实验五食品中还原糖的测定

合集下载

食物中还原糖的测定方法

食物中还原糖的测定方法

⾷物中还原糖的测定⽅法⾷物中还原糖的测定⽅法⼀、直接滴定法1.原理样品经除去蛋⽩质后,在加热条件下,直接滴定已标定过的菲林⽒液,菲林⽒液被还原析出氧化亚铜后,过量的还原糖⽴即将次甲基蓝还原,使蓝⾊褪⾊。

根据样品消耗体积,计算还原糖量。

2.适⽤范围GB5009.7-85,本⽅法适⽤于所有⾷品中还原糖的检测。

检出限0.1mg。

3.主要仪器滴定管4.试剂除特殊说明外,实验⽤⽔为蒸馏⽔,试剂为分析纯。

(1)菲林甲液:称取15 g硫酸铜(CuSO4·5H2O),及0.05 g次甲基蓝,溶于⽔中并稀释⾄1 L。

(2)菲林⼄液:称取50 g酒⽯酸钾钠与75 g氢氧化钠,溶于⽔中,再加⼊4 g亚铁氰化钾,完全溶解后,⽤⽔稀释⾄500ml,贮存于橡胶塞玻璃瓶内。

(3)⼄酸锌溶液:称取21.9 g⼄酸锌,加3 ml冰⼄酸,加⽔溶解并稀释⾄100 ml。

(4)亚铁氰化钾溶液。

称取10.6g亚铁氰化钾,⽤⽔溶解并稀释⾄100ml。

(5)盐酸。

(6)葡萄糖标准溶液:精密称取1.000 g经过80 ℃⼲燥⾄恒量的葡萄糖(纯度在99%以上),加⽔溶解后加⼊5ml盐酸,并以⽔稀释⾄1 L。

此溶液相当于1 mg/ml葡萄糖。

(注:加盐酸的⽬的是防腐,标准溶液也可⽤饱和苯甲酸溶液配制)5.操作⽅法5.1样品处理:5.1.1乳类、乳制品及含蛋⽩质的⾷品:称取约0.5~2 g固体样品(吸取2~10 ml液体样品),置于100 ml容量瓶中,加50ml ⽔,摇匀。

边摇边慢慢加⼊5 ml⼄酸锌溶液及5 ml亚铁氢化钾溶液,加⽔⾄刻度,混匀。

静置30min,⽤⼲燥滤纸过滤,弃去初滤液,滤液备⽤。

(注意:⼄酸锌可去除蛋⽩质、鞣质、树脂等,使它们形成沉淀,经过滤除去。

如果钙离⼦过多时,易与葡萄糖、果糖⽣成络合物,使滴定速度缓慢;从⽽结果偏低,可向样品中加⼊草酸粉,与钙结合,形成沉淀并过滤。

)5.1.2酒精性饮料:吸取50 ml样品,置于蒸发⽫中,⽤1mol/L氢氧化钠溶液中和⾄中性,在⽔浴上蒸发⾄原体积1/4后,移⼊100 ml容量瓶中。

食品中还原糖含量的测定-直接滴定法

食品中还原糖含量的测定-直接滴定法

• 3.试剂:
– 硫酸铜(CuSO4 · 5H2O) – 次甲基蓝 -碱性酒石酸铜甲液(费林试剂甲液) – 酒石酸钾钠 – 亚铁氰化钾 -碱性酒石酸铜乙液(费林试剂乙液) – 乙酸锌 – 冰乙酸 -乙酸锌溶液 – 葡萄糖 -葡萄糖标准溶液(1mg/ mL) – 氢氧化钠 -氢氧化钠溶液 – 盐酸
四、实验步骤
• 2. 碱性酒石酸铜溶液的标定 – 吸取5.0mL碱性酒石酸铜甲液及5.0mL乙液,置 于150mL锥形瓶中(甲液、乙液混合后生成氧 化亚铜沉淀,因此,应将甲液加入到乙液,使 生成的氧化亚铜沉淀重溶),加水10mL、玻璃 珠2粒,从滴定管中滴加9mL葡萄糖标准溶液, 控制在2min内加热至沸,趁沸以每两秒1滴的速 度继续滴加葡萄糖标准溶液,直至溶液蓝色刚 好褪去为终点,记录消耗葡萄糖标准溶液的总 体积。同法平行操作三份,取其平均值,计算 每10mL(甲液、乙液各5mL)碱性酒石酸铜溶 液相当于葡萄糖的质量(mg)。
• 4. 样品溶液的测定
– 吸取5.0mL碱性酒石酸铜溶液甲液及5.0mL乙 液,置于150mL锥形瓶中,加水10mL、玻璃 珠2粒,从滴定管中滴加比预测体积少1mL的 样品溶液,使在2min内加热至沸,趁沸以以每 两秒1滴的速度滴定至终点。记录样液消耗的 体积,同法平行操作三份,得出平均消耗体积。
• 1. 样品处理
– 汽水等含CO2的饮料-雪碧
• 吸取10mL样品置于蒸发皿中,在水浴上除去CO2后, 移入250mL容量瓶,并用水洗涤蒸发皿,洗液并入 容量瓶中,加水至刻度,混匀后备用。
– 酒精饮料-啤酒
• 吸取10mL样品,置于蒸发皿中,用1mol/L氢氧化钠 溶液中和至中性,在水浴上蒸发至原体积的1/4后, 移入100 mL容量瓶中,加入50 mL水,摇匀后慢慢 加入5 mL乙酸锌溶液和5 mL 10.6%亚铁氰化钾溶液, 加水至刻度,摇匀。静置30min,用干燥滤纸过滤, 滤液备用。

食品中还原糖的测定(修改版)

食品中还原糖的测定(修改版)

食品中还原糖的测定--直接滴定法一、实验目的与要求1.学习直接滴定法测定还原糖的原理,并掌握其测定的方法。

2. 掌握蜂蜜中还原糖的测定的操作技能。

3. 学会控制反应条件,掌握提高还原糖测定精密度的方法。

二、原理将等量的碱性酒石酸铜甲液、乙液混合时,立即生成天蓝色的氢氧化铜沉淀,这种沉淀立即与酒石酸钾钠反应,生成深蓝色的可溶性酒石酸钾钠铜络合物。

此络合物与还原糖共热时,二价铜即被还原糖还原为一价的氧化亚铜沉淀,氧化亚铜与亚铁氰化钾反应,生成可溶性化合物,达到终点时,稍微过量的还原糖将蓝色的次甲基蓝还原成无色,溶液呈浅黄色而指示滴定终点。

根据还原糖标准溶液标定碱性酒石酸铜溶液相当于还原糖的质量,以及测定样品液所消耗的体积,计算还原糖含量。

三、试剂、仪器与样品试剂:除特殊说明外,实验用水为蒸馏水,试剂为分析纯。

1.碱性酒石酸铜甲液:称取7.5 g硫酸铜(CuSO4·5H2O),及0.025 g次甲基蓝,溶于水中并稀释至500ml。

2.碱性酒石酸铜乙液:称取25 g酒石酸钾钠与37.5 g氢氧化钠,溶于水中,再加入2g亚铁氰化钾,完全溶解后,用水稀释至500ml,贮存于橡胶塞玻璃瓶内。

3.盐酸溶液(1+1):量取50mL盐酸加水稀释至100mL.4.氢氧化钠溶液(40g/L):称取4g氢氧化钠,加水溶解并稀释至100mL。

5.转化糖标准溶液:准确称取1.0526g蔗糖,用100ml水溶解,置具塞三角瓶中,加5ml盐酸(1+1),在68℃-70℃水浴中加热15min,放置至室温,转移到1000ml容量瓶中并定容至1000ml,每毫升标准相当于1.0毫克转化糖。

6.澄清剂:中性醋酸铅:粗称醋酸铅20g,加新煮沸放冷的蒸馏水溶解,再滴加醋酸使溶液澄清,再加水至200ml。

往醋酸铅溶液里加入两滴酚酞指示剂,再用氢氧化钠溶液调至微红。

注意:醋酸铅试液有毒,禁止用手!7.指示剂:次甲基蓝8.样品:蜂蜜。

9.仪器:酸式滴定管,容量瓶,电炉,坩埚钳,150mL锥形瓶,匹配的胶塞等四、操作方法1.样品处理:称取35-40g样品,加50mL水稀释并洗入250mL容量瓶中,摇匀后慢慢加入少量中性醋酸铅溶液,加水至刻度,摇匀,静止30min.用干燥滤纸过滤,弃初滤液,滤液备用。

食品中还原糖的测定

食品中还原糖的测定

碱 性 酒 溶 石 液 酸 的 铜 标 定
准确吸取碱性酒 石酸铜甲液和乙 液各5ml,置于 250ml 锥形瓶中, 加水10ml ,加玻 璃珠4 粒。
碱 性 酒 溶 石 液 酸 的 铜 标 定
从滴定管滴加约 9 ml 葡萄糖标准溶液, 加热使其在 2 分钟内沸腾,准确沸腾 30 秒,趁热以每 2 秒一滴的速度滴加葡萄糖 标准溶液,直至溶液蓝色刚好褪去为终点。 记录消耗葡萄糖标准溶液的总体积。平行 操作 3 次,取其平均值。
样 品 溶 液 测 定
吸取碱性酒石酸铜甲液和乙液各5 ml,置于250 ml 锥形瓶 中,加水10 ml ,加玻璃珠4粒。从滴定管加入比预测时样 品溶液消耗总体积少1ml 的样品液,使其在 2 分钟内加热 至沸腾,准确沸腾 30 秒钟,趁热以每 2 秒一滴的速度继 续滴定,直至蓝色刚好褪去为终点。记录消耗样品液的体 积。平行操作3次,取其平均值
The end Thank you
反应液碱度:碱度越高,反应速度越快,样液消耗也越多, 故样品测定时样液的滴定体积要与标准相近,原理在此, 这样误差要小。 锥形瓶规格:不同体积的锥形瓶会致使加热的面积及样液 的厚度有变化,同时瓶壁的厚度不同影响传热速率,故有 时甚至是同一规格但不同批的锥形瓶也会引起误差 。 加热功率:加热的目的一是加快反应速度,二是防止次甲 基兰与滴定过程中形成的氧化亚铜被氧气氧化,使结果偏 高。加热功率不同,样液沸腾时间不同,时间短,样液消 耗多,同时反应液蒸发速度不同,即碱度的变化也就不同, 故实验的平行性也就受影响。 滴定速度:滴定速度越快,样液消耗也越多,结果会偏低。
滴定必须在沸腾条件下进行。
滴定时丌能随意摇动锥形瓶,更丌能把锥形瓶从热源上取下来滴定, 以防空气进入反应液中。

还原糖的测定实验报告

还原糖的测定实验报告

还原糖的测定实验报告还原糖的测定实验报告引言:还原糖是一类具有还原性质的糖类物质,它们能够将其他物质还原为较低的氧化态。

测定还原糖的含量对于食品、医药等领域具有重要意义。

本实验旨在通过一系列的化学反应和分析方法,测定某种食品中还原糖的含量。

实验步骤:1. 样品制备首先,我们需要准备样品。

选取一种食品,如苹果汁,将其过滤并稀释至适当浓度。

确保样品中没有其他干扰物质的存在。

2. 还原糖的测定将准备好的样品分别取10ml放入两个试管中。

标记为A和B。

3. 试剂的添加在试管A中加入5ml硫酸铜溶液,并加热至沸腾。

观察溶液颜色的变化。

4. 还原糖的反应在试管B中加入5ml硫酸铜溶液,并加入适量的还原糖试剂。

搅拌均匀后,加热至沸腾。

观察溶液颜色的变化。

5. 比色测定待试管A和B冷却后,使用分光光度计分别测定它们的吸光度。

根据吸光度的差异,计算出还原糖的含量。

结果与讨论:通过实验,我们得到了样品中还原糖的含量。

根据试管A的吸光度,我们可以推测样品中还原糖的含量较低。

而试管B的吸光度明显高于试管A,表明样品中含有较高浓度的还原糖。

这一结果与我们的预期相符。

苹果汁中含有大量的果糖和葡萄糖等还原糖,因此我们可以得出结论,该苹果汁样品中还原糖的含量较高。

然而,我们也要注意到实验中存在的一些限制因素。

首先,我们只测定了还原糖的总含量,并没有对具体的还原糖种类进行分析。

其次,实验中的试剂和操作条件也可能对结果产生影响。

因此,在实际应用中,我们需要综合考虑多种因素,进行更为准确的分析。

结论:通过本实验的测定,我们成功地测定了某种食品中还原糖的含量。

这一实验方法简便易行,可以在食品、医药等领域中得到广泛应用。

然而,在实际应用中,我们需要注意实验条件的控制和结果的解读,以确保测定结果的准确性和可靠性。

食品中还原糖的测定

食品中还原糖的测定

精品文档
F4C1z)w&t!pYmUjRgOcL9I6E3B+y (v%r#oXlTiQeNbK8G5 D2A-x *t$qZn V kShPdMaI7F4C0 z)w&s!pXmUjRfOcL9H6 E2B+y (u%r#o WlTh QeNbJ8 G5D1A -x*t$q YnV kSgPdMaI7F3C0 z)v&s!pXmUiRfOcK9 H6E2B+x(u% rZoWlThQeM bJ8G4 D1A-w* t!qYn VjSgPdLaI6F3C0y )v&s#pXmUiRfNcK9H5E 2B+x( u$rZo W kThQe MbJ7G 4D1 z- w*t!qYmVjSgOdLaI6 F3B0y )v%s#p XlUiQf NcK8H 5E2A+ x*u$rZ nW kThPeMbJ 7G4C1 zw&t!qYmVjRgOdL9I6F3B0y (v%s#oXlUiQfNbK8H5D2A+x*u$qZn W kShPeMaJ7 F4C1 z) w&t!pYmUjRgOcL9I6E3B+y (v%r# oXlTiQ fNbK8 G5D2A -x*u$q ZnV kShPdMaJ7F4C0 z)w&s!pYmUjRfOcL9H6E3B+y (u%r#oWlTiQeNb J8G5D 1A-x*t$qYnV kSgPdMaI7F4C0 z)v&s!pXmUjRfOcK9H6E 2B+y (u%rZo WlThQe NbJ8G 4D1A- w*t$qY nVjSgPdLaI7F3C0y )v&s#pXmUiRfNcK9H 5E2B+ x(u$rZ oW kTh QeMbJ 8G4D1 z-w*t!q YnVjSgOdLaI 6

还原糖的测定实验报告

还原糖的测定实验报告

还原糖的测定实验报告实验目的:通过实验,掌握还原糖的测定方法,了解还原糖在生活中的应用。

实验原理:还原糖是指具有还原性的糖类物质,如葡萄糖、果糖等。

在碱性条件下,还原糖能与铜离子发生氧化还原反应,将Cu2+还原为Cu+,同时还原糖被氧化为酸。

通过测定还原糖溶液对氧化铜的还原作用,可以确定还原糖的含量。

实验仪器和试剂:1. 分光光度计。

2. 玻璃烧杯。

3. 还原糖试剂。

4. 氢氧化钠溶液。

5. 硫酸铜溶液。

6. 蒸馏水。

实验步骤:1. 取一定量的还原糖溶液放入玻璃烧杯中。

2. 加入适量的氢氧化钠溶液,并混合均匀。

3. 加入适量的硫酸铜溶液,再次混合均匀。

4. 将混合溶液放入水浴中加热,使其发生反应。

5. 反应结束后,冷却至室温,用蒸馏水稀释至刻度线。

6. 用分光光度计测定溶液吸光度,记录数据。

实验数据处理:根据实验数据,利用标准曲线法计算出还原糖的含量。

实验结果:通过实验测定,得到还原糖的含量为Xg/L。

实验结论:通过本次实验,我们成功掌握了还原糖的测定方法,并且得到了还原糖的含量。

还原糖在食品工业中有着重要的应用,我们需要进一步了解还原糖的性质和用途,为日后的实际应用提供参考。

实验注意事项:1. 实验过程中要注意安全,避免溶液溅出。

2. 操作仪器时要轻拿轻放,避免损坏。

3. 实验后要及时清洗玻璃器皿,保持实验台面整洁。

总结:本次实验成功测定了还原糖的含量,掌握了还原糖的测定方法。

通过实验,我们深入了解了还原糖的性质和应用,为今后的学习和工作打下了良好的基础。

希望大家能够在日常生活中多加利用所学知识,不断提高自己的实践能力。

以上是本次实验的实验报告,谢谢!。

食品中还原糖的测定实验报告

食品中还原糖的测定实验报告

食品中还原糖的测定实验报告实验目的,通过实验测定食品中还原糖的含量,了解食品的营养成分,为食品质量的评价提供依据。

实验原理,还原糖是指具有还原性的糖类物质,如葡萄糖、果糖等。

在酸性条件下,还原糖能够与费林试剂发生还原反应,生成红色沉淀。

通过比色计测定沉淀的光吸收值,可以计算出还原糖的含量。

实验步骤:1. 样品制备,取不同种类的食品样品,如水果、果酱、饼干等,分别制备成样品提取液。

2. 提取还原糖,将样品加入酸性乙醇中,进行提取,得到含有还原糖的提取液。

3. 进行费林试剂反应,取一定量的提取液,加入费林试剂,混合均匀后,在水浴中加热,观察是否生成红色沉淀。

4. 测定光吸收值,将反应后的样品溶液置于比色皿中,使用比色计测定其光吸收值。

5. 计算含量,根据测定的光吸收值,利用标准曲线计算出还原糖的含量。

实验结果:通过实验测定,不同食品样品中还原糖的含量差异较大。

水果中的还原糖含量较高,果酱次之,而饼干等加工食品中的含量较低。

这与食品的制作工艺、原料成分等有关。

实验结论:通过本次实验,我们成功测定了食品样品中还原糖的含量,并且得出了不同食品样品中还原糖含量的差异。

这对于我们了解食品的营养成分,评价食品质量具有一定的指导意义。

同时,也为我们提供了一种简单、快速、准确的测定方法,为食品质量监测和评价提供了技术支持。

实验注意事项:1. 实验中需注意操作规范,避免溶液外溅,保持实验台面整洁。

2. 在进行测定时,需保持仪器的准确性,避免外界干扰。

3. 对于不同食品样品的提取液制备,需注意样品的选择和制备方法,保证提取液的准确性。

4. 实验中需严格按照操作步骤进行,确保实验结果的准确性和可靠性。

总结:本次实验通过测定食品样品中还原糖的含量,为我们了解食品的营养成分提供了重要依据。

同时,实验方法简单、快速、准确,具有一定的实用性和推广价值。

希望本实验能够对大家有所启发,为食品质量监测和评价提供技术支持。

食品中还原糖的测定实验报告

食品中还原糖的测定实验报告

一、实验目的1. 掌握食品中还原糖的测定方法。

2. 了解还原糖在食品中的分布和作用。

3. 通过实验,提高实验操作技能和数据分析能力。

二、实验原理还原糖是指具有还原性的糖类,包括葡萄糖、果糖、麦芽糖等。

在碱性条件下,还原糖能够将斐林试剂中的铜离子还原成氧化亚铜,生成砖红色的沉淀。

根据沉淀颜色的深浅,可以判断食品中还原糖的含量。

三、实验材料与仪器1. 实验材料:- 食品样品(如水果、蔬菜、糖果等)- 斐林试剂- 氢氧化钠溶液- 硫酸铜溶液- 蒸馏水- 试管- 烧杯- 滴管- 移液器- 电子天平2. 实验仪器:- 紫外可见分光光度计- 恒温水浴锅- 移液器- 试管架四、实验步骤1. 准备斐林试剂:将硫酸铜溶液和氢氧化钠溶液按比例混合,配制成斐林试剂。

2. 称取一定量的食品样品,加入蒸馏水,充分溶解。

3. 取少量溶液,加入斐林试剂,混合均匀。

4. 将混合溶液放入恒温水浴锅中,加热至沸腾,保持沸腾状态5分钟。

5. 取出混合溶液,观察沉淀颜色,并与标准比色卡进行对比。

6. 记录食品样品中还原糖的含量。

五、实验结果与分析1. 实验结果:| 食品样品 | 还原糖含量(%) || :-------: | :-------------: || 甜橙 | 6.5 || 苹果 | 4.2 || 红糖 | 99.8 || 白砂糖 | 0.2 |2. 结果分析:从实验结果可以看出,甜橙和苹果中含有一定量的还原糖,而红糖和白砂糖中的还原糖含量较高。

这可能与食品的来源和加工过程有关。

六、实验讨论1. 实验过程中,应注意控制实验条件,如温度、时间等,以保证实验结果的准确性。

2. 斐林试剂的配制和使用过程中,应注意避免交叉污染,以保证实验结果的可靠性。

3. 实验结果受多种因素影响,如食品样品的来源、处理方法等,因此在实际应用中,应结合具体情况进行分析。

七、实验结论通过本次实验,我们掌握了食品中还原糖的测定方法,了解了还原糖在食品中的分布和作用。

实验报告还原糖测定(3篇)

实验报告还原糖测定(3篇)

第1篇一、实验目的1. 学习还原糖的检测原理和方法。

2. 掌握斐林试剂的使用方法。

3. 通过实验了解还原糖在食品、生物样品中的应用。

二、实验原理还原糖是指在水溶液中能将斐林试剂还原成砖红色沉淀的糖类物质。

斐林试剂是一种含有CuSO4和NaOH的混合溶液,在加热条件下,Cu2+被还原成Cu2O,形成砖红色沉淀。

还原糖与斐林试剂反应,生成砖红色沉淀的多少与还原糖的浓度成正比。

三、实验材料1. 试剂:斐林试剂、NaOH溶液、CuSO4溶液、葡萄糖标准溶液、蒸馏水。

2. 仪器:试管、试管架、酒精灯、恒温水浴锅、移液器、滴定管。

四、实验步骤1. 准备斐林试剂:将CuSO4溶液和NaOH溶液按1:9的比例混合,现配现用。

2. 配制葡萄糖标准溶液:准确称取1.0g葡萄糖,用蒸馏水溶解并定容至100ml,配制成10mg/ml的葡萄糖标准溶液。

3. 样品处理:准确称取待测样品0.1g,用蒸馏水溶解并定容至10ml,配制成0.01mg/ml的样品溶液。

4. 实验步骤:a. 取一支试管,加入1ml斐林试剂;b. 取另一支试管,加入1ml样品溶液;c. 将两支试管同时放入恒温水浴锅中,加热至沸腾,保持沸腾状态2分钟;d. 观察颜色变化,记录结果。

5. 结果处理:a. 将实验结果与葡萄糖标准溶液进行对照;b. 计算样品中还原糖的浓度。

五、实验结果与分析1. 实验结果:样品溶液加入斐林试剂后,加热至沸腾,观察到样品溶液变为浅蓝色,随后逐渐变为棕色,最终形成砖红色沉淀。

2. 结果分析:根据实验结果,样品溶液中加入斐林试剂后,发生了还原反应,生成了砖红色沉淀。

这说明样品中含有还原糖,且其浓度与斐林试剂反应生成的沉淀量成正比。

六、实验讨论1. 实验过程中,样品溶液加热至沸腾时,需保持沸腾状态2分钟,以确保还原糖与斐林试剂充分反应。

2. 实验结果中,样品溶液的颜色变化过程为浅蓝色→棕色→砖红色沉淀,说明还原糖在加热条件下,与斐林试剂反应生成砖红色沉淀。

还原糖的含量测定

还原糖的含量测定

还原糖的含量测定一、背景介绍糖是人们日常饮食中常见的一种营养物质,但过量摄入糖会导致肥胖、糖尿病等健康问题。

因此,了解食品中糖的含量对于人们合理膳食非常重要。

还原糖是指具有还原性的单糖和部分双糖,如葡萄糖、果糖等,其测定方法较为简便。

二、实验原理还原糖含量测定采用间接法,即先将样品中的多余物质去除,然后将还原糖转化为葡萄糖,并利用酶法或化学法测定葡萄糖含量。

其中,去除多余物质的方法有酸水解法、酶解法和乙醇沉淀法等;将还原糖转化为葡萄糖的方法有硫酸水解法和硝酸钠氧化法等;测定葡萄糖含量的方法有显色滴定法和比色法等。

三、实验步骤1. 样品制备:取适量待测样品,如果汁、奶制品等。

2. 样品预处理:根据样品的特点选择合适的去除多余物质的方法,如果汁可用酸水解法,奶制品可用乙醇沉淀法。

3. 还原糖转化:将经过预处理的样品加入硫酸或硝酸钠溶液中,在加热条件下将还原糖转化为葡萄糖。

4. 葡萄糖含量测定:根据实验需要选择合适的测定方法,如显色滴定法或比色法等。

四、实验注意事项1. 实验过程中要注意安全,避免接触有毒有害物质。

2. 样品预处理和还原糖转化过程要严格控制温度和时间,避免对样品产生影响。

3. 测定葡萄糖含量时要准确称量试剂和标准物质,并按照操作规程进行操作。

4. 实验前应对仪器进行检查和校准,保证实验结果的准确性。

五、实验结果分析通过测定样品中葡萄糖含量可以得到还原糖的含量。

不同食品中还原糖含量不同,其中果汁、甜点等含糖量较高的食品中还原糖含量也相对较高,而蔬菜、豆类等含糖量较低的食品中还原糖含量也相对较低。

通过对不同食品中还原糖含量的测定可以为人们制定合理膳食提供科学依据。

六、实验应用1. 食品生产:测定不同食品中还原糖含量,可以为生产厂家提供产品质量控制和改进方案。

2. 膳食指导:了解不同食品中的还原糖含量,可以帮助人们制定合理的膳食计划,避免过度摄入糖分。

3. 学术研究:测定不同食品中的还原糖含量,可以为相关学科领域提供数据支持。

总糖和还原糖的测定实验报告

总糖和还原糖的测定实验报告

总糖和还原糖的测定实验报告
实验目的,通过对食品中总糖和还原糖的测定,掌握测定方法和原理,了解不同食品中糖的含量。

实验原理,总糖是指食品中所有可溶解于水的糖的总和,包括葡萄糖、果糖、蔗糖等;还原糖是指具有还原性的糖,如葡萄糖、果糖等。

测定总糖的方法一般采用硫酸酚法,而测定还原糖的方法则是费林试剂法。

实验步骤:
1. 样品制备,将食品样品研磨成细粉,称取适量样品置于烘干器中,使其干燥后称取一定质量的样品备用。

2. 总糖的测定,取一定质量的样品,加入硫酸酚溶液,放入水浴中加热,再加入苯酚,用硫酸铜溶液滴定,记录滴定消耗的体积。

3. 还原糖的测定,取一定质量的样品,加入水和费林试剂,加热沸腾后立即加入硫酸,冷却后用蒸馏水定容至刻度线,用紫外分光光度计测定吸光度。

实验结果:
经过实验测定,得出样品中总糖的含量为10.5g/100g,还原糖的含量为
8.3g/100g。

实验分析:
通过对样品中总糖和还原糖的测定,可以了解到样品中糖的含量,为食品质量的评定提供了重要依据。

总糖的含量反映了食品的甜度,而还原糖的含量则反映了食品中具有还原性的糖的含量,对于不同类型的食品,其糖的含量也会有所不同。

实验总结:
通过本次实验,我们掌握了总糖和还原糖的测定方法和原理,了解了不同食品中糖的含量。

在实际生活中,我们可以通过这些方法对食品进行质量检测,保障食品安全和营养健康。

总糖和还原糖的测定实验报告到此结束。

还原糖的测定实验报告

还原糖的测定实验报告

还原糖的测定实验报告引言:还原糖是一类含有还原性基团的糖类物质,包括蔗糖、果糖、葡萄糖等,它们具有还原剂性质,能够还原某些化学试剂。

还原糖的测定对于食品工业、生物化学以及医学领域具有重要意义。

本实验旨在通过间接法,利用还原糖对氧化剂的还原能力来测定糖的含量。

实验设备:1. 分光光度计2. 烧杯3. 试管4. 10ml 称量瓶5. 称量盘6. 称重仪7. 20ml 锥形瓶8. 恒温水浴器9. 塑料注射器实验原理与步骤:原理:还原糖具有还原能力,能够将某些氧化剂还原为相应的还原剂。

本实验中,我们采用间接法来测定还原糖的含量。

首先,还原糖被氧化剂氧化生成相应的酸。

然后,我们利用已知浓度的氧化剂标定所需的还原糖的质量。

步骤:1. 取适量的还原糖样品,精确称量并记录其质量。

2. 将样品溶解在足够量的蒸馏水中,使得质量浓度为1克/10ml。

3. 取0.5ml还原糖溶液到一个20ml 锥形瓶中。

4. 加入50ml的磷酸盐缓冲溶液,并用塑料注射器将氧化剂硫酸亚铁溶液滴定到显红的终点,记录所需的滴定体积。

5. 用蒸馏水对照实验进行空白试验,并记录滴定体积。

6. 计算样品的还原糖含量。

实验结果与分析:1. 标定曲线:根据实验所得数据,绘制出硫酸亚铁滴定体积与还原糖质量之间的标定曲线。

2. 样品测定:根据实验步骤中测定的滴定体积数据,结合标定曲线,计算并记录样品中还原糖的含量。

讨论与结论:1. 实验误差:分析实验过程中可能存在的误差来源,如称量误差、滴定体积读取误差等。

提出改进实验方法的建议。

2. 结果分析:根据实验数据的分析与计算,得出样品中还原糖的含量。

3. 结论:通过实验,我们成功测定了还原糖的含量,并得出结论。

实验的意义与应用:1. 食品工业:测定食品中还原糖的含量,为食品质量评价提供重要依据。

2. 生物化学:研究生物体内糖代谢、酶的活性等方面的重要手段。

3. 医学领域:对于糖尿病患者管理血糖以及诊断疾病具有重要意义。

食品中还原糖的测定实验报告

食品中还原糖的测定实验报告

食品中还原糖的测定实验报告一、实验目的本实验旨在掌握食品中还原糖含量的测定方法,了解还原糖在食品中的重要性,并通过实际操作提高实验技能和数据处理能力。

二、实验原理还原糖是指具有还原性的糖类,在碱性条件下,能将斐林试剂中的Cu²⁺还原为 Cu₂O 沉淀。

斐林试剂由甲液(硫酸铜溶液)和乙液(氢氧化钠与酒石酸钾钠溶液)组成,使用时将甲液和乙液等量混合。

反应式如下:2Cu(OH)₂+RCHO → RCOOH + Cu₂O↓ + 2H₂O生成的氧化亚铜沉淀呈砖红色,通过比色法或重量法可以测定还原糖的含量。

三、实验材料与仪器(一)实验材料1、葡萄糖标准溶液:准确称取 1000g 经过 98 100℃干燥至恒重的无水葡萄糖,加水溶解后定容至 1000mL,浓度为 1mg/mL。

2、待测食品样品:苹果汁、橙汁、蜂蜜等。

(二)实验仪器1、电子天平:精度为 0001g。

2、容量瓶:100mL、500mL。

3、移液管:1mL、5mL、10mL。

4、锥形瓶:250mL。

5、电炉。

6、石棉网。

7、酸式滴定管:50mL。

8、比色皿。

9、分光光度计。

四、实验步骤(一)样品处理1、液体样品(如苹果汁、橙汁):准确吸取 1000mL 样品于100mL 容量瓶中,加 5mL 乙酸锌溶液和 5mL 亚铁氰化钾溶液,定容至刻度,摇匀,静置 30 分钟,用干燥滤纸过滤,弃去初滤液,收集滤液备用。

2、粘稠液体样品(如蜂蜜):称取 500 1000g 样品于 100mL 容量瓶中,加水约 50mL 溶解,慢慢加入 5mL 乙酸锌溶液和 5mL 亚铁氰化钾溶液,定容至刻度,摇匀,静置 30 分钟,用干燥滤纸过滤,弃去初滤液,收集滤液备用。

(二)斐林试剂的标定1、准确吸取 500mL 葡萄糖标准溶液于 250mL 锥形瓶中,加入25mL 水和 5mL 斐林试剂甲液、5mL 斐林试剂乙液,摇匀,在电炉上加热至沸腾,保持沸腾 2 分钟,趁热用 01%葡萄糖标准溶液滴定至蓝色刚好消失,记录消耗的葡萄糖标准溶液的体积。

实验五糖果中还原糖的测定

实验五糖果中还原糖的测定

实验内容
黄酒中总糖含量的测定——廉爱农法 (5) 测定方法 b. 费林溶液的标定 ——预滴定
准确吸取费林甲、乙液各5 mL于250 mL锥形瓶中, 加水30 mL,玻璃珠4粒,混合后置于电炉上加热至沸 腾。滴入葡萄糖标准溶液,保持沸腾,待试液蓝色即 将消失时,加入次甲基蓝指示液两滴,继续用葡萄糖 标准溶液滴定至蓝色消失为终点。记录消耗葡萄糖标 准溶液的体积(V)。
(2)实验原理
通常是以还原糖的测定方法为基础的。样品经处理除去蛋白 质等杂质后,加入盐酸,在加热条件下使蔗糖水解为还原性单 糖,以滴定法测定水解后样品中的还原糖总量,即总糖。
实验内容
黄酒中总糖含量的测定——廉爱农法
❖ 廉爱农法滴定实验原理
▪ 费林溶液与还原糖共沸,生成氧化亚铜沉淀。以 次甲基蓝为指示液,用试样水解液滴定沸腾状态 的费林溶液。达到终点时,稍微过量的还原糖将 次甲基蓝还原成无色为终点,依据试样水解液的 消耗体积,计算总糖含量。
实验内容
黄酒中总糖含量的测定——廉爱农法 (6)结果计算,单位g/L
总糖(以葡萄糖计%)=
v3
m1
V2 V
1000
式中: V3– 取样体积,mL m1– 费林甲、乙液各5mL相当于葡萄糖的质量,g V2-- 测定时消耗样品稀释液的体积,mL V-- 样品溶液的定容体积,mL
实验内容
黄酒中总糖含量的测定——廉爱农法 (7)结果分析 有效数字保留:
实验五糖果中还原糖的测定
教学目标
【知识目标】 掌握还原糖、总糖的概念 掌握还原糖、总糖测定的原理与方法
【技能目标】 熟练掌握食品中还原糖、总糖含量测定的操作 能根据不同食品中的含糖量制取合适浓度的样液
及选择合适的测定方法。 掌握无糖型食品中总糖含量测定的操作

测定还原糖实验报告(3篇)

测定还原糖实验报告(3篇)

第1篇一、实验目的1. 掌握还原糖的测定原理和方法。

2. 学习使用比色法测定还原糖含量。

3. 培养实验操作技能和数据处理能力。

二、实验原理还原糖是指具有还原性的单糖和双糖,在碱性条件下,还原糖可以还原斐林试剂中的铜离子,使其变为氧化亚铜,产生砖红色沉淀。

根据产生的沉淀量,可以计算出样品中还原糖的含量。

三、实验材料1. 试剂:斐林试剂、NaOH溶液、CuSO4溶液、蒸馏水、葡萄糖标准溶液、待测样品。

2. 仪器:电子天平、移液器、容量瓶、试管、试管架、酒精灯、石棉网、水浴锅、分光光度计。

四、实验步骤1. 准备斐林试剂:取斐林试剂甲液和乙液按1:1比例混合,现用现配。

2. 配制葡萄糖标准溶液:准确称取一定量的葡萄糖,用蒸馏水溶解并定容至100mL,配制成一定浓度的葡萄糖标准溶液。

3. 样品处理:准确称取待测样品,用蒸馏水溶解并定容至100mL,得到待测样品溶液。

4. 标准曲线绘制:取若干支试管,分别加入不同体积的葡萄糖标准溶液,再依次加入斐林试剂甲液和乙液,混匀后置于水浴锅中加热,观察颜色变化。

以葡萄糖浓度为横坐标,光吸收值为纵坐标,绘制标准曲线。

5. 样品测定:取若干支试管,分别加入不同体积的待测样品溶液,再依次加入斐林试剂甲液和乙液,混匀后置于水浴锅中加热,观察颜色变化。

用分光光度计测定光吸收值,根据标准曲线计算样品中还原糖含量。

五、实验结果与分析1. 标准曲线绘制:根据实验数据,绘制葡萄糖标准曲线,得到线性回归方程为:y = 0.0428x + 0.0011,相关系数R² = 0.9976。

2. 样品测定:根据实验数据,计算待测样品中还原糖含量,结果如下:样品编号 | 样品溶液体积(mL) | 光吸收值 | 还原糖含量(mg/mL)-------- | ----------------- | -------- | -----------------1 | 1.0 | 0.732 | 0.04282 | 1.5 | 0.958 | 0.05773 | 2.0 | 1.194 | 0.07154 | 2.5 | 1.431 | 0.08545 | 3.0 | 1.668 | 0.0992六、实验讨论1. 实验过程中,注意控制加热时间和温度,避免产生过多的氧化亚铜沉淀,影响实验结果。

食品中还原糖的测定实验报告

食品中还原糖的测定实验报告

食品中还原糖的测定实验报告食品中还原糖的测定实验报告引言:食品是人们日常生活中必不可少的一部分,而其中的糖分则是我们所需能量的重要来源。

然而,随着现代生活方式的改变,人们摄入的糖分也越来越多。

其中,还原糖是一种常见的糖类,它不仅存在于许多食品中,还被广泛用于食品加工中。

因此,了解食品中还原糖的含量对于我们的健康至关重要。

本实验旨在通过一系列实验步骤,测定食品样品中还原糖的含量,并对结果进行分析和讨论。

实验方法:1. 样品准备:首先,我们需要准备一些食品样品,如果汁、饼干等。

确保样品的新鲜度和质量,以保证实验结果的准确性。

2. 食品样品提取:将样品称取一定重量,加入适量的蒸馏水中,并搅拌均匀。

然后,用纱布过滤,得到纯净的食品提取液。

3. 还原糖的测定:取一定量的食品提取液,加入试管中。

然后,加入苏丹Ⅲ试剂,轻轻摇匀。

将试管放入水浴中加热,使其沸腾2分钟。

待试管冷却后,用去离子水稀释,并用比色皿接收。

4. 比色测定:将比色皿中的溶液放入分光光度计中,设置波长为540nm。

读取吸光度值,并记录。

结果分析:根据实验测得的吸光度值,我们可以通过标准曲线来计算食品样品中还原糖的含量。

标准曲线可以通过制备一系列已知浓度的还原糖溶液,分别测定它们的吸光度值,并绘制出曲线。

然后,通过比较样品的吸光度值与标准曲线上对应浓度的吸光度值,可以得出样品中还原糖的含量。

通过实验测定,我们可以得出食品样品中还原糖的含量。

然而,还原糖并非所有人都需要完全避免。

对于一些需要快速补充能量的人群,适量的还原糖摄入是必要的。

但对于一些需要减少糖分摄入的人,监控还原糖的摄入量则显得尤为重要。

此外,实验过程中还需注意一些问题。

首先,样品的准备要尽量避免污染和氧化,以免影响实验结果。

其次,实验中的操作要准确无误,尽量避免误差的产生。

最后,实验数据的分析和结果的解读也需要经过严谨的思考和讨论。

结论:通过本实验的测定和分析,我们可以得出食品样品中还原糖的含量。

糖的检验化学实验报告(3篇)

糖的检验化学实验报告(3篇)

第1篇一、实验目的1. 掌握还原糖和非还原糖的鉴别方法。

2. 了解斐林试剂和本尼迪克特试剂的配制及使用方法。

3. 通过实验,学会使用化学方法检测食物中糖的含量。

二、实验原理1. 还原糖的检验原理:还原糖具有游离的醛基或酮基,可以与斐林试剂或本尼迪克特试剂发生反应,生成砖红色沉淀。

斐林试剂由质量浓度为0.1 g/mL的氢氧化钠溶液和质量浓度为0.05 g/mL的硫酸铜溶液配制而成。

本尼迪克特试剂由质量浓度为0.1 g/mL的柠檬酸钠溶液、质量浓度为0.05 g/mL的硫酸铜溶液和质量浓度为0.1 g/mL的酒石酸钾钠溶液配制而成。

2. 非还原糖的检验原理:非还原糖不具有游离的醛基或酮基,不能与斐林试剂或本尼迪克特试剂发生反应,因此不会产生砖红色沉淀。

三、实验材料与仪器1. 实验材料:葡萄糖、蔗糖、淀粉、蜂蜜、面粉、苹果汁、牛奶等。

2. 仪器:试管、酒精灯、电子天平、移液管、烧杯、玻璃棒等。

四、实验步骤1. 配制斐林试剂:取10 mL氢氧化钠溶液,加入5 mL硫酸铜溶液,混合均匀。

2. 配制本尼迪克特试剂:取10 mL柠檬酸钠溶液,加入5 mL硫酸铜溶液,再加入10 mL酒石酸钾钠溶液,混合均匀。

3. 分别取葡萄糖、蔗糖、淀粉、蜂蜜、面粉、苹果汁、牛奶等样品,分别加入试管中。

4. 向各试管中加入等量的斐林试剂,观察并记录颜色变化。

5. 将斐林试剂加热至沸腾,观察并记录颜色变化。

6. 向各试管中加入等量的本尼迪克特试剂,观察并记录颜色变化。

7. 将本尼迪克特试剂加热至沸腾,观察并记录颜色变化。

五、实验结果与分析1. 葡萄糖:加入斐林试剂后,溶液颜色变为浅蓝色,加热后变为棕色,最终产生砖红色沉淀。

加入本尼迪克特试剂后,溶液颜色变为浅蓝色,加热后变为棕色,最终产生砖红色沉淀。

2. 蔗糖:加入斐林试剂后,溶液颜色无明显变化。

加入本尼迪克特试剂后,溶液颜色无明显变化。

3. 淀粉:加入斐林试剂后,溶液颜色无明显变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五食品中还原糖的测定
实验八食品(炼乳)中还原糖含量的测定
一、实验目的
1、了解食品中还原糖的含量;
2、学习直接滴定法测定还原糖的原理,并掌握其定糖方法。

3、通过对实验结果的分析,了解影响测定准确性的因素。

二、原理,
食品中的还原糖主要指具有还原性的葡萄糖、果糖、戊糖、乳糖、麦芽糖等,还原糖之所以具有还原性,是由于其分子中含有游离醛基(-CHO)或酮基(>C=O)。

测定还原糖的经典化学方法都是以其能被多种试剂氧化为基础的。

在这些方法中,以各种根据碱性酒石酸铜溶液氧化作用改进方法的应用最广。

本实验就是采用使用碱性酒石酸铜作为氧化剂的直接滴定法。

碱性酒石酸铜溶液A、B二液等体积混合时生成的天蓝色Cu(OH)2沉淀后,立即与酒石酸钾钠起反应生成深蓝色的酒石酸钾钠铜络合物。

此络合物与还原糖共热时,二价铜即被还原糖还原为一价的红色氧化亚铜沉淀,氧化亚铜沉淀与亚
铁氰化钾反应,生成可溶性化合物,达到终点时,稍微过量的还原糖将蓝色的次甲基蓝还原成无色,溶液呈淡黄色而指示滴定终点,根据还原糖标准溶液标定碱性酒石酸铜溶液相当于还原糖的质量,以及测定样品液所消耗的体积,计算还原糖含量。

反应式如下:
CuSO4+2NaOH→Cu(OH)2↓+Na2SO4
COOK COOK
││
CHOH CHO
│+Cu(OH)2→│ Cu+2H2O
CHOH CHO
││
COONa COONa
COOK COOK
│ CHO COOH │
CHO ││ CHOH
│ Cu+(CHOH)4 →(CHOH)4 +│+Cu2O↓
CHO ││ CHOH
│ CH2OH CH2OH │
COONa COONa
三、仪器与试剂
1、仪器
(1)容量瓶 100 ml、250 ml
(2)三角瓶 250 ml
(3)碱式滴定管 50 ml或25 ml
(4)烧杯 100m1
(5)吸管 5 ml、50 ml
(6)分析天平
(7)电炉 1KW可调
(8)恒温水浴锅
2、试剂
(1) 碱性酒石酸铜溶液A液:称取15.00 g 硫酸铜(CuSO4·5H2O)(AR)及0.05g次甲基蓝,溶于蒸馏水中并稀释至1000 ml。

(2) 碱性酒石酸铜溶液B液:称取50g酒石酸绅钠(AR)和75g NaOH (AR),溶于蒸馏水中,再加入4g亚铁氰化钾,完全溶解后用蒸馏水稀释至1000 ml,贮存于具橡胶塞玻璃瓶中。

(3)乙酸锌溶液:称取21.9g乙酸锌,加3ml 冰醋酸,加水溶解并稀释至100ml。

(4)亚铁氰化钾溶液:称取10.6g亚铁氰化钾,加水溶解并稀释至100ml。

(5)葡萄糖标准溶液:准确称取1.0000g至 (96±2)℃干燥2h的纯葡萄糖,加水溶解后加人5ml 盐酸,并以水稀释至1000ml。

此溶液葡萄糖浓度为l.0 mg/ml。

3、样品
炼乳
四、实验步骤
1、样品制备
称取炼乳样品约2.50 ~ 5.00g于100ml烧杯中,加入50ml水溶解,转移到25Oml容量瓶中,并用少量水洗涤烧杯,洗液并人容量瓶中。

慢慢加入5ml乙酸锌溶液和5ml亚铁氰化钾溶液,加水至刻度,混匀。

沉淀,静止30min,用干燥小滤纸做成小菊花形干过滤,弃去初始滤液25ml,其余滤液备用。

2、碱性酒石酸铜溶液的标定
于25Oml三角瓶中吸取碱性酒石酸铜A液及B液各5.0ml,加1Oml水和玻璃珠3粒,从滴定管滴加约9ml葡萄糖(或其他还原糖)标准溶液并摇匀,置于电炉上加热至沸腾 (要求控制在2min 内沸腾),然而趁热以每2s滴加1滴的速度继续滴加葡萄糖 (或其他还原糖)标准溶液,直至溶
液蓝色刚好退去,显示淡黄色即为终点,记录消耗葡萄糖标准溶液的总体积。

同时平行操作三份,沸腾后滴人的葡萄糖(或其他还原糖)标准溶液的体积应控制在0.5~1.0ml 以内,滴定时间应控制在1min内。

否则,应增加预加量并重新滴定。

按下式计算10ml碱性酒石酸铜溶液(A液、B液各5.0ml)相当于标准葡萄糖的质量(mg)
式中:
F一10 ml碱性酒石酸铜溶液(A液、B液各5.0ml)相当于标准葡萄糖的质量,mg
V—标定时消耗标准葡萄糖溶液的体积,ml
C一标准葡萄糖溶液的质量浓度,mg/ml
3、样品溶液的预备滴定
吸取碱性酒石酸铜A液和B液各5.Oml于25Oml 三角瓶中,加1Oml水和玻璃珠3粒并摇匀,在电炉上加热至沸,趁热以先快后慢的速度,从滴定管中滴加试样溶液,并保持溶液沸腾状态,待溶液颜色变浅时,以每2s滴加1滴的速度迅速滴定,直至溶液蓝色刚好退去为终点,记录样品溶液消耗体积。

当样品溶液中还原糖浓度过高时
应适当稀释,再进行测定,使每次滴定消耗的体积控制在与标定碱性酒石酸铜溶液时所消耗的葡萄糖标准溶液的体积相近(约lOml左右),记录消耗样液的总体积,作为正式滴定参考用。

4、样品溶液的正式滴定
吸取碱性酒石酸铜A液和B液各5.0ml于25Oml 三角瓶中,加lOml水和玻璃珠3粒,从滴定管加入比预备滴定体积少lml样品溶液至三角瓶中并摇匀,同上法滴定至终点。

同法平行操作三份。

五、计算
食品中还原糖含量(X%)
式中:
X——每百克试样申还原糖的含量(以葡萄糖计),g
F——10 ml碱性酒石酸铜溶液(A液、B液各5.0ml)相当于标准葡萄糖的质量,mg
m——试样质量,g
V——正式滴定时平均消耗样品溶液的体积,m1
七、说明与讨论
1、实验中的加热温度、时间及滴定时间对
测定结果有很大影响,在碱性酒石酸铜溶液标定和样品滴定时,应严格遵守实验条件,力求一致。

2、加热温度应使溶液在2min内沸腾,若煮沸的时间过长会导致耗糖量增加。

滴定过程中滴定装置不能离开热源,使上升的蒸汽阻止空气进入溶液,以免影响滴定终点的判断。

3、滴定速度应尽量控制在每2s滴加1滴,滴定速度快,耗糖增多;滴定速度慢,耗糖减少。

滴定时间应在lmin内,滴定时间延长,耗糖量减少,因此预加糖液的量应使继续滴定时耗糖量在0.5~1.0ml以内。

4、碱性酒石酸铜溶液A液、B液应分别存放,使用时以等体积混合。

5、本法是与定量的酒石酸钾钠铜作用,铜离子是定量的基础,故样品处理时,不能用铜盐作蛋白质沉淀剂。

6、为了提高测定的准确度,根据待测样品中所含还原糖的主要成分,要求用指定还原糖表示结果,就应用该还原糖标准溶液标定碱性酒石酸铜溶液。

例如,本实验中用葡萄糖表示结果,就用葡萄糖标准溶液标定碱性酒石酸铜溶液。

7、碱性酒石酸铜溶液B液中加入少量亚铁氰化
钾的目的是使生成的红色氧化亚铜配位形成可溶性配合物,消除红色沉淀对滴定终点的干扰,使终点变色更明显。

相关文档
最新文档