⎩ ,解得:3,3a b =-=所以6b a -= 故答案为:6 【点睛】本题主要考查了利用定义证明函数的奇偶性以及单调性,属于中档题.19.【解析】【分析】根据函数奇偶性的定义和性质建立方程求出a 的值再将1代入即可求解【详解】∵函数为奇函数∴f(﹣x )=﹣f (x )即f (﹣x )∴(2x ﹣1)(x+a )=(2x+1)(x ﹣a )即2x2+(2 解析:23【解析】 【分析】根据函数奇偶性的定义和性质建立方程求出a 的值,再将1代入即可求解 【详解】 ∵函数()()()21xf x x x a =+-为奇函数,∴f (﹣x )=﹣f (x ), 即f (﹣x )()()()()2121x xx x a x x a -==--+--+-,∴(2x ﹣1)(x +a )=(2x +1)(x ﹣a ), 即2x 2+(2a ﹣1)x ﹣a =2x 2﹣(2a ﹣1)x ﹣a , ∴2a ﹣1=0,解得a 12=.故2(1)3f = 故答案为23【点睛】本题主要考查函数奇偶性的定义和性质的应用,利用函数奇偶性的定义建立方程是解决本题的关键.20.【解析】【分析】将函数转化为分段函数对参数分类讨论【详解】转化为分段函数:为更好说明问题不妨设:其对称轴为;其对称轴为①当时因为的对称轴显然不在则只需的对称轴位于该区间即解得:满足题意②当时此时函数 解析:()()9,00,3-⋃【解析】 【分析】将函数转化为分段函数,对参数a 分类讨论. 【详解】()()22f x x x a x a =+--,转化为分段函数: ()222232,2,x ax a x a f x x ax a x a⎧-+≥=⎨+-<⎩. 为更好说明问题,不妨设:()2232h x x ax a =-+,其对称轴为3a x =;()222g x x ax a =+-,其对称轴为x a =-.①当0a >时, 因为()h x 的对称轴3ax =显然不在[]3,0-,则 只需()g x 的对称轴位于该区间,即()3,0a -∈-, 解得:()0,3a ∈,满足题意. ②当0a =时,()223,0,0x x f x x x ⎧≥=⎨<⎩,此时函数在区间[]3,0-是单调函数,不满足题意. ③当0a <时,因为()g x 的对称轴x a =-显然不在[]3,0- 只需()h x 的对称轴位于该区间即可,即()3,03a∈- 解得:()9,0a ∈-,满足题意. 综上所述:()()9,00,3a ∈-⋃. 故答案为:()()9,00,3-⋃. 【点睛】本题考查分段函数的单调性,难点在于对参数a 进行分类讨论.三、解答题21.(1)()10f -=,证明见解析;(2)[1,2)(2,3]⋃ 【解析】 【分析】(1)根据函数解析式,对自变量进行合理赋值即可求得函数值,同时也可以得到()f x 与()f x -之间的关系,进而证明;(2)利用函数的奇偶性和单调性,合理转化求解不等式即可. 【详解】(1)令10y x =≠,则()111f x f x f x x ⎛⎫ ⎪⎛⎫⋅=- ⎪ ⎪⎝⎭ ⎪⎝⎭, 得()()()10f f x f x =-=,再令1x =,1y =-,可得()()()111f f f -=--,得()()2110f f -==,所以()10f -=, 令1y =-,可得()()()()1f x f x f f x -=--=, 又该函数定义域关于原点对称, 所以()f x 是偶函数,即证.(2)因为()21f =,又该函数为偶函数,所以()21f -=. 因为函数()f x 在(),0-∞上是减函数,且是偶函数 所以函数()f x 在()0,∞+上是增函数.又412f f x x ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭()2424x f x f x x -⎛⎫=⋅=-⎪⎝⎭, 所以()()242f x f -≤,等价于240,242,x x ->⎧⎨-≤⎩或240,242,x x -<⎧⎨-≥-⎩解得23x <≤或12x ≤<. 所以不等式4121f f x x ⎛⎫⎛⎫--≤ ⎪ ⎪⎝⎭⎝⎭的解集为[1,2)(2,3]⋃. 【点睛】本题考查抽象函数求函数值、证明奇偶性,以及利用函数奇偶性和单调性求解不等式. 22.(1)2a =;(2)}{20log 3x x <≤;(3)1,4t ⎛⎫∈-∞-⎪⎝⎭【解析】 【分析】(1)由奇函数的性质得出a 的值;(2)结合()f x 的解析式可将()4f x ≥化为32021xx -≥-,解不等式即可得出答案;(3)利用函数()f x 在(1,3]x ∈上的单调性以及奇偶性将()2(1)0f tx f x +->化为21tx x <-,分离参数t 结合二次函数的性质得出实数t 的取值范围.【详解】(1)根据题意,函数222222()()211212x x x x x xa a a f x f x --⋅++⋅⋅+-===-=---∴2a =.(2)222()421x x f x ⋅+=≥-,即21221x x +≥-,即2132202121x x x x +--=≥--即()()32210210x xx ⎧--≥⎪⎨-≠⎪⎩,解得:132x <≤,得20log 3x <≤.(3)22222244()2212121x x x x x f x ⋅+⋅-+===+---故()f x 在(1,3]x ∈上为减函数2()(1)0f tx f x +->,即2()(1)(1)f tx f x f x >--=-即21tx x <-,221111124t x x x ⎛⎫<-=-- ⎪⎝⎭又(1,3]x ∈,11,13x ⎡⎫∈⎪⎢⎣⎭,故14t <- 综上1,4t ⎛⎫∈-∞- ⎪⎝⎭. 【点睛】本题主要考查了由函数的奇偶性求解析式以及利用单调性解不等式,属于中档题. 23.(1)(1,3)- (2)12x x m +> 【解析】 【分析】(1)根据对数真数大于零列不等式组,解不等式组求得函数的定义域.(2)化简()f x 表达式为对数函数与二次函数结合的形式,结合二次函数的性质,求得12x x +以及m 的取值范围,从而比较出12x x +与m 的大小关系.【详解】 (1)依题意可知301310x x x ->⎧⇒-<<⎨+>⎩,故该函数的定义域为(1,3)-;(2)2222()log (23)log ((1)4)f x x x x =-++=--+,故函数关于直线1x =成轴对称且最大值为2log 42=, ∴122x x +=,2m <,∴12x x m +>. 【点睛】本小题主要考查函数定义域的求法,考查对数型复合函数对称性和最值,属于基础题. 24.(1)0;(2)证明见解析;(3)()()1,02019,2020x ∈-【解析】 【分析】(1)取1x y ==,代入即可求得()1f ; (2)任取210x x >>,可确定()()22110x f x f x f x ⎛⎫-=> ⎪⎝⎭,根据单调性定义得到结论;(3)利用12f=将所求不等式变为f f<,结合定义域和函数单调性可构造不等式组求得结果. 【详解】(1)取1x y ==,则()()()111f f f =+,解得:()10f =(2)任取210x x >> 则()()()221111x f x f x f x f x x ⎛⎫-=⋅-=⎪⎝⎭()()221111x x f f x f x f x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭210x x >> 211x x ∴> 210x f x ⎛⎫∴> ⎪⎝⎭,即()()210f x f x -> ()f x ∴在定义域内单调递增(3)()20201f f f=+=12f∴=12ff ∴<=由(2)知()f x 为增函数220190x x ⎧->⎪∴< 解得:()()1,02019,2020x ∈-【点睛】本题考查抽象函数单调性的证明、利用单调性求解函数不等式的问题;关键是能够通过单调性的定义证明得到函数单调性,进而根据函数单调性将函数值的比较转化为自变量的比较;易错点是忽略函数定义域的要求,造成求解错误. 25.(1) 1()4(0)f x x x x =+≠ (2) ()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增.见解析 【解析】 【分析】(1)利用奇函数的性质以及()15f =,列式求得,a b 的值,进而求得函数解析式.(2)利用单调性的定义,通过计算()()120f x f x -<,证得()f x 在1,2⎛⎫+∞ ⎪⎝⎭上递增. 【详解】(1)∵()f x 为奇函数,∴()()0f x f x ,∴0b =.由(1)5f =,得4a =, ∴1()4(0)f x x x x=+≠. (2)()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增. 证明如下:设1212x x <<,则()()()121212114f x f x x x x x -=-+-()12121241x x x x x x -=- ∵1212x x <<,∴120x x -<,12410x x ->,∴()121212410x x x x x x --<, ∴()()120f x f x -<,∴()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增. 【点睛】本小题主要考查根据函数的奇偶性求参数,考查利用函数单调性的定义证明函数的单调性,属于基础题.26.(Ⅰ)12,020518,203010t t P t t ⎧+<≤⎪⎪=⎨⎪-+<≤⎪⎩;(Ⅱ)40Q t =-+;(Ⅲ)第15天交易额最大,最大值为125万元. 【解析】 【分析】(Ⅰ)由一次函数解析式可得P 与时间t 所满足的函数解析式; (Ⅱ)设Q kt b =+,代入已知数据可得;(Ⅲ)由y QP =可得,再根据分段函数性质分段求得最大值,然后比较即得. 【详解】(Ⅰ)当020t <≤时,设11P k t b =+,则1112206b k b =⎧⎨+=⎩,解得11215b k =⎧⎪⎨=⎪⎩,当2030t ≤≤时,设22P k t b =+,则2222206305k b k b +=⎧⎨+=⎩,解得228110b k =⎧⎪⎨=-⎪⎩所以12,020518,203010t t P t t ⎧+<≤⎪⎪=⎨⎪-+<≤⎪⎩.(Ⅱ)设Q kt b =+,由题意4361030k b k b +=⎧⎨+=⎩,解得140k b =-⎧⎨=⎩,所以40Q t =-+.(Ⅲ)由(Ⅰ)(Ⅱ)得1(2)(40),02051(8)(40),203010t t t y t t t ⎧+-+<≤⎪⎪=⎨⎪-+-+<≤⎪⎩即221680,0205112320,203010t t t y t t t ⎧-++≤≤⎪⎪=⎨⎪-+<≤⎪⎩,当020t <≤时,2211680(15)12555y t t t =-++=--+,15t =时,max 125y =,当20t 30<≤时,221112320(60)401010y t t t =-+=--,它在(20,30]上是减函数, 所以21(2060)4012010y <⨯--=. 综上,第15天交易额最大,最大值为125万元. 【点睛】本题考查函数模型应用,解题时只要根据所给函数模型求出函数解析式,然后由解析式求得最大值.只是要注意分段函数必须分段计算最大值,然后比较可得.。

【浙教版】高中数学必修一期末第一次模拟试题及答案(1)

【浙教版】高中数学必修一期末第一次模拟试题及答案(1)

一、选择题1.设()31xf x =-,若关于x 的函数2()()(1)()g x f x t f x t =-++有三个不同的零点,则实数t 的取值范围为( ) A .102⎛⎫ ⎪⎝⎭,B .()0,2C .()0,1D .(]0,12.若关于x 的一元二次方程(2)(3)x x m --=有实数根1x ,2x ,且12x x <,则下列结论中错误的是( )A .当0m =时,12x =,23x =B .14m ≥-C .当0m >时,1223x x <<<D .二次函数()()12y x x x x m =--+的图象与x 轴交点的坐标为()2,0和()3,03.设函数3,()log ,x x af x x x a⎧≤=⎨>⎩()0a >, 若函数()2y f x =-有且仅有两个零点,则a的取值范围是( )A .. ()0,2B .()0,9C .()9,+∞D .()()0,29,⋃+∞4.已知函数()()2log 2xf x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( ) A .{}|0m m =B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m =5.若实数a ,b ,c 满足232log log ab c k ===,其中()1,2k ∈,则下列结论正确的是( ) A .b c a b >B .log log a b b c >C .log b a c >D .b a c b >6.5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+⎪⎝⎭,它表示:在受高斯白噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内所传信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.按照香农公式,在不改变W 的情况下,将信噪比SN从1999提升至λ,使得C 大约增加了20%,则λ的值约为(参考数据:lg 20.3≈, 3.96109120≈)( ) A .7596B .9119C .11584D .144697.若函数()f x =在[]1,3-上具有单调性,则实数a 的可能取值是( )A .4-B .5C .14D .238.已知53()1f x ax bx =++且(5)7,f =则(5)f -的值是( ) A .5-B .7-C .5D .79.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-310.已知集合{|0}M y y =≥,2{|1}N y y x ==-+,则M N =( )A .()0,1B .[]0,1C .[)0,+∞D .[)1,+∞11.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤12.设{}|22A x x =-≥,{}|1B x x a =-<,若A B =∅,则a 的取值范围为( ) A .1a <B .01a <≤C .1a ≤D .03a <≤二、填空题13.已知函数2()log (2)f x x =+与2()()1g x x a =-+,若对任意的1[2,6)x ∈,都存在2[0,2]x ∈,使得()()12f x g x =,则实数a 的取值范围是______.14.已知方程24(2)60x a x +--=的两实根为1 x ,2x ,方程2220x x a --=的两实根为3x ,4x ,且3124x x x x <<<,则实数a 的取值范围为________.15.已知函数()212log y x ax a =-+在()3,+∞上是减函数,则a 的取值范围是______. 16.如图,在面积为2的平行四边形OABC 中,AC CO ⊥,AC 与BO 交于点E .若指数函数()01xy aa a =>≠,经过点E ,B ,则函数()af x x x=-在区间[]1,2上的最小值为________.17.已知函数()f x 对于任意实数x 满足条件()()12f x f x +=-,若()113f =- ,则()2019f = _________.18.已知函数()4f x x a a x=-++,若当[]1,4x ∈时,()5f x ≤恒成立,则实数a 的取值范围是______.19.对于集合M ,定义函数1()1M x Mf x x M∈⎧=⎨-∉⎩,对于两个集合M 、N ,定义集合{|()()1}M N M N x f x f x *=⋅=-,用()Card M 表示有限集合M 所含元素的个数,若{1,2,4,8}A =,{2,4,6,8,10}B =,则能使()()Card X A Card X B *+*取最小值的集合X 的个数为________.20.设a 、b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=__________. 三、解答题21.国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.某企业积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一种把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x (单位:吨)最少为70吨,最多为100吨.日加工处理总成本y (单位:元)与日加工处理量x 之间的函数关系可近似地表示为214032002y x x =++,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.(1)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(2)为了该企业可持续发展,政府决定对该企业进行财政补贴,补贴方式共有两种. ① 每日进行定额财政补贴,金额为2300元; ② 根据日加工处理量进行财政补贴,金额为30x .如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方式进行补贴?为什么? 22.某企业加工生产一批珠宝,要求每件珠宝都按统一规格加工,每件珠宝的原材料成本为0.5万元,每件珠宝售价(万元)与加工时间t (单位:天)之间的关系满足图1,珠宝的预计销量(件)与加工时间t (天)之间的关系满足图2.原则上,单件珠宝的加工时间不能超过55天,企业支付的工人报酬为这批珠宝销售毛利润的三分之一,其他成本忽略不计算.(1)如果每件珠宝加工天数分别为5,13,预计销量分别会有多少件?(2)设工厂生产这批珠宝产生的纯利润为S (万元),请写出纯利润S (万元)关于加工时间t (天)之间的函数关系式,并求纯利润S (万元)最大时的预计销量. 注:毛利润=总销售额 — 原材料成本,纯利润=毛利润 — 工人报酬. 23.(1)解不等式()()22log 2log 36x x -≤+;(2)在(1)的条件下,求函数1114242x xy -=-⎛⎫⎛⎫⎪ ⎝⋅⎪⎝⎭+⎭的最大值和最小值及相应的x 的值.24.(Ⅰ)()()()232323183π21π2-⎛⎫-+---+- ⎪⎝⎭;(Ⅱ)解关于x 的不等式:12aa x >--. 25.已知函数2()21,[1,3]f x ax bx x =++∈(,ab ∈R 且,a b 为常数) (1)若1a =,求()f x 的最大值;(2)若0a >,1b =-,且()f x 的最小值为4-,求a 的值. 26.已知命题p :x ∈A ={x|a -1<x <a +1,x ∈R},命题 q :x ∈B ={x|x 2-4x +3≥0}. (1)或A∩B =∅,A ∪B =R ,求实数a (2)若是p 的必要条件,求实数a.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由()0g x =得()1f x =或()f x t =,作出函数()f x 的图象,可得()f x t =需有两解,有此可得t 的范围. 【详解】据题意()0g x =有三个解.由()0g x =得()1f x =或()f x t =,易知()1f x =只有一个解, ∴()f x t =必须有两解, 由图象知01t <<. 故选:C .【点睛】关键点点睛:本题考查函数零点个数问题,解题时根据零点的定义化为方程()0g x =的解的个数,进而转化为()f x t =的解的个数,再利用数形结合思想,考虑函数()y f x =的图象与直线y t =的交点个数问题.掌握转化思想是解题关键.2.C解析:C 【分析】画出函数()()23y x x =--的图像,然后对四个选项逐一分析,由此得出错误结论的选项. 【详解】画出二次函数()()23y x x =--的图像如下图所示,当0m =时,122,3x x ==成立,故A 选项结论正确. 根据二次函数图像的对称性可知, 当 2.5x =时,y 取得最小值为14-, 要使()()23y x x m =--=有两个不相等的实数根, 则需14m >-,故B 选项结论正确. 当0m >时,根据图像可知122,3x x <>,故C 选项结论错误. 由()()23x x m --=展开得2560x x m -+-=, 根据韦达定理得12125,6x x x x m +=⋅=-. 所以()()()2121212y x x x x m x x x x x x m =--+=-+++()()25623x x x x =-+=--,故()()12y x x x x m =--+与x 轴的交点坐标为()()2,0,3,0. 故选:C. 【点睛】思路点睛:一元二次方程根的分布,根据其有两个不等的实根,结合根与系数的关系、函数图象,判断各选项的正误.3.D解析:D 【分析】函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,数形结合即可求出a 的取值范围. 【详解】令2x =可得12x =-,22x =;令3log 2x =得39x =函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,作3,()log ,x x af x x x a ⎧≤=⎨>⎩()0a >图象如图:当02a <<时,()y f x =与2y =两个函数图象有且仅有两个交点,交点横坐标为12x =-,39x =,符合题意;当29a ≤≤时,()y f x =与2y =两个函数图象有且仅有3个交点,交点横坐标为12x =-,22x =,39x =,不符合题意;当9a >时,()y f x =与2y =两个函数图象有且仅有2个交点,交点横坐标为12x =-,22x =,不符合题意;所以a 的取值范围是:()()0,29,⋃+∞, 故选:D 【点睛】本题主要考查了已知函数的零点个数求参数的范围,函数的零点转化为对应方程的根,转化为函数图象的交点,属于中档题.4.A解析:A 【分析】若定义域为实数集R ,则20x m +>对于x ∈R 恒成立,可得0m ≥,若值域为实数集R ,令2x t m =+,则2log y t = 此时需满足2x t m =+的值域包括()0,∞+,可得0m ≤,再求交集即可. 【详解】若()()2log 2xf x m =+定义域为实数集R ,则20x m +>对于x ∈R 恒成立,即2x m >-对于x ∈R 恒成立, 因为20x >,所以20x -<,所以0m ≥, 令2x t m =+,则2log y t =若()()2log 2xf x m =+值域为实数集R ,则2x t m =+的值域包括()0,∞+, 因为t m >,所以0m ≤, 所以0m =, 故选:A 【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.5.D解析:D 【分析】首先确定a ,b ,c 的取值范围,再根据指对互化得到2k b =,3k c =,再代入选项,比较大小. 【详解】由题意可知a ∈(0,1),b ∈(2,4),c ∈(3,9),且23k k b c ==,,对于A 选项,01b a <<,1c b >可得到b c a b <,故选项A 错误;对于B 选项,log log 2log 20k a a a b k ==<,log log 3log 30k b b b c k ==>,所以log log a b b c <,故B 选项错误;对于C 选项,22log log 3log 31k kb c a ==>>,故C 选项错误;对于D 选项,1a b b b <=,1b c c c >=,而c >b ,所以b a c b >,故D 选项正确. 故选:D . 【点睛】关键点点睛:本题考查指对数比较大小,本题的关键是首先确定,,a b c 的大小,并结合指对数运算化简选项中的对数式,再和中间值0或1比较大小,本题属于中档题型.6.B解析:B 【分析】根据题设条件列出方程,计算即可. 【详解】由题可知 ()()()22log 119991+20%log 1W W λ+⨯=+,即()221.2log 2000log 1λ⨯=+,所以()lg 1lg 20001.2lg 2lg 2λ+⨯=,即()()lg 1 1.2lg2000 1.23lg2 3.96λ+=⨯=⨯+≈,所以 3.961109120λ+≈≈,所以9119λ≈. 故选:B 【点睛】本题主要考查对属于对数函数,考查学生的运算能力.7.C解析:C 【分析】令函数()218g x x ax =-++,则只需使当[]1,3x ∈-时,()0g x ≥且单调,然后针对()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩两种情况讨论求解. 【详解】由题意可设()218g x x ax =-++,则当[]1,3x ∈-时,()218g x x ax =-++单调,且()0g x ≥恒成立,因为()218g x x ax =-++的对称轴方程为2a x =, 则()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩,解得617a ≤≤或32a --≤≤,即[][]6,173,2a ∈--,则只有14满足题意. 故选:C . 【点睛】本题考查根据复合函数的单调性求参数的取值范围,解答时注意不仅要使原函数在所给区间上单调,且必须使原函数在所给区间上有意义.8.A解析:A 【解析】()()53531,1f x ax bx f x ax bx =++∴-=--+,()()()()2,552f x f x f f +-=∴+-=,()5275f -=-=-,故选A. 9.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减, ∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.10.B解析:B 【解析】∵集合{}2{|1}1N y y x y y ==-+=≤,{|0}M y y =≥,∴[]0,1M N ⋂=,故选B.11.B解析:B【解析】 【分析】求得集合{|1A x x =<-或6}x >,{}|0B x x =>,根据集合运算,即可求解,得到答案. 【详解】由题意,集合{}2|560{|1A x x x x x =-->=<-或6}x >,{}{}|21|0x B x x x =>=>,则{}|16R C A x x =-≤≤,所以(){}|06R C A B x x =<≤.故选B . 【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合,A B ,结合集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.12.C解析:C 【分析】解集绝对值不等式求得,A B ,结合A B =∅求得a 的取值范围.【详解】由22x -≥得22x -≤-或22x -≥,解得0x ≤或4x ≥,所以(][),04,A =-∞⋃+∞, 由1x a -<得1a x a -<-<,解得11a x a -<<+,所以()1,1B a a =-+. 当0a ≤时,B =∅,AB =∅,符合题意.当0a >时,由于A B =∅,所以1014a a -≥⎧⎨+≤⎩,解得01a <≤.综上所述,a 的取值范围是1a ≤. 故选:C 【点睛】本小题主要考查绝对值不等式的解法,考查根据交集的结果求参数的取值范围.二、填空题13.【分析】由对数函数的性质可得转化条件为由二次函数的图象与性质即可得解【详解】因为所以即函数的图象开口朝上对称轴为①当函数在上单调递增所以即所以解得;②当时函数在上单调递减所以即所以解得;③当时所以解解析:1,22,3⎡⎡⎤-⎣⎣⎦【分析】由对数函数的性质可得()123f x ≤<,转化条件为()2max 3g x ≥、()2min 2g x ≤,由二次函数的图象与性质即可得解. 【详解】因为1[2,6)x ∈,所以()()()126f f x f ≤<即()123f x ≤<,函数2()()1g x x a =-+的图象开口朝上,对称轴为x a =,①当0a ≤,函数()g x 在[0,2]上单调递增,所以()()()202g g x g ≤≤, 即()2221,45g x a a a ⎡⎤∈+-+⎣⎦,所以22124530a a a a ⎧+≤⎪-+≥⎨⎪≤⎩,解得10a -≤≤;②当2a ≥时,函数()g x 在[0,2]上单调递减,所以()()()220g g x g ≤≤, 即()22245,1g x a a a ⎡⎤∈-++⎣⎦,所以22452132a a a a ⎧-+≤⎪+≥⎨⎪≥⎩,解得23a ≤≤;③当01a <≤时,()()22max 245g x g a a ==-+,()()2min 12g x g a ==<,所以245301a a a ⎧-+≥⎨<≤⎩,解得02a <≤④当12a <<时,()()22max 01g x g a ==+,()()2min 12g x g a ==<,所以21312a a ⎧+≥⎨<<⎩2a ≤<;综上,实数a的取值范围是1,22,3⎡⎡⎤-⎣⎣⎦.故答案为:1,22,3⎡⎡⎤-⎣⎣⎦.【点睛】解决本题的关键是将条件转化为()2max 3g x ≥、()2min 2g x ≤,结合二次函数的图象与性质讨论即可得解.14.【分析】把问题转化为函数与两个函数的交点问题画出图像观察即可得出结果【详解】由方程的两实根为则转化为两个函数的交点问题由方程的两实根为转化为两个函数的交点问题画出函数的图像如图所示:又观察图像可得: 解析:412a <<【分析】把问题转化为函数y a =与()642f x x x=-+,()222g x x x =-两个函数的交点问题,画出图像,观察即可得出结果. 【详解】由方程24(2)60x a x +--=的两实根为1 x ,2x ,1232x x ⋅=-,则120,0 x x ≠≠, 转化为()6,42y a f x x x==-+两个函数的交点问题, 由方程2220x x a --=的两实根为3x ,4x , 转化为()2,22y a g x x x ==-两个函数的交点问题,画出函数()(),,f x g x y a =的图像,如图所示:又3124x x x x <<<,观察图像可得:412a <<. 则实数a 的取值范围为412a <<. 故答案为:412a <<. 【点睛】方法点睛:已知函数有零点(方程有实根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.15.【分析】函数为复合函数且原函数为减函数根据题意需要满足一元二次函数在上是增函数且在上恒大于或等于零然后求解关于a 的不等式即可得到结果【详解】令则原函数化为此函数为定义域内的减函数要使函数在上是减函数解析:9,2⎛⎤-∞ ⎥⎝⎦【分析】函数为复合函数,且原函数为减函数,根据题意需要满足一元二次函数2x ax a -+在()3,+∞上是增函数,且在()3,+∞上恒大于或等于零,然后求解关于a 的不等式即可得到结果. 【详解】令2t x ax a =-+,则原函数化为12()log g t t =,此函数为定义域内的减函数,要使函数()212log y x ax a =-+在()3,+∞上是减函数,则函数2t x ax a =-+在()3,+∞上是增函数,且在()3,+∞上恒大于或等于零,即有232330aa a ⎧≤⎪⎨⎪-+≥⎩,解得92a ≤. 故答案为:9,2⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了复合函数的单调性,需要掌握复合函数的同增异减,本题还要注意对数函数的定义域是求解的前提,这里容易漏掉,需要掌握此类题目的解题方法.16.【分析】设点则点B 的坐标为由题意得则再根据平行四边形的面积求得由此得得函数的解析式从而得函数的的单调性与最值【详解】解:设点则点B 的坐标为∵∴∵平行四边形OABC 的面积又平行四边形OABC 的面积为2 解析:3-【分析】设点(),tE t a ,则点B 的坐标为()2,2tt a ,由题意得22tt aa =,则2t a =,再根据平行四边形的面积求得12t =,由此得4a =,得函数()f x 的解析式,从而得函数()f x 的的单调性与最值. 【详解】解:设点(),tE t a ,则点B 的坐标为()2,2tt a ,∵22t t a a =,∴2t a =,∵平行四边形OABC 的面积24t S OC AC a t t =⨯⨯==, 又平行四边形OABC 的面积为2,∴42t =,12t =,所以122a =,4a =, ∴()4f x x x=-在[]1,2为增函数,∴函数()f x 的最小值为()4111f =-=3-, 故答案为:3-. 【点睛】本题主要考查指数函数的图象和性质,考查利用函数的单调性求最值,属于中档题.17.3【分析】根据题意求得函数的周期性得出函数的周期然后利用函数的周期和的值即可求解得到答案【详解】由题意函数对任意实数满足条件则即函数是以4为周期的周期函数又由令则即所以【点睛】本题主要考查了抽象函数解析:3 【分析】根据题意,求得函数的周期性,得出函数的周期,然后利用函数的周期和()1f 的值,即可求解,得到答案. 【详解】由题意,函数()f x 对任意实数x 满足条件1(2)()f x f x +=-, 则()1(4)[(2)2](2)f x f x f x f x +=++=-=+,即函数()f x 是以4为周期的周期函数, 又由()113f =-,令1x =-,则1(12)(1)f f -+=--,即1(1)3(1)f f -==, 所以()2019(14505)(1)3f f f =-+⨯=-=. 【点睛】本题主要考查了抽象函数的应用,以及函数的周期性的判定和函数值的求解,其中解答中根据题设条件求得函数的周期是解答本题的关键,着重考查了推理与运算能力,属于基础题.18.【分析】对分段讨论去绝对值计算求解【详解】当时可得当时符合题意;当时则不符合题意;当时此时不符合题意综上的取值范围是故答案为:【点睛】本题考查函数不等式的恒成立问题解题的关键是对分段讨论求解 解析:(],1-∞【分析】对a 分段讨论去绝对值计算求解. 【详解】当1a ≤时,()44f x x a a x x x=-++=+,可得当[]1,4x ∈时,()45f x ≤≤,符合题意;当14a <<时,()42,14,4a x x a xf x x a x x ⎧-+≤<⎪⎪=⎨⎪+≤≤⎪⎩,则()1325f a =+>,不符合题意;当4a ≥时,()42f x a x x=-+,此时()13211f a =+≥,不符合题意, 综上,a 的取值范围是(],1-∞. 故答案为:(],1-∞.【点睛】本题考查函数不等式的恒成立问题,解题的关键是对a 分段讨论求解.19.【分析】通过定义可以用集合中的补集来解释再根据取最小值时所满足的条件最后可以求出集合的个数【详解】因为所以有要想最小只需最大且最小要使最小则有所以集合是集合和集合子集的并集因此集合的个数为个故答案为 解析:8【分析】通过定义可以用集合中的补集来解释,再根据()()Card X A Card X B *+*取最小值时所满足的条件,最后可以求出集合X 的个数. 【详解】因为{|()()1}M N M N x f x f x *=⋅=-,所以有()MNM N C M N *=⋂,要想()Card X A *最小,只需()Card X A ⋂最大,且()Card X A ⋃最小,要使 ()()Card X A Card X B *+*最小, 则有A B X A B ⋂⊆⊆⋃,{}{}1,2,4,6,8,10,2,4,8A B A B ⋃=⋂=,所以集合X 是集合{}2,4,8和集合{}1,6,10子集的并集,因此集合X 的个数为328=个. 故答案为:8 【点睛】本题考查了新定义题,考查了集合与集合之间的关系,考查了数学阅读能力.20.【分析】根据题意得出则则有可得出由此得出然后求出实数的值于是可得出的值【详解】由于有意义则则有所以根据题意有解得因此故答案为【点睛】本题考查利用集合相等求参数的值解题的关键就是根据题意列出方程组求解 解析:2【分析】根据题意得出0a ≠,则a b b +≠,则有0a b +=,可得出1ba=-,由此得出10b a b b a a ⎧⎪=⎪+=⎨⎪⎪=⎩,然后求出实数a 、b 的值,于是可得出b a -的值. 【详解】{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,由于b a -有意义,则0a ≠,则有0a b +=,所以,1ba -=-.根据题意有10b a b ba a ⎧⎪=⎪+=⎨⎪⎪=⎩,解得11a b =-⎧⎨=⎩,因此,()112b a -=--=.故答案为2. 【点睛】本题考查利用集合相等求参数的值,解题的关键就是根据题意列出方程组求解,考查运算求解能力,属于中等题.三、解答题21.(1)加工处理量为80吨时,每吨厨余垃圾的平均加工成本最低,此时该企业处理1吨厨余垃圾处于亏损状态;(2)选择两种方案均可,理由见解析. 【分析】(1)根据条件写出每吨厨余垃圾的平均成本表达式,利用基本不等式求解出其最小值,并判断处理1吨厨余垃圾处于亏损还是盈利状态;(2)根据两种补贴方式分别列出企业日获利的函数表达式,并求解出最大值,将最大值进行比较确定出所选的补贴方式. 【详解】解:(1)由题意可知,每吨厨余垃圾平均加工成本为3200402y x x x=++[70,100]x ∈. 又3200402x x ++40+≥24040=⨯+120=. 当且仅当32002x x=,即80x =吨时,每吨厨余垃圾的平均加工成本最低. 因为100120<,所以此时该企业处理1吨厨余垃圾处于亏损状态; (2)若该企业采用第一种补贴方式,设该企业每日获利为1y ,由题可得211100(403200)23002y x x x =-+++21609002x x =-+-21(60)9002x =--+因为[70,100]x ∈,所以当70x =吨时,企业最大获利为850元. 若该企业采用第二种补贴方式,设该企业每日获利为2y ,由题可得221130(403200)2y x x x =-++219032002x x =-+-21(90)8502x =--+因为[70,100]x ∈,所以当吨90x =吨时, 企业最大获利为850元.结论:选择方案一,因为日加工处理量处理量为70吨时,可以获得最大利润;选择方案二,日加工处理量处理量为90吨时,获得最大利润,能够为社会做出更大贡献;由于最大利润相同,所以选择两种方案均可. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.(1)分别为25件,42件;(2)s (t )=()()2241715,01052165,1055t t t t t t ⎧++⎪⎨---<⎪⎩;26件. 【分析】(1)先求出预计订单函数()()f t t N ∈为45,010,()55,1055.t t f t t t +⎧=⎨-+<⎩再求解; (2)先求出利润函数为2(1.55 3.5)(45),010,3()2(1.55 3.5)(55),1055.3t t t S t t t t ⎧+-+⎪⎪=⎨⎪+--+<⎪⎩再分段求函数的最大值即得解. 【详解】解:(1)预计订单函数()()f t t N ∈为45,010()55,1055t t f t t t +≤≤⎧=⎨-+<≤⎩;f (5)=20+5=25; f (13)=-13+55=42;∴每件珠宝加工天数分别为5,13,预计订单数分别为25件,42件. (2)售价函数为() 1.55g t t =+;∴利润函数为2(1.550.5)(45),0103()2(1.550.5)(55),10553t t t s t t t t ⎧+-+⎪⎪=⎨⎪+--+<⎪⎩,s (t )=(3)(45),010(3)(55),1055t t t t t t ++⎧⎨-+-<⎩=()()2241715,01052165,1055t t t t t t ⎧++⎪⎨---<⎪⎩; 当010t ≤≤时,2()41715s t t t =++的最大值为(10)585s =;当1055t <≤时,2()(52t 165)s t t =---的最大值为(26)841585s =>;故利润最大时,26t =,此时预计的销量为26件 【点睛】关键点睛:解题得关键在于根据题目条件,分段列出函数表达式,计算时,注意分段成立的条件,难度属于中档题23.(1)[)1,2-;(2)当1x =时,函数y 取最小值为1;当1x =-时,函数y 取最大值为10. 【分析】(1)由题意结合对数函数的性质可得20360236x x x x ->⎧⎪+>⎨⎪-≤+⎩,解不等式组即可得解;(2)由题意令11,224x t ⎛⎫⎛⎤=∈ ⎪ ⎥⎝⎭⎝⎦,则21412y t ⎛⎫=-+ ⎪⎝⎭,再结合二次函数的性质即可得解.【详解】(1)()()22log 2log 36x x -≤+,∴20360236x x x x ->⎧⎪+>⎨⎪-≤+⎩,解得12x -≤<, ∴不等式的解集为[)1,2-;(2)当[)1,2x ∈-时,设11,224xt ⎛⎫⎛⎤=∈ ⎪ ⎥⎝⎭⎝⎦, 则函数222112411114244424241222x x x x t t t y -⎛⎫-+⎛⎫⎛⎫⎛⎫⎛⎫=-⋅+=⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=-+=-+ ⎝⎭⎪⎭⎝⎭⎝,∴当12t =即1x =时,函数y 取最小值为1; 当2t =即1x =-时,函数y 取最大值为21421102⎛⎫⨯-+= ⎪⎝⎭. 【点睛】本题考查了对数函数单调性的应用及对数不等式的求解,考查了指数函数的性质、二次函数的性质及换元法的应用,属于中档题. 24.(Ⅰ)2;(Ⅱ)答案见解析. 【分析】(Ⅰ)利用指数幂的运算性质,即可得出结果.(Ⅱ)将分式不等式化简转化为()()()122020a x a x x ⎧⎡⎤-+-->⎪⎣⎦⎨-≠⎪⎩,分类讨论1a -,解一元二次不等式即可得出结果. 【详解】解:(Ⅰ)原式)2321812-⎛⎫=-+⎪⎝⎭()()2332431ππ=-+--+443π1π2=-+--+=.(Ⅱ)12a a x >--,则()102aa x -->-, 即()()1202a x a x -+->-,即()()()122020a x a x x ⎧⎡⎤-+-->⎪⎣⎦⎨-≠⎪⎩, ①当10a -=,即1a =时,不等式为20x ->,解集为()2,+∞; ②当10a ->,即1a >时,原不等式与()2201a x x a ⎡-⎤⎛⎫-->⎪⎢⎥-⎝⎭⎣⎦同解, 当221a a -≥-,即01a ≤<时,与1a >矛盾,故此情况不存在; 当221a a -<-,即0a <或1a >时,即1a >时,不等式的解集为()2,2,1a a -⎛⎫-∞⋃+∞ ⎪-⎝⎭; ③当10a -<,即1a <时,原不等式与()2201a x x a ⎡-⎤⎛⎫-->⎪⎢⎥-⎝⎭⎣⎦同解, 当221a a ->-,即01a <<时,不等式的解集为22,1a a -⎛⎫⎪-⎝⎭; 当221a a -=-,即0a =时,不等式无解,即解集为∅; 当221a a -<-,即0a <或1a >时,即0a <时,不等式的解集为2,21a a -⎛⎫⎪-⎝⎭; 所以,综上所述: 当1a >时,解集为()2,2,1a a -⎛⎫-∞⋃+∞ ⎪-⎝⎭, 当1a =时,解集为()2,+∞,当01a <<时解集为22,1a a -⎛⎫⎪-⎝⎭,当0a =时,解集为∅, 当0a <时,解集为2,21a a -⎛⎫⎪-⎝⎭. 【点睛】本题考查利用指数幂的运算性质进行化简求值,考查含参数的分式不等式的解法和一元二次不等式的解法,考查分类讨论思想和计算能力. 25.(1)答案见解析;(2)19. 【分析】(1)讨论2b -<和2b -≥两种情况根据二次函数性质求解;(2)讨论11a ≤,113a<<和13a ≥三种情况结合二次函数的单调性求解.【详解】(1)1a =时,2()21f x x bx =++,对称轴为x b =-,二次函数()f x 的图象开口向上,当2b -<,即2b >-时,max ()(3)106f x f b ==+; 当2b -≥,即2b ≤-时,max ()(1)22f x f b ==+.(2)2()21f x ax x =-+,对称轴为1x a=,二次函数()f x 的图象开口向上, 当11a≤,即1a ≥时,()f x 在[]1,3单调递增,()()min 114f x f a ==-=-,解得3a =-,不符合;当113a <<,即113a <<时,2min 112()14f x f a a a a ⎛⎫⎛⎫==⋅-+=- ⎪ ⎪⎝⎭⎝⎭,解得15a =,不符合;当13a ≥,即103a <≤时,()f x 在[]1,3单调递减,()()min 3954f x f a ==-=-,解得19a =,符合,综上,19a =.【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路; (1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b+的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解. 26.(1) a =2;(2) a =2 【详解】解:(1)由题意得B ={x|x≥3或x≤1}, 由A∩B =∅,A ∪B =R ,可知A =∁R B =(1,3) ∴⇒a =2-(2)∵B ={x|x≥3或x≤1},∴:x ∈{x|1<x <3}. ∵是p 的必要条件.即p ⇒,∴A ⊆∁R B =(1,3)∴⇒2≤a≤2⇒a=2.本试题主要考查了命题的真值,以及集合的运算的综合运用,以及二次不等式的求解问题.。

【浙教版】高中数学必修一期末模拟试题(及答案)

【浙教版】高中数学必修一期末模拟试题(及答案)

一、选择题1.关于x 的方程2||10x a x ++=有4个不同的解,则实数a 的取值范围是( ) A .()(),22,-∞-+∞B .(],2-∞-C .(),2-∞-D .()2,+∞2.若函数2()f x x x a =--有四个零点,则关于x 的方程210ax x ++=的实根个数为( ) A .0B .1C .2D .不确定3.若关于x 的方程12xa a -= (a >0,a ≠1)有两个不等实根,则a 的取值范围是( ) A .(0,1)∪(1,+∞) B .(0,1) C .(1,+∞)D .1(0,)24.已知函数()()2log 2xf x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( ) A .{}|0m m =B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m =5.已知1311531log ,log ,363a b c π-===,则,,a b c 的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .b c a <<6.已知函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,则52f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .12-B .-1C .-5D .127.高斯函数属于初等函数,以大数学家约翰·卡尔·弗里德里希·高斯的名字命名,其图形在形状上像一个倒悬着的钟,高斯函数应用范围很广,在自然科学、社会科学、数学以及工程学等领域都能看到它的身影,设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.14-=-,[]4.84=.则函数21()122x x f x ⎡⎤=-⎢⎥+⎣⎦的值域为( )A .{}0,1B .{}1,1-C .{}1,0-D .{}1,0,1-8.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( ) A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确9.已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是( )A .()2,+∞B .[)(]2,00,2-C .(](),22,-∞-+∞ D .()()2,00,2-10.已知集合{}2|230A x x x =--<,集合{}1|21x B x +=>,则C B A =( )A .[3,)+∞B .(3,)+∞C .(,1][3,)-∞-⋃+∞D .(,1)(3,)-∞-+∞11.已知集合2{|120}A x x x =--≤, {|211}B x m x m =-<<+.且A B B =,则实数m 的取值范围为 ( ) A .[-1,2)B .[-1,3]C .[-2,+∞)D .[-1,+∞)12.已知集合22{|,N ,N}A t t m n m n = =+ ∈ ∈,且x A ∈,y A ,则下列结论中正确的是( ) A .x y A +∈ B .x y A -∈ C .xy A ∈D .xA y∈ 二、填空题13.已知()()()23f x m x m x m =-++,()22xg x =-,若满足x R ∀∈,()0f x <和()0g x <至少有一个成立,则m 的取值范围是______.14.若函数222,0(),0x x x x f x e a x +⎧->⎪=⎨-≤⎪⎩有3个零点,则实数a 的取值范围是___15.已知正实数a 满足8(9)a a a a =,则log 3a =____________.16.函数y =x 2与函数y =x ln x 在区间(0,+∞)上增长较快的一个是________ . 17.函数()()02f x x =-的定义域为______.18.若函数2()f x x k =+,若存在区间[,](,0]a b ⊆-∞,使得当[,]x a b ∈时,()f x 的取值范围恰为[,]a b ,则实数k 的取值范围是________.19.已知集合{}10,A x ax x R =+=∈,集合{}2280B x x x =--=,若A B ⊆,则a 所有可能取值构成的集合为______________20.已知集合2{1,9,},{1,}A x B x ==,若A B A ⋃=,则x 的值为_________.三、解答题21.某市近郊有一块大约400m 400m ⨯的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S 平方米.(1)求S 关于x 的函数关系式,并写出定义域; (2)当x 为何值时S 取得最大值,并求最大值,22.某制造商为拓展业务,引进了一种生产体育器材的新型设备.通过市场分析发现,每月需投入固定成本3000元,生产x 台需另投入成本C (x )元,且210400040()100001004980040100x x x C x x x x ⎧+<<⎪=⎨+-≤≤⎪⎩,,,,若每台售价1000元,且每月生产的体育器材月内能全部售完.(1)求制造商所获月利润L (x )(元)关于月产量x (台)的函数关系式;(2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润. 23.已知函数()log (31)a f x x =+,()log (13)a g x x =-(0a >且1)a ≠.(1)求()()()F x f x g x =-的定义域; (2)判断函数()F x 的奇偶性;(3)若()()0f x g x ->,求x 的取值范围. 24.已知函数()22x x f x k -=+. (1)若()f x 为偶函数,求实数k 的值;(2)若()4f x 在2[log x m ∈,2log (2)](m m +为大于0的常数)上恒成立,求实数k 的最小值.25.已知函数22()3mx f x x n+=+是奇函数,且()523f =(1)求实数m 和n 的值;(2)利用“函数单调性的定义”判断()f x 在区间[]2,1--上的单调性,并求()f x 在该区间上的最值.26.在①A ∩B =A ,②A ∩(R B )=A ,③A ∩B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{|123}A x a x a =-<<+,{}2|280B x x x =--≤. (1)当2a =时,求A ∪B ;(2)若______,求实数a 的取值范围.注:如果选择多个条件分别解答按第一个解答计分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由2||10x a x ++=可得1a x x =--,转化为y a =与()1g x x x=--的图象有4个不同的交点,作出()1g x x x=--,数形结合即可求解. 【详解】由2||10x a x ++=可得22111||||x x a x x x x----===--, 令()1g x x x=--, 若关于x 的方程2||10x a x ++=有4个不同的解, 则y a =与()1g x x x=--的图象有4个不同的交点, ()1g x x x=--是偶函数, 当0x <时()()()111x x x x x x g x --=---=+-=, ()1g x x x=+在(),1-∞-单调递增,在()1,0-单调递减, 所以()1g x x x=+的图象如图所示: 当1x =-时()max 1121g x =-+=--,若y a =与()1g x x x=--的图象有4个不同的交点, 由图知2a <-, 故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.C解析:C 【分析】由()0f x =可得出2x x a =-,将问题转化为曲线2yx 与曲线y x a =-有4个交点,数形结合可求得实数a 的取值范围,进而结合判别式可判断出方程210ax x ++=的实数根个数. 【详解】由()0f x =可得出2x x a =-,作出函数2yx 与函数y x a =-的图象如下图所示:,,x a x a y x a x a x a-≥⎧=-=⎨-+<⎩,若使得函数()2f x x x a =--有4个零点,则直线y x a =-与y x a =-+均与函数2y x 的图象有两个交点, 联立2y x a y x =-⎧⎨=⎩可得20x x a -+=,1140a ∆=->,解得14a <, 联立2y x a y x =-+⎧⎨=⎩可得20x x a +-=,2140a ∆=+>,解得14a >-, 当0a =时,则()()21f x x x xx =-=-,令()0f x =,可得0x =或1x =±,此时,函数()y f x =只有3个零点,不合乎题意. 综上所述,实数a 的取值范围是11,00,44⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭. 对于二次方程210ax x ++=,140a ∆=->, 因此,关于x 的二次方程210ax x ++=有两个实根. 故选:C. 【点睛】方法点睛:本题考查根据方程实数根的个数求参数的取值范围,一般可采用1.直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,此时需要根据零点个数合理寻找“临界”情况,特别注意边界值的取舍.3.D解析:D 【分析】由题意转化条件为函数y =1xa -(a >0,a ≠1)的图象与直线y =2a 有两个不同的交点,按照a >1、0<a <1分类,数形结合即可得解. 【详解】根据题意,函数y =1xa -(a >0,a ≠1)的图象与直线y =2a 有两个不同的交点,a >1时,如图(1)所示;0<a <1时,如图(2)所示.由图象知,0<2a <1,所以10,2a ⎛⎫∈ ⎪⎝⎭. 故选:D. 【点睛】本题考查了指数函数图象及函数图象变换的应用,考查了函数与方程的综合应用及数形结合思想、分类讨论思想,属于中档题.4.A解析:A 【分析】若定义域为实数集R ,则20x m +>对于x ∈R 恒成立,可得0m ≥,若值域为实数集R ,令2x t m =+,则2log y t = 此时需满足2x t m =+的值域包括()0,∞+,可得0m ≤,再求交集即可. 【详解】若()()2log 2xf x m =+定义域为实数集R ,则20x m +>对于x ∈R 恒成立,即2x m >-对于x ∈R 恒成立, 因为20x >,所以20x -<,所以0m ≥, 令2x t m =+,则2log y t =若()()2log 2xf x m =+值域为实数集R ,则2x t m =+的值域包括()0,∞+, 因为t m >,所以0m ≤, 所以0m =, 故选:A 【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.5.D解析:D 【分析】根据指数函数和对数函数性质,借助0和1进行比较. 【详解】由对数函数性质知151log 16>,13log 03π<,由指数函数性质知13031-<<,∴b c a <<. 故选:D . 【点睛】方法点睛:本题考查指数式、对数式的大小比较,比较指数式大小时,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小.6.A解析:A 【分析】根据分段函数解析式,依次计算255log 122f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,23log 2f ⎛⎫ ⎪⎝⎭,即可得选项.【详解】因为函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,所以2253log log 2122f ⎛⎫=<= ⎪⎝⎭,23log 2531222222f f ⎡⎤⎛⎫∴=-=-=- ⎪⎢⎥⎝⎭⎣⎦.故选:A. 【点睛】本题考查根据分段函数求解函数值,关键在于根据解析式分段求解,由内到外,准确认清自变量的所在的范围和适用的解析式.7.C解析:C 【分析】先求出函数()21122x x f x =-+的值域,再根据题干中要求即可得出()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域. 【详解】()21121111=122122212x x x x xf x +-=--=-+++, ()121,x +∈+∞,()10,112x∴∈+, ()11,012x∴-∈-+, 1111,21222x ⎛⎫∴-∈- ⎪+⎝⎭, 即函数()21122x xf x =-+的值域为11,22⎛⎫- ⎪⎝⎭, 由高斯函数定义可知:函数()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为{}1,0- 故选:C. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.8.D解析:D 【分析】可举出反例判断①错误;根据奇偶性的性质可判断②正确,结合选项可得答案. 【详解】①错误,可举反例:21()31xx f x x x ⎧=⎨-+>⎩, 230()30121x x g x x x x x +⎧⎪=-+<⎨⎪>⎩,0()20x x h x x x -⎧=⎨>⎩,均不是增函数;但()()f x g x +、()()f x h x +、()()g x h x +均为增函数; 故①错误; ②()()f x g x +,()()f x h x +,()()g x h x +均是奇函数;()()()()[()()]2()f x g x f x h x g x h x f x ∴+++-+=为奇函数;()f x ∴为奇函数;同理,()g x ,()h x 均是奇函数; 故②正确. 故选:D . 【点睛】本题考查增函数的定义,一次函数和分段函数的单调性,举反例说明命题错误的方法,以及奇函数的定义与性质,知道()f x 和()g x 均是奇函数时,()()f x g x ±也是奇函数.9.D解析:D 【分析】按0a >和0a <分类解不等式即可得. 【详解】[()()]0a f a f a -->,若0a >,则()()0f a f a -->,即1[2()1]0a a +--⨯-->,解得2a <,所以02a <<,若0a <,则()()0f a f a --<,即21(1)0a a ----+<,解得2a >-,所以20a -<<,综上,不等式的解为(2,0)(0,2)-.故选:D . 【点睛】本题考查解不等式,解题方法是分类讨论.掌握分类讨论的思想方法是解题关键.10.A解析:A 【分析】首先解得集合A ,B ,再根据补集的定义求解即可. 【详解】 解:{}2|230{|13}A x x x x x =--<=-<<,{}1|21{|1}x B x x x +=>=>-,{}C |3[3,)B A x x ∴=≥=+∞,故选A .【点睛】本题考查一元二次不等式的解法,指数不等式的解法以及补集的运算,属于基础题.11.D解析:D 【分析】 先求出集合A ,由A B B =,即B A ⊆,再分B φ=和B φ≠两种情况进行求解.【详解】由2120x x --≤,得34x -≤≤. 即[3,4]A =-. 由AB B =,即B A ⊆.当B φ=时,满足条件,则211m m -≥+解得2m ≥.当B φ≠时,要使得B A ⊆,则12121314m m m m +>-⎧⎪-≥-⎨⎪+≤⎩.解得:12m -≤<.综上满足条件的m 的范围是:1m ≥-. 故选:D. 【点睛】本题主要考查集合的包含关系的判断及应用,以及集合关系中的参数范围问题,考查分类讨论思想,属于中档题.12.C解析:C 【分析】 设22x m n =+,22N,N N,,,N n b b ya ma ,再利用22()()xy ma nb mb na =++-,可得解.【详解】 由x A ∈,yA ,设22x m n =+,22N,N N,,,N n b b y a m a ,所以22222222222222()()()()xy m n a b m a m b n a n b ma nb mb na =++=+++=++-, 且N,N ma nb mb na +-∈∈, 所以xy A ∈, 故选:C. 【点睛】关键点点睛,本题的解题关键是2222222222()()m a m b n a n b ma nb mb na +++=++-,另外本题可以通过列举法得到集合的一些元素,进而排除选项可得解.二、填空题13.【分析】先判断函数的取值范围然后根据和至少有一个成立则可求得的取值范围【详解】解:当时又或在时恒成立即在时恒成立则二次函数图象开口只能向下且与轴交点都在的左侧即解得实数的取值范围是:故答案为:【点睛 解析:()4,0-【分析】先判断函数()g x 的取值范围,然后根据()0f x <和()0<g x 至少有一个成立.则可求得m 的取值范围.【详解】 解:()22x g x =-,当1x 时,()0g x ,又x R ∀∈,()0f x <或()0<g x ,()(2)(3)0f x m x m x m ∴=-++<在1x 时恒成立,即(2)(3)0m x m x m -++<在1x 时恒成立,则二次函数(2)(3)y m x m x m =-++图象开口只能向下,且与x 轴交点都在(1,0)的左侧,∴03121m m m <⎧⎪--<⎨⎪<⎩,即0412m m m ⎧⎪<⎪>-⎨⎪⎪<⎩,解得40m -<<, ∴实数m 的取值范围是:(4,0)-.故答案为:(4,0)-. 【点睛】利用指数函数和二次函数的图象和性质,根据条件确定()(2)(3)0f x m x m x m =-++<在1x 时恒成立是解决本题的关键,综合性较强,难度较大.14.【分析】结合与的图象判断出当时的零点个数由此判断出当时的零点个数画出时的图象由此求得的取值范围【详解】画出与的图象如下图所示由图可知当时与的图象有个交点也即的图象有个零点所以当时有个零点当时画出的图解析:{}()21,e ⋃+∞【分析】 结合2xy =与2yx 的图象,判断出当0x >时,()f x 的零点个数.由此判断出当0x ≤时,()f x 的零点个数.画出0x ≤时2x y e +=的图象,由此求得a 的取值范围.【详解】 画出2xy =与2yx 的图象如下图所示,由图可知,当0x >时,2x y =与2y x 的图象有2个交点,也即()f x 的图象有2个零点. 所以当0x ≤时,()f x 有1个零点.当0x ≤时,画出()20x y ex +=≤的图象如下图所示,由图可知,要使()20x y e x +=≤与y a =只有1个交点,则需1a =或2a e >.所以a 的取值范围是{}()21,e ⋃+∞.故答案为:{}()21,e ⋃+∞【点睛】研究分段函数零点问题,可结合函数图象,将零点问题转化为函数交点个数问来研究.15.【分析】利用已知式两边同时取以e 为底的对数化简计算再利用换底公式代入计算即可【详解】正实数a 满足两边取对数得即故解得故故答案为:【点睛】本题解题关键是对已知指数式左右两边同时取以e 为底的对数化简计算 解析:716-【分析】利用已知式两边同时取以e 为底的对数,化简计算ln a ,再利用换底公式ln 3log 3ln a a=代入计算即可. 【详解】正实数a 满足8(9)aaa a =,两边取对数得8ln ln(9)aaa a =,即ln 8ln(9)a a a a =,故()ln 8ln9ln a a =+,解得16ln ln 37a =-,故ln 3ln 37log 316ln 16ln 37a a ===--.故答案为:716-. 【点睛】本题解题关键是对已知指数式左右两边同时取以e 为底的对数,化简计算得到ln a 的值,再结合换底公式即突破难点.16.【解析】由于对数函数y=lnx 在区间(0+∞)上的增长速度慢于一次函数y=x 所以函数y =x2比函数y =xlnx 在区间(0+∞)上增长较快填 解析:2yx【解析】由于对数函数y=lnx 在区间(0,+∞)上的增长速度慢于一次函数y=x ,所以函数y =x 2比函数y =x ln x 在区间(0,+∞)上增长较快,填2y x =.17.且【分析】由中根式内部的代数式大于等于00指数幂的底数不为0联立不等式组求解【详解】由解得且x≠2∴函数的定义域是】且即答案为】且【点睛】本题考查函数的定义域及其求法是基础题解析:{|1x x ≥-且}2x ≠ 【分析】由中根式内部的代数式大于等于0,0指数幂的底数不为0,联立不等式组求解. 【详解】由10 20x x +≥⎧⎨-≠⎩,解得1x ≥-且x≠2.∴函数()()02f x x =-的定义域是】{|1x x ≥-且}2x ≠.即答案为】{|1x x ≥-且}2x ≠ 【点睛】本题考查函数的定义域及其求法,是基础题.18.【分析】根据二次函数的单调性得出是上的减函数从而有整理得即关于的方程在区间内有实数解记由二次函数的单调性和零点存在定理建立不等式组可求得范围【详解】∵函数是上的减函数∴当时即两式相减得即代入得由且得解析:31,4⎡⎫--⎪⎢⎣⎭【分析】根据二次函数的单调性得出2()f x x k =+是(,0]-∞上的减函数,从而有()()f a bf b a =⎧⎨=⎩,整理得22a k b b k a⎧+=⎨+=⎩,即关于a 的方程210a a k +++=,在区间11,2⎡⎫--⎪⎢⎣⎭内有实数解,记2()1h a a a k =+++,由二次函数的单调性和零点存在定理建立不等式组,可求得范围.【详解】∵函数2()f x x k =+是(,0]-∞上的减函数,∴当[,]x a b ∈时,()()f a bf b a=⎧⎨=⎩,即22a k bb k a ⎧+=⎨+=⎩, 两式相减得22a b b a -=-,即(1)b a =-+,代入2a k b +=得210a a k +++=, 由0a b <≤,且(1)b a =-+得112a -≤<-, 故关于a 的方程210a a k +++=,在区间11,2⎡⎫--⎪⎢⎣⎭内有实数解,记2()1h a a a k =+++,所以函数()h a 在11,2⎡⎫--⎪⎢⎣⎭上单调递减,则()10102h h ⎧-≥⎪⎨⎛⎫-< ⎪⎪⎝⎭⎩,即()()221110111022k k ⎧-+-++≥⎪⎨⎛⎫⎛⎫-+-++<⎪ ⎪ ⎪⎝⎭⎝⎭⎩,解得31,4k ⎡⎫∈--⎪⎢⎣⎭, 故答案为:31,4⎡⎫--⎪⎢⎣⎭.【点睛】关键点点睛:在解决二次函数的值域问题,关键在于得出二次函数的对称轴与区间的关系,也即是判断出二次函数在区间上的单调性.19.【分析】先化简集合利用分类讨论和即可求出构成的集合【详解】由可得:即:解得或故:由可得:当时方程无实数解此时满足当时方程的实数解为故:由可得:或解得或的所有取值构成的集合为:故答案为:【点睛】本题主解析:11{0,,}24-【分析】先化简集合B ,利用A B ⊆,分类讨论=0a 和0a ≠,即可求出构成a 的集合. 【详解】由{}2280B x x x =--=可得:2280x x --= 即:()()240x x +-= 解得2x =-或4x = 故:{}2,4B =-{}10,A x ax x R =+=∈ 由10ax += 可得:1ax =-当0a =时,方程1ax =-无实数解,此时A =∅,满足A B ⊆ 当0a ≠时,方程1ax =-的实数解为1x a =-,故:1{}A a=- 由A B ⊆可得:12a -=-或14a -= 解得12a =或14a =-a 的所有取值构成的集合为:11{0,,}24-.故答案为:11{0,,}24-. 【点睛】本题主要考查了集合间的基本关系以及一元二次方程的解法,要注意集合A 是集合B 的子集时,集合A 有可能是空集.20.或0【分析】由题意利用集合的包含关系和集合运算的互异性即可确定x 的值【详解】由可知B ⊆A 则或解得:或或当时满足题意;当时满足题意;当时满足题意;当时不满足集合元素的互异性舍去综上可得:x 的值为或0故解析:3,3-或0 【分析】由题意利用集合的包含关系和集合运算的互异性即可确定x 的值. 【详解】由A B A ⋃=可知B ⊆A ,则29x =或2x x =, 解得:3x =±或0x =或1x =,当3x =时,{}{}1,9,3,1,9A B ==,满足题意; 当3x =-时,{}{}1,9,3,1,9A B =-=,满足题意; 当0x =时,{}{}1,9,0,1,0A B ==,满足题意; 当1x =时,不满足集合元素的互异性,舍去. 综上可得:x 的值为3,3-或0. 故答案为:3,3-或0. 【点睛】本题主要考查并集的定义,集合中元素的互异性,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)1500030306S x x---,定义域为(4,400];(2)50x =,max 2430S =. 【分析】(1)用x 求出矩形的长,然后减去道路宽后计算塑胶运动场地面积S ,注意中间三个小矩形存在,同时400可得定义域; (2)由基本不等式求得最值. 【详解】 (1)由题意30003000(4)(6)(6)(6)22x x x x S ----=+250030306x x ⎛⎫=-+ ⎪⎝⎭. 4060300060x x x⎧⎪->⎪->⎨⎪⎪->⎩,又400x ≤,所以6400x <≤. 综上1500030306S x x---,定义域为(4,400]. (2)由(1)250030306()303062430S x x=-+≤-⨯=,当且仅当2500x x=,即50x =时,等号成立. 所以50x =,max 2430S =. 【点睛】关键点点睛:本题考查函数的应用,解题关键是列出函数解析式,在定义域时,要注意变量的实际意义,本题中一是小矩形存在,二是场地长、宽不超过400米,这样才能得定义域.22.(1)2106003000040()100006800(4)40100.x x x L x x x x ⎧-+-<<⎪=⎨-+≤≤⎪⎩,,,;(2)月产量为50台时,所获的月利润最大,最大月利润为6400元. 【分析】(1)分040x <<和40100x ≤≤时两种情况,利用利润=销售额-成本列式即可; (2)利用二次函数求040x <<时的最大值,利用基本不等式求40100x ≤≤时的最大值,取最大即可. 【详解】(1)当0<x <40时,L (x )=1000x -10x 2-400x -3000=-10x 2+600x -3000; 当40≤x ≤100时,L (x )=100001000100498003000x x x--+-10000=6800(4)x x-+. 所以2106003000040()100006800(4)40100.x x x L x x x x ⎧-+-<<⎪=⎨-+≤≤⎪⎩,,, (2)①当0<x <40时,L (x )=-10(x -30)2+6000, 所以当x =30时,L (x )max =L (30)=6000. ②当40≤x ≤100时,10000()6800(4)L x x x =-+68006400-=≤, 当且仅当100004x x=,即x =50时取等号. 因为6400>6000,所以x =50时,L (x )最大.答:月产量为50台时,所获的月利润最大,最大月利润为6400元. 【点睛】本题主要考查了分段函数的实际应用,涉及二次函数求最值和基本不等式求最值,属于基础题.23.(1)11,33⎛⎫- ⎪⎝⎭;(2)奇函数;(3)分类讨论,答案见解析.【分析】(1)根据对数的真数大于零列不等式组,解不等式组求得()F x 的定义域. (2)通过()()F x F x -=-证得()F x 是奇函数.(3)对a 进行分类讨论,结合对数型函数的单调性求得x 的取值范围. 【详解】(1)()log (31)log (13)a a F x x x =+--,310130x x +>⎧⎨->⎩,解得:1133x -<<,所以()F x 的定义域为11,33⎛⎫- ⎪⎝⎭.(2)由(1)可知()F x 的定义域关于原点对称,又()log (13)log (31)()a a F x x x F x -=--+=-,所以()F x 是奇函数,. (3)()()0f x g x ->,即log (31)log (13)a a x x +>-,当1a >时,3101303113x x x x+>⎧⎪->⎨⎪+>-⎩,解得:103x <<,当01a <<时,3101303113x x x x+>⎧⎪->⎨⎪+<-⎩,解得:103x -<<.【点睛】判断函数的奇偶性,首先要判断函数的定义域是否关于原点对称性.24.(1)1k =;(2)当02m <<时,k 的最小值为4,当2m 时,k 的最小值为24m m -+. 【分析】(1)根据函数是偶函数,利用偶函数的定义求解. (2)将()4f x ,转化为2(2)42x x k-+⨯,令2[x t m =∈,2]m +,构造函数2()4g t t t =-+,利用二次函数的性质求得其最大值即可..【详解】 (1)()f x 为偶函数,()()f x f x ∴=-, 2?22?2x x x x k k --∴+=+,即(1)(22)0xxk ---=,对任意的x 恒成立,1k ∴=.(2)由()4f x ,可得2?24x x k -+,即2(2)42x x k -+⨯,令2[xt m =∈,2]m +,2()4g t t t ∴=-+,当02m <<时,对称轴2[t m =∈,2]m +, 则()max g t g =(2)4244=-+⨯=, 当2m 时,对称轴2t m =,则2()()4max g t g m m m ==-+,故当02m <<时,k 的最小值为4,当2m 时,k 的最小值为24m m -+. 【点睛】本题主要考查函数的奇偶性的和不等式恒成立的问题,还考查了分类讨论的思想和运算求解的能力,属于中档题.25.(1)2m =;0n =;(2)单调递增;()max 43f x =-,()min 53f x =-.【分析】(1)根据函数的奇偶性的关系建立方程即可求实数m 和n 的值;(2)利用定义证明函数的单调性,即取值,作差,变形,定号,下结论,再利用单调性即可求最值. 【详解】(1)∵()f x 是奇函数,∴()()f x f x -=-,∴222222333mx mx mx x n x n x n+++=-=-++--. 所以33x n x n -+=--,解得:0n =,又()523f =, ∴425(2)63m f +==,解得2m =. ∴实数m 和n 的值分别是2和0.(2)由(1)知22222()333x x f x x x+==+. 任取[]12,2,1x x ∈--,且12x x <,则()()()()1212121212121212133x x f x f x x x x x x x x x ⎛⎫--=--=- ⎪⎝⎭, ∵1221x x -≤<≤-,∴120x x -<,121x x >,1210x x ->,∴()()120f x f x -<,即()()12f x f x <,∴函数()f x 在区间[]2,1--上单调递增,∴()()max 413f x f =-=-,()()min 523f x f =-=-. 【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <;(2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论.即取值---作差----变形----定号----下结论.26.(1)A ∪B ={}|27x x -≤<;(2)答案见解析.【分析】(1)先化简集合,A B ,再求A ∪B ;(2)对集合A 分空集和非空集两种情况讨论,列不等式组即得解.【详解】(1)2a =时,集合{|17}A x x =<<,{|24}B x x =-≤≤,A ∪B ={}|27x x -≤<(2)若选择①A ∩B =A ,则A B ⊆,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足12234a a -≥-⎧⎨+≤⎩,解得:112a -≤≤;综上知,实数a 的取值范围是(-∞,-4]∪112⎡⎤-⎢⎥⎣⎦,.若选择②A ∩(R B )=A ,则A 是R B 的子集,R B =(-∞,-2)∪(4,+∞),当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,4232a a >-⎧⎨+≤-⎩或414a a >-⎧⎨-≥⎩解得:-4<a ≤52-或a ≥5, 综合得:a 的取值范围是:(-∞,5 2-]∪[5,+ ∞) 若选择③A ∩B =∅,则当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩或414a a >-⎧⎨-≥⎩解得:-4<a ≤52-或a ≥5 综上知,实数a 的取值范围是:(-∞,5 2-]∪[5,+∞). 【点睛】易错点点睛:本题容易忽略集合A 是空集的情况,导致出错.空集是任何集合的子集,是任何非空集合的真子集.解答集合的关系和运算问题时,不要忽略了空集这种情况.。

【浙教版】高中数学必修一期末模拟试题带答案

【浙教版】高中数学必修一期末模拟试题带答案

一、选择题1.蔬菜价格随着季节的变化而有所变化.根据对农贸市场蔬菜价格的调查得知,购买2千克甲种蔬菜与1千克乙种蔬菜所需费用之和大于8元,而购买4千克甲种蔬菜与5千克乙种蔬菜所需费用之和小于22元.设购买2千克甲种蔬菜所需费用为A 元,购买3千克乙种蔬菜所需费用为B 元,则( ). A .A B < B .A B =C .A B >D .A ,B 大小不确定2.已知()11xf x e =-+,若函数2()[()](2)()2g x f x a f x a =+--有三个零点,则实数a 的取值范围是( ) A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)3.已知()f x 是奇函数且是R 上的单调函数,若函数()()221y f x f x λ=++-只有一个零点,则实数λ的值是( ) A .14B .18C .78-D .38-4.2017年5月,世界排名第一的围棋选手柯洁0:3败给了人工智能“阿法狗”.为什么人类的顶尖智慧战胜不了电脑呢?这是因为围棋本身也是一个数学游戏,而且复杂度非常高.围棋棋盘横竖各有19条线,共有1919361⨯=个落子点.每个落子点都有落白子、落黑子和空白三种可能,因此围棋空间复杂度的上限3613M ≈.科学家们研究发现,可观测宇宙中普通物质的原子总数8010N ≈.则下列各数中与MN最接近的是( )(参考数据:lg30.48≈) A .3310 B .5310C .7310D .93105.函数y =)A .(41)--,B .(41)-,C .(11)-,D .(11]-, 6.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .37.如图是二次函数2y ax bx c =++图象的一部分,图象过点()30A -,,对称轴为1x =-,给出下面四个结论:①24b ac >;②21a b -=;③0a b c -+=;④若0y >,则()3,1x ∈-.其中正确的是( ) A .①④B .②④C .①③D .①②③8.定义{},min ,,a a b a b b a b≤⎧=⎨>⎩,若函数{}2()min 33,|3|3f x x x x =-+--+,且()f x 在区间[,]m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[,]m n 长度的最大值为( ) A .1B .74C .114D .729.设0a >且1a ≠,函数221x x y a a =+-在区间[]1,1-上的最大值是14,则实数a 的值为( ) A .13或2 B .2或3C .12或2 D .13或3 10.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( ) A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞11.已知集合2{|120}A x x x =--≤, {|211}B x m x m =-<<+.且A B B =,则实数m 的取值范围为 ( ) A .[-1,2)B .[-1,3]C .[-2,+∞)D .[-1,+∞)12.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .511二、填空题13.212x x m -=+有实数根,则实数m 的取值范围是__________.14.对于函数sin ,[0,2]()1(2),(2,)2x x f x f x x π∈⎧⎪=⎨-∈+∞⎪⎩现有下列结论:①任取12[2,,)x x ∈+∞,都有()()121f x f x -≤;②函数()y f x =在[]4,5上先增后减 ③函数()()ln 1y f x x =--有3个零点:④若关于x 的方程()()0f x m m =<有且只有两个不同的实根1x ,2x ,则123x x += 其中,正确结论的序号为_______________(写出所有正确命题的序号) 15.已知函数()32log f x x =+,[]1,3x ∈,则函数()()221y f x f x =++的值域为____________. 16.72log 2338log2lg 5lg 47-+++=______.17.已知函数(3)5,1()2,1a x x f x a x x--≤⎧⎪=⎨->⎪⎩是R 上的增函数,则a 的取值范围是________.18.若函数2()f x x k =+,若存在区间[,](,0]a b ⊆-∞,使得当[,]x a b ∈时,()f x 的取值范围恰为[,]a b ,则实数k 的取值范围是________.19.已知非空集合{}|121A x m x m =+≤≤-,集合{}2|1030B x x x =+-≥,若A B =Φ,则实数m 的取值范围为__________20.函数()[]f x x =的函数值表示不超过x 的最大整数,例如:[ 3.5]4-=-,[2.1]2=.若{|[][2][3],01}A y y x x x x ==++≤≤,则A 中所有元素的和为_______.三、解答题21.已知函数2()29f x x ax =-+.(I)当0a ≤时,设()(2)x g x f =,证明:函数()g x 在R 上单调递增; (II)若[1,2]x ∀∈,(2)0x f ≤成立,求实数a 的取值范围; (III)若函数()f x 在(3,9)-有两个零点,求实数a 的取值范围.22.设a R ∈,函数()1x x e af x e +=+(为e 自然对数义底数)(Ⅰ)求a 的值,使得()f x 为奇函数. (Ⅱ)若关于x 的方程()22a f x +=在(],0-∞上有解,求a 的取值范围. 23.已知函数()22x x f x k -=+. (1)若()f x 为偶函数,求实数k 的值;(2)若()4f x 在2[log x m ∈,2log (2)](m m +为大于0的常数)上恒成立,求实数k 的最小值.24.已知函数1()log a f x a x ⎛⎫=-⎪⎝⎭, 其中实数0a >且1a ≠. (1)当3a =时,求不等式()0f x >的解集;(2)若()f x 在区间[1,3]上单调递增,求a 的取值范围;25.已知函数()()20,,f x ax bx c a b c R =++>∈满足1(0)()1f f a==.(1)求()f x 表达式及其单调区间(不出现b ,c );(2)设对任意[]12,1,3x x ∈,()()128f x f x -≤恒成立,求实数a 的取值范围. 26.已知集合{|314}A x x =-<+,{|213}B x m x m =-<+. (1)当1m =时,求AB ;(2)若A B A ⋃=,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】设甲、乙两种蔬菜的价格分别为x ,y 元, 则284522x y x y +>⎧⎨+<⎩,2A x =,3B y =,两式分别乘以22,8, 整理得12180x y ->, 即230x y ->, 所以A B >. 故选C .2.A解析:A 【分析】利用十字相乘法解()0g x =,得()2f x =或()f x a =-,利用函数与方程之间的关系转化为两个图象的交点个数问题进行求解即可. 【详解】解:若2()[()](2)()2[()2][()]g x f x a f x a f x f x a =+--=-+有三个零点, 即()[()2][()]0g x f x f x a =-+=有三个根, 即()2f x =或()f x a =-.当()2f x =时,由|1|12x e -+=,即|1|1x e -=,则11x e -=或11x e -=-, 即2x e =或0x e =,则2x ln =或x 无解,此时方程只有一个解, 则()f x a =-.有两个不同的根, 作出()f x 的图象如图:由图象知,则12a <-<,即21a -<<-, 即实数a 的取值范围是(2,1)--, 故选:A .【点睛】本题主要考查函数零点个数的应用,利用数形结合转化为两个函数图象的交点个数问题是解决本题的关键.3.C解析:C 【分析】令()()2210y f x f x λ=++-=,结合()f x 为奇函数进行化简,利用一元二次方程判别式列方程,解方程求得λ的值. 【详解】令()()2210y f x f x λ=++-=,则()()()221f x f x f x λλ+=--=-,因为()f x 是R 上的单调函数,所以221x x λ+=-,即2210x x λ++=-.依题意可知2210x x λ++=-有且只有一个实数根,所以()1810λ∆=-+=,解得78λ=-. 故选:C 【点睛】本小题主要考查函数的奇偶性、单调性、零点,属于中档题.4.D解析:D 【分析】设36180310M x N ==,两边取对数,结合对数的运算性质进行整理,即可求出M N . 【详解】解:设36180310M x N ==,两边取对数36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,故选:D . 【点睛】 关键点睛:本题考查了对数的运算,关键是结合方程的思想令36180310x =,两边取对数后进行化简整理.5.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<< 故选C6.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.7.A解析:A 【分析】由抛物线与x 轴有两个交点,可判定①正确;由对称轴方程为12bx a=-=-,可判定②不正确;由()10f ->,可判定③不正确;由根据函数的对称性和(3)0f -=,可判定④正确. 【详解】由函数2y ax bx c =++的图象,可得函数的图象开口向下,与x 轴有两个交点,所以0a <,240b ac ∆=->,所以①正确; 由对称轴方程为12bx a=-=-,可得2a b =,所以20a b -=,所以②不正确; 由()10f ->,可得0a b c -+>,所以③不正确; 由图象可得(3)0f -=,根据函数的对称性,可得()10f =,所以0y >,可得31x -<<,所以④正确. 故选:A. 【点睛】识别二次函数的图象应用学会“三看”:一看符号:看二次项系数的符号,它确定二次函数图象的开口方向; 二看对称轴:看对称轴和最值,它确定二次函数图象的具体位置;三看特殊点:看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点、函数图象的最高点或最低点等.8.B解析:B 【分析】根据定义作出函数()f x 的解析式和图象,根据函数值域,求出对应点的坐标,利用数形结合进行判断即可. 【详解】其中(1,1)A ,(3,3)B ,即()233,133313x x x f x x x x ⎧--=⎨-+⋅<<⎩或,当3()4f x =时,当3x 或1x 时,由33|3|4x --=,得9|3|4x -=,即34C x =或214G x =,当7()4f x =时,当13x <<时,由27334x x -+=,得52E x =,由图象知若()f x 在区间[m ,]n 上的值域为3[4,7]4,则区间[m ,]n 长度的最大值为537244E C x x -=-=,故选:B . 【点睛】利用数形结合思想作出函数的图象,求解的关键是对最小值函数定义的理解.9.D解析:D 【分析】本题首先可以令x t a =,将函数转化为()212y t =+-并判断出函数的单调性,然后分为01a <<、1a >两种情况进行讨论,根据最大值是14进行计算,即可得出结果. 【详解】令x t a =(0a >、1a ≠),则()222112y t t t =+-=+-, 因为0a >,所以0x t a =>,函数()212y t =+-是增函数, 当01a <<、[]1,1x ∈-时,1,t a a⎡⎤∈⎢⎥⎣⎦,此时2max11214y a ⎛⎫=+-= ⎪⎝⎭,解得13a =或15-(舍去);当1a >、[]1,1x ∈-时,1,t a a⎡⎤∈⎢⎥⎣⎦,此时()2max 1214y a =+-=,解得3a =或5-(舍去), 综上所述,实数a 的值为13或3, 故选:D. 【点睛】本题考查根据函数的最值求参数,能否通过换元法将函数转化为二次函数是解决本题的关键,考查二次函数单调性的判断和应用,考查分类讨论思想,考查计算能力,是中档题.10.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.11.D解析:D 【分析】 先求出集合A ,由A B B =,即B A ⊆,再分B φ=和B φ≠两种情况进行求解.【详解】由2120x x --≤,得34x -≤≤. 即[3,4]A =-. 由AB B =,即B A ⊆.当B φ=时,满足条件,则211m m -≥+解得2m ≥.当B φ≠时,要使得B A ⊆,则12121314m m m m +>-⎧⎪-≥-⎨⎪+≤⎩.解得:12m -≤<.综上满足条件的m 的范围是:1m ≥-. 故选:D. 【点睛】本题主要考查集合的包含关系的判断及应用,以及集合关系中的参数范围问题,考查分类讨论思想,属于中档题.12.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.二、填空题13.【分析】方程有实根等价于半圆和直线有交点数形结合可得实数的取值范围【详解】方程有实根故半圆和直线有交点半圆和直线在交点处取得最小值此时半圆和直线相切时的值最大因为所以;数形结合可得:;故答案为:【点解析:[-【分析】2x m =+有实根等价于半圆221(0)x y y +=≥和直线2y x m =+有交点,数形结合可得实数m 的取值范围. 【详解】212x x m -=+有实根,故半圆221(0)x y y +=≥和直线2y x m =+有交点,半圆221(0)x y y +=≥和直线2y x m =+在交点1,0A 处取得最小值,此时2m =-,半圆221(0)x y y +=≥和直线2y x m =+相切时m 的值最大,221521mm =⇒=±+因为0m >,所以5m =数形结合可得:52m -≤≤ 故答案为:[5-. 【点睛】方法点睛:本题主要考查函数的图象与性质以及数形结合思想的应用,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法;函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.14.①②③④【分析】当时函数的最大值为最小值为所以任取都有恒成立故①正确;函数先增后减故②正确;根据图象知函数有3个零点故③正确;根据图象知根据对称性知故④正确【详解】函数当时函数的最大值为最小值为所以解析:①②③④ 【分析】当[2,)x ∈+∞时,函数()f x 的最大值为12,最小值为12-,所以任取12[2,,)x x ∈+∞,都有()()121f x f x -≤恒成立,故①正确;()1sin 4f x x π=,函数先增后减,故②正确;根据图象知,函数有3个零点,故③正确;根据图象知112m -<<-,根据对称性知123x x +=,故④正确.【详解】函数()[]()()sin ,0,212,2,2x x f xf x x π⎧∈⎪=⎨-∈+∞⎪⎩,当[2,)x ∈+∞时,函数()f x 的最大值为12,最小值为12-,所以任取12[2,,)x x ∈+∞,都有()()121f x f x -≤恒成立,故①正确; 当[]4,5x ∈,[]40,1x -∈,故()()()1114sin 4sin 444f x f x x x ππ=-=-=,函数先增后减,故②正确;令()()ln 10y f x x =--=,即()()ln 1f x x =-,同②,计算得到()[](](]sin ,0,21sin ,2,421sin ,4,64x x f x x x x x πππ⎧⎪∈⎪⎪=∈⎨⎪⎪∈⎪⎩,画出函数图象,如图所示:根据图象知,函数有3个零点,故③正确;()()0f x m m =<有且只有两个不同的实根12,x x ,根据图象知112m -<<-,根据对称性知123x x +=,故④正确;故答案为:①②③④. 【点睛】方法点睛:函数零点问题的处理常用的方法有:(1)方程法:直接解方程得到函数的零点;(2)图像法:直接画出函数的图象得解;(3)方程+图像法:令()0f x =重新构造两个函数,数形结合分析得解.15.【分析】计算定义域为设代入化简得到计算值域得到答案【详解】函数的定义域满足:解得设故函数在上单调递增当时;当时故答案为:【点睛】本题考查了函数的值域忽略定义域是容易发生的错误解析:417,4⎡⎤⎢⎥⎣⎦【分析】计算定义域为⎡⎣,设()5,2,2f x t t ⎡⎤=∈⎢⎥⎣⎦,代入化简得到()212y t =+-,计算值域得到答案. 【详解】函数()()221y f x f x =++的定义域满足:21313x x ⎧≤≤⎨≤≤⎩,解得1x ≤≤设()5,2,2f x t t ⎡⎤=∈⎢⎥⎣⎦,故()()()2222122112y f x f x t t t =++=+-+=+-. 函数在52,2⎡⎤⎢⎥⎣⎦上单调递增,当2t =时,min 7y =;当52t =时,max 414y =. 故答案为:417,4⎡⎤⎢⎥⎣⎦. 【点睛】本题考查了函数的值域,忽略定义域是容易发生的错误.16.【分析】根据指数幂运算法则和对数运算法则化简可得【详解】故答案为:【点睛】此题考查指数对数的综合运算关键在于熟练掌握运算法则和相关公式准确化简求值解析:32【分析】根据指数幂运算法则和对数运算法则化简可得. 【详解】72log 2338log 2lg 5lg 47-+++()732log 232332log 32lg52lg 27=-++++34222=-+++32= 故答案为:32【点睛】此题考查指数对数的综合运算,关键在于熟练掌握运算法则和相关公式,准确化简求值.17.【分析】函数是增函数可得且即可求解【详解】因为函数为上的增函数所以当时递增即当时递增即且解得∴综上可知实数的取值范围是故答案为:【点睛】易错点睛:本题考查根据分段函数的单调性求参数范围需满足分段函数解析:(]0,2【分析】函数是增函数可得30a ->,0a >且2(3)151aa -⨯-≤-,即可求解. 【详解】因为函数()f x 为R 上的增函数,所以当1x ≤时,()f x 递增,即30a ->,当1x >时,()f x 递增,即0a >, 且2(3)151aa -⨯-≤-,解得2a ≤,∴02a <≤, 综上可知实数a 的取值范围是(]0,2. 故答案为:(]0,2. 【点睛】易错点睛:本题考查根据分段函数的单调性求参数范围,需满足分段函数每部分分别单调,还应注意在分段处的函数值大小问题,这是容易漏掉的地方.18.【分析】根据二次函数的单调性得出是上的减函数从而有整理得即关于的方程在区间内有实数解记由二次函数的单调性和零点存在定理建立不等式组可求得范围【详解】∵函数是上的减函数∴当时即两式相减得即代入得由且得解析:31,4⎡⎫--⎪⎢⎣⎭【分析】根据二次函数的单调性得出2()f x x k =+是(,0]-∞上的减函数,从而有()()f a bf b a =⎧⎨=⎩,整理得22a k b b k a⎧+=⎨+=⎩,即关于a 的方程210a a k +++=,在区间11,2⎡⎫--⎪⎢⎣⎭内有实数解,记2()1h a a a k =+++,由二次函数的单调性和零点存在定理建立不等式组,可求得范围.【详解】∵函数2()f x x k =+是(,0]-∞上的减函数,∴当[,]x a b ∈时,()()f a bf b a =⎧⎨=⎩,即22a k bb k a⎧+=⎨+=⎩, 两式相减得22a b b a -=-,即(1)b a =-+,代入2a k b +=得210a a k +++=, 由0a b <≤,且(1)b a =-+得112a -≤<-, 故关于a 的方程210a a k +++=,在区间11,2⎡⎫--⎪⎢⎣⎭内有实数解,记2()1h a a a k =+++,所以函数()h a 在11,2⎡⎫--⎪⎢⎣⎭上单调递减,则()10102h h ⎧-≥⎪⎨⎛⎫-< ⎪⎪⎝⎭⎩,即()()221110111022k k ⎧-+-++≥⎪⎨⎛⎫⎛⎫-+-++<⎪ ⎪ ⎪⎝⎭⎝⎭⎩,解得31,4k ⎡⎫∈--⎪⎢⎣⎭, 故答案为:31,4⎡⎫--⎪⎢⎣⎭. 【点睛】关键点点睛:在解决二次函数的值域问题,关键在于得出二次函数的对称轴与区间的关系,也即是判断出二次函数在区间上的单调性.19.或【分析】化简集合对集合是否为空集分类讨论若满足题意若根据条件确定集合的端点位置即可求解【详解】由得若满足题意;若可得或解得或;综上:或故答案为:或【点睛】本题考查集合间的运算不要遗漏空集情况属于中解析:4m >或2m < 【分析】化简集合B ,对集合A 是否为空集分类讨论,若A =∅满足题意,若A =∅,根据条件确定集合A 的端点位置,即可求解. 【详解】由21030x x +-≥得25,[2,5]x B -≤≤∴=-, 若,121,2A m m m =∅+>-<,满足题意;若,A A B ≠∅=∅,可得12115m m m +≤-⎧⎨+>⎩或121212m m m +≤-⎧⎨-<-⎩,解得4m >或m ∈∅;综上:4m >或2m <. 故答案为:4m >或2m < 【点睛】本题考查集合间的运算,不要遗漏空集情况,属于中档题.20.【分析】分5种情况讨论的范围计算函数值并求元素的和【详解】①当时;②当时;③当时;④时;⑤当时则中所有元素的和为故答案为12【点睛】本题考查新定义的题型需读懂题意并能理解应用分类讨论解决问题本题的难 解析:12【分析】 分103x ≤<,1132x ≤<,1223x ≤<,213x ≤<,1x =,5种情况讨论2,3x x 的范围,计算函数值,并求元素的和. 【详解】 ①当103x ≤<时, 220,3x ⎡⎫∈⎪⎢⎣⎭,[)30,1x ∈,∴ [][][]230x x x ===,[][][]230x x x ++= ;②当1132x ≤<时,22,13x ⎡⎫∈⎪⎢⎣⎭,331,2x ⎡⎫∈⎪⎢⎣⎭ , [][]20,x x ∴==[]31x =, [][][]231x x x ∴++=;③当1223x ≤<时,[)21,2x ∈ ,33,22x ⎡⎫∈⎪⎢⎣⎭[]0x ∴=,[]21x = ,[]31x = , [][][]232x x x ∴++=;④213x ≤<时,42,23x ⎡⎫∈⎪⎢⎣⎭,[)32,3x ∈ []0x ∴=,[]21x =,[]32x =, [][][]233x x x ∴++=;⑤当1x =时[]1x =,[]22x =,[]33x = ,[][][]236x x x ∴++= {}0,1,2,3,6A ∴=,则A 中所有元素的和为0123612++++=. 故答案为12 【点睛】本题考查新定义的题型,需读懂题意,并能理解,应用,分类讨论解决问题,本题的难点是分类较多,不要遗漏每种情况三、解答题21.(I)证明见解析 ;(II) 134a ≥;(III) 35a << . 【分析】(I)根据函数单调性定义法证明即可; (II) 设2(12)x t x =<<,则24t <<则 92t a t +≤,令9()h t t t=+,求()h t 最大值即可;(III)根据零点分布列出等价不等式求解即可. 【详解】(Ⅰ)()(2)4229x x xg x f a ==-⋅+,设21x x R >∈,221121()()4229(4229)x x x x g x g x a a -=-⋅+--⋅+2121442(22)x x x x a =---212121(22)(22)2(22)x x x x x x a =-+-- 2121(22)[(22)2]x x x x a =-+-因为函数2xy =在R 上单调递增, 所以2122x x >,所以21220x x ->,又21(22)0,0xxa +>≤,所以21(22)20xxa +->,2121(22)[(22)2]0x x x x a -+->,所以21()()g x g x >,所以函数()g x 在R 上单调递增.(Ⅱ)设2(12)xt x =<<,则24t <<,都有2290t at -+≤,92t a t +≤,令9()h t t t=+, 易证()h t 在(2,3)单调递减,在(3,4)单调递增,又1325(2)(4)24h h ==,,()h t 最大值为132, 13132,24a a ≥≥. (III)因为函数()f x 在(3,9)-有两个零点且对称轴为x a =,所以2394360(3)0(9)0a a f f -<<⎧⎪->⎪⎨->⎪⎪>⎩,解得35a <<. 【点睛】方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 22.(Ⅰ)1a =- (Ⅱ)2a > 【解析】试题分析:(Ⅰ)由奇函数得()00f =,得1a =-,进而检验()()f x f x -=-即可;(Ⅱ) 由条件得212x x e a a e ++=+,化简得()12xe a -=,易知0x =不成立,0x <时,21x a e =-,求()21x g x e =-的范围即可. 试题 (Ⅰ)由()1x x e af x e +=+为R 上的奇函数,得()00f =得1a =-.此时()11x x e f x e -=+所以()11x x e f x e ----=+ ()11xx e f x e -==-+,因此1a =-满足 (Ⅱ)由条件得212x x e a a e ++=+,化简得()()12*xe a -= ①当0x =时,此时()*不成立 ②当0x <时,21xa e =- 而()21xg x e =-,在(],0-∞单调递增 所以()221xg x e=>- 综上所述a 的取值范围2a >.点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法 (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.23.(1)1k =;(2)当02m <<时,k 的最小值为4,当2m 时,k 的最小值为24m m -+. 【分析】(1)根据函数是偶函数,利用偶函数的定义求解. (2)将()4f x ,转化为2(2)42x x k-+⨯,令2[x t m =∈,2]m +,构造函数2()4g t t t =-+,利用二次函数的性质求得其最大值即可..【详解】 (1)()f x 为偶函数,()()f x f x ∴=-,2?22?2x x x x k k --∴+=+,即(1)(22)0xxk ---=,对任意的x 恒成立,1k ∴=.(2)由()4f x ,可得2?24x x k -+,即2(2)42x x k -+⨯,令2[xt m =∈,2]m +,2()4g t t t ∴=-+,当02m <<时,对称轴2[t m =∈,2]m +, 则()max g t g =(2)4244=-+⨯=, 当2m 时,对称轴2t m =,则2()()4max g t g m m m ==-+,故当02m <<时,k 的最小值为4,当2m 时,k 的最小值为24m m -+. 【点睛】本题主要考查函数的奇偶性的和不等式恒成立的问题,还考查了分类讨论的思想和运算求解的能力,属于中档题.24.(1) 10,4⎛⎫⎪⎝⎭;(2) 103a <<【分析】(1)代入3a =,根据对数函数的单调性求解即可.(2)先根据区间[1,3]结合定义域可求得a 的大致范围,从而确定log a y x =的单调性,再根据复合函数的单调性确定a 的取值范围即可. 【详解】(1) 当3a =时, 31()log 3f x x ⎛⎫=-⎪⎝⎭,故()0f x >即31log 30x ⎛⎫-> ⎪⎝⎭,即131x ->,14x >,解得104x <<.故()0f x >解集为10,4⎛⎫⎪⎝⎭.(2)由定义域可知,10a x->,即1a x >在区间[1,3]上恒成立,故103a <<,所以log a y x =为减函数.又1y a x =-在区间[1,3]上为减函数,故1()log a f x a x ⎛⎫=- ⎪⎝⎭在区间[1,3]上为增函数.满足题意.故103a << 【点睛】本题主要考查了对数函数的不等式求解以及对数型复合函数的单调性求解参数的问题.属于中档题.25.(1)()21f x ax x =-+,减区间为1,2a ⎛-∞⎫ ⎪⎝⎭,递增区间为1,2a ⎛⎫+∞ ⎪⎝⎭;(2)50,4⎛⎤ ⎥⎝⎦. 【分析】 (1)由()101a f f ⎛⎫ ⎪⎝⎭==,整理得()21f x ax x =-+,结合二次函数的性质,即可求解;(2)把“对任意[]12,1,3x x ∈,()()128f x f x -≤恒成立”转化为()()max min 8f x f x -≤在[]1,3上恒成立,结合二次函数的图象与性质,分类讨论,即可求解.【详解】 (1)由()101a f f ⎛⎫⎪⎝⎭==,可得()11(0)()f x a x x a -=--,整理得()21f x ax x =-+,因为0a >,则函数()21f x ax x =-+开口向上,对称轴方程为12x a=, 所以()f x 单调递减区间为1,2a ⎛-∞⎫ ⎪⎝⎭,()f x 单调递增区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (2)因为“对任意[]12,1,3x x ∈,()()128f x f x -≤恒成立”, 即()()max min 8f x f x -≤在[]1,3上恒成立,由(1)知函数()21f x ax x =-+,①当12a ≥时,函数()f x 在区间[]1,3上单调递增 可得()()()()max min 31828f x f x f f a -=-=-≤,解得54a ≤,即1524a ≤≤;②当106a <≤时,函数()f x 在区间[]1,3上单调递减 可得()()()()max min 13288f x f x f f a -=-=-≤,解得34a ≥-,即106a <≤; ③当1162a <<时,函数()f x 在区间11,2a ⎡⎤⎢⎥⎣⎦单调递减,在区间1,32a ⎡⎤⎢⎥⎣⎦单调递增, 可得()()(){}max max 1,3f x f f =,()min1124f x f a a ⎛⎫==- ⎪⎝⎭则()()112118243113932824f f a a a f f a a a ⎧⎛⎫-=-+≤≤ ⎪⎪⎪⎝⎭⎨⎛⎫⎪-=-+≤≤ ⎪⎪⎝⎭⎩,解得1162a <<,综上所述:实数a 的取值范围是50,4⎛⎤ ⎥⎝⎦.【点睛】由 恒成立求参数取值范围的思路及关键:一般有两个解题思路:一时分离参数法;二是不分离参数,采用最值法;两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否能分离,两种思路的依据为:()a f x ≥恒成立max ()a f x ⇔≥,()a f x ≤恒成立max ()a f x ⇔≤.26.(1){|13}A B x x ⋂=;(2)3(2-,0][4⋃,)+∞.【分析】(1)当1m =时,求出集合B ,A ,由此能求出AB .(2)由A B A ⋃=,得B A ⊆,当B =∅时,213m m -+,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,由此能求出m 的取值范围. 【详解】解:(1)当1m =时,{|14}B x x =<,{|314}{|43}A x x x x =-<+=-<, {|13}A B x x ∴⋂=.(2)A B A =,B A ∴⊆,当B =∅时,213m m -+,解得4m ,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,解得302m -<,综上,m 的取值范围为3(2-,0][4⋃,)+∞.【点睛】结论点睛:本题考查交集、实数的取值范围的求法, 并集、交集的结论与集合包含之间的关系:AB A B A =⇔⊆,A B A A B ⋂=⇔⊆.。

【浙教版】高中数学必修一期末第一次模拟试题(含答案)(1)

【浙教版】高中数学必修一期末第一次模拟试题(含答案)(1)

一、选择题1.已知汽车从踩刹车到停车所滑行的距离()m s 与速度()km/h v 之间有如下关系式:2s k M v =⋅⋅,其中k 是比例系数,且0,k M >是汽车及其载重质量之和.若某辆卡车不装货物(司机体重忽略不计)以36km/h 的速度行驶时,从刹车到停车需要走20m .当这辆卡车装载等于车重的货物行驶时,为保证安全,要在发现前面20m 处有障碍物时能在离障碍物5m 及以外处停车,则最高速度是(设司机发现障碍物到踩刹车经过1s )( ) A .36km/hB .30km/hC .24km/hD .18km/h2.一个放射性物质不断衰变为其他物质,每经过一年就有34的质量发生衰变.若该物质余下质量不超过原有的1%,则至少需要的年数是( ) A .6B .5C .4D .33.某高校为提升科研能力,计划逐年加大科研经费投人.若该高校2018年全年投入科研经费1300万元,在此基础上,每年投人的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2000万元的年份是(参考数据:lg1.120.05≈,lg1.30.11≈,lg 20.30≈)( )A .2020年B .2021年C .2022年D .2023年4.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数2y x =,x ∈[1,2]与函数.2y x =,[]2,1x ∈--即为同族函数,下面函数解析式中也能够被用来构造“同族函数”的是( ) A .y =xB .1y x x=+ C . 22x x y -=- D .y =log 0.5x 5.函数()log 1a f x x =+(且).当(1,0)x ∈-时,恒有()0f x >,有( ).A .()f x 在(,0)-∞+上是减函数B .()f x 在(,1)-∞-上是减函数C .()f x 在(0,)+∞上是增函数D .()f x 在(,1)-∞-上是增函数6.对数函数log (0a y x a =>且1)a ≠与二次函数()21y a x x =--在同一坐标系内的图象可能是( )A .B .C .D .7.函数()21xf x x =-的图象大致是( ) A .B .C .D .8.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( ) A .0B .1C .2D .39.若定义运算,,b a b a b a a b≥⎧*=⎨<⎩,则函数()()()2242g x x x x =--+*-+的值域为( ) A .(],4-∞B .(],2-∞C .[)1,+∞D .(),4-∞10.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( ) A .0B .1-C .1D .1或1-11.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-212.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .511二、填空题13.在用二分法求方程3210x x --=的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可以断定该根所在区间为___________. 14.函数()11f x x =-,()g x kx = ,若方程()()f x g x =有3个不等的实数根,则实数k 的取值范围为________.15.已知函数f (x )=3x +x ,g(x )=log 3x +2,h (x )=log 3x +x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系是________.16.已知函数22()log ()f x ax x a =++的值域为R ,则实数a 的取值范围是_________17.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,若()()11f a f a -=+,则a 的取值范围是___________.18.已知对于任意实数x ,函数f (x )都满足f (x )+2f (2-x )=x ,则f (x )的解析式为______.19.若集合{}{,,,}1,2,3,4,a b c d =且下列四个关系:①1a =;②1b ≠;③2c =;④4d ≠中有且只有一个是正确的,则符合条件的所有有序数组(,,,)a b c d 的个数是________.20.设集合{}[1,2),0M N x x k =-=-≤,若M N ⋂=∅,则实数k 的取值范围为_______.三、解答题21.经研究发现,学生的注意力与老师的授课时间有关,开始授课时,学生的注意力逐渐集中,到达理想的状态后保持一段时间,随后开始逐渐分散,用()f x 表示学生的注意力,x 表示授课时间(单位:分),实验结果表明()f x 与x 有如下的关系:()59,01059,10163107,1630x x f x x x x +<<⎧⎪=≤≤⎨⎪-+<≤⎩.(1)开始授课后多少分钟,学生的注意力最集中?能维持多长时间?(2)若讲解某一道数学题需要55的注意力以及10分钟的时间,老师能否及时在学生一直达到所需注意力的状态下讲完这道题?22.如图所示,河(阴影部分)的两岸分别有生活小区ABC 和DEF ,其中AB BC ⊥,EF DF ⊥,DF AB ⊥,C ,E ,F 三点共线,FD 与BA 的延长线交于点O ,测得3AB FE ==千米,74OD=千米,94DF =千米,32EC =千米,若以OA ,OD 所在直线分别为x ,y 轴建立平面直角坐标系xOy ,则河岸DE 可看成是函数1by x a=--(其中a ,b 是常数)图象的一部分,河岸AC 可看成是函数y kx m =+(其中k ,m 为常数)图象的一部分.(1)写出点A 和点C 的坐标,并求k ,m ,a ,b 的值.(2)现准备建一座桥MN ,其中M 在曲线段DE 上,N 在AC 上,且MN AC ⊥.记M 的横坐标为t .①写出桥MN 的长l 关于t 的函数关系式()l f t =,并标明定义域;(注:若点M 的坐标为0(,)t y ,则桥MN 的长l 可用公式021lk计算)②当t 为何值时,l 取到最小值?最小值是多少?23.(1)求值:)()()141231()105220538500---+⨯-(2)已知14,x x -+=3322x x -+.24.已知集合(){}2log 33A x x =+≤,{}213B x m x m =-<≤+. (1)若2m =-,求AB ;(2)若A B A ⋃=,求实数m 的取值范围.25.已知函数()f x 对一切实数,x y 都有()()f x y f y +-=(21)x x y ++成立,且(1)0f =.(1)求(0)f 的值,及()f x 的解析式;(2)当21x -≤≤时,不等式()(1)5f x a a x -≥-- 恒成立,求a 的取值范围. 26.已知集合{}|13A x x =-<<,集合(){}2|25250B x x k x k =+--<,k ∈R .(1)若1k =时,求B R,A B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据v =36km/h 时,20m s =,求出5324k M ⋅=,求出司机发现障碍物到踩刹车经过1s ,汽车行驶的距离,再由不等式25202518vk Mv --⋅可解得结果. 【详解】因为2s k M v =⋅⋅,且当v =36km/h 时,20m s =, 所以22036k M =⋅⋅,∴5324k M ⋅=, 司机发现障碍物到踩刹车经过1s ,汽车行驶的距离为10005(m)360018vv ⋅=, 由25202518v k Mv --⋅,得25520518162v v --, 即294860v v +-≤,解得2718v -≤≤. ∴则最高速度是18km/h . 故选:D. 【点睛】关键点点睛:理解题意,找出题目中的不等关系是解题关键.2.C解析:C 【分析】设这种放射性物质最初的质量为1,经过x ()x N ∈年后,剩留量是y ,则有1()4xy =,然后根据物质的剩留量不超过原来的1%,建立不等关系,利用对数运算性质进行求解即可. 【详解】设这种放射性物质最初的质量为1,经过x ()x N ∈年后,剩留量是y , 则有1()4xy =, 依题意得11()4100x≤,整理得22100x ≥, 解得4x ≥,所以至少需要的年数是4, 故选C. 【点睛】该题考查的是有关放射性物质的剩留量的求解问题,在解题的过程中,注意根据条件,列出相应的关系式,之后将其转化为指数不等式,结合指数函数的性质,求得结果,属于简单题目.3.C解析:C 【分析】由题意知,2019年是第1年,则第n 年全年投入的科研经费为1300 1.12n ⨯万元,然后解不等式1300 1.122000n ⨯>,将指数式化为对数式,得出n 的取值范围,即可得出答案. 【详解】若2019年是第1年,则第n 年全年投入的科研经费为1300 1.12n ⨯万元, 由1300 1.122000n ⨯>可得1.3 1.122n ⨯>,lg1.3lg1.12lg 2n ∴+>, 所以0.050.19n ⨯>, 得 3.8n >,则正整数n 的最小值为4, 所以第4年,即2022年全年投入的科研经费开始超过2000万元, 故选:C. 【点睛】本题考查指数函数模型的应用,解题的关键就是列出指数不等式,考查函数思想的应用与计算能力,属于中等题.4.B解析:B 【分析】由题意,能够被用来构造“同族函数”的函数必须满足在其定义域上不单调,由此判断各个函数在其定义域上的单调性即可. 【详解】对A :y x =在定义域R 上单调递增,不能构造“同族函数”,故A 选项不正确;对B :1y x x=+在(),1-∞-递增,在()1,0-递减,在()0,1递减,在()1,+∞递增,能构造“同族函数”,故B 选项正确; 对C :22xxy -=-在定义域上递增,不能构造“同族函数”,故C 选项不正确; 对D :0.5log y x =在定义域上递减,不能构造“同族函数”,故D 选项不正确. 故选:B. 【点睛】本题给出“同族函数”的定义,要求我们判断几个函数能否被用来构造“同族函数”,考查基本初等函数的单调性的知识点,属于基础题.5.D解析:D 【解析】试题分析:根据题意,当(1,0)x ∈-时,1(0,1)x +∈,而此时log 10a x +>,所以有01a <<,从而能够确定函数在(,1)-∞-上是增函数,在区间(1,)-+∞上是减函数,故选D .考点:函数的单调性.6.A解析:A 【分析】由对数函数,对a 分类,01a <<和1a >,在对数函数图象确定的情况下,研究二次函数的图象是否相符.方法是排除法. 【详解】由题意,若01a <<,则log a y x =在()0+∞,上单调递减, 又由函数()21y a x x =--开口向下,其图象的对称轴()121x a =-在y 轴左侧,排除C ,D.若1a >,则log a y x =在()0+∞,上是增函数, 函数()21y a x x =--图象开口向上,且对称轴()121x a =-在y 轴右侧,因此B 项不正确,只有选项A 满足. 故选:A . 【点睛】本题考查由解析式先把函数图象,解题方法是排除法,可按照其中一个函数的图象分类确定另一个函数图象,排除错误选项即可得.7.C解析:C 【分析】由1x >时,()0f x <,排除B 、D ;由函数()f x 在区间(0,1)上的单调性,排除A ,即可求解. 【详解】由题意,函数()21xf x x =-有意义,满足210x -≠,解得1x ≠±, 又由当1x >时,()0f x <,排除B ,D ; 当01x <<时,()21xf x x=-, 设1201x x ,则2112212122222121(1)()()()11(1)(1)x x x x x x f x f x x x x x +--=-=----, 因为2221122110,10,10,0x x x x x x ->->+>->,所以21()()0f x f x ->,即12()()f x f x <,所以函数()f x 在(0,1)上单调递增,所以A 不符合,C 符合. 故选:C. 【点睛】知式选图问题的解答方法:从函数的定义域,判定函数图象的左右位置,从函数的值域判断图象的上下位置; 从函数的单调性(有时借助导数),判断函数的图象的变换趋势; 从函数的奇偶性,判断图象的对称性; 从函数的周期性,判断函数的循环往复;从函数的特殊点(与坐标轴的交点,经过的定点,极值点等),排除不和要求的图象.8.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B.【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.9.A解析:A 【分析】根据,,b a b a b a a b≥⎧*=⎨<⎩可得()g x 的解析式,画出图象可得答案. 【详解】由,,b a ba b a a b ≥⎧*=⎨<⎩,得()()()222,[2,1]24224,(1,)(,2)x x g x x x x x x x -+∈-⎧=--+*-+=⎨--+∈+∞⋃-∞-⎩,当[2,1]x ∈-,()2[1,4g x x =-+∈], 当(1,)(,2)x ∈+∞-∞-,()2()154g x x =-++<,可得()4g x ≤- 故选:A. 【点睛】本题的关键点是根据已知定义求出函数解析式,然后画出图象求解.10.B解析:B 【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-, 因此,()2019201920192019101a b +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.11.D解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.12.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.二、填空题13.【解析】试题分析:根据二分法取区间中点值而所以故判定根在区间考点:二分法【方法点睛】本题主要考察了二分法属于基础题型对于零点所在区间的问题不管怎么考察基本都要判断端点函数值的正负如果异号那零点必在此解析:3(,2)2【解析】试题分析:根据二分法,取区间中点值,而,,所以,故判定根在区间考点:二分法【方法点睛】本题主要考察了二分法,属于基础题型,对于零点所在区间的问题,不管怎么考察,基本都要判断端点函数值的正负,如果异号,那零点必在此区间,如果是几个零点,还要判定此区间的单调性,这个题考查的是二分法,所以要算区间的中点值,和两个端点值的符号,看是否异号.零点肯定在异号的区间.14.【分析】作出函数的图象及与函数的图象求出相切时的值即可得答案;【详解】分别作出函数的图象即当与相切时方程有3个不等的实数根两函数图象有3个交点由图可知时符合题意故答案为:【点睛】利用数形结合思想作出 解析:4k >【分析】 作出函数()11f x x =-的图象及与函数()g x kx =的图象,求出相切时k 的值即可得答案; 【详解】分别作出函数的图象, 即21101kx kx kx x -=⇒-+=- 当()g x kx =与()11f x x =-相切时,24040k k k k ⎧∆=-=⇒=⎨≠⎩,, 方程()()f x g x =有3个不等的实数根,∴两函数图象有3个交点,由图可知4k >时符合题意, 故答案为:4k >.【点睛】利用数形结合思想,作出两函数的图象,首先找到临界位置,即相切位置.15.【解析】画出函数的图象如图所示:观察图象可知函数的零点依次是点的横坐标由图像可知故答案为点睛:函数的零点与方程根的分布问题解题时常用数形结合思想对于方程的根可分别画出与的图象则两个函数图象的交点的横解析:a b c << 【解析】画出函数3xy =,3log y x =,y x =-,2y =-的图象,如图所示:观察图象可知,函数()3xf x x =+,3()log 2g x x =+,3()logh x x x =+的零点依次是点A ,B ,C 的横坐标,由图像可知a b c <<. 故答案为a b c <<点睛:函数的零点与方程根的分布问题,解题时常用数形结合思想,对于方程()()0f x g x -=的根,可分别画出()f x 与()g x 的图象,则两个函数图象的交点的横坐标即为方程()()0f x g x -=的根.16.【分析】设值域为根据题意对分类讨论结合根的判别式即可求解【详解】设值域为函数的值域为当时值域为满足题意;当时须解得综上实数a 的取值范围是故答案为:【点睛】本题考查对数函数的性质复合函数的性质二次函数 解析:10,2⎡⎤⎢⎥⎣⎦【分析】设2()u x ax x a =++值域为A ,根据题意(0,)A +∞⊆,对a 分类讨论,结合根的判别式,即可求解. 【详解】设2()u x ax x a =++值域为A ,函数22()log ()f x ax x a =++的值域为,(0,)R A +∞⊆,当0a =时,2()log f x x =值域为R ,满足题意;当0a ≠时,须20140a a >⎧⎨∆=-≥⎩,解得102a <≤, 综上,实数a 的取值范围是10,2⎡⎤⎢⎥⎣⎦.故答案为:10,2⎡⎤⎢⎥⎣⎦.【点睛】本题考查对数函数的性质,复合函数的性质,二次函数的取值和根的判别式的关系,属于中档题.17.【分析】本题首先可讨论的情况此时然后根据函数的解析式求出和通过即可求出的值最后讨论的情况此时通过得出此时无解即可得出结果【详解】若则因为函数所以因为所以解得若则因为函数所以因为所以无解综上所述的取值解析:32⎧⎫⎨⎬⎩⎭【分析】本题首先可讨论0a >的情况,此时11a -<、11a +>,然后根据函数()f x 的解析式求出()1f a -和()1f a +,通过()()11f a f a -=+即可求出a 的值,最后讨论0a <的情况,此时11a ->、11a +<,通过()()11f a f a -=+得出此时a 无解,即可得出结果. 【详解】若0a >,则11a -<,11a +>,因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以1212f aa a a ,1121f a a a a ,因为()()11f a f a -=+,所以21a a ,解得32a =, 若0a <,则11a ->,11a +<,因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以11213f aa a a ,12123f a a a a ,因为()()11f a f a -=+,所以1323a a ,无解,综上所述,32a =,a 的取值范围是32⎧⎫⎨⎬⎩⎭, 故答案为:32⎧⎫⎨⎬⎩⎭. 【点睛】本题考查分段函数的相关问题的求解,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,考查分类讨论思想,考查计算能力,是中档题.18.【分析】用2-x 换上f (x )+2f (2-x )=x①中的x 得到f (2-x )+2f (x )=2-x②这样①②联立即可解出f (x )【详解】由题意因为f (x )+2f (2-x )=x①;∴f (2-x )+2f (x ) 解析:()4f x x 3=- 【分析】用2-x 换上f (x )+2f (2-x )=x①中的x 得到,f (2-x )+2f (x )=2-x②,这样①②联立即可解出f (x ). 【详解】由题意,因为f (x )+2f (2-x )=x①; ∴f (2-x )+2f (x )=2-x②; ①②联立解得()43f x x =-. 故答案为()43f x x =-. 【点睛】本题主要考查了函数的解析式的求解,其中解答中根据题意,联立方程组求解是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档试题.19.6【分析】因为①;②;③;④中有且只有一个是正确的故分四种情况进行讨论分别分析可能存在的情况即可【详解】若仅有①成立则必有成立故①不可能成立若仅有②成立则成立此时有两种情况若仅有③成立则成立此时仅有解析:6【分析】因为①1a =;②1b ≠;③2c =;④4d ≠中有且只有一个是正确的,故分四种情况进行讨论,分别分析可能存在的情况即可. 【详解】若仅有①成立,则1a =必有1b ≠成立,故①不可能成立.若仅有②成立,则1a ≠,1b ≠,2c ≠,4d =成立,此时有(2,3,1,4),(3,2,1,4)两种情况. 若仅有③成立,则1a ≠,1b =,2c =,4d =成立,此时仅有(3,1,2,4)成立.若仅有④成立,则1a ≠,1b =,2c ≠,4d ≠成立,此时有(2,1,4,3),(3,1,4,2),(4,1,3,2)三种情况.综上符合条件的所有有序数组(,,,)a b c d 的个数是6个. 故答案为:6. 【点睛】本题主要考查了集合的综合运用与逻辑推理的问题,需要根据题设条件分情况讨论即可.属于中等题型.20.【分析】首先求得集合N 然后确定实数k 的取值范围即可【详解】由题意可得:结合可知实数k 的取值范围是:故答案为:【点睛】本题主要考查交集的运算由集合的运算结果求参数取值范围的方法等知识意在考查学生的转化 解析:{}|1k k <-【分析】首先求得集合N ,然后确定实数k 的取值范围即可. 【详解】由题意可得:{}|N x x k =≤,结合M N ⋂=∅可知实数k 的取值范围是:1k <-. 故答案为:{}|1k k <-. 【点睛】本题主要考查交集的运算,由集合的运算结果求参数取值范围的方法等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)开始授课后10分钟,学生的注意力最集中,能维持6分钟;(2)不能在学生一直达到所需注意力的状态下讲完这道题 【分析】(1)根据函数()f x 的解析式,判断其单调性,可求出答案;(2)分010x <<,1016x ≤≤和1630x <≤三种情况,分别解不等式()55f x ≥,进而可求出集中注意力的时间总和,然后和10分钟比较大小,可得出答案. 【详解】(1)由题意,当010x <<时,()59f x x =+,此时函数单调递增; 当1016x ≤≤时,函数()f x 取得最大值,此时()59f x =; 当1630x <≤时,()3107f x x =-+,此时函数单调递减. 所以,开始授课后10分钟,学生的注意力最集中,能维持6分钟.(2)当010x <<时,令()55f x ≥,即5955x +≥,解得9.210x ≤<,集中注意力时间共109.20.8-=分钟;当1016x ≤≤时,()5955f x =≥,集中注意力时间共6分钟; 当1630x <≤时,令()55f x ≥,即310755x -+≥,解得52163x <≤,则集中注意力时间共5241633-=分钟, 因为41220.8610315++=<,所以不能在学生一直达到所需注意力的状态下讲完这道题. 【点睛】关键点点睛:本题考查分段函数的应用,解题关键是利用函数的解析式,判断函数在各个分段上的单调性,及解不等式()55f x ≥.考查学生的逻辑推理能力,计算求解能力,属于中档题. 22.(1)3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫⎪⎝⎭,43k =,2m =-,4a =,3b =;(2)①19()94,[0,3]54f t t t t ⎛⎫=--∈ ⎪-⎝⎭;②52t =,min ()1f t =. 【分析】(1)根据题中给的边长,得到点,A C 的坐标,并代入直线,求,k m ,由点,D E 的坐标代入函数1b y x a =--,求,a b 的值;(2)①由(1)可知点43,1M t t ⎛⎫- ⎪-⎝⎭,利用点到直线的距离求()l f t =,②定义域下利用基本不等式求最值. 【详解】(1)由题意得:4OF BC ==,OA EC =,∴3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫⎪⎝⎭, 把3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫⎪⎝⎭代入y kx m =+得302942k m k m ⎧+=⎪⎪⎨⎪+=⎪⎩,解得43k =,2m =-.∵70,4D ⎛⎫ ⎪⎝⎭,()3,4E ,把70,4D ⎛⎫⎪⎝⎭,()3,4E 代入1b y x a =--得3433b a b a ⎧=⎪⎪⎨⎪=⎪-⎩,解得:4a =,3b =.(2)①由(1)得:M 点在314y x =--上,∴43,1M t t ⎛⎫- ⎪-⎝⎭,[0,3]t ∈,∴桥MN 的长l为341219()(94),[0,3]54l f t t t t t --+===--∈-; ②由①得:1919()(94)4(4)75454f t t t t t ⎡⎤=--=----⎢⎥--⎣⎦194(4)754t t ⎡⎤=----⎢⎥-⎣⎦, 而40t -<,904t <-,∴94(4)124t t ---≥=-, 当且仅当94(4)4t t --=--时即52t =时,“=”成立,∴min 1()12715f t =-+=. 【点睛】关键点点睛:本题考查函数应用题,函数模型的应用,基本不等式求最值. 本题的关键是最后一问,函数的变形,1919()(94)4(4)75454f t t t t t ⎡⎤=--=----⎢⎥--⎣⎦,只有变形成这种形式,才能用基本不等式求最值.23.(1)16-;(2) 【分析】(1)由指数幂的运算法则直接计算即可;(2)由2111222x x x x --⎛⎫+=++ ⎪⎝⎭可求出1122x x -+,再利用()3311122221x xx x x x ---⎛⎫+=++- ⎪⎝⎭即可求出. 【详解】(1)原式412500102012=-⨯-)10201126=+-20201616=+-=-;(2)14x x -+=,2111222426x x x x --⎛⎫∴+=++=+= ⎪⎝⎭, 又11220x x ->+,1122x x -∴=+())112233122141x x x x x x ---⎛⎫+=+-=-= ⎪⎝⎭+【点睛】本题考查指数幂的运算,考查完全平方公式和立方和公式的应用,属于基础题. 24.(1){}31A B x x ⋂=-<≤;(2)[][)1,24,m ∈-+∞【分析】(1)计算{}35A x x =-<≤,{}51B x x =-<≤,再计算交集得到答案. (2)A B A ⋃=,故B A ⊆,讨论B =∅和B ≠∅,计算得到答案. 【详解】(1)(){}{}2log 3335A x x x x =+≤=-<≤,{}51B x x =-<≤,故{}31A B x x ⋂=-<≤.(2){}35A x x =-<≤,A B A ⋃=,故B A ⊆,当B =∅时,213m m -≥+,解得4m ≥;当B ≠∅时,4m <,故21335m m -≥-⎧⎨+≤⎩,解得12m -≤≤.综上所述:[][)1,24,m ∈-+∞.【点睛】本题考查交集运算,根据集合的包含关系求参数,意在考查学生的计算能力和综合应用能力.25.(1)()02f =-;()22f x x x =+-;(2)2a ≤.【分析】(1)通过对抽象函数赋值,令1,1x y =-=进行求解,即得(0)f ;令0y =可消去y ,再结合()0f 的值,即求得解析式; (2)先讨论1x =时不等式恒成立,21x 时,再通过分离参数法求得a 的取值范围即可. 【详解】解:(1)令1,1x y =-=,可得()()()01121f f -=--++,又由()10f =,解得()02f =-;令0y =,得()()()01f x f x x -=+,又因()02f =-,解得()22f x x x =+-;(2)当21x -≤≤时,不等式()(1)5f x a a x -≥-- 恒成立,即()213x a x -≤+,若1x =时不等式即04≤,显然成立; 若21x时,10x ->,故231x a x +≤-恒成立,只需2min31x a x ⎛⎫+≤ ⎪-⎝⎭,设()()()22121434()12111x x x g x x x x x ---++===-+----,设(]1,0,3t x t =-∈ 则4()2g t t t=+-是对勾函数,在()0,2递减,在()2,3递增,故2t =时,即1x =-时min ()2g x =,故2a ≤,综上, a 的取值范围为2a ≤. 【点睛】 方法点睛:抽象函数通常利用赋值法求函数值或者求解析式;二次函数含参恒成立的问题,一般是通过分离参数进行求解,当然也可以根据判别式法进行求解,视具体情况而定.26.(1)[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,5,32⎛⎫- ⎪⎝⎭;(2)[)3,+∞.【分析】(1)若1k =,化简集合B ,利用补集和并集的定义进行计算可得答案; (2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,分52k <-,52k =-和52k >-分别求出集合B ,列出不等式可得实数k 的取值范围.【详解】(1)若1k =,{}25|2350|12B x x x x x ⎧⎫=+-<=-<<⎨⎬⎩⎭则R B =[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,A B =5,32⎛⎫- ⎪⎝⎭; (2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,(){}()(){}2|25250|250B x x k x k x x k x =+--<=-+<当52k <-时,5,2B k ⎛⎫=- ⎪⎝⎭,不合题意;当52k =-时,B φ=,不合题意;当52k>-时,5,2B k⎛⎫=-⎪⎝⎭,只需3k≥;综上可得:实数k的取值范围是[)3,+∞.【点睛】结论点睛:本题考查集合的交并补运算,考查充分不必要条件的应用,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)p是q的充分不必要条件,则p对应集合是q对应集合的真子集;(3)p是q的充分必要条件,则p对应集合与q对应集合相等;(4)p是q的既不充分又不必要条件,q对的集合与p对应集合互不包含.。

【浙教版】高中数学必修一期末第一次模拟试卷及答案(2)

【浙教版】高中数学必修一期末第一次模拟试卷及答案(2)

一、选择题1.已知函数1,0(),0x x m f x e x -⎧=⎪=⎨⎪≠⎩,关于x 的方程23()(23)()20mf x m f x -++=有以下结论:①存在实数m ,使方程有2个解;②当方程有3个解时,这3个解的和为0;③不存在实数m ,使方程有4个解;④当方程有5个解时,实数m 的取值范围是331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为( ) A .1B .2C .3D .42.已知定义在R 上的奇函数()f x 满足()()f x f x π+=-,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x =,则函数()()()1g x x f x π=-- 在区间3-,32ππ⎡⎤⎢⎥⎣⎦上所有零点之和为( ) A .πB .2πC .3πD .4π3.把物体放在冷空气中冷却,如果物体原来的温度为1θC ,空气的温度是0θC ,那么t 分钟后物体的温度θ(单位C )可由公式:()010kt e θθθθ-=+-求得,其中k 是一个随着物体与空气的接触状况而定的正常数.现有100℃的物体,放在20C 的空气中冷却,4分钟后物体的温度是60C ,则再经过( )分钟,物体的温度是40C (假设空气的温度保持不变). A .2B .4C .6D .84.函数()f x =的定义域是( ) A .(0,2)B .[2,)+∞C .(0,)+∞D .(,2)-∞5.设函数()21xf x =-,c b a <<,且()()()f c f a f b >>,则22a c +与2的大小关系是( ) A .222a c +> B .222a c +≥ C .222a c +≤D .222a c +<6.已知奇函数()f x 与偶函数()g x 满足()()2x x f x g x a a -+=-+,且()g b a =,则()2f 的值为( )A .2aB .2C .154D .1747.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞8.已知定义在R 上的函数()2||·x f x x e =, ()35a f log =, 312b f log ⎛=⎫ ⎪⎝⎭,()ln3c f = ,则a ,b ,c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .c b a >>9.已知()f x 在[],x a b ∈的最大值为M ,最小值为m ,给出下列五个命题:( ) ①若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],m -∞. ②若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],M -∞. ③若关于x 的方程()p f x =在区间[],a b 有解,则p 的取值范围是[],m M . ④若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],m -∞. ⑤若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],M -∞. A .4B .3C .2D .110.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则AB =( )A .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<11.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A .B .C .D .12.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭二、填空题13.若函数222,0(),0x x x x f x e a x +⎧->⎪=⎨-≤⎪⎩有3个零点,则实数a 的取值范围是___14.已知函数2()ln f x x ax x =++有两个不同的零点,则实数a 的取值范围是_____ 15.方程()()122log 44log 23xx x ++=+-的解为____;16.函数()y f x =的图象与2x y =的图象关于y 轴对称,若1()y f x -=是()y f x =的反函数,则12(2)y f x x -=-的单调递增区间是__________.17.已知函数()225f x x ax =-+在(],2-∞上是减函数,且对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则实数a 的取值范围是________.18.已知对于任意实数x ,函数f (x )都满足f (x )+2f (2-x )=x ,则f (x )的解析式为______.19.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________ 20.若规定集合{}()*12,,,n M a a a n N=⋅⋅⋅∈的子集{}()12*,,,mi i i a aa m N ⋅⋅⋅∈为M 的第k个子集,其中12111222m i i i k ---=++⋅⋅⋅+,则M 的第25个子集是______.三、解答题21.某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本()f x (元)与月处理量x (吨)之间的函数关系可近似地表示为()21100400004f x x x =-+. (1)写出自变量x 的取值范围;(2)为使每吨平均处理成本最低(如处理400吨垃圾时每吨垃圾平均处理成本为()400400f ),该厂每月处理量垃圾应为多少吨? 22.已知函数()f x 是定义在是R 上的偶函数,且当0x ≥时2()2.f x x x =- (1)求(0)f 及[](1)f f 的值;(2)求函数()f x 在()-0∞,上的解析式; (3)若关于x 的方程()0f x m -=有四个不同的实数根,求实数m 的取值范围 . 23.已知函数()x f x a =(0a >且1a ≠),满足(2)(1)6f f +=; (1)求()f x 的解析式;(2)若方程()(2),[0,1]m f x f x x =-∈有解,求m 的取值范围;(3)已知()g x 为奇函数,()h x 为偶函数,函数()()()f x g x h x =+;若存在[1,2]x ∈使得2()(2)0ag x h x +≤,求a 的取值范围.24.计算下列各式的值:(1)0113410.027167-⎛⎫-+ ⎪⎝⎭(2)3ln 2145log 2lg 4lg 82e +++25.已知函数()4f x x x=+. (1)用单调性的定义证明()f x 在()0,2上单调递减; (2)判断()f x 在71,2⎡⎤⎢⎥⎣⎦上的单调情况,并求最值.26.设集合{}240A x x =-=,(){}222150B x x a x a =+++-=.(1)若{}2AB =-,求实数a 的值;(2)若A B A ⋃=,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】将方程的解的个数转化为函数()y f x =的图象与直线23y =和1y m=的交点总数,数形结合即可得解. 【详解】由题意,23()(23)()20[3()2][()1]0mf x m f x f x mf x -++=⇒--=, 解得2()3f x =或1()f x m=, 则方程解的个数即为函数()y f x =的图象与直线23y =和1y m=的交点总数, 作出函数()f x 的图象,如图,由()f x 的图象可知,2()3f x =有两个非零解,由1(0)f m =得1()f x m=至少有一个解0,故①错; 当方程有3个解时,10m <或11m ≥或123m =,由函数的对称性可得这3个解的和为0, 故②对;不存在实数m ,使方程有4个解,故③对; 当方程有5个解时,则函数()y f x =的图象与直线23y =和1y m=共有五个交点, 所以直线1y m=与函数()y f x =的图象有三个交点, 数形结合可得101123mm ⎧<<⎪⎪⎨⎪≠⎪⎩,解得331,,22m ⎛⎫⎛⎫∈+∞⎪ ⎪⎝⎭⎝⎭,故④对. 故正确结论有3个. 故选:C . 【点睛】方法点睛:解决函数零点(方程的根)的问题常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.D解析:D 【解析】函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上的零点就是函数()y f x =与函数1()h x x π=-的交点的横坐标. ∵()()f x f x π+=-∴()()2f x f x π+=,即函数()f x 的周期为2π,且函数()f x 的图象关于直线2x π=对称.又可得()()2f x f x π+=--,从而函数()f x 的图象关于点(π,0)对称.函数1()h x x π=-的图象关于点(π,0)对称. 画出函数f(x),h(x)的图象(如下所示),根据图象可得函数f(x),h(x)的图象共有4个交点,它们关于点(π,0)对称. 所以函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上所有零点之和为2π+2π=4π. 选D .点睛:解答本题的关键是将函数()()()1g x x f x π=--零点问题转化为两个函数图象交点的横坐标问题,借助函数图象的直观性使得问题得到解答,这是数形结合在解答数学题中的应用,解题中要求正确画出函数的图象.同时本题中还用到了函数的周期性、对称性、奇偶性之间的互相转化,对于这些知识要做到熟练运用.3.B解析:B 【分析】根据题意将数据120θ=,0100θ=,60θ=,4t =代入()010kte θθθθ-=+-,可得1412k e -⎛⎫= ⎪⎝⎭,再将40θ代入即可得8t =,即可得答案.【详解】由题意知:120θ=,0100θ=,60θ=,4t =代入()010kte θθθθ-=+-得:()4602010020ke-=+-,解得1412k e -⎛⎫= ⎪⎝⎭所以当40θ时,()1440201002012t ⎛⎫ -⎪⎭=+⎝,解得:124114212t ⎛⎫== ⎛⎫ ⎝⎪⎭⎪⎭⎝, 所以8t =,所以再经过4分钟物体的温度是40C , 故选:B 【点睛】本题主要考查了指数函数的综合题,关键是弄清楚每个字母的含义,属于中档题.4.A解析:A【分析】根据函数的形式,直接列解析式有意义的不等式,求出函数的定义域. 【详解】由题意得,函数的定义域需满足02>0x x >⎧⎨-⎩,解得:02x <<所以函数的定义域是()0,2. 故选:A . 【点睛】方法点睛:常见的具体函数求定义域:(1)偶次根号下的被开方数大于等于0;(2)分母不为0;(3)对数函数中真数大于0.5.D解析:D 【分析】运用分段函数的形式写出()f x 的解析式,作出()21xf x =-的图象,由数形结合可得0c <且0a >,21c <且21a >,且()()0f c f a ->,去掉绝对值,化简即可得到结论.【详解】()21,02112,0x xxx f x x ⎧-≥=-=⎨-<⎩, 作出()21xf x =-的图象如图所示,由图可知,要使c b a <<且()()()f c f a f b >>成立, 则有0c <且0a >, 故必有21c <且21a >,又()()0f c f a ->,即为()12210c a--->,∴222a c +<. 故选:D . 【点睛】本题考查指数函数单调性的应用,考查用指数函数单调性确定参数的范围,本题借助函数图象来辅助研究,由图象辅助研究函数性质是函数图象的重要作用,以形助数的解题技巧必须掌握,是中档题.6.C解析:C 【分析】根据奇函数()f x 与偶函数()g x ,由()()2x x f x g x a a -+=-+得到()()2﹣﹣﹣=+xx g x f x a a ,两式相加、相减并结合()g b a =求得()f x 即可.【详解】∵奇函数()f x 与偶函数()g x ,()()()(),-∴=-=f x f x g x g x .又()()2﹣+=+-x x f x g x a a ,①()()2﹣---∴+=+x x f x g x a a ,()()2﹣∴=--+x x g x f x a a .② +①②,得()24g x =,()2g x ∴=. (),2g b a a =∴=. ()22﹣-∴=x x f x . 22115(2)22444f -∴=-=-=. 故选:C. 【点睛】本题主要考查函数奇偶性的综合应用,还考查了运算求解的能力,属于中档题.7.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.8.A解析:A 【分析】可看出()f x 在(0,)+∞上单调递增,且得出3(log 2)b f =,并且可得出33ln 3log log 2>,根据增函数的定义即可得出a ,b ,c 的大小关系.【详解】0x >时,2()x f x x e =是增函数,且()()f x f x -=,33(log 2)(log 2)b f f ∴=-=,33330log 1log 2log log 31=<<<=,ln3ln 1e >=,∴33ln 3log log 2>>, ∴33(ln 3)(log (log 2)f f f >>,c a b ∴>>. 故选:A . 【点睛】解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.9.B解析:B 【分析】这是一个对不等式恒成立,方程或不等式解集非空的理解,概念题.对各个选项分别加以判断,在①②中,得出①正确②错误,④⑤中得出⑤正确④错误,而不难发现③是一个真命题,由此可得正确答案. 【详解】对任何x ∈[a ,b]都有()p f x ≤,说明p 小于等于()f x 的最小值,①是正确的; 由于①正确,所以②是一个错误的理解,故不正确;关于x 的方程p =f (x )在区间[a ,b ]上有解,说明p 应属于函数f (x )在[a ,b ]上的值域[m ,M ]内,故③是正确的;关于x 的不等式p ≤f (x )在区间[a ,b ]上有解,说明p 小于或等于的最大值,所以④是错误的,而⑤是正确的 正确的选项应该为①③⑤ 故选: B. 【点睛】关键点点睛:本题考查了命题的真假判断与应用,属于基础题.不等式或方程解集非空,只要考虑有解;而不等式恒成立说明解集是一切实数,往往要考虑函数的最值了.10.C解析:C 【分析】求出A 、B 中不等式的解集确定出A 、B ,找出A 与B 的交集即可. 【详解】集合{}{}|10|1A x x x x =-<=<,集合{}{}2|20|02B x x x x x =-<=<<,所以A B ={}1|0x x <<.故选:C【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.11.B解析:B 【分析】根据题意,{0N =,1},而{|02}M x R x =∈,易得N 是M 的子集,分析选项可得答案. 【详解】{}{}{}200,102N x x x M x x =∈-==⊆=∈≤≤R R ,故选B.【点睛】本题考查集合间关系的判断以及用venn 图表示集合的关系,判断出M 、N 的关系,是解题的关键.12.D解析:D 【分析】解绝对值不等式求得集合A ,解分式不等式求得集合B ,求得集合A 的补集,然后求此补集和集合B 的并集,由此得出正确选项. 【详解】由|31|2x -≥得312x -≤-或312x -≥,解得13x ≤-或1x ≥,故1,13R C A ⎛⎫=- ⎪⎝⎭.由201x x -≤-得()()12010x x x ⎧--≤⎨-≠⎩,解得12x <≤,所以()R C A B =1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭.故选:D. 【点睛】本小题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合补集、并集的计算,属于基础题.二、填空题13.【分析】结合与的图象判断出当时的零点个数由此判断出当时的零点个数画出时的图象由此求得的取值范围【详解】画出与的图象如下图所示由图可知当时与的图象有个交点也即的图象有个零点所以当时有个零点当时画出的图解析:{}()21,e ⋃+∞【分析】 结合2xy =与2yx 的图象,判断出当0x >时,()f x 的零点个数.由此判断出当0x ≤时,()f x 的零点个数.画出0x ≤时2x y e +=的图象,由此求得a 的取值范围.【详解】 画出2x y =与2yx 的图象如下图所示,由图可知,当0x >时,2x y =与2y x 的图象有2个交点,也即()f x 的图象有2个零点. 所以当0x ≤时,()f x 有1个零点.当0x ≤时,画出()20x y ex +=≤的图象如下图所示,由图可知,要使()20x y e x +=≤与y a =只有1个交点,则需1a =或2a e >.所以a 的取值范围是{}()21,e ⋃+∞.故答案为:{}()21,e ⋃+∞【点睛】研究分段函数零点问题,可结合函数图象,将零点问题转化为函数交点个数问来研究.14.【分析】将有两个不同的零点转化为直线与图象有两个不同的交点;利用导数得到图象结合直线过定点利用数形结合可知当与相切时只需即可;利用过一点曲线切线斜率的求解方法求出切线斜率从而得到的范围【详解】由题意 解析:(1,0)-【分析】将()f x 有两个不同的零点转化为直线1y ax =--与()ln xg x x=图象有两个不同的交点;利用导数得到()g x 图象,结合直线1y ax =--过定点()0,1A -,利用数形结合可知当1y kx =-与()g x 相切时,只需()0,a k -∈即可;利用过一点曲线切线斜率的求解方法求出切线斜率k ,从而得到a 的范围. 【详解】由题意得:()f x 的定义域为:()0,∞+由()2ln f x x ax x =++有两个不同的零点可知:方程ln 1xaxx--=有两个不同的解 令()ln x g x x =∴直线1y ax =--与()ln xg x x =图象有两个不同的交点 又()21ln xg x x -'=则当()0,x e ∈时,()0g x '>;当(),x e ∈+∞时,()0g x '<()g x ∴在()0,e 上单调递增;在(),e +∞上单调递减又0x →时,()g x →-∞;x →+∞时,()0g x → 可得()g x 图象如下图所示:1y ax =--恒过点()0,1A -∴如图所示,当1y kx =-与()g x 相切时,只需()0,a k -∈即可使得直线1y ax =--与()ln xg x x=图象有两个不同的交点 设切点000ln ,x B x x ⎛⎫⎪⎝⎭ 000200ln 11ln 0x x x k x x +-∴==-,解得:01x = 1k ∴=,即()0,1a -∈∴当()1,0a ∈-时,直线1y ax =--与()ln xg x x=图象有两个不同的交点 即()1,0a ∈-时,()2ln f x x ax x =++有两个不同的零点 本题正确结果:()1,0- 【点睛】本题考查根据函数零点个数求解参数范围的问题,常用方法是将问题转化为直线与曲线交点个数的问题,通过数形结合的方式来进行求解;关键是能够通过直线恒过定点,确定临界状态,进而利用过某点切线斜率的求解方法求得临界值.15.【分析】直接利用对数的运算法则化简求解即可【详解】解:可得即:解得(舍去)可得经检验是方程的解故答案为:【点睛】本题考查方程的解的求法对数的运算法则的应用考查计算能力 解析:2【分析】直接利用对数的运算法则化简求解即可. 【详解】 解:()()122log 44log 23x x x ++=+-()()1222log 44log log 232x x x +∴+=+-可得()()122log 44log 232x x x++=-⎡⎤⎣⎦, 即:()144232x x x++=-,()223240xx -⋅-=,解得21x =-(舍去)24x =,可得2x =.经检验2x =是方程的解. 故答案为:2. 【点睛】本题考查方程的解的求法,对数的运算法则的应用,考查计算能力.16.(﹣∞0)【分析】函数的图象与的图象关于轴对称可得由于是的反函数可得再利用对数函数的定义域与单调性二次函数的单调性复合函数的单调性即可得出【详解】解:函数的图象与的图象关于轴对称是的反函数解得或当时解析:(﹣∞,0) 【分析】函数()y f x =的图象与2x y =的图象关于y 轴对称,可得()2-=xf x .由于1()y f x -=是()y f x =的反函数,可得112()f x log x -=.12221122(2)(2)[(1)1]y f x x log x x log x -=-=-=--,再利用对数函数的定义域与单调性、二次函数的单调性、复合函数的单调性即可得出. 【详解】 解:函数()y f x =的图象与2xy =的图象关于y 轴对称,()2x f x -∴=.1()y f x -=是()y f x =的反函数, 112()f x log x -∴=.12221122(2)(2)[(1)1]y f x x log x x log x -=-=-=--,220x x ->,解得0x <或2x >.当(,0)x ∈-∞时,函数2()(1)1u x x =--单调递减,因此12(2)y f x x -=-单调递增.12(2)y f x x -∴=-的单调递增区间是(,0)-∞. 故答案为:(,0)-∞. 【点睛】本题考查了反函数的求法、对数函数的定义域与单调性、二次函数的单调性、复合函数的单调性,考查了推理能力与计算能力,属于难题.17.【分析】根据二次函数的单调性求得求得函数在区间上的最大值和最小值由题意可得出可得出关于实数的不等式进而可求得实数的取值范围【详解】二次函数的图象开口向上对称轴为直线由于函数在上是减函数则则所以函数在 解析:[]2,3【分析】根据二次函数()y f x =的单调性求得2a ≥,求得函数()y f x =在区间[]1,1a +上的最大值和最小值,由题意可得出()()max min 4f x f x -≤,可得出关于实数a 的不等式,进而可求得实数a 的取值范围. 【详解】二次函数()225f x x ax =-+的图象开口向上,对称轴为直线x a =,由于函数()225f x x ax =-+在(],2-∞上是减函数,则2a ≥,则()1,1a a ∈+,所以,函数()y f x =在区间[)1,a 上单调递减,在区间(],1a a +上单调递增, 所以,()()2min 5f x f a a ==-,又()162f a =-,()216f a a +=-,则()()()211220f f a a a a a -+=-=-≥,()()max 162f x f a ∴==-,对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则()()()()22max min 625214f x f x a a a a -=---=-+≤,即2230a a --≤,解得13a -≤≤, 又2a ≥,则23a ≤≤,因此,实数a 的取值范围是[]2,3.故答案为:[]2,3. 【点睛】本题考查利用不等式恒成立求参数值,同时也考查了利用二次函数在区间上的单调性求参数,考查计算能力,属于中等题.18.【分析】用2-x 换上f (x )+2f (2-x )=x①中的x 得到f (2-x )+2f (x )=2-x②这样①②联立即可解出f (x )【详解】由题意因为f (x )+2f (2-x )=x①;∴f (2-x )+2f (x )解析:()4f x x 3=- 【分析】用2-x 换上f (x )+2f (2-x )=x①中的x 得到,f (2-x )+2f (x )=2-x②,这样①②联立即可解出f (x ). 【详解】由题意,因为f (x )+2f (2-x )=x①; ∴f (2-x )+2f (x )=2-x②; ①②联立解得()43f x x =-. 故答案为()43f x x =-. 【点睛】本题主要考查了函数的解析式的求解,其中解答中根据题意,联立方程组求解是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档试题.19.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】 若AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可【详解】 由题,因为AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,当0x ≥时,ax x a =+,则1a x a =-, 当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a aa =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1- 【点睛】本题考查由交集结果求参数范围,考查分类讨论思想和转化思想20.【分析】根据子集的定义将表示为求出即可求解【详解】的第25个子集是故答案为:【点睛】本题考查新定义的理解认真审题领会题意是关键属于中档题 解析:{}145,,a a a【分析】根据子集的定义将25表示为1211125222m i i i ---=++⋅⋅⋅+,求出12,m i i i ,即可求解【详解】03411415125222222---=++=++,1231,4,5i i i ===,M 的第25个子集是{}145,,a a a ,故答案为:{}145,,a a a . 【点睛】本题考查新定义的理解,认真审题,领会题意是关键,属于中档题.三、解答题21.(Ⅰ)300600x ≤≤;(Ⅱ)400吨. 【分析】(1)根据已知可得答案;(2)根据已知可得每吨平均处理成本()()1400001003006004f x y x x x x ==+-≤≤,然后利用基本不等式可得答案.【详解】(1)300600x ≤≤(2)依题意,每吨平均处理成本()()1400001003006004f x y x x x x==+-≤≤元,因为1400002004x x +≥=, 当且仅当1400004x x=即400x =时,等号成立 所以200100100y ≥-=,所以该厂每月处理量垃圾为400吨时,每吨平均处理成本最低为100元. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.(1)(0)0f =,[](1)1f f =-,(2)2()2f x x x =+,(3)(1,0)- 【分析】(1)根据题意,由函数的解析式,将0x =代入函数解析式即可求得(0)f 的值,同理可得(1)f 的值,利用函数的奇偶性分析可得[](1)f f 的值;(2)设0x <,则0x ->,则函数的解析式分析得()f x -的解析式,进而由函数的奇偶性分析可得答案;(3)若方程()0f x m -=有四个不同的实数根,则函数()y f x =与直线y m =有4个交点,作出函数()y f x =的图像,由数形结合分析即可得答案 【详解】解:(1)由题意得,2(0)0200f =-⨯=,2(1)1211f =-⨯=-,因为函数()f x 是定义在是R 上的偶函数, 所以(1)(1)1f f =-=-, 所以 [](1)(1)1f f f =-=-, (2)令0x <,则0x ->,则有22()()2()2f x x x x x -=---=+, 因为函数()f x 是定义在是R 上的偶函数, 所以2()()2f x f x x x =-=+, 所以当0x <时,2()2f x x x =+,(3)若方程()0f x m -=有四个不同的实数根,则函数()y f x =与直线y m =有4个交点,函数()y f x =的图像如图所示, 由图像可得10m -<< 所以实数m 的取值范围为(1,0)-【点睛】关键点点睛:此题考查函数奇偶性的应用,考查函数与方程的应用,解题的关键是把方程()0f x m -=有四个不同的实数根,等价转化为函数()y f x =与直线y m =有4个交点,然后作出函数图像,利用数形结合的思想求解即可,考查转化思想,属于中档题 23.(1)()2x f x =;(2)[2,0]-;(3)17,12⎛⎤-∞- ⎥⎝⎦. 【分析】(1)根据(2)(1)6f f +=求解出a 的值,即可求解出()f x 的解析式;(2)采用换元法构造函数2(),[1,2]F t t t t =-∈,将m 的取值范围与()F t 的最值联系在一起,由此求解出结果;(3)先根据函数的奇偶性求解出()(),h x g x 的解析式,然后采用分离参数法得到1222222x x x x a --⎡⎤≤--+⎢⎥-⎣⎦,采用换元法求解出1222222xx x x --⎡⎤--+⎢⎥-⎣⎦的最大值,从而求解出a 的取值范围.【详解】(1)因为(2)(1)6f f +=,所以260,2a a a +-==或3a =-(舍去),所以()2x f x =;(2)由(1)知,()2x f x =,所以()222222x x x xm =-=-,令2,[1,2]xt t =∈,令2(),[1,2]F t t t t =-∈,所以()F t 的对称轴为12t =,且()F t 为开口向下的二次函数,所以()F t 在[]1,2上单调递减,所以()()ma min x (2)2,(1)0F t F F t F -====,所以m 的取值范围为[2,0]-; (3)因为()g x 为奇函数,()h x 为偶函数,所以()(),()()g x g x h x h x -=--=.由题()()()f x g x h x =+知,2()()2()()x x g x h x g x h x -⎧=+⎨=-+-⎩,即2()()2()()x x g x h x g x h x -⎧=+⎨=-+⎩解得2222(),()22x x x xh x g x --+-==将上式代入2()(2)0ag x h x +≤,得()()221222202x xxx a ---++≤, 易知()22222212211222222222222x xx xx x xx x x x x a -------++⎡⎤≤-⋅=-⋅=--+⎢⎥---⎣⎦. 令12,[1,2]2x xt x =-∈,则315,24t ⎡⎤=⎢⎥⎣⎦,122a t t ⎛⎫≤-+ ⎪⎝⎭, 因为存在[1,2]x ∈使得2()(2)0ag x h x +≤,所以max 12132173222122a t t ⎛⎫ ⎪⎡⎤⎛⎫≤-+=-+=- ⎪ ⎪⎢⎥⎝⎭⎣⎦ ⎪⎝⎭所以a 的取值范围是17,12⎛⎤-∞- ⎥⎝⎦. 【点睛】方法点睛:不等式在指定区间上有解或恒成立求解参数范围问题的处理方法: (1)分类讨论法:根据参数的临界值作分类讨论;(2)分离参数法:将自变量和参数分离开来,自变量部分构造新函数,分析新函数的最值与参数的关系. 24.(1)53-;(2)172. 【分析】(1)直接利用根式与分数指数幂的运算法则求解即可,化简过程注意避免出现符号错误;(2)直接利用对数的运算法则求解即可,解答过程注意避免出现计算错误. 【详解】(1)原式()()1134340.321-⎡⎤=-+⎣⎦150.32143-=-+-=-.(2)原式32ln 2322log 2515lg 4lg lg 1621828log 4e ⎛⎫=+++=-+⨯+ ⎪⎝⎭ 172=. 【点晴】本题主要考查函数的定义域、指数幂的运算,属于中档题. 指数幂运算的四个原则:(1)有括号的先算括号里的,无括号的先做指数运算;(2)先乘除后加减,负指数幂化成正指数幂的倒数;(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数;(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答(化简过程中一定要注意等价性,特别注意开偶次方根时函数的定义域)25.(1)证明见解析;(2)()f x 在[)1,2上单调递减,在72,2⎡⎤⎢⎥⎣⎦上单调递增,最小值4,最大值5.【分析】(1)任取1x 、()20,2x ∈且12x x <,作差()()12f x f x -、因式分解,判断()()12f x f x -的符号,进而可证得结论成立;(2)同(1)可证函数()f x 在区间()2,+∞上为增函数,由此可判断出函数()f x 在71,2⎡⎤⎢⎥⎣⎦上的单调性,并由此可求得函数()f x 在71,2⎡⎤⎢⎥⎣⎦上的最大值和最小值. 【详解】(1)证明:任取1x 、()20,2x ∈且12x x <,则()()()()()121212121212121244444x x x x f x f x x x x x x x x x x x --⎛⎫⎛⎫⎛⎫-=+-+=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 1202x x <<<,120x x ∴-<,1204x x <<,1240x x ∴-<,()()()()1212121240x x x x f x f x x x --∴-=>,即()()12f x f x >,因此,函数()4f x x x=+在()0,2上单调递减; (2)由(1)可知,()f x 在()0,2上单调递减,同理(1)可证()f x 在()2,+∞上单调递增, 当71,2x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 在[)1,2上为减函数,在72,2⎛⎤ ⎥⎝⎦上为增函数, 故当2x =时,()f x 取最小值4,又()15f =,765214f ⎛⎫=⎪⎝⎭且65514>,故当1x =时,()f x 取最大值5. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号;(4)下结论:判断,根据定义得出结论.即取值→作差→变形→定号→下结论.26.(1)5;(2){3a a ≤-或}1a =-.【分析】(1)求得集合A ,由题意可得2B ∈,可求得a 的值,再验证{}2AB =-是否满足,由此可求得实数a 的值;(2)由题意可得B A ⊆,分B =∅、{}2B =-、{}2B =、2,2B 四种情况讨论,求得实数a 的值,并检验A B ⊆是否成立,由此可求得实数a 的取值范围.【详解】(1){}{}2402,2A x x =-==-,因为{}2A B =-,所以2B -∈,所以()244150a a -++-=,整理得2450a a --=,解得1a =-或5a =.当1a =-时,{}{}2402,2B x x =-==-,不满足{}2A B =-; 当5a =时,{}{}2122002,10B x xx =++==--,满足{}2A B =-; 故5a =; (2)由题意,知{}2,2A =-,由A B A ⋃=,得B A ⊆.①当集合B =∅时,关于x 的方程()222150x a x a +++-=没有实数根, 所以()()2241458240a a a ∆=+--=+<,即30a +<,解得3a <-; ②当集合{}2B =-时,()242145a a ⎧-=-+⎨=-⎩,无解; ③当集合{}2B =时,()242145a a ⎧=-+⎨=-⎩,解得3a =-, ④当2,2B 时,21054a a +=⎧⎨-=-⎩,解得1a =- 综上,可知实数a 的取值范围为{3a a ≤-或}1a =-.【点睛】本题考查交集的计算,同时也考查了利用集合的包含关系求参数,考查分类讨论思想的应用与运算求解能力,属于中等题.。

2021-2022高中数学必修一期末模拟试卷(及答案)

2021-2022高中数学必修一期末模拟试卷(及答案)

一、选择题1.定义在R 上的奇函数f (x )满足条件(1)(1)f x f x +=-,当x ∈[0,1]时,f (x )=x ,若函数g (x )=()f x -a e -在区间2018,[]2018-上有4 032个零点,则实数a 的取值范围是 A .(0,1) B .(e ,e 3) C .(e ,e 2)D .(1,e 3)2.已知定义在R 上的函数()2ln ,1,1x x f x x x x >⎧⎪=⎨-⎪⎩,若函数()()k x f x ax =-恰有2个零点,则实数a 的取值范围是( ) A .()1,11,0e ⎛-⎫⎪⎝⎭B .()1,1,1e ⎛⎫-∞- ⎪⎝⎭C .(){}1,1,10e ⎛⎫-∞- ⎪⎝⎭D .(){}11,00,1e ⎛⎫- ⎪⎝⎭3.已知定义域为R 上的函数()f x 既是奇函数又是周期为3的周期函数,当30,2x ⎛⎫∈ ⎪⎝⎭时,()sin f x x π=,则函数()f x 在区间[0,6]上的零点个数是( ) A .3B .5C .7D .9 4.设()|lg |f x x =,且0a b c <<<时,有()()()f a f c f b >>,则( ) A .(1)(1)0a c --> B .1ac >C .1ac =D .01ac <<5.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数2y x =,x ∈[1,2]与函数.2y x =,[]2,1x ∈--即为同族函数,下面函数解析式中也能够被用来构造“同族函数”的是( ) A .y =xB .1y x x=+ C . 22x x y -=- D .y =log 0.5x 6.如果函数(0,1)x y a a a =>≠的反函数是增函数,那么函数log (1)a y x =-+的图象大致是( )A .B .C .D .7.已知,a t 为正实数,函数()22f x x x a =-+,且对任意[]0,x t ∈,都有()f x a ≤成立.若对每一个正实数a ,记t 的最大值为()g a ,若函数()g a 的值域记为B ,则下列关系正确的是( ) A .2B ∈B .12B ∉C .3B ∈D .13B ∉8.已知53()1f x ax bx =++且(5)7,f =则(5)f -的值是( ) A .5-B .7-C .5D .79.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( ) A .)1,4⎡+∞⎢⎣B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦10.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-211.已知{}lg M y y x ==,{}xN y y a ==,则MN =( )A .0,B .RC .∅D .,012.已知全集U =R ,集合91A xx ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个二、填空题13.若关于x 的方程()4230x x f x k k =-⋅++=只有一个实数解,则实数k 的取值范围是______.14.若关于x 的方程1xa k -=(0a >且1a ≠)恰有两个解,则k 的取值范围是______.15.已知a b c 、、是不为1的正数,且0lga lgb lgc ++=,则 111111lgb lgc lgc lga lga lgba b c+++⨯⨯的值为_____16.设函数123910()lg 10x x x x x af x +++++=,其中a 为实数,如果当(,1]x ∈-∞时()f x 有意义,则a 的取值范围是________.17.若函数()12423xx f x m m +=-⋅+-,在其定义域R 内存在实数x ,满足()()f x f x -=-,则整数m 的取值集合是________.18.设集合10,2A ⎡⎫=⎪⎢⎣⎭,1,12B ⎡⎤=⎢⎥⎣⎦,函数()()1,221,x x A f x x x B⎧+∈⎪=⎨⎪-∈⎩,若()()0f f x A ∈,则0x 的取值范围是__________.19.已知集合{}2|20A x x x x R =--<∈,,集合{}|21B x x x R =-∈≥,,则A B =________.20.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号)三、解答题21.某地为开拓当地的一种农产品销售市场,将该农产品进行网上销售.该地统计了一个月的网上销售情况,在30天内每斤的交易价格P (元)与时间t (天)组成有序数对(),t P ,点(),t P 恰好落在如图中的两条线段上;该农产品在30天内(包括第30天)的日交易量Q (万斤)与时间t (天)满足30Q at =+,且已知第十天的交易量为20万斤. (1)根据提供的图象,写出该农产品每斤交易价格P (元)与时间t (天)所满足的函数关系式;(2)用y (万元)表示该农产品日交易额(日交易额=每斤交易价格×日交易量),求y 关于t 的函数关系式,并求这30天中第几天的日交易额最大,最大值为多少? 22.函数()f x 是定义在R 上的奇函数,当0x >时,()241f x x x =-+.(1)求函数()f x 的解析式:(2)根据解析式在图画出()f x 图象. (3)讨论函数()()g x f x m =-零点的个数. 23.已知函数()2log f x x =,()241g x ax x =-+.(1)若函数()()y f g x =的值域为R ,求实数a 的取值范围;(2)函数22()()()h x f x f x =-,若对于任意的1,22x ⎡∈⎤⎢⎥⎣⎦,都存在[]1,1t ∈-使得不等式()22t h x k >⋅-成立,求实数k 的取值范围. 24.(1)已知12x y +=,9xy =,且x y <,求11221122x y x y-+值;(2)求值:2(lg 2)lg5lg 20+⋅.25.已知定义在R 上的函数()f x 的单调递增函数,且对∀x ,y ∈R ,都有()()()1f x y f x f y +=++,f (2)=5.(1)求f (0),f (1)的值;(2)若对11,32x ⎡⎤∈⎢⎥⎣⎦∀,都有2()(21)1f kx f x +-<成立,求实数k 的取值范围.26.已知集合{|14}A x x =<<,集合{|21}B x m x m =<<- (1)当1m =-时,求A B ,()R A B ⋂;(2)若AB =∅,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据满足条件(1)(1)f x f x +=-且为奇函数,可周期为4,当[0,1]x ∈时,()f x x =,根据()()m x f x =与()xn x ae -=图像,判断在一个周期内的焦点情况即可求解.【详解】因为()f x 满足条件(1)(1)f x f x +=-且为奇函数, 函数()(2)()f x f x f x =-=--,∴()f x 周期为4, ∵当[0,1]x ∈时,()f x x =,作()()m x f x =与()xn x ae -=图像,函数()()xg x f x ae-=-在区间2018,[]2018-上有4032个零点,即()()m x f x =与()xn x ae -=在[0,4]且仅有两个交点,∴(1)(1)(3)(3)m n m n <⎧⎨>⎩即3e a e <<.点睛:本题主要考查了函数的基本性质的应用及不等式的求解,周期的求解等知识点应用,其中正确合理运用函数的基本性质是解答关键,着重考查了分析问题和解答问题的能力.2.C解析:C 【分析】把函数交点有两个零点转化为函数图象与直线有两个交点,作出对应函数图象和直线,利用导数求出相应切线的斜率,由图象观察出a 的范围. 【详解】()0f x ax -=()f x ax ⇒=,所以函数()y f x =的图象与直线y ax =有两个交点,作出函数()2ln ,1,1x x f x x x x >⎧⎪=⎨-≤⎪⎩的图象,如下图,由()ln f x x =得1()f x x'=,设直线y ax =与()ln f x x =图象切点为00(,)P x y ,则00000ln 1y x a x x x ===,0x e =,所以011a x e ==. 由2()f x x x =-得()12f x x '=-,(0)1f '=,y ax =与2yx x 在原点相切时,1a =,由2()f x x x =-得()21f x x '=-,(0)1f '=-,y ax =与2yx x 在原点相切时,1a =-,所以直线y x =,y x =-,1ey x =与曲线()f x 相切, 由直线y ax =与曲线()y f x =的位置关系可得: 当(){}1,1,10e a ⎛⎫∈-∞- ⎪⎝⎭时有两个交点,即函数()y k x =恰有两个零点.故选:C . 【点睛】本题考查函数零点个数问题,解题方法是把函数零点转化为方程的解的个数,再转化为函数图象与直线交点个数,作出函数图象与直线通过数形结合思想求解.3.D解析:D 【分析】 根据当30,2x ⎛⎫∈ ⎪⎝⎭时,()sin f x x π=,令()0f x =,求得根,再结合奇函数,求出一个周期33,22⎡⎤-⎢⎥⎣⎦上的零点,然后根据周期性得到区间[0,6]上的零点即可. 【详解】 因为当30,2x ⎛⎫∈ ⎪⎝⎭时,()sin f x x π=, 令()0f x =, 解得1x =,又因为()f x 是以3为周期的周期函数, 所以 (3)()f x f x +=, 有 33()()22f f -= ,又因为函数()f x 是定义在R 上的奇函数, 所以333()()()222f f f -==-, 所以3()02f =, 所以在区间 33,22⎡⎤-⎢⎥⎣⎦上有 33(1)(1)()()022f f f f -==-== ,且(0)0f =,因为()f x 是以3为周期的周期函数,所以方程()0f x =在区间[0,6]上的零点是:0,1,32,2,3,4,92,5,6,共9个, 故选:D 【点睛】本题主要考查函数的周期性和奇偶性的综合应用,还考查了逻辑推理的能力,属于中档题.4.D解析:D 【分析】作出()f x 的图象,利用数形结合即可得到结论. 【详解】∵函数()|lg |f x x =,作出()f x 的图象如图所示,∵0a b c <<<时,有()()()f a f c f b >>,∴0<a <1,c >1,即f (a )=|lga |=﹣lga ,f (c )=|lgc |=lgc ,∵f (a )>f (c ),∴﹣lga >lgc ,则lga +lgc =lgac <0,则01ac <<. 故选:D .【点睛】关键点点睛:利用对数函数的图象和性质,根据条件确定a ,c 的取值范围.5.B解析:B 【分析】由题意,能够被用来构造“同族函数”的函数必须满足在其定义域上不单调,由此判断各个函数在其定义域上的单调性即可. 【详解】对A :y x =在定义域R 上单调递增,不能构造“同族函数”,故A 选项不正确;对B :1y x x=+在(),1-∞-递增,在()1,0-递减,在()0,1递减,在()1,+∞递增,能构造“同族函数”,故B 选项正确; 对C :22xxy -=-在定义域上递增,不能构造“同族函数”,故C 选项不正确; 对D :0.5log y x =在定义域上递减,不能构造“同族函数”,故D 选项不正确. 故选:B. 【点睛】本题给出“同族函数”的定义,要求我们判断几个函数能否被用来构造“同族函数”,考查基本初等函数的单调性的知识点,属于基础题.6.C解析:C 【分析】由题意求得1a >,再结合对数函数的图象与性质,合理排除,即可求解. 【详解】因为函数(0,1)xy a a a =>≠的反函数是增函数,可得函数xy a =为增函数,所以1a >, 所以函数log (1)a y x =-+为减函数,可排除B 、D ; 又由当0x =时,log (01)0a y =-+=,排除A. 故选:C.【点睛】本题主要考查了指数函数和对数函数的图象与性质的应用,其中解答中熟记指数函数和对数函数的图象与性质,以及指数函数与对数的关系是解答的关键,着重考查推理与运算能力.7.A解析:A 【分析】根据函数的特征,要对t 进行分类讨论,求出t 的最大值,再根据a 是正实数,求出()g a 的值域即可判断答案. 【详解】 解:2()2f x x x a =-+∴函数()f x 的图象开口向上,对称轴为1x =①01t <时,()f x 在[0,]t 上为减函数,()(0)max f x f a ==,2()()2min f x f t t t a ==-+ 对任意的[0x ∈,]t ,都有()[f x a ∈-,]a . 22a t t a ∴-≤-+,即2220t t a -+≥,当()()22424120a a ∆=--⨯=-≤,即12a ≥时,01t <,当()()22424120a a ∆=--⨯=->,即102a <<时,11t ≤ ②1t >时,()f x 在[0,1]上为减函数,在[1,]t 上为增函数,则()()11min f x f a a ==-≥-,2(){(0),()}{,2}max f x max f f t max a t t a a ==-+≤,12a ∴≥,且22t t a a -+,即12t < t 的最大值为()g a综上可得,当12a ≥时(]0,2t ∈ 当102a <<时,()0,1t ∈ ∴函数()g a 的值域为(]0,2故选:A . 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.8.A解析:A 【解析】()()53531,1f x ax bx f x ax bx =++∴-=--+,()()()()2,552f x f x f f +-=∴+-=,()5275f -=-=-,故选A. 9.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.10.D解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1};当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.11.A解析:A 【解析】 【分析】先化简集合M ,N ,再计算M ∩N 即可. 【详解】由已知易得M =R ,N ={y ∈R|y >0},∴M ∩N =(0,+∞). 故选A . 【点睛】本题主要考查了集合的交运算,化简计算即可,比较简单.12.B解析:B 【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果. 【详解】因为91(0,9)A x x ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---,所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B 【点睛】本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题.二、填空题13.【分析】换元令再根据二次函数在区间上只有一个实数解求解即可【详解】令则在区间上只有一个实数解故=0在上有两个等根或有一个正根和一个负根①故②故实数的取值范围是故答案为:【点睛】本题主要考查了根据根的 解析:(,3){6}-∞-⋃【分析】换元令2x t =,()0,t ∈+∞,再根据二次函数2()30g t t k t k =-⋅++=在区间()0,t ∈+∞上只有一个实数解求解即可. 【详解】令2x t =,()0,t ∈+∞,则2()30g t t k t k =-⋅++=在区间()0,t ∈+∞上只有一个实数解. 故2()3g t t k t k =-⋅++=0在()0,t ∈+∞上有两个等根或有一个正根和一个负根. ①()()()()2430620002k kk k k k ⎧--+=⎧-+=⎪⇒⎨⎨->->⎩⎪⎩ .故6k = ②(0)303g k k =+<⇒<-故实数k 的取值范围是(,3){6}-∞-⋃故答案为:(,3){6}-∞-⋃【点睛】本题主要考查了根据根的分布求解参数范围的问题.需要根据题意换元再分两种情况讨论.属于中档题.14.【分析】根据函数与方程之间的关系转化为函数图象交点个数问题结合指数函数的性质利用数形结合进行求解即可【详解】解:不妨设则作出函数的图象如图:要使方程(且)恰有两个解则即实数k 的取值范围是故答案为:【 解析:0,1【分析】根据函数与方程之间的关系,转化为函数图象交点个数问题,结合指数函数的性质,利用数形结合进行求解即可.【详解】解:不妨设1a >,则1,0()11,0x xx a x f x a a x ⎧-≥=-=⎨-+<⎩, 作出函数()f x 的图象如图:要使方程|1|xa k -=(0a >且1a ≠)恰有两个解,则01k <<,即实数k 的取值范围是()0,1,故答案为:()0,1【点睛】本题主要考查函数与方程的应用,利用指数函数的性质转化为两个函数的交点个数问题,利用数形结合是解决本题的关键.15.【分析】根据对数运算公式可以将转化得到的等量关系将此等量关系代入所求式子即可解决【详解】由可得故答案为:【点睛】本题考查对数的运算对数恒等式属于基础题 解析:11000【分析】根据对数运算公式,可以将0lga lgb lgc ++=转化,得到a ,b ,c 的等量关系,将此等量关系代入所求式子即可解决.【详解】由0lga lgb lgc ++=, 可得1bc a =,1ab c =,1ac b =, 111111111()()()lgb lgc lgc lga lga lgb lgb lga lgc a bc ac bc ab +++∴⨯⨯=. 11110101011111010101000b ac log log log b a c ==⨯⨯= 故答案为:11000【点睛】 本题考查对数的运算,对数恒等式,属于基础题.16.【分析】由题意可得对任意的恒成立分离变量后利用函数的单调性求得在上的范围即可得解【详解】根据题意对任意的恒成立即恒成立则因为函数在上为增函数所以故答案为:【点睛】本题考查对数函数的定义域指数函数的单 解析:[ 4.5,)-+∞【分析】由题意可得对任意的(,1]x ∈-∞,10210x x a ⋅+⋯++>恒成立,分离变量a 后利用函数的单调性求得981()101010x x xg x ⎛⎫⎛⎫⎛⎫=---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在(,1]x ∈-∞上的范围,即可得解. 【详解】根据题意对任意的(,1]x ∈-∞,123910010x x x x x a +++++>恒成立, 即10210x x a ⋅+⋯++>恒成立,则981101010x x xa ⎛⎫⎛⎫⎛⎫>---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为函数981()101010x x xg x ⎛⎫⎛⎫⎛⎫=---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在(,1]x ∈-∞上为增函数, 所以111981 4.5101010a ⎛⎫⎛⎫⎛⎫---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:[ 4.5,)-+∞【点睛】本题考查对数函数的定义域,指数函数的单调性,不等式恒成立问题,属于基础题. 17.【分析】将已知等式转化为方程有解问题利用换元法和二次函数的性质列出不等式组解出整数m 的取值集合【详解】根据题意函数其定义域为R 则有若在其定义域R 内存在实数x 满足即方程在R 上有解该方程变形可得令原问题解析:{|1m m -≤≤【分析】将已知等式转化为方程有解问题,利用换元法和二次函数的性质列出不等式组,解出整数m 的取值集合.【详解】根据题意,函数()1224234223x x x x f x m m m m +=-⋅+-=-⋅+-,其定义域为R , 则有()24223x x f x m m ---=-⋅+-,若在其定义域R 内存在实数x ,满足()()f x f x -=-,即方程()2242234223x x x x m m m m ---⋅+-=--⋅+-在R 上有解,该方程变形可得()244222260x x x x m m --+-++-=,令222x x t -+=≥,原问题转化为()222280F t t mt m =-+-=在[)2,+∞有解,则必有()20F ≤或()22(2)0244280F m m m ⎧>⎪⎪>⎨⎪∆=--≥⎪⎩,解得:1m ≤m的取值集合为{|1m m -≤≤,故答案为:{|1m m -≤≤.【点睛】关键点点睛:本题考查方程有解问题,考查二次函数的性质,考查换元法的应用,解决本题的关键点是将定义域R 内存在实数x ,满足()()f x f x -=-,转化为方程有解问题,化简并利用换元法,结合二次函数图象和性质,列出不等式组求出参数范围,考查学生计算能力,属于中档题.18.【分析】采用换元法令分别在和两种情况下求得的范围进而继续通过讨论和来求得结果【详解】令则①若则解得:不满足舍去;②若则解得:即若则解得:;若则解得:综上所述:的取值范围为故答案为:【点睛】思路点睛: 解析:15,48⎛⎫ ⎪⎝⎭【分析】采用换元法,令()0f x t =,分别在t A ∈和t B ∈两种情况下求得t 的范围,进而继续通过讨论0x A ∈和0x B ∈来求得结果.【详解】令()0f x t =,则()f t A ∈.①若t A ∈,则()12f t t =+,11022t ∴≤+<,解得:102t -≤<,不满足t A ∈,舍去;②若t B ∈,则()()21f t t =-,()10212t ∴≤-<,解得:314t <≤,即()0314f x <≤, 若0x A ∈,则()0012f x x =+,031142x ∴<+≤,解得:01142x <≤,011,42x ⎛⎫∴∈ ⎪⎝⎭; 若0x B ∈,则()()0021f x x =-,()032114x ∴<-≤,解得:01528x ≤<,015,28x ⎡⎫∴∈⎪⎢⎣⎭. 综上所述:0x 的取值范围为15,48⎛⎫⎪⎝⎭. 故答案为:15,48⎛⎫⎪⎝⎭. 【点睛】思路点睛:求解复合函数()()f g x 类型的不等式或方程类问题时,通常采用换元法,令()g x t =,通过求解不等式或方程得到t 满足的条件,进一步继续求解x 所满足的条件. 19.【分析】先解一元二次不等式得集合A 再解含绝对值不等式得集合B 最后求交集得结果【详解】因为所以故答案为:【点睛】本题考查解一元二次不等式解含绝对值不等式以及集合交集考查基本分析求解能力属基础题解析:(]1,1-【分析】先解一元二次不等式得集合A ,再解含绝对值不等式得集合B,最后求交集得结果.【详解】因为{}2|20(1,2)A x x x x R =--<∈=-,,{}|21(,1][3,)B x x x R =-∈=-∞+∞≥,, 所以A B =(]1,1-故答案为:(]1,1-【点睛】本题考查解一元二次不等式、解含绝对值不等式以及集合交集,考查基本分析求解能力,属基础题.20.①③④【分析】根据已知中复活集的定义结合韦达定理以及反证法依次判断四个结论的正误进而可得答案【详解】对于①故①正确;对于②不妨设则由韦达定理知是一元二次方程的两个根由可得或故②错;对于③不妨设中由得解析:①③④【分析】根据已知中“复活集”的定义,结合韦达定理以及反证法,依次判断四个结论的正误,进而可得答案.【详解】对于①, 111112222----+-⋅=+=-,故①正确; 对于②,不妨设1212a a a a t +==,则由韦达定理知12,a a 是一元二次方程20x tx t -+=的两个根,由>0∆,可得0t <或4t >,故②错;对于③,不妨设A 中123n a a a a <<<<, 由1212n n n a a a a a a na =+++<得121n a a a n -<, 当2n =时,即有12a <,∴11a =,于是221a a +=,2a 无解,即不存在满足条件的“复活集”A ,故③正确; 对于④,当3n =时,123a a <,故只能11a =,22a =,求得33a =,于是“复活集” A 只有一个,为{}1,2,3,当4n ≥时,由()1211231n a a a n -≥⨯⨯⨯⨯-,即有()1!n n >-,也就是说“复活集”A 存在的必要条件是()1!n n >-,事实上()()()()221!1232222n n n n n n n -≥--=-+=--+>,矛盾, ∴当4n ≥时不存在“复活集”A ,故④正确.故答案为:①③④【点睛】本题主要考查了集合新定义,需理解“复活集”的定义,考查了学生的知识迁移能力以及分析问题的能力,属于中档题.三、解答题21.(1)12,020518,203010t t P t t ⎧+<<⎪⎪=⎨⎪-+≤≤⎪⎩;(2)()()1230,02051830,203010t t t y t t t ⎧⎛⎫+-+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-+≤≤ ⎪⎪⎝⎭⎩,这30天中第10天的日交易额最大,最大值为80万元.【分析】(1)设出分段函数,利用图象,建立方程组求解.(2)先确定y 关于t 的函数解析式,再利用二次函数的性质求解.【详解】(1)当020t <<时,设P kt b =+,将()()0,2,20,6带入上式,,得2620b k b =⎧⎨=+⎩, 解得215b k =⎧⎪⎨=⎪⎩, 所以()120205P t t =+<<, 当2030t ≤≤时,同理可求1810P t =-+, 所以12,020518,203010t t P t t ⎧+<<⎪⎪=⎨⎪-+≤≤⎪⎩; (2)由30Q at =+,当10t =时,20Q =,故得1a =-,所以30Q t =-+, 因为()()1230,02051830,203010t t t y PQ t t t ⎧⎛⎫+-+<< ⎪⎪⎪⎝⎭==⎨⎛⎫⎪-+-+≤≤ ⎪⎪⎝⎭⎩ 当020t <<时,当10t =时,y 取得最大值80;当2030t ≤≤时,当20t =时,y 取得最大值60;所以,这30天中第10天的日交易额最大,最大值为80万元.【点睛】方法点睛:(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.22.(1)()2241,00,041,0x x x f x x x x x ⎧---<⎪==⎨⎪-+>⎩;(2)答案见解析;(3)答案见解析.【分析】(1)当0x <时,0x ->,运用已知区间的解析式和奇函数的定义结合()00f =,即可求解;(2)根据(1)中的解析式作出图象即可;(3)()()g x f x m =-零点的个数即等价于()y f x =与y m =两个函数图象交点的个数,数形结合讨论m 的值即可.【详解】(1)当0x =时,()00f =,当0x <时,0x ->,()241f x x x -=++,因为()f x 时奇函数,所以()()f x f x -=-,所以()()241f x x x f x -=++=-,即()()2410f x x x x =---<,所以()2241,00,041,0x x x f x x x x x ⎧---<⎪==⎨⎪-+>⎩(2)()f x 图象如图所示:(3)由()f x 图象知:()23f -=,()23f =-,①当3m <-或3m >时,()y f x =与y m =两个函数图象有1个交点,函数 ()()g x f x m =-有1个零点;②当3m =±时,()y f x =与y m =两个函数图象有2个交点,函数()()g x f x m =-有2个零点;③当31m -<≤-或13m ≤<时,()y f x =与y m =两个函数图象有3个交点,函数 ()()g x f x m =-有3个零点;④当11m -<<且0m ≠时,()y f x =与y m =两个函数图象有4个交点,函数 ()()g x f x m =-有4个零点;⑤当0m =时,()y f x =与y m =两个函数图象有5个交点,函数()()g x f x m =-有5个零点;综上所述:当3m <-或3m >时,()g x 有1个零点;当3m =±时,,()g x 有2个零点;当31m -<≤-或13m ≤<时,()g x 有3个零点;当11m -<<且0m ≠时,()g x 有4个零点;当0m = 时,()g x 有5个零点;【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点;(2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.23.(1)[]0,4a ∈;(2)2k <.【分析】(1)由()2log f x x =,()()y f g x =的值域为R ,知()g x 值域应为小于等于0的数直至正无穷,分类讨论参数a 的正负,再结合二次函数值域与判别式的关系即可求解; (2)对恒成立问题与存在性问题转化得()22t min k h x ⋅<+在[]1,1t ∈-有解,求得()min h x ,再结合函数单调性即可求解【详解】(1)0a <时,内函数有最大值,故函数值不可能取到全体正数,不符合题意;当0a =时,内函数是一次函数,内层函数值可以取遍全体正数,值域是R ,符合题意; 当0a >时,要使内函数的函数值可以取遍全体正数,只需要函数最小值小于等于0, 故只需0≥,解得(]0,4a ∈.综上得[]0,4a ∈;2()由题意可得2222()222t k h x log x log x ⋅<+=-+在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立, 则()221t min k h x ⋅<+=在[]1,1t ∈-有解, 即1<2t k 在[]1,1t ∈-有解, 122t maxk ⎛⎫∴<= ⎪⎝⎭,综上,实数k 的取值范围2k <. 【点睛】关键点睛:本题考查由对数型复合函数的值域求解参数取值范围,由恒成立与存在性问题建立的不等式求解参数取值范围,解题关在在于:(1)()()()log a f x g x =值域为R ,()g x 值域范围的判断;(2)全称命题与存在性命题逻辑关系的理解与正确转化.24.(1)2)1. 【分析】(1)求出x y -的值,再化简11221122x y x y -+即得解;(2)利用对数的运算法则化简求解.【详解】(1)因为222()()41249108x y x y xy -=+-=-⨯=,又x y <,所以x y -=-所以1111222221122()3x yx y x y x y --====--+. (2)原式22(lg 2)lg5(1lg 2)(lg 2)lg5lg 2lg5=+⋅+=+⋅+lg2(lg2lg5)lg5lg2lg51=++=+=.【点睛】关键点点睛:解答指数对数运算题的关键是通过观察式子的特点,再熟练利用指数对数的运算法则和性质求解.25.(1)(0)1f =-;()12f =;(2)4k <.【分析】(1)令0x y ==可得(0)f ,令1x y ==可得()1f ;(2)转化条件为222k x x <-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立,换元后求得222x x -的最小值即可得解.【详解】(1)令0x y ==,则(0)(0)(0)1f f f =++,所以(0)1f =-;令1x y ==,则(2)(1)(1)15f f f =++=,所以()12f =;(2)由题意,不等式2()(21)1f kx f x +-<可转化为2()(21)12f kx f x +-+<, 所以()()2211f kx x f +-<, 因为函数()f x 单调递增,所以2211kx x +-<, 所以222k x x <-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立, 令[]12,3t x =∈,则221122222t t t ⎛⎫-=-- ⎪⎝⎭, 所以当2t =即12x =时,222t t -取最小值4, 所以4k <.【点睛】 关键点点睛:解决本题的关键是利用函数的单调性转化不等式为222k x x<-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立,再转化为求222x x -的最小值即可得解. 26.(1){|24}A B x x ⋃=-<<,()=R A B {|21}x x -<≤;(2)0m ≥. 【分析】(1)当1m =-时,求集合B ,再求集合的交并补集;(2)讨论B =∅ 和B ≠∅两种情况讨论当AB =∅时,求参数的取值范围. 【详解】(1)1m =-时,{|22}Bx x ,{|24}A B x x ⋃=-<<, {1R A x x =≤或4}x ≥,{|21}R A B x x ⋂=-<≤() (2)由A B =∅,当B =∅时,21m m ,解得:13m ≥ 当B ≠∅时,2111m m m <-⎧⎨-≤⎩,解得:103m ≤< 或2124m m m <-⎧⎨≥⎩,无解m综上可得:0【点睛】易错点睛:根据集合的运算结果求参数或是根据集合的包含关系求参数时,容易忽略空集的情况,这一点需注意.。

新高中必修一数学上期中模拟试卷(及答案)

新高中必修一数学上期中模拟试卷(及答案)

新高中必修一数学上期中模拟试卷(及答案)一、选择题1.已知函数()f x 的定义域为R .当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=-.则(6)f =( ) A .2-B .1-C .0D .22.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 3.已知定义域为R 的函数()f x 在[1,)+∞单调递增,且(1)f x +为偶函数,若(3)1f =,则不等式(21)1f x +<的解集为( ) A .(1,1)- B .(1,)-+∞ C .(,1)-∞D .(,1)(1,)-∞-+∞4.设集合{1,2,3},{2,3,4}A B ==,则AB =A .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 5.函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ). A .[2,2]- B .[1,1]- C .[0,4] D .[1,3]6.已知函数)25fx =+,则()f x 的解析式为( )A .()21f x x =+ B .()()212f x x x =+≥C .()2f x x =D .()()22f x xx =≥7.设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z8.已知111,2,,3,23a ⎧⎫∈-⎨⎬⎩⎭,若()a f x x 为奇函数,且在(0,)+∞上单调递增,则实数a的值是( ) A .1,3-B .1,33C .11,,33-D .11,,3329.已知定义在R 上的函数()f x 是奇函数且满足,3()(2)32f x f x f ⎛⎫-=-=- ⎪⎝⎭,,数列{}n a 满足11a =-,且2n n S a n =+,(其中n S 为{}n a 的前n 项和).则()()56f a f a +=()A .3B .2-C .3-D .210.函数sin21cos xy x=-的部分图像大致为A .B .C .D .11.若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b12.已知函数21,0,()|log ,0,x x f x x x ⎧+≤⎪=⎨⎪⎩若函数()y f x a =-有四个零点1x ,2x ,3x ,4x ,且12x x <3x <4x <,则312342()x x x x x ++的取值范围是( ) A .(0,1)B .(1,0)-C .(0,1]D .[1,0)-二、填空题13.函数f(x)为奇函数,且x>0时,f(x)x +1,则当x<0时,f(x)=________. 14.用max{,,}a b c 表示,,a b c 三个数中的最大值,设{}2()max ln ,1,4(0)f x x x x x x =--->,则()f x 的最小值为_______.15.已知f (x )是定义在[-2,2]上的奇函数,当x ∈(0,2]时,f (x )=2x -1,函数g (x )=x 2-2x +m .如果∀x 1∈[-2,2],∃x 2∈[-2,2],使得g (x 2)=f (x 1),则实数m 的取值范围是______________.16.已知()32,,x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a的取值范围是________.17.设()f x 是定义在R 上的奇函数,且()y f x =的图像关于直线12x =对称,则(1)(2)(3)(4)(5)f f f f f ++++= .18.已知函数()266,34,x x f x x ⎧-+=⎨+⎩0x x ≥<,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________.19.关于函数()11f x x =--的性质描述,正确的是__________.①()f x 的定义域为[)(]1,00,1-;②()f x 的值域为()1,1-;③()f x 的图象关于原点对称;④()f x 在定义域上是增函数.20.若集合(){}22210A x k x kx =+++=有且仅有2个子集,则满足条件的实数k 的最小值是____.三、解答题21.已知函数()()()lg 2lg 2f x x x =++-. (1)求函数()f x 的定义域;(2)若不等式f ()x m >有解,求实数m 的取值范围. 22.已知定义域为R 的函数12()22x x bf x +-+=+是奇函数. (1)求b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()2(21)0f kx f x +->恒成立,求实数k 的取值范围.23.我校高一年级某研究小组经过调查发现:提高北环隧道的车辆通行能力可有效改善交通状况,在一般情况下,隧道内的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米,车流密度指每千米道路上车辆的数量)的函数.当隧道内的车流密度达到210辆/千米时,将造成堵塞,此时车流速度为0;当车流密度不超过30辆/千米时,车流速度为60千米/小时,研究表明:当30210x ≤≤时,车流速度v 是车流密度x 的一次函数. (1)求函数()v x 的表达式;(2)当车流密度为多大时,车流量(单位时间内通过某观测点的车辆数,单位:辆/小时) ()()f x x v x =⋅可以达到最大,并求出最大值.24.已知函数()f x 的定义域是(0,)+∞,且满足()()()f xy f x f y =+,1()12f =,如果对于0x y <<,都有()()f x f y >. (1)求()1f 的值;(2)解不等式()(3)2f x f x -+-≥-.25.已知全集U ={1,2,3,4,5,6,7,8},A ={x |x 2-3x +2=0},B ={x |1≤x ≤5,x ∈Z},C ={x |2<x <9,x ∈Z}.求 (1)A ∪(B ∩C );(2)(∁U B )∪(∁U C ).26.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P 与投入a (单位:万元)满足6P =,乙城市收益Q 与投入b (单位:万元)满足124Q b =+,设甲城市的投入为x (单位:万元),两个城市的总收益为()f x (单位:万元).(1)当甲城市投资50万元时,求此时公司总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 试题分析:当时,11()()22f x f x +=-,所以当时,函数是周期为的周期函数,所以,又函数是奇函数,所以,故选D .考点:函数的周期性和奇偶性.2.D解析:D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内3.A解析:A 【解析】 【分析】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,再利用函数的单调性,即可求出不等式的解集. 【详解】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,且在[1,+∞)上单调递增,所以不等式f (2x+1)<1=f (3)⇔ |2x+1﹣1|)<|3﹣1|, 即|2x |<2⇔|x |<1,解得-11x << 所以所求不等式的解集为:()1,1-. 故选A . 【点睛】本题考查了函数的平移及函数的奇偶性与单调性的应用,考查了含绝对值的不等式的求解,属于综合题.4.A解析:A 【解析】 由题意{1,2,3,4}AB =,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.5.D解析:D 【解析】 【分析】 【详解】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为()(1)2f f x -≤-(1)f ≤,再利用单调性继续转化为121x -≤-≤,从而求得正解.6.B解析:B 【解析】 【分析】利用换元法求函数解析式,注意换元后自变量范围变化.【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+ ()2x ≥.【点睛】本题考查函数解析式,考查基本求解能力.注意换元后自变量范围变化.7.D解析:D 【解析】令235(1)x y z k k ===>,则2log x k =,3log =y k ,5log =z k∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.8.B解析:B 【解析】 【分析】先根据奇函数性质确定a 取法,再根据单调性进行取舍,进而确定选项. 【详解】因为()af x x =为奇函数,所以11,3,3a ⎧⎫∈-⎨⎬⎩⎭因为()()0,f x +∞在上单调递增,所以13,3a ⎧⎫∈⎨⎬⎩⎭因此选B. 【点睛】本题考查幂函数奇偶性与单调性,考查基本判断选择能力.9.A解析:A 【解析】 由奇函数满足()32f x f x ⎛⎫-=⎪⎝⎭可知该函数是周期为3T =的奇函数, 由递推关系可得:112,21n n n n S a n S a n +-=+=+-, 两式做差有:1221n n n a a a -=--,即()()1121n n a a --=-,即数列{}1n a -构成首项为112a -=-,公比为2q 的等比数列,故:()1122,21n n n n a a --=-⨯∴=-+,综上有:()()()()()552131223f a f f f f =-+=-==--=,()()()()66216300f a f f f =-+=-==,则:()()563f a f a +=. 本题选择A 选项.10.C解析:C 【解析】 由题意知,函数sin 21cos xy x =-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C . 点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.11.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.12.C解析:C 【解析】作出函数函数()21,0,|log ,0,x x f x x x ⎧+≤⎪=⎨⎪⎩的图象如图所示,由图象可知,123442,1,12x x x x x +=-=<≤, ∴ ()312334422222x x x x x x x ++=-+=-+, ∵422y x =-+在412x <≤上单调递增, ∴41021x <-+≤,即所求范围为(]0,1。

2021-2022高中数学必修一期末第一次模拟试题(含答案)

2021-2022高中数学必修一期末第一次模拟试题(含答案)

一、选择题1.若函数()f x 的图象是连续不断的,且(0)0f >,(1)(2)(4)0f f f <,则下列命题正确的是( ).A .函数()f x 在区间(0 , 1)内有零点B .函数()f x 在区间(1 , 2)内有零点C .函数()f x 在区间(0 , 2)内有零点D .函数()f x 在区间(0 , 4)内有零点2.统计学家克利夫兰对人体的眼睛详细研究后发现;我们的眼睛看到图形面积的大小与此图形实际面积的0.7次方成正比.例如:大图形是小图形的3倍,眼睛感觉到的只有0.73(约2.16)倍.观察某个国家地图,感觉全国面积约为某县面积的10倍,那么这国家的实际面积大约是该县面积的(lg 20.3010≈,lg30.4771=,lg70.8451≈)( ) A .l 8倍B .21倍C .24倍D .27倍3.函数121()()2x f x x =-的零点个数为 ( ) A .0B .1C .2D .34.下列等式成立的是( ) A .222log (35)log 3log 5+=+ B .2221log 3log 32-=C .222log 3log 5log (35)⋅=+D .231log 3log 2=5.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >> 6.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b7.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( ) A .30a -≤<B .32a --≤≤C .2a ≤-D .0a <8.对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零,则x 的取值范围是( ) A .13x << B .1x <或3x >C .12x <<D .1x <或2x >9.函数2log xy x x=的大致图象是( )A .B .C .D .10.已知{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈.定义集合{}12121122(,)(,),(,),A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕的元素个数n 满足( ) A .77n = B .49n ≤C .64n =D .81n ≥11.下列各式中,正确的是( )A .{}22x x ⊆≤B .{32x x ∈>且}1x <C .{}{}41,21,x x k k Z x x k k Z =±∈≠=+∈D .{}{}31,32,x x k k Z x x k k Z =+∈==-∈12.对于下列结论:①已知∅ 2{|40}x x x a ++=,则实数a 的取值范围是(],4-∞; ②若函数()1y f x =+的定义域为[)2,1-,则()y f x =的定义域为[)3,0-; ③函数2245y x x =-+的值域是(],1-∞;④定义:设集合A 是一个非空集合,若任意x A ∈,总有a x A -∈,就称集合A 为a 的“闭集”,已知集合{}1,2,3,4,5,6A ⊆,且A 为6的“闭集”,则这样的集合A 共有7个. 其中结论正确的个数是( ) A .0B .1C .2D .3二、填空题13.函数()11f x x =-,()g x kx = ,若方程()()f x g x =有3个不等的实数根,则实数k 的取值范围为________.14.函数()()2121x x f x x x ⎧≤⎪=⎨->⎪⎩,,,如果方程()f x b =有四个不同的实数解1x ,2x ,3x ,4x ,则1234x x x x +++=______.15.72log 2338log 272lg5lg 47-+++=______.16.给出下列命题:①函数2x y =与2log y x =互为反函数,其图象关于直线y x =对称; ②已知函数2(1)21f x x x -=-+,则(5)26f =;③当0a >且1a ≠时,函数()log (2)3a f x x =--的图像必过定点(3,3)-; ④用二分法求函数()ln 26f x x x =+-在区间(2,3)内的零点近似值,至少经过3次二分后精确度达到0.1;⑤函数2()2x f x x =-的零点有2个. 其中所有正确命题....的序号是______ 17.已知()13 =f x x ,则不等式(21)f x -() 230f x ++>的解集为_________. 18.对于任意的1,32m ⎡⎤∈⎢⎥⎣⎦,不等式224t mt m +>+恒成立,则实数t 的取值范围是________________.19.已知集合(){}22112|2103x P x Q x x x m ⎧-⎫=-=-+-⎨⎬⎩⎭≤,≤,其中m >0,全集U =R .若“Ux P ∈”是“∈Ux Q ”的必要不充分条件,则实数m 的取值范围为__________.20.已知{|14}A x x =-≤≤,{|}B x x a =<,若A B =∅,则a 的取值范围是__________三、解答题21.已知关于x 的方程()2320,,,0ax bx c a b c R a ++=∈≠,其中0a b c ++=,且()320a b c c ++>.(1)求证:关于x 的方程2320ax bx c ++=有两个不等的实根; (2)若21ba-<<-,且1x ,2x 是方程2320ax bx c ++=的两个实根,求12x x -的取值范围.22.已知函数()2()log 41xf x mx =++. (1)若()f x 是偶函数,求实数m 的值;(2)当0m >时,关于x 的方程()242148log 2log 41f x x m ⎡⎤++-=⎢⎥⎣⎦在区间[1上恰有两个不同的实数解,求m 的范围.23.(1)设0,0,m n x >>=化简A = (2)求值:1log log m m b a a b ⋅;(3)设 2()2log (19),f x x x =+≤≤ 求()22()()g x f x f x =+的最大值与最小值.24.已知函数1()log 1a mxf x x -=-(0a >且1a ≠)是奇函数. (1)求实数m 的值;(2)若关于x 的方程2()6(1)50f x kx x a -+--=对(1,)x ∈+∞恒有解,求k 的取值范围.25.已知函数()21axf x x =-(0a ≠). (1)判断函数()f x 的奇偶性并给予证明; (2)若函数()f x 满足()1242f f ⎛⎫-= ⎪⎝⎭,判断函数()f x 在区间()1,+∞的单调性,并用单调性的定义证明.26.已知集合2211{|}A x x =-≤-≤,集合{}11B x a x a =-<<+. (1)若1a =,试通过运算验证:()()()RRR A B A B =;(2)若A B ⋂≠∅,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】解:因为f (0)>0,f (1)f (2)f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,结合图象可得函数f (x )必在区间(0,4)内有零点因为f (0)>0,f (1)f (2)f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的, 函数的图象与x 轴相交有多种可能,如图所示:所以函数f (x )必在区间(0,4)内有零点, 故选D .2.D解析:D 【分析】根据已知条件可构造出函数关系式,进而得到0.710x =,根据对数运算法则可解方程求得近似值. 【详解】由题意可知,看到图形面积大小y 与图形实际面积x 之间满足0.7y x =∴若看到全国面积约为某县面积的10倍,则0.710x =,解得:10lg 1.437x =≈ lg 273lg3 1.43=≈ 27x ∴≈故选:D 【点睛】本题考查利用函数模型求解实际问题,关键是能够根据已知条件构造出合适的函数模型,结合对数运算性质求得结果.3.B解析:B 【解析】 函数()12(12)f x xx =-的零点,即令()0f x =,根据此题可得12(12)xx=,在平面直角坐标系中分别画出幂函数12y x =和指数函数(12)y x=的图像,可得交点只有一个,所以零点只有一个,故选B【考点定位】本小题表面上考查的是零点问题,实质上考查的是函数图象问题,该题涉及到的图像为幂函数和指数函数4.D解析:D 【分析】根据对数的运算法则和换底公式判断. 【详解】22222log 3log 5log (35)log 15log (35)+=⨯=≠+,A 错误;22221log 32log 3log 32-=-≠,B 错误; 222log 3log 5log (35)⋅≠+,C 错误;3233log 31log 3log 2log 2==,D 正确. 故选:D . 【点睛】关键点点睛:本题考查对数的运算法则.log log log ()a a a M N MN +=,log log n a a b n b =,一般log ()log log a a a M N M N +≠+.log ()log log a a a MN M N ≠⋅, 1log log n a a b b n≠. 5.B解析:B 【分析】将函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点,转化为函数y x =的图象分别与函数3131(),log ,(0)2xy y x y x x ===>的图象交点的横坐标,利用数形结合法求解. 【详解】函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,即为函数y x =的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标, 如图所示:由图象可得:c a b >>, 故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.6.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用x y c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.7.B解析:B 【分析】由题得函数在定义域上单增,列出不等式组得解. 【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,01215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B 【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.8.B解析:B 【分析】将函数()f x 的解析式变形为()2()244f x x a x x =-+-+,并构造函数()2()244g a x a x x =-+-+,由题意得出()()1010g g ⎧->⎪⎨>⎪⎩,解此不等式组可得出实数x 的取值范围 【详解】对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零设()()2244g a x a x x =-+-+,即()0g a >在[]1,1a ∈-上恒成立.()g a 在[]1,1a ∈-上是关于a 的一次函数或常数函数,其图象为一条线段.则只需线段的两个端点在x 轴上方,即()()2215601320g x x g x x ⎧-=-+>⎪⎨=-+>⎪⎩,解得3x >或1x < 故选:B 【点睛】关键点睛:本题考查不等式在区间上恒成立问题,解答本题的关键是构造函数()()2244g a x a x x =-+-+,将问题转化为()0g a >在[]1,1a ∈-上恒成立,从而得到()()1010g g ⎧->⎪⎨>⎪⎩,属于中档题.9.D解析:D 【解析】()222log ,0log log ,0x x x y x x x x >⎧==⎨--<⎩,所以当0x >时,函数22log log x y x x x ==为增函数,当0x <时,函数()22log log xy x x x==--也为增函数,故选D. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.10.A解析:A 【分析】先理解题意,然后分①当11x =±,10y =时,②当10x =,11y =±时, ③当10x =,10y =时,三种情况讨论即可. 【详解】解:由{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈, ①当11x =±,10y =时, 124,3,2,1,0,1,2,3,4x x +=----,123,2,1,0,1,2,3y y +=---,此时A B ⊕的元素个数为9763⨯=个,②当10x =,11y =±时, 123,2,1,0,1,2,3x x +=---,124,3,2,1,0,1,2,3,4y y +=----,这种情况和第①种情况除124,4y y +=-外均相同,故新增7214⨯=个, ③当10x =,10y =时, 123,2,1,0,1,2,3x x +=---,123,2,1,0,1,2,3y y +=---,这种情况与前面重复,新增0个,综合①②③可得:A B ⊕的元素个数为6314077++=个,故选:A. 【点睛】本题考查了元素与集合关系的判断,重点考查了计数原理的应用,属中档题.11.D解析:D 【分析】根据元素与集合的关系,集合与集合的关系即可求解. 【详解】因为2与集合{}2x x ≤的关系是属于或者不属于,故A 选项错误; 因为{2x x >且}1x <是空集,3不是集合中的元素,故B 选项错误;因为集合{}{}41,,21,x x k k Z x x k k Z =±∈=+∈都表示奇数构成的集合,相等,故C 选项错误;因为集合{}{}31,,32,x x k k Z x x k k Z =+∈=-∈都表示被3整数余1的整数构成的集合,故D 选项正确. 【点睛】本题主要考查了集合的描述法,元素与集合的关系,集合与集合的关系,属于中档题.12.D解析:D 【分析】A .考虑方程有解的情况;B .根据抽象函数定义域求解方法进行分析;C .根据二次函数的取值情况分析函数值域;D .根据定义采用列举法进行分析. 【详解】①由∅ 2{|40}x x x a ++=可得²40x x a ++=有解,即2440a ∆=-,解得4a ≤,故①正确;②函数()1y f x =+的定义域为[)2,1-,则21x,故112x -≤+<,故()y f x =的定义域为[)1,2-,故②错误;③函数21y ==[)1,+∞,故(]2,1y =--∞,故③正确;④集合{}1,2,3,4,5,6A ⊆且A 为6的“闭集”,则这样的集合A 共有{}3,{}1,5,{}2,4,{}1,3,5,{}2,4,6,{}1,2,4,5,{}1,2,3,4,5共7个,故④正确.故正确的有①③④. 故选:D . 【点睛】本题考查命题真假的判定,考查集合之间的包含关系,考查函数的定义域与值域,考查集合的新定义,属于中档题.二、填空题13.【分析】作出函数的图象及与函数的图象求出相切时的值即可得答案;【详解】分别作出函数的图象即当与相切时方程有3个不等的实数根两函数图象有3个交点由图可知时符合题意故答案为:【点睛】利用数形结合思想作出 解析:4k >【分析】 作出函数()11f x x =-的图象及与函数()g x kx =的图象,求出相切时k 的值即可得答案; 【详解】分别作出函数的图象, 即21101kx kx kx x -=⇒-+=- 当()g x kx =与()11f x x =-相切时, 24040k k k k ⎧∆=-=⇒=⎨≠⎩,, 方程()()f x g x =有3个不等的实数根,∴两函数图象有3个交点,由图可知4k >时符合题意, 故答案为:4k >.【点睛】利用数形结合思想,作出两函数的图象,首先找到临界位置,即相切位置.14.【分析】作出的图象可得和的图象有四个不同的交点不妨设交点横坐标由关于原点对称关于点对称即可得到所求的和【详解】作出的图象方程有四个不同的实数解等价为和的图象有四个不同的交点不妨设交点横坐标为且由关于 解析:4【分析】作出()f x 的图象,可得()y f x =和y b =的图象有四个不同的交点,不妨设交点横坐标1234x x x x <<<,由1x ,2x 关于原点对称,3x ,4x 关于点()2,0对称,即可得到所求的和.【详解】作出()()2121x x f x x x ⎧≤⎪=⎨->⎪⎩,,的图象,方程()f x b =有四个不同的实数解,等价为()y f x =和y b =的图象有四个不同的交点,不妨设交点横坐标为1x ,2x ,3x ,4x 且1234x x x x <<<, 由1x ,2x 关于原点对称,3x ,4x 关于点()2,0对称, 可得12=0x x +,344x x +=, 则12344x x x x +++=, 故答案为:4 【点睛】本题主要考查了函数方程的转化思想,考查数形结合的思想以及对称性的运用,属于中档题.15.【分析】根据指数幂运算法则和对数运算法则化简可得【详解】故答案为:【点睛】此题考查指数对数的综合运算关键在于熟练掌握运算法则和相关公式准确化简求值解析:32【分析】根据指数幂运算法则和对数运算法则化简可得. 【详解】72log 2338log 272lg5lg 47-+++()732log 232332log 32lg52lg27=-++++34222=-+++ 32=故答案为:32【点睛】此题考查指数对数的综合运算,关键在于熟练掌握运算法则和相关公式,准确化简求值.16.①③【分析】①求解出的反函数再根据反函数的特点进行判断;②采用换元法求解出的解析式由此计算出的值并进行判断;③分析当对数式的真数为时此时的值由此确定出函数所过定点并进行判断;④根据每经过一次操作区间解析:①③ 【分析】①求解出2x y =的反函数,再根据反函数的特点进行判断;②采用换元法求解出()f x 的解析式,由此计算出()5f 的值并进行判断;③分析当对数式的真数为1时,此时,x y 的值,由此确定出函数所过定点并进行判断; ④根据每经过一次操作区间长度变为原来的一半,由此列出关于次数的不等式,求解出次数的范围并进行判断;⑤根据()()2,4f f 的值以及零点的存在性定理进行判断. 【详解】①令2y x =,所以2log y x =,所以函数2x y =与2log y x =互为反函数,则图象关于y x =对称,故正确;②令1x t -=,则1x t =+,所以()()()221211f t t t t =+-++=,所以()2f x x =,所以()525f =,故错误;③令21x -=,所以3x =,所以()3log 133a f =-=-,所以()f x 过定点()3,3-,故正确;④因为区间()2,3的长度为1,经过n 次操作过后区间长度变为12n ,所以10.12n≤,所以4n ≥,故错误;⑤因为()()22422220,4240f f =-==-=,且()()()21011210,020102f f --=--=-<=-=>, 所以()f x 在()1,0-上有零点,所以()f x 的零点至少有3个,故错误; 故答案为:①③. 【点睛】 结论点睛:(1)同底数的指数函数和对数函数互为反函数,图象关于y x =对称;(2)形如()()()log 0,1a f x g x b a a =+>≠的图象过定点问题,可考虑令()1g x =,由此求解出x 的值,从而对应的()f x 的值可求,则定点坐标可求;(3)利用二分法求解函数零点的近似值时,每进行一次操作,区间长度会变为原来的一半.17.【分析】先利用幂函数性质和奇函数定义判断是R 上单调递增的奇函数再结合奇偶性和单调性解不等式即可【详解】由幂函数性质知时在是增函数故函数在是增函数又定义域是R 而故是R 上的奇函数根据奇函数对称性知在R 上解析:1,2⎛⎫-+∞ ⎪⎝⎭【分析】先利用幂函数性质和奇函数定义判断()f x 是R 上单调递增的奇函数,再结合奇偶性和单调性解不等式即可. 【详解】由幂函数性质知,01α<<时y x α=在[)0,+∞是增函数,故函数()13=f x x 在[)0,+∞是增函数,又()f x 定义域是R ,而()()()1133=f x x x f x =-=---,故()f x 是R 上的奇函数,根据奇函数对称性知,()f x 在R 上单调递增.故不等式(21)f x -() 230f x ++>即(21)f x -()() 2323f x f x >-+=--,故2123x x ->--,即12x >-,故解集为1,2⎛⎫-+∞ ⎪⎝⎭.故答案为:1,2⎛⎫-+∞ ⎪⎝⎭. 【点睛】 思路点睛:利用函数奇偶性和单调性解不等式问题:(1)()f x 是奇函数,图像关于原点中心对称,利用奇函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可;(2)()f x 是偶函数,图像关于y 轴对称,利用偶函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可.18.【分析】令由题意得出解出该不等式组即可得出实数的取值范围【详解】对于任意的不等式恒成立即不等式恒成立令则解得或因此实数的取值范围是故答案为:【点睛】本题考查不等式恒成立问题涉及主元思想的应用将问题转 解析:()(),52,-∞-+∞【分析】令()()224f m t m t =-+-,由题意得出()10230f f ⎧⎛⎫>⎪ ⎪⎝⎭⎨⎪>⎩,解出该不等式组,即可得出实数t 的取值范围. 【详解】对于任意的1,32m ⎡⎤∈⎢⎥⎣⎦,不等式224t mt m +>+恒成立,即不等式()2240t m t -+->恒成立,令()()224f m t m t =-+-,则()()()()()()2211524202223324250f t t t t f t t t t ⎧⎛⎫⎛⎫=-+-=-+>⎪ ⎪⎪⎝⎭⎝⎭⎨⎪=-+-=-+>⎩, 解得5t <-或2t >,因此,实数t 的取值范围是()(),52,-∞-+∞.故答案为:()(),52,-∞-+∞.【点睛】本题考查不等式恒成立问题,涉及主元思想的应用,将问题转化为一次函数不等式恒成立是解题的关键,考查运算求解能力,属于基础题.19.【分析】解出集合PQ 根据充分条件和必要条件关系得出两个集合的包含关系即可求出范围【详解】由题:是的必要不充分条件即P Q 解不等式所以0P Q 所以解得:故答案为:【点睛】此题考查根据充分条件和必要条解析:9m ≥【分析】解出集合P ,Q ,根据充分条件和必要条件关系得出两个集合的包含关系即可求出范围. 【详解】 由题:“Ux P ∈”是“∈Ux Q ”的必要不充分条件,UQUP ,即P Q ,解不等式1123x --≤,12123x --≤-≤, 646x -≤-≤,210x -≤≤所以[]1122,103x P x ⎧-⎫=-=-⎨⎬⎩⎭≤, (){}()()()(){}22|210|110Q x x x m x x m x m =-+-=-+--≤≤,m >0,P Q ,所以11012m m +≥⎧⎨-≤-⎩,解得:9m ≥.故答案为:9m ≥ 【点睛】此题考查根据充分条件和必要条件判断集合的包含关系求解参数范围,关键在于准确判断两个集合的包含关系,列出不等式组求解.20.【分析】根据集合所以集合没有公共元素列出两个集合的端点满足的不等关系结合数轴可以得出的范围得到结果【详解】集合由借助于数轴如图所示可得故答案为:【点睛】该题主要考查集合中参数的取值范围的问题两个集合解析:(,1]-∞-. 【分析】根据集合{|14}A x x =-≤≤,{|}B x x a =<,A B φ⋂=,所以集合,A B 没有公共元素,列出两个集合的端点满足的不等关系,结合数轴可以得出a 的范围,得到结果. 【详解】集合{|14}A x x =-≤≤,{|}B x x a =<, 由A B φ⋂=,借助于数轴,如图所示,可得1a ≤-, 故答案为:(,1]-∞-. 【点睛】该题主要考查集合中参数的取值范围的问题,两个集合的关系,属于中档题目.三、解答题21.(1)证明见解析;(2)323⎫⎪⎣⎭. 【分析】(1)将c a b =--代入方程2320ax bx c ++=的判别式计算即可证明; (2)由题知12122,33b cx x x x a a+=-=,代入()2121212||4x x x x x x -=+-21ba-<<-转化为二次函数的最值求解. 【详解】(1)由0a b c ++=得c a b =--, 对于方程2320ax bx c ++=,0a ≠,所以()2222221412412121241202b ac b a a b a ab b a b b ⎛⎫∆=-=++=++=++> ⎪⎝⎭,所以方程2320ax bx c ++=有两个不等的实根;(2)由题知12122,33b c x x x x a a+=-=,12||x x ∴- 21ba-<<-, 由二次函数()22444431933923f x x x x ⎛⎫=++=++ ⎪⎝⎭在32,2⎛⎫-- ⎪⎝⎭上单调递减,在3,12⎛⎫-- ⎪⎝⎭上单调递增可得12||x x -∈1223x x ⎫-∈⎪∴⎪⎣⎭. 【点睛】本题考查二次不等式的求解,考查二次函数在定区间上的最值,考查学生计算能力,是一道中档题.22.(1)1m =-;(2)8,19m ⎛⎤∈ ⎥⎝⎦. 【分析】(1)根据偶函数的定义()()f x f x -=,求得实数m 的值;(2)首先观察函数的单调性和()01f =,可得()242148log 2log 40x x m++-=,再根据换元设2log x t =,30,2t ⎡⎤∈⎢⎥⎣⎦,利用参变分离的方法转化为24224t t m -++=,根据函数2224y t t =-++的图象,求m 的取值范围. 【详解】(1)()2()log 41xf x mx =++,()2()log 41x f x mx --=+-,()()f x f x =-即()()22log 41log 41x xmx mx -++=+-,化简得到22x mx =-,∴1m =-(2)0m >,函数()2()log 41xf x mx =++单调递增,且(0)1f =,()242148log 2log 41(0)f x f x m ⎡⎤++-==⎢⎥⎣⎦,故()242148log 2log 40x x m++-=设2log x t =,30,2t ⎡⎤∈⎢⎥⎣⎦,即24224t t m -++=,画出2224y t t =-++的图像,如图所示:根据图像知4942m ≤<,解得819m <≤,即8,19m ⎛⎤∈ ⎥⎝⎦. 【点睛】方法点睛:本题考查根据方程实数根的个数求参数的取值范围,一般可采用1.直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,此时需要根据零点个数合理寻找“临界”情况,特别注意边界值的取舍.23.(1)答案见解析;(2)1;(3)最大值222log 36log 36++(),最小值6. 【分析】(1)先求24x -,对m ,n 讨论,求出A ;(2)利用log =m a a m ,分别对1log log m m b a a b 、化简、求值;(3)把()g x 化简为222()=log 6log 6g x x x ++,换元后利用()233y t =+-在()20log 3,2上的单调性求出最大值和最小值.【详解】(1)因为22244m n m n x n m nm -=-=, 所以22,m nn mm n A m n m nm nm nn mn m--==+--+--故,当0m n ≥>时,m nA n-=, 当0m n <<时,n mA m-= (2)()g log log log lo log log =,m m m m m m bb b a aa a m m a m •==∴,同理()l l og og m m b a b m -•= ∴()()log lo log l g g o log lo l g g 01log o log log ===1=a a m m m b b m mm m m m m b a bba a mammm b-••⎡⎤-••⎢⎥⎣⎦⋅⨯即1log log m m b a a b ⋅=1(3)()()2222222()2log 2log =log6log 6g x x xx x =+++++由21919x x ≤≤⎧⎨≤≤⎩解得13x ≤≤ 令2log t x =,213,0log 3x t ≤≤∴≤≤∴()233y t =+-在()20log 3,上单增, ∴当t =0时,min 6,y =当2log 3t =时,2max 22log 36log 36y ++=()∴()g x 的最大值222log 36log 36++(),最小值6.【点睛】指对数混合运算技巧:(1)指数的运算一般把各个部分都化成幂的结构,利用幂的运算性质; (2)对数的运算一般把各个部分都化成幂的同底结构,利用对数的运算性质. 24.(1)1m =-;(2)(0,7). 【分析】(1)由函数()f x 为奇函数,则()()f x f x -=-,可得()2210m x -=,从而求出m 的值.(2)由(1)即将原问题化为2610kx x --=对(1,)x ∈+∞恒有解,即216k x x=+,令1t x=,则26k t t =+,(0,1)t ∈有解,从而得出答案. 【详解】解:(1)因为函数()f x 为奇函数,则()()f x f x -=-,即11log log 11a a mx mxx x +-=---- 化简得()2210m x-=,所以1m =±,当1m =时1101mx x +=-<--不成立,当1m =-时1111mx x x x +-=--+,经验证成立 所以1m =-.(2)由(1)知函数1()log 1ax f x x +=-,则方程可化为: 216(1)501x kx x x +-+--=-,即2610kx x --=对(1,)x ∈+∞恒有解 所以分离参数得216k x x=+,令1t x =,则26k t t =+,(0,1)t ∈有解 而2067t t <+<,故k 的取值范围为(0,7). 【点睛】关键点睛:本题考查根据函数为奇函数求参数和不等式有解求参数的范围,解答本题的关键是将问题转化为2610kx x --=对(1,)x ∈+∞恒有解,分离参数即216k x x=+在(1,)x ∈+∞恒有解,属于中档题.25.(1)奇函数,证明见解析;(2)在区间()1,+∞单调递减,证明见解析. 【分析】(1)求出函数的定义域,直接得到()f x 和()f x -的关系即可得结果; (2)由题意解出a 的值,由单调性的定义即可得结果. 【详解】(1)函数()y f x =是奇函数,证明如下:()y f x =的定义域为{}1x x ≠±,又()()()()2211a x axf x f x x x --==-=--+-+ ∴()y f x =是定义在{}1x x ≠±的奇函数.(2)∵()1242f f ⎛⎫-= ⎪⎝⎭,即21242433112aa a -==⎛⎫- ⎪⎝⎭,解得:3a = ∴()231xf x x =-,1x ,()21,x ∈+∞且12x x < ()()()()()()()()()()1212221222122112212222121231313111331111x x x x x x x x x x x x f x f x x x x x -=----+-=---=--- ∵1x ,()21,x ∈+∞且12x x <,∴2110x ->,2210x ->,1210x x ->,210x x ->∴()()12f x f x >,∴()y f x =在区间()1,+∞单调递减. 【点睛】利用定义证明函数单调性的步骤:(1)取值;(2)作差;(3)化简;(4)下结论.26.(1)见解析;(2)3(,2)2-【分析】(1)先解不等式得集合A ,再分别求并集、补集、交集,根据结果进行验证; (2)结合数轴先求AB =∅情况,再根据补集得结果.【详解】 解:A ={2211}x x -≤-≤=1{|1}2x x -≤≤. (1)当1a =时,B ={02}x x <<∴A B =1{|1}2x x -≤≤{02}x x <<=1{|2}2x x -≤< ()R C A B =1{|2x x <-或2}x ≥ 又R C A =1{|2x x <-或1}x >,R C B ={|0x x ≤或2}x ≥ ∴()()R R C A C B =1{|2x x <-或2}x ≥ ∴()R C A B =()()R R C A C B . (2)若AB =∅,则:112a +≤-或11a -≥ ∴32a ≤-或2a ≥ ∴A B ⋂≠∅时,322a -<<,即实数a 的取值范围3(,2)2-. 【点睛】 本题考查集合交并补运算以及根据交集结果求参数,考查综合分析求解能力,属基础题.。

【浙教版】高中数学必修一期末第一次模拟试卷(含答案)

【浙教版】高中数学必修一期末第一次模拟试卷(含答案)

一、选择题1.设函数()243,023,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x 、2x 、3x ,满足()()()123f x f x f x ==,则123x x x ++的取值范围是( )A .5,62⎛⎫ ⎪⎝⎭B .5,42⎛⎤⎥⎝⎦C .()2,4D .()2,62.已知函数22,2,()3, 2.x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的函数()y f x k =-有且只有三个不同的零点,则实数k 的取值范围是( ) A .()3,1-B .()0,1C .(]3,0-D .()0,∞+3.函数()xf x 2sinx =-在区间[]10π,10π-上的零点的个数是( ) A .10 B .20 C .30 D .404.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier ,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现. 比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=( ) A .134217728B .268435356C .536870912D .5137658025.函数2()ln(43)f x x x =+-的单调递减区间是( ) A .32⎛⎤-∞ ⎥⎝⎦,B .3,42⎡⎫⎪⎢⎣⎭C .3,2⎡⎫+∞⎪⎢⎣⎭D .31,2⎛⎤- ⎥⎝⎦6.函数32ln ||()x x f x x-=的图象大致为( )A .B .C .D .7.如图是二次函数2y ax bx c =++图象的一部分,图象过点()30A -,,对称轴为1x =-,给出下面四个结论:①24b ac >;②21a b -=;③0a b c -+=;④若0y >,则()3,1x ∈-.其中正确的是( ) A .①④B .②④C .①③D .①②③8.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞9.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4D .3,2⎡⎫+∞⎪⎢⎣⎭10.已知集合{|0}M y y =≥,2{|1}N y y x ==-+,则M N =( )A .()0,1B .[]0,1C .[)0,+∞D .[)1,+∞11.设有限集合A =123{,,,}n a a a a ,则称123A n S a a a a =++++为集合A 的和.若集合M ={x ︳2,N ,6x t t t *=∈<},集合M 的所有非空子集分别记为123,,,k P P P P ,则123k P P P P S S S S ++++=( )A .540B .480C .320D .28012.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭二、填空题13.在用二分法求方程3210x x --=的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可以断定该根所在区间为___________. 14.已知函数f(x)=若关于x 的方程f(x)=k 有三个不同的实根,则实数k的取值范围是________.15.已知常数0a >,函数()22xx f x ax =+的图象经过点65P p ⎛⎫ ⎪⎝⎭,,15Q q ⎛⎫- ⎪⎝⎭,.若236p q pq +=,则a =______.16.设正数,x y 满足222log (3)log log x y x y ++=+,则x y +的取值范围是_____. 17.函数()12x f x -的定义域是__________.18.已知函数()f x 的定义域为(1,1)-,则函数()()(1)2xg x f f x =+-的定义域是________.19.对于任意集合X 与Y ,定义:①{}|X Y x x X x Y -=∈∉且,②()()X Y X Y Y X =--△∪,(X Y △称为X 与Y 的对称差).已知{}{}2|2|33A y y x x x R B y y ==-∈=-,,≤≤,则A B =△______.20.设全集{|35}Ux x =-≤≤,集合1{|||1},{|0}2A x xB x x =≤=>+,则()UC A B ⋂=_____________. 三、解答题21.已知函数()21x f x ax b+=+是定义域上的奇函数,且()12f -=-.(1)求函数()f x 的解析式,判断函数()f x 在0,上的单调性并证明; (2)令()()g x f x m =-,若函数()g x 在0,上有两个零点,求实数m 的取值范围;(3)令()()()22120h x x tf x t x =+-<,若对1x ∀,21,22x ⎡⎤∈⎢⎥⎣⎦都有()()12154h x h x -≤,求实数t 的取值范围. 22.已知二次函数()2441f x kx kx k =-++.(1)若12,x x 是()f x 的两个不同零点,是否存在实数k ,使()()121211224x x x x ++=成立?若存在,求k 的值;若不存在,请说明理由. (2)设1k =-,函数()()28,048,0f x x t xg x x x t x ⎧--<=⎨--≥⎩,存在3个零点.(i)求t 的取值范围;(ii)设,m n 分别是这3个零点中的最小值与最大值,求n m -的最大值. 23.已知函数()f x 是定义在()(),00,-∞⋃+∞上的偶函数,当0x >时,()232f x ax ax =-+,(a R ∈).(1)求()f x 的函数解析式:(2)当1a =时,求满足不等式()21log f x >的实数x 的取值范围. 24.已知函数f (x )=log a (x +1)-log a (1-x ),a >0,且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性,并予以证明; (3)当a >1时,求使f (x )>0的x 的取值范围. 25.已知函数()243f x x x =-+.(1)若函数()f x 在区间[]1,2t t ++上是单调的,求t 的取值范围;(2)在区间[]1,1-上,()y f x =的图象恒在22y x m =+-的图象上方,求实数m 的取值范围.26.已知集合2A {x |x x 20}=--≥,集合()22{|1210,}B x m x mx m R =-+-<∈()1当m 2=时,求集合R A 和集合B ;()2若集合B Z ⋂为单元素集,求实数m 的取值集合;()3若集合()A B Z ⋂⋂的元素个数为()*n n N ∈个,求实数m 的取值集合【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】设123x x x <<,作出函数()f x 的图象,结合图象可得出1x 的取值范围,结合二次函数图象的对称性可得出234x x +=,进而可求得123x x x ++的取值范围. 【详解】设123x x x <<,作出函数()f x 的图象如下图所示:设()()()123f x f x f x m ===,当0x ≥时,()()2243211f x x x x =-+=--≥-,由图象可知,13m -<<,则()()11231,3f x x =+∈-,可得120x -<<, 由于二次函数243y xx =-+的图象的对称轴为直线2x =,所以,234x x +=,因此,12324x x x <++<. 故选:C. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(或取值范围),常用方法如下: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数的取值范围; (2)分离常数法:先将参数分离,转化为求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.B解析:B 【分析】函数()y f x k =-零点的个数,即为函数()y f x =与函数y k =图象交点个数,结合函数图象可得实数k 的取值范围.【详解】因为关于x 的函数()y f x k =-有且只有三个不同的零点,所以函数()y f x =与函数y k =图象有三个不同的交点,画出图象,如图:由图可知,当01k <<时,函数()y f x =与函数y k =图象有三个不同的交点, 所以实数k 的取值范围是(0,1). 故选:B 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.A解析:A 【分析】画出函数x y 2=和y sinx =的图象,通过图象即得结果. 【详解】画出图象函数x y 2=和y sinx =的图象,根据图象可得函数()xf x 2sinx =-在区间[]10π,10π-上的零点的个数是10,故选A .【点睛】本题考查了函数的零点问题,考查数形结合思想,转化思想,是一道中档题.4.C解析:C 【分析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可. 【详解】由已知可知,要计算16384×32768,先查第一行的对应数字: 16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912, 所以有:16384×32768=536870912, 故选C. 【点睛】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.5.B解析:B 【分析】先求函数的定义域,再利用复合函数的单调性同增异减,即可求解. 【详解】由2430x x +->得2340x x --<,解得:14x -<<,2()ln(43)f x x x =+-由ln y t =和234t x x =-++复合而成,ln y t =在定义域内单调递增,234t x x =-++对称轴为32x =,开口向下, 所以 234t x x =-++在31,2⎛⎫- ⎪⎝⎭ 单调递增,在3,42⎡⎫⎪⎢⎣⎭单调递减, 所以2()ln(43)f x x x =+-的单调减区间为3,42⎡⎫⎪⎢⎣⎭, 故选:B 【点睛】本题主要考查了利用同增异减求复合函数的单调区间,注意先求定义域,属于中档题6.A解析:A 【分析】判断奇偶性可排除两个选项,再确定函数值的变化趋势排除一个,得出正确选项. 【详解】解:函数的定义域为{0}xx ≠∣, 因为3322()ln ||ln ||()()()x x x x f x f x x x-----===-,所以()f x 为偶函数,所以排除C ,D,又因为当0x >时,322ln ln ()x x xf x x x x-==-, 当x →+∞时,()f x →+∞,所以排除B故选:A. 【点睛】本题考查由函数解析式选择函数图象,解题方法是排除法,即通过判断函数的性质,特殊的函数值或函数值的变化趋势等,排除错误选项,得出正确答案.7.A解析:A 【分析】由抛物线与x 轴有两个交点,可判定①正确;由对称轴方程为12bx a=-=-,可判定②不正确;由()10f ->,可判定③不正确;由根据函数的对称性和(3)0f -=,可判定④正确. 【详解】由函数2y ax bx c =++的图象,可得函数的图象开口向下,与x 轴有两个交点, 所以0a <,240b ac ∆=->,所以①正确; 由对称轴方程为12bx a=-=-,可得2a b =,所以20a b -=,所以②不正确; 由()10f ->,可得0a b c -+>,所以③不正确; 由图象可得(3)0f -=,根据函数的对称性,可得()10f =, 所以0y >,可得31x -<<,所以④正确. 故选:A. 【点睛】识别二次函数的图象应用学会“三看”:一看符号:看二次项系数的符号,它确定二次函数图象的开口方向; 二看对称轴:看对称轴和最值,它确定二次函数图象的具体位置;三看特殊点:看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点、函数图象的最高点或最低点等.8.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题9.B解析:B 【分析】求出(0)4f =-,再计算出最小值为32524f ⎛⎫=- ⎪⎝⎭,然后求出()4f m =-的值后可得m 的范围. 【详解】2325()24f x x ⎛⎫=-- ⎪⎝⎭,()f x 在3,2⎛⎫-∞ ⎪⎝⎭上递减,在3,2⎛⎫+∞ ⎪⎝⎭上递增, (0)4f =-,又32524f ⎛⎫=- ⎪⎝⎭,所以32m ≥,由2()344f m m m =--=-解得0m =或3m =, 因此332m ≤≤. 故选:B . 【点睛】方程点睛:本题考查二次函数的性质,掌握其对称轴、单调性是解题关键.由此可得二次函数2()f x ax bx c =++在区间[,]m n 上的最值求法: 设0a >,函数的对称轴0x x =(02bx a=-),当0x m <时,min ()()f x f m =,0m x n ≤≤时,min 0()()f x f x =,0x n >时,min ()()f x f n =,当02m n x +≤时,max()()f x f n =,当02m nx +>时,max ()()f x f m =. 0a <类似讨论.10.B解析:B 【解析】∵集合{}2{|1}1N y y x y y ==-+=≤,{|0}M y y =≥,∴[]0,1M N ⋂=,故选B.11.B解析:B 【分析】求出{2,4.6.8.10}M =后,分别求出含有2,4,6,8,10的子集个数,然后可求得结果. 【详解】{2,4.6.8.10}M =,其中含有元素2的子集共有4216=个,含有元素4的子集共有4216=个,含有元素6的子集共有4216=个,含有元素8的子集共有4216=个,含有元素10的子集共有4216=个, 所以123k P P P P S S S S ++++(246810)16480=++++⨯=.故选:B 【点睛】本题考查了对新定义的理解能力,考查了集合的子集个数的计算公式,属于基础题.12.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.二、填空题13.【解析】试题分析:根据二分法取区间中点值而所以故判定根在区间考点:二分法【方法点睛】本题主要考察了二分法属于基础题型对于零点所在区间的问题不管怎么考察基本都要判断端点函数值的正负如果异号那零点必在此解析:3(,2)2【解析】试题分析:根据二分法,取区间中点值,而,,所以,故判定根在区间考点:二分法【方法点睛】本题主要考察了二分法,属于基础题型,对于零点所在区间的问题,不管怎么考察,基本都要判断端点函数值的正负,如果异号,那零点必在此区间,如果是几个零点,还要判定此区间的单调性,这个题考查的是二分法,所以要算区间的中点值,和两个端点值的符号,看是否异号.零点肯定在异号的区间.14.【分析】问题等价于函数f(x)与函数y =k 的图象有三个不同的交点画出函数的图象然后结合图象求解即可【详解】关于x 的方程f(x)=k 有三个不同的实根等价于函数y=f(x)的图象与函数y =k 的图象有三个 解析:()1,0-【分析】问题等价于函数f(x)与函数y =k 的图象有三个不同的交点,画出函数()y f x =的图象,然后结合图象求解即可. 【详解】关于x 的方程f(x)=k 有三个不同的实根,等价于函数y=f(x)的图象与函数y =k 的图象有三个不同的交点,作出函数的图象如图所示,由图可知实数k 的取值范围是(-1,0). 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.15.6【分析】直接利用函数的关系式利用恒等变换求出相应的a 值【详解】函数f (x )=的图象经过点P (p )Q (q )则:整理得:=1解得:2p+q=a2pq 由于:2p+q=36pq 所以:a2=36由于a >0故解析:6 【分析】直接利用函数的关系式,利用恒等变换求出相应的a 值. 【详解】函数f (x )=22xx ax+的图象经过点P (p ,65),Q (q ,15-).则:226112255p q pq ap aq +=-=++, 整理得:22222222p q p q p qp qp q aq ap aq ap a pq+++++++++=1, 解得:2p+q =a 2pq , 由于:2p+q =36pq , 所以:a 2=36, 由于a >0, 故:a=6. 故答案为6 【点睛】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.16.【分析】由题设知再由得到所以设由此可求出的取值范围【详解】解:正数满足又所以左右加上得到所以由得到设即解得或即或根据定义域均大于零所以取值范围是故答案为:【点睛】本题考查对数的运算法则基本不等式的应 解析:[)6,+∞【分析】由题设知3x y xy ++=,再由2220x xy y -+,得到2224x xy y xy ++,所以2()4x y xy +,设x y a +=,由此可求出x y +的取值范围.【详解】 解:正数x ,y 满足222log (3)log log x y x y ++=+,22log (3)log x y xy ∴++=,3x y xy ∴++=,又2220x xy y -+,所以左右加上4xy 得到2224x xy y xy ++,所以2()4x y xy +,由3x y xy ++=得到2()34x y x y +++,设x y a +=即2412a a +,解得6a ≥或2a ≤-即(],2a ∈-∞-或[)6,+∞.根据定义域x ,y 均大于零,所以x y +取值范围是[)6,+∞. 故答案为:[)6,+∞. 【点睛】本题考查对数的运算法则,基本不等式的应用,解题时要认真审题,仔细解答,注意公式的灵活运用,属于中档题.17.【解析】由得所以所以原函数定义域为故答案为 解析:(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞.18.【分析】根据题意得到函数满足即可求解【详解】由题意函数的定义域为则函数满足即解得即函数的定义域为故答案为:【点睛】本题主要考查了抽象函数的定义域的求解其中解答中熟记抽象函数的定义域的求解方法是解答的 解析:()0,2【分析】根据题意,得到函数()g x 满足112111x x ⎧-<<⎪⎨⎪-<-<⎩,即可求解. 【详解】由题意,函数()f x 的定义域为(1,1)-,则函数()()(1)2x g x f f x =+-满足112111x x ⎧-<<⎪⎨⎪-<-<⎩,即2202x x -<<⎧⎨<<⎩,解得02x <<, 即函数()g x 的定义域为()0,2. 故答案为:()0,2. 【点睛】本题主要考查了抽象函数的定义域的求解,其中解答中熟记抽象函数的定义域的求解方法是解答的关键,着重考查推理与运算能力,属于基础题.19.【分析】先求出和再计算【详解】由已知则∴故答案为:【点睛】本题考查集合的新定义解题关键是理解新定义运算把新运算转化为集合的运算 解析:[3,1)(3,)--+∞【分析】先求出A B -和B A -,再计算A B ∆ 【详解】由已知{|1}A y y =≥-,则{|3}(3,)A B y y -=>=+∞,{|31}[3,1)B A y y -=-≤<-=--,∴()()[3,1)(3,)A B A B B A ∆=--=--+∞, 故答案为:[3,1)(3,)--+∞【点睛】本题考查集合的新定义,解题关键是理解新定义运算,把新运算转化为集合的运算.20.【分析】解绝对值不等式求得集合然后求得其补集解分式不等式求得集合由此求得【详解】由解得所以由解得所以故填:【点睛】本小题主要考查集合交集和补集的概念和运算考查绝对值不等式和分式不等式的解法属于基础题 解析:(2,1)(1,5]--【分析】解绝对值不等式求得集合A ,然后求得其补集.解分式不等式求得集合B ,由此求得()U C A B ⋂.【详解】由1x ≤解得11x -≤≤,所以[)(]3,11,5U C A =--⋃.由102x >+解得2x >-,所以()U C A B ⋂(2,1)(1,5]=--.故填:(2,1)(1,5]--.【点睛】本小题主要考查集合交集和补集的概念和运算,考查绝对值不等式和分式不等式的解法,属于基础题.三、解答题21.(1)()1f x x x=+;函数()f x 在0,1上单调递减,在1,上单调递增,证明见解析;(2)2m >;(3)302t -≤< 【分析】(1)由()f x 是奇函数,可知()12f -=-,()12f =,进而列出关系式,求出,a b ,即可得到函数()f x 的解析式,然后利用定义法,可判断并证明函数()f x 在0,上的单调性;(2)由函数()g x 在0,上有两个零点,整理得方程210x mx -+=在0,上有两个不相等的实数根,进而可得到24002m m ⎧∆=->⎪⎨>⎪⎩,求解即可;(3)由对任意的1x ∀,21,22x ⎡⎤∈⎢⎥⎣⎦都有()()12154h x h x -≤恒成立,可得()()max min 154h x h x -≤,求出()()max min ,h x h x ,进而可求出t 的取值范围. 【详解】 (1)()12f -=-,且()f x 是奇函数,()12f ∴=,2222a ba b ⎧=-⎪⎪-+∴⎨⎪=⎪+⎩,解得10a b =⎧⎨=⎩,()1xf x x ∴=+. 函数()f x 在0,1上单调递减,在1,上单调递增,证明如下:任取1x ,()20,1x ∈,且12x x <, 则()()()121212*********x x f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()12,0,1x x ∈,且12x x <, 120x x ∴-<,1201x x <<,∴1210x x -<,()()120f x f x ∴->,即()()12f x f x >, ∴函数()f x 在0,1上单调递减.同理可证明函数()f x 在1,上单调递增. (2)函数()g x 在0,上有两个零点,即方程10x m x+-=在0,上有两个不相等的实数根,所以210x mx -+=在0,上有两个不相等的实数根,则24002m m ⎧∆=->⎪⎨>⎪⎩,解得2m >.(3)由题意知()22112h x x t x x x ⎛⎫ ⎪⎝=+-⎭+, 令1z x x=+,222y z tz =--, 由(1)可知函数1z x x =+在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,2上单调递增, 52,2z ⎡⎤∴∈⎢⎥⎣⎦,函数222y z tz =--的对称轴方程为0z t =<,∴函数222y z tz =--在52,2⎡⎤⎢⎥⎣⎦上单调递增,当2z =时,222y z tz =--取得最小值,min 42y t =-+; 当52z =时,222y z tz =--取得最大值,max 1754y t =-+. 所以()min 42h x t =-+,()max 1754h x t =-+, 又对任意的1x ∀,21,22x ⎡⎤∈⎢⎥⎣⎦都有()()12154h x h x -≤恒成立,()()max min 154h x h x ∴-≤, 即()171554244t t -+--+≤, 解得32t ≥-,又0t <, t ∴的取值范围是302t -≤<. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 22.(1) 不存在.理由见解析; (2) (i) 41t <<-【分析】(1) .假设存在实数k 满足题意,由韦达定理可得:()()()21212121212 2224k x x x x x x x x k +++=++=+911144k k +==,解得12k =,又()216 161 160k k k k ∆=-+=->,即k 0<,综合可得假设不成立;(2) (i)作出函数()h x 的图象,观察图像即可求出t 的取值范围;(ii)设直线()41y t t =-<<与此图象的最左边和最右边的交点分别为,A B .即3 2B A n m x x -=-=,因为25=+510≤+=,代入运算可得解.【详解】解:(1)依题意可知,0k ≠.假设存在实数k ,使()()121211224x x x x ++=成立. 因为()f x 有两个不同零点,.所以()216 161 160k k k k ∆=-+=->,解得k 0<.由韦达定理得121211,4k x x x x k++==所以()()()21212121212 2224k x x x x x x x x k +++=++=+911144k k +== 解得12k =,而k 0<,故不存在. (2)因为1k =-,设()()h x g x t =+,则()2244,0,48,0x x x h x x x x ⎧--<=⎨-≥⎩,当0x <时,()214112()h x x =-++≤;当0x ≥时,()()24144h x x =--≥-.(i)作出函数()h x 的图象,如图所示,所以41t <<-.(ii)设直线()41y t t =-<<与此图象的最左边和最右边的交点分别为,A B .由244x x t --=,得A m x ==由248x x t -=,得22B n x ==所以 B A n m x x -=-=因为223251452)(24()t t t -++=+-++2552104≤+=, 所以当32t =-时,1 4t t -++取得最大值10. 故n m -的最大值为310+.【点睛】本题考查了函数的零点与函数图像的交点之间的关系,重点考查了重要不等式及数形结合的数学思想方法,属中档题.23.(1)()2232,032,0ax ax x f x ax ax x ⎧-+>=⎨++<⎩;(2)()()()()3,21,00,12,3---.【分析】(1)根据已知和函数的奇偶性可得0x <的解析式从而求得()f x ; (2)当1a =时,分别解每一段小于1的不等式,最后求两段的并集可得答案. 【详解】(1)设0x <,0x ->,()232f x ax ax -=++,又∵()f x 为偶函数,()()f x f x -=,∴()232f x ax ax =++.综上:()2232,032,0ax ax x f x ax ax x ⎧-+>=⎨++<⎩. (2)当1a =时,可知:0x >,()2232log 1x x -<+,原不等式等价于22320322x x x x ⎧-+>⎨-+<⎩,解得()()0,12,3x ∈,同理可知:0x <,()2232log 1x x +<+,原不等式等价于22320322x x x x ⎧++>⎨++<⎩,解得()()1,03,2x ∈---,综上:实数x 的取值范围为()()()()3,21,00,12,3---.【点睛】求分段函数的解析式,要根据函数的奇偶性、对称性、周期性等结合已知条件进行求解,要注意定义域.24.(1){x |-1<x <1};(2)f (x )为奇函数;证明见解析;(3)(0,1). 【分析】(1)根据真数大于零,列出不等式,即可求得函数定义域;(2)计算()f x -,根据其与()f x 关系,结合函数定义域,即可判断和证明; (3)利用对数函数的单调性,求解分式不等式,即可求得结果. 【详解】(1)因为f (x )=log a (x +1)-log a (1-x ),所以1010x x +>⎧⎨->⎩解得-1<x <1.故所求函数的定义域为{x |-1<x <1}. (2)f (x )为奇函数.证明如下:由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ). 故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}上是增函数, 由f (x )>0,得11x x+->1,解得0<x <1. 所以x 的取值范围是(0,1). 【点睛】本题考查对数型复合函数单调性、奇偶性以及利用函数性质解不等式,属综合中档题. 25.(1)(][),01,-∞⋃+∞;(2) 【分析】(1)分函数()f x 在区间[]1,2t t ++上单调递增和单调递减两种情况讨论,可得出关于实数t 的不等式,由此可解得实数t 的取值范围;(2)由题意可得出24322x x x m -+>+-对任意的[]1,1x ∈-恒成立,利用参变量分离法可得出265m x x <-+,利用二次函数求出函数()265g x x x =-+在区间[]1,1-上的最小值,由此可得出实数m 的取值范围. 【详解】(1)二次函数()243f x x x =-+的图象开口向上,对称轴为直线2x =.①若函数()f x 在区间[]1,2t t ++上单调递增,则12t +≥,解得1t ≥; ②若函数()f x 在区间[]1,2t t ++上单调递减,则22t +≤,解得0t ≤. 综上所述,实数t 的取值范围是(][),01,-∞⋃+∞;(2)由题意可得出24322x x x m -+>+-对任意的[]1,1x ∈-恒成立, 则265m x x <-+对任意的[]1,1x ∈-恒成立,令()()226534g x x x x =-+=--,则函数()g x 在区间[]1,1-上单调递减,所以,()()min 10g x g ==,0m ∴<. 因此,实数m 的取值范围是(),0-∞. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥. 26.(1)RA {x |1x 2}=-<<,1{|3B x x =<或1}x >;(2){}0;(3)211 1.32m m -<<-<<或【分析】(1)m =2时,化简集合A ,B ,即可得集合∁R A 和集合B ;(2)集合B ∩Z 为单元素集,所以集合B 中有且只有一个整数,而0∈B ,所以抛物线y =(1﹣m 2)x 2+2mx ﹣1的开口向上,且与x 轴的两个交点都在[﹣1,1]内,据此列式可得m =0;(3)因为A =(﹣∞,﹣1)∪(2,+∞),(A ∩B )∩Z 中由n 个元素,所以1﹣m 2>0,即﹣1<m <1;A ∩B 中至少有3或﹣2中的一个,由此列式可得. 【详解】集合A ={x |x 2﹣x ﹣2≥0}={x |x ≥2或x ≤﹣1},集合{x |(1﹣m 2)x 2+2mx ﹣1<0,m ∈R}={x |[(1+m )x ﹣1][(1﹣m )x +1]<0} (1)当m =2时,集合∁R A ={x |﹣1<x <2}; 集合1{|3B x x =<或1}x > ; (2)因为集合B ∩Z 为单元素集,且0∈B , 所以,解得m =0,当m =0时,经验证,满足题意. 故实数m 的取值集合为{0}(3)集合(A ∩B )∩Z 的元素个数为n (n ∈N *)个,A ∩B 中至少有3或﹣2中的一个, 所以令f (x )=(1﹣m 2)x 2+2mx ﹣1, 依题意有或,解得﹣1<m <﹣或<m <1∴ 【点睛】本题考查了交、并、补集的混合运算.属难题.。

2024-2025学年高一上学期期中模拟考试数学试题(苏教版2019,必修第一册第1-5章)含解析

2024-2025学年高一上学期期中模拟考试数学试题(苏教版2019,必修第一册第1-5章)含解析

2024-2025学年高一数学上学期期中模拟卷(苏教版2019)(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:苏教版2019必修第一册第1章~第5章。

5.难度系数:0.65。

第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}()14,2,5A x x B =-<<=,则()R B A = ð()A .(]1,2-B .()1,2-C .()[),45,-∞⋃+∞D .()[),15,-∞-+∞ 【答案】A【解析】()2,5B =,则R (,2][5,)B =-∞+∞ ð,则()(]R 1,2B A =- ð.故选:A.2.已知集合{}{}2,,42,A xx k k B x x k k ==∈==+∈Z Z ∣∣.设:,:p x A q x B ∈∈,下列说法正确的是()A .p 是q 的充分不必要条件B .p 是q 的必要不充分条件C .p 是q 的充要条件D .p 是q 的既不充分也不必要条件【答案】B【解析】由(){}221,B xx k k ==+∈Z ∣,{}2,A x x k k ==∈Z ∣,故B 为A 的真子集,又:,:p x A q x B ∈∈,故p 是q 的必要不充分条件.故选:B.3.,,,a b c b c ∈>R ,下列不等式恒成立的是()A .22a b a c +>+B .22a b a c +>+C .22ab ac >D .22a b a c>【答案】B【解析】对于A ,若0c b <<,则22b c <,选项不成立,故A 错误;对于B ,因为b c >,故22a b a c +>+,故B 成立,对于C 、D ,若0a =,则选项不成立,故C 、D 错误;故选:B.4.已知实数a 满足14a a -+=,则22a a -+的值为()A .14B .16C .12D .18【答案】A【解析】因为()212212a a a a a a ---=+++⋅,所以()22211216214a a a a a a ---+=+-⋅=-=.故选:A.5.早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.若221a b +=,则()()2121a b++的最大值为()A .916B .2516C .94D .254【答案】C【解析】因为()()212122221a b a b a b++=⋅+++,又221a b +=,所以()()22292121222(224a b aba b+++=⋅+≤+=,当且仅当1222ab==,即1a b ==-时取等号,故选:C6.已知函数()25,1,1x ax x f x a x x⎧-+≤⎪=⎨>⎪⎩满足对任意实数12x x ≠,都有()()21210f x f x x x -<-成立,则a 的取值范围是()A .(]0,3B .[)2,+∞C .()0,∞+D .[]2,3【答案】D【解析】因为函数()f x 满足对任意实数12x x ≠,都有2121()()0f x f x x x -<-成立,不妨假设12x x <,则210x x ->,可得()()210f x f x -<,即()()12f x f x >,可知函数()f x 在R 上递减,则1206a a a a ⎧≥⎪⎪>⎨⎪-+≥⎪⎩,解得23a ≤≤,所以a 的取值范围是[]2,3.故选:D.7.已知函数()221x f x x x =-+,且()()1220f x f x ++<,则()A .120x x +<B .120x x +>C .1210x x -+>D .1220x x ++<【答案】A【解析】由函数单调性性质得:y x x =,21x y =+在R 上单调递增,所以()221x f x x x =-+在R 上单调递增,令函数222121()||1||||21212121x x x x x x g x x x x x x x +-=-+=-+=+++++,则2112()||||()2121x xxx g x x x x x g x -----=-+=-+=-++,所以()()0g x g x +-=,则函数()g x 为奇函数,且在R 上单调递增,故()()()()12121212200f x f x g x g x x x x x ++<⇔<-⇔<-⇔+<.故选:A .8.已知关于x 的不等式20(,,)ax bx c a b c ++>∈R 的解集为(4,1)-,则29c a b++的取值范围为()A .[)6,-+∞B .(,6)-∞C .(6,)-+∞D .(],6∞--【答案】D【解析】由不等式20(,,)ax bx c a b c ++>∈R 的解集为(4,1)-,可知1和4-是方程20ax bx c ++=的两个实数根,且0a <,由韦达定理可得4141b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,即可得3,4b a c a ==-,所以()222499169994463444a c a a a a b a a a a a -+++⎛⎫===+=--+≤-=- ⎪++-⎝⎭.当且仅当944a a -=-时,即34a =-时等号成立,即可得(]29,6c a b∞+∈--+.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若集合{1,1,3,5}M =-,集合{3,1,5}N =-,则正确的结论是()A .,x N x M ∀∈∈B .,x N x M ∃∈∈C .{1,5}M N ⋂=D .{1,5}M N = 【答案】BC【解析】对于A ,3N -∈,但是3M -∉,A 错误,对于B ,1N ∈,1M ∈,B 正确,对于CD ,{1,1,3,5}{3,1,5}{1,5}M N =--= ,{1,1,3,5}{3,1,5}{3,1,1,3,5}M N =--=-- ,C 正确,D 错误.故选:BC .10.已知0a >,0b >,且2a b +=,则()A .222a b +≥B .22log log 0a b +≤C .1244a b -<<D .20a b ->【答案】ABC【解析】对于A ,有()()()()2222222222111122222222a b a ab b a ab b a b a b a b ⎡⎤+=+++-+=++-≥+=⋅=⎣⎦,当且仅当a b =时取等号,故A 正确;对于B ,0a >,0b >,有()22112144ab a b ≤+=⋅=,当且仅当a b =时取等号,故1ab ≤,从而()2222log log log log 10a b ab +=≤=,故B 正确;对于C ,由,0a b >,知0ab >,所以()()()()()()222222222042224ab a ab b a ab b a b a b a b a b <=++--+=+--=--=--,故()24a b -<,从而22a b -<-<,所以22122244a b --=<<=,故C 正确;对于D ,由于当1a b ==时,有,0a b >,2a b +=,但2110a b -=-=,故D 错误.故选:ABC.11.对于任意的表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”.下列说法正确的是()A .函数[]()y x x =∈R 为奇函数B .函数[]y x =的值域为ZC .对于任意的,x y +∈R ,不等式[][][]x y x y +≤+恒成立D .不等式[]2[]430x x -+<的解集为{}23x x ≤<【答案】BCD【解析】对于A ,当01x ≤<时,[]0y x ==,当10x -<<,[]1y x ==-,所以[]()y x x =∈R 不是奇函数,所以A 错误,对于B ,因为[]x 表示不超过x 的最大整数,所以当x ∈R 时,[]Z x ∈,所以函数[]y x =的值域为Z ,所以B 正确,对于C ,因为,x y +∈R 时,[][],x x y y ≤≤,所以[][][][][]x y x y x y x y ⎡⎤+=+≤+≤+⎣⎦,所以C 正确,对于D ,由[]2[]430x x -+<,得[]13x <<,因为[]x 表示不超过x 的最大整数,所以23x ≤<,所以D 正确.故选:BCD第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学(必修1)期中模拟试卷5
考试时间:120分钟 满分100分
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填入答题卡中)
1.已知全集{}{}{}
()====N M C ,N M U U 则3,2,2.1,0,4,3,2,1,0 A. {}2 B. {}3 C. {}432,,
D. {}43210,,,。

2.下列各组两个集合A 和B,表示同一集合的是
A. A={
}π,B={}14159.3 B. A={}3,2,B={})32(, C. A={
}π,3,1,B=
{}3,1,-π D. A={}N x x x ∈≤<-,11,B={}1
3.已知函数
()则,x x x x x f ⎩⎨⎧>+-≤+=1
,31
,1f(2) =
B,2 C.1 4.下列函数是偶函数的是 A.
x y = B. 322-=x y C. 2
1-
=x
y D. ]1,0[,2
∈=x x y
5.下列函数中,在区间(0,1)上是增函数的是 A.
x y = B. x y -=3 C. x
y 1=
42
+-=x y 6.当10<<a 时,在同一坐标系中,函数x y a y a x
log ==-与的图象是 .
6,28.A. 01ln 10
==与e B. 3
121log 218
8)3
1(-==
-与 C.
3929log 2
1
3==与 D. 7717log 17==与
9.三个数3
.022
2
,3.0log ,3.0===c b a 之间的大小关系是
A b c a <<. B. c b a << C. c a b << D.a c b << 10.计算()()
)2
1
(5
11
212
42
---+
-+
-,结果是
B. 22
C.
2 D. 2
12
-
11.设()833-+=x x f x
,用二分法求方程()2,10833∈=-+x x x
在内近似解的过程中得
()()(),025.1,05.1,01<><f f f 则方程的根落在区间
A.(1,)
B.(,)
C.(,2)
D.不能确定 12.计算机成本不断降低,若每隔三年计算机价格降低
3
1
,则现在价格为8100元的计算机9年后价格可降为 元 元 元 元 二、填空题(本大共4小题.每小题4分,共16分.) 13.若幂函数y =()x f 的图象经过点(9,1
3
), 则f(25)的值是_________- 14. 函数()()1log 1
43++--=
x x x
x f 的定义域是 年底世界人口达到亿,若人口的年平均增长率为x ℅,2005年底世界人口为y(亿),那么y 与x 的函数关系式为
16.若函数()()()3122
+-+-=x a x a x f 是偶函数,则()x f 的增区间是
三、解答题(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤) 17.计算:(每小题6分,共18分) (1)2
1
log 2log a
a
+ (a>0且a ≠1) (2)25log 20lg 100+
(3)3
6
2
31232⨯⨯ .证明函数()x f =x
x 1
+
在区间]1,0(上是减函数. (14分) 19.已知A 、B 两地相距150千米,某人开车以60千米/小时的速度从A 地到B 地,在B 地停留一小时后,再以50千米/小时的速度返回A 地.把汽车与A 地的距离y (千米)表示为时间t (小时)的函数(从A 地出发时开始),并画出函数图象. (14分) 20.已知
()()1,011log ≠>-+=a a x
x
x f a
且 (1)求()x f 的定义域; (2)证明()x f 为奇函数;
(3)求使()x f >0成立的x 的取值范围. (14分)
21.证明方程]2,1[236在区间x
x =-内有唯一一个实数解,并求出这个实数解(精确到).(14分)
参考答案
一、 选择题(每小题5分,共60分) BCCB ACDC CBBA
二、 填空题(每小题4分,共16分)
13. 15 14. ()]4,1(1,1 -; 15. 13
10018.54⎪⎭
⎫ ⎝⎛+=x y ;
16. ]0,(-∞ ()]0.[也给满分∞- 三、 解答题:
解:(1)02log 2log 2
1
log 2log =-=+a a a
a
(2)25lg 12lg 2
25
lg 12lg 25log 20lg 100=++=++=+
(3)6323223123223123231
6121316213
16
121
36
=⨯=⨯=⎪⎭

⎝⎛⨯⨯⨯=⨯⨯++-+ 18.证明:任取2121],1,0(,x x x x <∈且,

()()()()212121*********x x x x x x x x x x x f x f --=⎪⎪⎭⎫ ⎝
⎛+-⎪⎪⎭⎫ ⎝⎛+=- 所以函数()x
x x f 1
+
=∴
在区间]1,0(上是减函数。

19.解:()⎪⎩⎪
⎨⎧≤<--≤<≤<=5.65.3,5.350150,5.35.2,150,5.20,60t t t t t y
则⎪⎩

⎨⎧≤<+-≤<≤<=5.65.3,32550,5.35.2,150,5.20,60t t t t t y
函数的图象如右 20.;解:(1)()(
1,01
1,011-+<-+∴>-+x x x x x x 即 (2)证明:
()()()x f x
x
x x x x x f x x x f a
a a a -=-+-=⎪


⎝⎛-+=+-=-∴-+=-11log 11log 11log ,11log 1
()x f ∴中为奇函数.
(3)解:当a>1时, ()x f >0,则
111>-+x x ,则01
2,0111<-<+-+x x
x x 因此当a>1时,使()0>x f 的x 的取值范围为(0,1).
10<<a 当时, ()1110,0<-+<
>x
x
x f 则 t
则,011,0111<-+>+-+x
x
x x
解得01<<
-x
因此10<<a 当时, 使()0>x f 的x 的取值范围为(-1,0). 21.证明:设函数使()632-+=x x f x
.
又()x f 是增函数,所以函数()632-+=x x f x
在区间[1,2]有唯一的零点,
则方程x x
236=-在区间[1,2]有唯一一个实数解.设该解为]2,1[,00∈x x 则
取()()()()5.1,1.05.11,033.05.1,5.101∈∴<>==x f f f x 取()()()()25.1,1.025.11,0128.025.1,25.102∈∴<>==x f f f x
取()()()()25.1,125.1.025.1125.1,044.0125.1,125.103∈∴<<-==x f f f x 取()()()()25.1,1875.1.025.11875.1,016.01875.1,1875.104∈∴<<-==x f f f x
2.10=x 可取 则方程的实数解为2.10=x。

相关文档
最新文档