单片机常用复位电路

合集下载

单片机复位电路工作原理

单片机复位电路工作原理

单片机复位电路工作原理复位电路的目的就是在上电的瞬间供应一个与正常工作状态下相反的电平。

一般利用电容电压不能突变的原理,将电容与电阻串联,上电时刻,电容没有充电,两端电压为零,此时,供应复位脉冲,电源不断的给电容充电,直至电容两端电压为电源电压,电路进入正常工作状态。

关于单片机复位电路,以前做的一点小笔记和文摘,在这里做一个综述,一方面,由于我自己做的面包板上的复位电路按键无效,于是又回过头来重新整理了一下,供自己复习,另一方面大家一起沟通学习。

在我看来,读书,重在沟通,不管你学什么,沟通,可以让你深刻的理解你所思索的问题,可以深化你的记忆,更会让你识得人生的伴侣。

最近在学ARM,ARM处理器的复位电路比单片机的复位电路有讲究,比起单片机牢靠性要求更高了。

先让我自己来回忆一下单片机复位电路吧。

先说原理。

上电复位POR(Pmver On Reset)实质上就是上电延时复位,也就是在上电延时期间把单片机锁定在复位状态上。

为什么在每次单片机接通电源时,都需要加入肯定的延迟时间呢?分析如下。

1 上电复位时序在单片机及其应用电路每次上电的过程中,由于电源同路中通常存在一些容量大小不等的滤波电容,使得单片机芯片在其电源引脚VCC 和VSS之间所感受到的电源电压值VDD,是从低到高渐渐上升的。

该过程所持续的时间一般为1~100ms。

上电延时的定义是电源电压从lO%VDD上升到90%VDD所需的时间。

在单片机电压源电压上升到适合内部振荡电路运行的范围并且稳定下来之后,时钟振荡器开头了启动过程(详细包括偏置、起振、锁定和稳定几个过程)。

该过程所持续的时间一般为1~50 ms。

起振延时的定义是时钟振荡器输出信号的高电平达到10%VDD所需的时间。

例如,对于常见的单片机型号AT和AT89S,厂家给出的这个值为0.7VDD~VDD+0.5V。

从理论上讲,单片机每次上电复位所需的最短延时应当不小于treset。

从实际上讲,延迟一个treset往往还不够,不能够保障单片机有一个良好的工作开端。

单片机rc复位电路作用

单片机rc复位电路作用

单片机rc复位电路作用单片机RC复位电路作用一、什么是单片机RC复位电路?在单片机系统中,RC复位电路是指通过一个电阻(R)和一个电容(C)组成的复位电路。

这个电路提供了一种软件和硬件结合的方式来实现单片机的复位功能。

RC复位电路通过控制单片机的复位引脚,将其拉低或拉高来实现复位操作。

二、RC复位电路的作用是什么?RC复位电路在单片机系统中起到了非常重要的作用,主要有以下几个方面:1.软件复位触发机制RC复位电路可以通过软件控制,当单片机系统出现异常或需要复位时,软件可以通过相关操作将复位引脚拉低,从而强制执行复位操作。

这种软件复位触发机制可以让系统在出现故障或错误时快速恢复正常工作状态,提高系统的稳定性和可靠性。

2.硬件复位保护机制RC复位电路可以在单片机系统上电时自动执行复位操作,保证系统在上电后可以正确初始化。

在单片机系统上电瞬间,各个器件可能会出现不稳定的电压和电流情况,而这些不稳定因素有可能导致单片机系统无法正常启动。

RC复位电路可以通过控制复位引脚,确保系统在上电瞬间能够恢复到预定的初始状态,避免不稳定因素对系统正常工作的影响。

3.电源干扰屏蔽单片机系统中往往存在着各种电子器件,这些器件可能会受到电源线路中的电磁干扰影响,导致系统工作不稳定或出现错误。

RC复位电路的存在可以通过复位引脚将这些电磁干扰屏蔽在外,确保系统的稳定性和可靠性。

三、RC复位电路的设计考虑在设计单片机系统的RC复位电路时,需要考虑以下几个方面:1.计算合适的RC时间常数RC时间常数决定了RC复位电路的响应速度,一般需要根据实际需求来计算合适的值。

过小的时间常数会导致系统对干扰过于敏感,容易误触发复位;过大的时间常数则会导致复位响应时间过长,影响系统的反应速度。

因此,在设计RC复位电路时需要仔细选择合适的RC时间常数。

2.选择合适的复位电平和电源电压RC复位电路需要根据单片机的复位引脚输入电平要求和系统的电源电压来选择相应的电阻和电容数值。

单片机系统复位电路

单片机系统复位电路

单片机复位电路为确保微机系统中电路稳定可靠工作,复位电路是必不可少的一部分,复位电路的第一功能是上电复位。

一般微机电路正常工作需要供电电源为5V±5%,即4.75~5.25V。

由于微机电路是时序数字电路,它需要稳定的时钟信号,因此在电源上电时,只有当VCC超过4.75V 低于5.25V以及晶体振荡器稳定工作时,复位信号才被撤除,微机电路开始正常工作。

复位电路的分类:单片机复位电路主要有四种类型:(1)微分型复位电路;(2)积分型复位电路;(3)比较器型复位电路;(4)看门狗型复位电路。

ISA总线的复位信号到南桥之间会有一个非门,跟随器或电子开关,常态时为低电平,复位时为高电平。

IDE的复位和ISA总线正好相反,通常两者之间会有一个非门或是一个反向电子开关,也就是说IDE常态时为高电平,复位时为低电平,这里的高电平为5V或3.3V,低电平为0.5V以下的电位。

任何单片机在工作之前都要有个复位的过程,复位是什么意思呢?它就象是我们上课之前打的预备铃。

预备铃一响,大家就自动地从操场、其它地方进入教室了,在这一段时间里,是没有老师干预的,对单片机来说,是程序还没有开始执行,是在做准备工作。

显然,准备工作不需要太长的时间,复位只需要5ms的时间就可以了。

如何进行复位呢?只要在单片机的RST引脚上加上高电平,就可以了,按上面所说,时间不少于5ms。

为了达到这个要求,可以用很多种方法。

实际上,我们在上一次实验的图中已见到过了。

复位电路工作原理如上图所示,VCC上电时,C充电,在10K电阻上出现电压,使得单片机复位;几个毫秒后,C充满,10K电阻上电流降为0,电压也为0,使得单片机进入工作状态。

工作期间,按下S,C放电。

S松手,C又充电,在10K电阻上出现电压,使得单片机复位。

几个毫秒后,单片机进入工作状态。

单片机复位电路原理是在单片机的复位引脚RST上外接电阻和电容,实现上电复位。

当复位电平持续两个机器周期以上时复位有效。

单片机的复位电路

单片机的复位电路

单片机的复位电路
单片机的复位电路通常包括以下几个部分:
1.外部复位电路:外部复位电路一般采用复位电路芯片,例如
MAX809、MCP100等。

在电源上电和复位信号有效期间,复位电路芯片输
出一个低电平信号给单片机的复位引脚,将单片机强制复位。

2.电源监测电路:电源监测电路检测电源电压,当电源电压低于一定
范围时,会自动将单片机复位。

电源监测电路一般包括电源电压检测电路
和比较器电路。

3.内部复位电路:内部复位电路是单片机内部自带的复位电路,在单
片机上电后,内部复位电路自动将单片机复位。

内部复位电路一般由复位
电路逻辑电路和RC延迟电路组成。

4.手动复位电路:手动复位电路是用来人工复位单片机的,通常由一
个按键和一个电容组成。

当按键按下时,电容放电,产生一个低电平信号,给单片机的复位引脚,将单片机复位。

以上是单片机复位电路的主要组成部分,不同的单片机型号和应用场景,可能会有不同的复位电路设计。

单片机上电复位电路

单片机上电复位电路

单片机上电复位电路
在单片机的运行中,如果出现异常状况,为了确保系统能够正常运行,就需要有一种称为“上电复位电路”的机制。

简言之,上电复位电路是一种用来重置单片机的电路,它可以在单片机上电时自动将其复位,确保系统在异常情况下能够恢复正常。

上电复位电路主要由电容和电阻构成。

当单片机上电时,电容会通过电阻形成一个RC电路,从而产生一个电压降。

当电容充电到一定程度时,它的电压将达到单片机的复位电压,并使复位引脚拉低,从而复位单片机。

此时,复位引脚将由低电平变为高电平,单片机开始重新运行。

需要注意的是,上电复位电路只能复位单片机,而不能解决其他异常问题。

例如,当系统出现软件故障时,只有重启程序才能恢复正常运行。

因此,在设计电路时,我们应该综合考虑各种可能的错误情况,并采取相应的措施,以确保系统能够稳定工作。

除了上电复位电路,还有一种称为“外部复位电路”的机制。

这种电路将复位引脚连接到一个外部触发源,例如手动按钮或传感器。

当外部触发源被触发时,复位引脚将被拉低,从而复位单片机。

这种机制可以在硬件故障或软件故障时提供一种紧急复位的手段,从而帮助我们及时恢复系统的正常工作。

通过上述讲解,我们可以看出,上电复位电路是保障单片机正常运行的重要组成部分之一。

只有在设计电路时充分考虑一切可能的异
常情况,并采取相应的预防措施和应急措施,才能确保系统的稳定运行。

单片机常用电路

单片机常用电路

单片机常用电路
以下是一份单片机常用电路的制作指南。

这些电路可以应用于各种单片机项目中。

1. 电源电路:设计一个电源电路,以提供适当的电压和电流给单片机。

你可以使用AC/DC变压器来将交流电转换为直流电,然后使用整流和滤波电路将电压稳定在合适的范围内。

2. 复位电路:复位电路用于在单片机启动时将其复位到初始状态。

它通常包括一个复位按钮或开关,一个复位电容和一个复位电路。

3. 稳压电路:稳压电路用于稳定单片机供电电压,以确保其正常运行。

你可以使用稳压器芯片(例如LM7805)来提供稳定的5V电压。

4. 时钟电路:时钟电路用于为单片机提供时钟信号。

你可以使用晶体振荡器和运放来生成稳定的时钟信号。

5. 输入/输出电路:单片机通常需要与外部设备(如开关、传感器、继电器等)进行交互。

设计适当的输入/输出电路以连接这些外部设备。

6. 通信电路:如果你需要通过串行通信(如UART、SPI、I2C等)与其他设备进行通信,需要添加相应的通信电路。

7. 编程/调试电路:单片机需要进行编程和调试。

设计一个编程/调试电路,以连接单片机和计算机,并为其提供适当的信号传输和电源。

请注意,以上描述仅为一份常用电路制作指南,并不涉及具体的元件或品牌名称。

在实际制作中,请根据具体需求和器件规格来选择合适的元件和电路设计。

单片机复位电路参数计算

单片机复位电路参数计算

单片机复位电路参数计算单片机复位电路通常由复位信号源、复位电路和复位延时电路组成。

复位信号源可以是外部触发信号或内部系统信号。

复位电路用于检测复位信号,并在检测到信号时将单片机的复位引脚拉低。

复位延时电路用于延时一段时间后恢复复位引脚的电平,确保单片机在复位信号稳定后才开始工作。

以下是单片机复位电路的常用参数计算:1.复位信号源:复位信号源可以是外部触发信号或内部系统信号。

如果是外部触发信号,通常使用一个复位按钮或开关。

如果是内部系统信号,通常使用系统电源上电或复位芯片提供的复位信号。

选择适当的复位信号源取决于具体的应用需求。

2.复位电路:复位电路通常使用一个复位电源和一个复位引脚。

复位电源应该提供稳定的复位电平,通常为低电平。

复位引脚连接到单片机的复位引脚,用于检测复位信号并拉低复位引脚电平。

选择适当的复位电源电压和复位引脚连接方式取决于单片机型号和供电电源情况。

3.复位延时电路:复位延时电路用于延时一段时间后恢复复位引脚的电平。

延时时间需要足够长,以确保单片机在复位信号稳定后才开始工作。

延时电路通常使用一个RC电路,其中R为电阻,C为电容。

延时时间可以根据具体应用需求来选择。

4.复位电源电压:复位电源电压应该与单片机的供电电压相匹配,通常为3.3V或5V。

复位电源电压需要在单片机的电压规格范围内。

5.复位引脚连接方式:复位引脚可以通过一个电阻连接到复位电源,也可以通过一个电阻和一个电容连接到复位电源。

如果使用电阻连接,通常选择一个合适的电阻值,使得复位引脚电平达到规定的复位电平。

如果使用电阻和电容连接,通常选择合适的电阻和电容值,以便实现所需的复位延时时间。

6.复位延时时间:复位延时时间需要足够长,以确保单片机在复位信号稳定后才开始工作。

延时时间可以通过调整延时电路中的电阻和电容值来实现。

通常,延时时间为几毫秒到数十毫秒。

以上是单片机复位电路的常用参数计算。

具体的参数取决于单片机型号、工作环境和应用需求。

单片机手动复位电路

单片机手动复位电路

单片机手动复位电路
单片机手动复位电路是一种用于单片机系统的电路,用于实现手动复位功能。

该电路通常由一个复位按钮和一个RC电路组成。

当复
位按钮按下时,RC电路会产生一个短暂的脉冲信号,这个信号会被
传递到单片机的复位引脚,从而实现手动复位功能。

单片机手动复位电路的优点在于它可以让系统在遇到问题时进
行快速复位,从而避免系统崩溃或出现其他问题。

此外,手动复位电路还可以用于测试和调试系统,方便开发人员进行系统调试和故障排除。

在设计单片机手动复位电路时,需要注意电路的稳定性和可靠性。

为了确保电路的稳定性,可以加入一些滤波电容和稳压器等元件,以防止电压波动和干扰对电路造成干扰。

同时,为了确保电路的可靠性,需要选择高品质的元件,并进行严密的焊接和连接。

此外,还需要注意电路板的布局和线路的规划,以避免信号干扰和电磁干扰等问题。

- 1 -。

复位电路

复位电路

在电路中,使用电阻给电容充电,使电容的电压缓慢上升一直到VCC,在还没有到VCC时,芯片复位脚近似低电平,但是芯片复位,接近VCC时,芯片复位脚近高电平,导致芯片停止复位,此时复位完成,整个电路循环运行.这个电路就叫做复位电路.它主要为了能保证微型机系统得到稳定可靠的工作.复位电路的分类单片机复位电路主要有四种类型:(1)微分型复位电路;(2)积分型复位电路;(3)比较器型复位电路;比较器型复位电路的基本原理如图8所示.上电复位时,由于组成了一个RC低通网络,所以比较器的正相输入端的电压比负相端输入电压延迟一定时间.而比较器的负相端网络的时间常数远远小于正相端RC网络的时间常数,因此在正端电压还没有超过负端电压时,比较器输出低电平,经反相器后产生高电平.复位脉冲的宽度主要取决于正常电压上升的速度.由于负端电压放电回路时间常数较大,因此对电源电压的波动不敏感.但是容易产生以下二种不利现象:(1)电源二次开关间隔太短时,复位不可靠;(2)当电源电压中有浪涌现象时,可能在浪涌消失后不能产生复位脉冲.为此,将改进比较器重定电路,如图9所示.这个改进电路可以消除第一种现象,并减少第二种现象的产生.为了彻底消除这二种现象,可以利用数字逻辑的方法与比较器配合,设计如图9所示的比较器重定电路.此电路稍加改进即可作为上电复位与看门狗复位电路共同复位的电路,大大提高了复位的可靠性.(4)看门狗型复位电路.看门狗型复位电路主要利用CPU正常工作时,定时复位计数器,使得计数器的值不超过某一值;当CPU不能正常工作时,由于计数器不能被复位,因此其计数会超过某一值,从而产生复位脉冲,使得CPU恢复正常工作状态.此复位电路的可靠性主要取决于软件设计,即将定时向复位电路发出脉冲的程序放在何处.一般设计,将此段程序放在定时器中断服务子程序中.然而,有时这种设计仍然会引起程序走飞或工作不正常.原因主要是:当程序"走飞"发生时定时器初始化以及开中断之后的话,这种"走飞"情况就有可能不能由Watchdog复位电路校正回来.因为定时器中断一真在产生,即使程序不正常,Watchdog也能被正常复位.为此提出定时器加预设的设计方法.即在初始化时压入堆栈一个地址,在此地址内执行的是一条关中断和一条死循环语句.在所有不被程序代码占用的地址尽可能地用子程序返回指令RET代替.这样,当程序走飞后,其进入陷阱的可能性将大大增加.而一旦进入陷阱,定时器停止工作并且关闭中断,从而使Watchdog复位电路会产生一个复位脉冲将CPU复位.当然这种技术用于实时性较强的控制或处理软件中有一定的困难.主板上复位电路的工作原理复位电路在主板的设计当中以无可替代的必需品存在的,因为CPU的PG信号和复位信号都是由复位电路供给的.主板上的所有复位信号都是由芯片组产生,其主要由南桥产生(内部有复位系统控制器),也就是说主板上所有的需要复位的设备和模块都由南桥来复位.南桥要想产生复位信号或者说南桥要想去复位其他的设备和模块,其首先要自身先复位或者说自身先有复位源.使南桥复位的或者说南桥的复位源是ATX电源的灰线(灰线常态为5V电平,工作后为恒定的5V,ATX电源的灰线也是PG信号),或者是系统电源管理芯片发出的PG信号常态.ATX电源的灰线在电源的工作瞬间会有一个延时的过程.此延时的过程是相当于黄线和红线而言,延时的时间是100~500ms.也就是说灰线在ATX电源的工作瞬间会有一个低电平到高电平变化的过程.也就是0~1变化的电平信号.此瞬间变化的0~1电平信号会直接或者间接的作用于南桥内的复位系统控制器,首先让南桥本身先复位.当南桥复位后,南桥内部的复位系统控制器会把灰线5V信号进行分解处理,产生不同的复位信号,直接或者间接通过门电路或者电子开关发出.直接加入后级所有的设备或模块中,同时各设备和模块也被瞬间复位.CPU的复位信号由北桥产生,如果是电源管理器发出的PG信号,此信号在加电的瞬间也是一个0~1变化的跳变过程.此信号也会重复以上的动作,让南桥复位.南桥再发出其它复位信号(在笔记本电路中较为常用).在某些主板上CPU的PG信号是由电源管理器的PG信号直接供给,还有的是由ATX电源的灰线间接供给,通常主板上的复位电路由RESET开关来控制,此复位开关一端为低电平一端为高电平,低电平通常接地,高电平由红线和灰线间接供给,通常为3.3V,此复位键的某一端也会直接或间接作用于南桥内的复位系统控制器,当微机需要强行复位时,瞬间短接复位开关.在开关的高电平端会产生一个低电平信号,此信号会直接或者间接作用于南桥内的复位系统控制器,使南桥强行复位之后,南桥也会强行去复位其它的设备和模块,这样就达到一个强行复位的过程,也就是常说的冷启动.ISA总线的复位信号到南桥之间会有一个非们,跟随器或电子开关,常态时为低电平,复位时为高电平.IDE的复位和ISA总线正好相反,通常两者之间会有一个非门或是一个反向电子开关,也就是说IDE常态时为高电平,复位时为低电平,这里的高电平为5V或3.3V,低电平为0.5V以下的电位.如果主板上没有ISA总线,也就是8XX系列芯片组的主板,IDE的复位直接来自于南桥,在两者之间通常也会有一个非门或是反向电子开关,PCI总线的复位直接来自于南桥,有些主板会在两者之间加有跟随器,此跟随器起缓冲延时作用.且PCI的常态为3.3V 或5V,复位时为0V,AGP总线的复位信号和PCI总线的复位信号是同路产生.也有的主板AGP总线的复位也是由南桥直接供给,常态时为高电平,复位时为低电平,对于北桥的复位信号也是和PCI总线的复位信号同路产生,也就是说PCI总线的复位信号,AGP总线的复位信号和北桥的复位信号通常是串在一根线上的,复位信号都相同,对于CPU的复位信号,不同的主板都是由北桥供给,I/O的复位信号是由南桥直接供给,通常是3.3V或5V.在8XX系列芯片组的主板中,固件中心(B205)和时钟发生器芯片也有复位信号,且复位信号由南桥直接供给,常态为3.3V,复位时为0V.复位电路在主板上的维修方法主板上的复位电路出现故障通常会造成整个主板都没有复位信号.维修此类故障应从RESET键和灰线入手,首先测量RESET键的一端有无3.3V的高电位,如果此高电位没有,应通过理电路,明确此高电位的来源,找出故障点排除即可,如果高电位有,再通过理电路,明确ATX电源灰线到南桥之间的电路是否有故障,通常灰线到南桥之间经过一些电阻、门电路或电子开关,不同的主板灰线到南桥之间的路径都不一样,在维修时还应通过理电路得出.如果发现有一元器件损坏应立即更换.如果确定灰线到南桥之间无问题和RESET键到南桥之间也无问题,应重点检查I/O,南桥和北桥,应通过切线法---排除,就是说理清PCI,AGP到北桥的复位线,把进北桥的复位线切断,通电测量,如果PCI点复位正常,说明故障点在北桥,如果故障依旧,说明故障在南桥和I/O 之间,再通过切线法进一步判断故障是在I/O还是在南桥,对于主板上某部分无复位信号,通常会引起主板不亮或者是主板不认某些设备,如CPU 无复位,而其他复位点都正常,则故障点在北桥,如果IDEO无复位,通常会造成主板亮而不认IDE接口设备,故障点通常在IDE到南桥之间的门电路或电子开关,门电路通常是非门比较多.I/O 的复位信号通常是南桥直接发出,I/O没有复位信号也会造成主板不亮,在8XX系列芯片组中,固件中心的复位信号也是由南桥直接发出,如果此信号小时也会造成主板不亮,P4主板的SDR内存的四点时钟信号的来源与DDR内存可能相同.对于8XX系列芯片组的FWH(BIOS)固件中心的时钟信号是由时钟芯片供给,频率为33MHZ,电路中也有ABO电阻.复位电路在AT89S51最小系统中的常见问题1、复位电路的电容为什么要用几十uf,还要电解电容?电阻用的是几千欧的?答:复位电路的电阻和电容要根据复位脉冲的宽度要求计算得到:比如如果单片机的复位脉冲要求至少20ms,高电平是5V,最大低电平为0.8V,则应按RC电路的放电(或充电)方程计算,使从5V放电到0.8V(或相反)所用的时间不小于20ms.这个数据最好要经过计算,经验数据在有些情况下可能会因不符合要求而出现复位不稳定现象.2、还有为什么晶振两端要并联的电容值是30pf?答:晶体谐振器的电容一大小是于晶体的特性决定的,严格来说应该参照晶体的资料.一般在10-30p中间都可行.有些单片机内部有并联电容(比如430),这时注意计算外部电容时去掉内容并联电容.3、I/O口的上拉电阻的阻值是怎么确定的呢?答:IO的上拉电阻的大小要看用途和IO的内部结构而定.如果仅仅是得到一个稳定的高电平,即负载比较小,10k以上为好,这样功耗小.但如果是驱动三极管或光隔等负载,则需要根据被驱动元件所需要的电流来计算,计算时还要注意,有些IO口内部有20-100k上拉,这样,外部上拉后,实际的上拉电阻是内外电阻的并联值.有些IO内部是集电极开路,这样的IO的上拉等于外部上拉.IO上拉电阻的最小阻与IO的灌电流能力有关,如果灌电流最大.20mA,则5V的系统的电小上拉电阻为5/0.02=250欧.所以一般不下于330欧都没问题.影碟机中的复位电路应用影碟机在发明之后,因为它的实用性强,所以迅速普及,现在市场上的碟机各式各样,但是它们中间都存在着这样一个电路-复位电路,在碟机按下RESET键之后可以复位运行的一个功能,这里我们介绍下,碟机的复位电路.一、碟机的复位方式碟机复位方式分为高电平复位和低电平复位,其电路结构不尽相同.高电平复位指在电路开始工作前用一个正脉冲信号使电路回归到初始状态,完成清零过程,为整个电路开始工作做好准备.低电平复位则相反,在复位电压上升到正电压前通过电容充放电的延时过程产生一个负脉冲完成复位过程.复位电路波形如图1所示.高电平复位是在复位脉冲的下降沿完成复位过程,低电平复位是在复位脉冲的上升沿完成复位,所以说高电平复位,低电平有效,低电平复位,高电平有效.二、碟要复位信号的检测碟要中各芯片复位时间一般不得小于50μs,解码芯片各单位时间通常为100μs左右,CPU复位时间要短些.这些复位信号可以通过指针式万用表的电压挡来测量.测量高电平复位信号时将万用表拨到直流2.5V挡,开机时复位脉冲会使指针跳变到1V 左右的位置(视复位脉冲的宽度和表头灵敏度而略有差异),然后还原为0V.在测量低电平复位脉冲时需将万用表拨到直流10V挡位置,开机时复位脚电压由0V上升到VCD的过程中,复位脉冲会使表针在2.5V处略有一下停顿(低电平复位不容易观察,需要有一定经验才能看准).三、常见复位电路分析1、高电平复位:高电平复位一般用于主CPU的复位,较常见的主CPUP87C52就是采用这种复位方式.图2为早期使用的高电平复位电路,使用在先科40型解码板(620型VCD)上,为主CPU(P87C52)进行复位,开机瞬间+5V电压对复位电容C11进行充电,由于电容两端电压不能突变,所以在电容负端产生一个感应电动势,即复位信号.电容充满电后感应电动势停止,复位脉冲消失,复位过程结束.电路中R22为时间常数电阻,用来控制复位电容充放电时间,即复位脉冲宽度.因为这种电路结构简单,所以复位时间较长,当复位电容中还有电荷时重新进行复位,往往会因复位脉冲不良而无法正常复位.图3在复位输出部分并联了一只0.1μF 瓷片电容以提高电路抗干扰性.图4增加二极管D11,目的是为了在复位释放掉电容中的电荷,发免造成复位不良.某些需要复位信号精度较高的影碟机(例如有待机电源的VCD或DVD)采用带有三极管的复位电路进行复位,图5为先科20型解码板(678型VCD 机)主CPU(P87C52)上的复位电路.+5V电源通过Q3(Z3E)对复位电容C15进行充电,产生一个瞬间高电平信号,通过Q3集电极输出到CPU9脚进行复位.此电路设计上有缺陷,三极管Q3为贴片元件,功率较小,常会出现开路或击穿的故障,如遇此类机型应将Q3改为功率较大的9015.R37(4.7kΩ)电阻过小,易使复位电路受干扰,造成复位不良,将此电阻改为10 kΩ后情况会有所改善.先科后期生产的20板对电路进行了改进,如图6所示,将时间常数电阻改为10 kΩ,另外并联一只0.22 μF电容以提高抗干扰能力.2、低电平复位:低电平复位电路相对而言简单一些,多数情况为主CPU输出一个复位信号直接对被复位芯片进行复位.例如主CP对CL680、CVD-1、AVS1428等芯片就是直接输出复位信号进行复位.数字电路中一个复位信号只能对一个IC进行复位,因为被复位部分为TTL(晶体管一晶体管逻辑)电路所需复位电流很大,约为CMOS电路的十倍且还要求能承受很高的复位脉冲电压.当需要一个复位脉冲同时对多个电路进行复位时,需串联一驱动器提高其复位电流,同时也降低复位脉冲的输出阻抗.图9为先科ALP-806型DVD机中ZR367036脚复位信号输出,经Q23(9014)及电阻组成的驱动器同时为ZR3671014脚、CS495434脚、AVS31686脚进行复位的电路.有部分芯片自带低电平复位电路,图10为ESS3207常见的复位电路,用在先科22型解码板(688型VCD机)上,如果去掉释放复位电容电荷的二极管D3,其结构与图2高电平复位电路十分相似,只是将复位电容与时间常数电阻位置掉换,而工作原理则恰恰相反:开机时电源VDD通过时间常数电阻R59为复位电容C60进行充电,由于电容两端电压不能突变,在复位电容正端(即复位输出端会保持一段时间低电平,即复位脉冲信号.当电容充满电后复位端结束.这种电路复位时间长,易受干扰.图11是在图2高电平复位电路的基础上增加一个三极管Q5(9014)进行倒相放大,Q5的另外一个作用是降低复位电路输出阻抗,提高抗干扰能力.图12为先科25型解码板(635型VCD机)上ESS3883的复位电路,在复位信号输出部分并联一只0.01μF电容增加电路抗干扰能力.部分电路用反相器74HCU04来代替晶体管电路进行复位,图13为步步高AB007KB型超级VCD机中CL680的复位电路.74HCU04输入输出阻抗很高,所以增加了释放电荷的二极管D3、D4.图14为一种较复杂的复位电路,用在先科803型DVD机中,复位信号经74HCU04两次倒相后对G2000的7脚进行复位.有些复位电路可以同时输出高低两组电平的复位信号,图17为步步高ABI05K型超级VCD机的复位电路,a点是为SAA7327输出的低电平复位信号,b点则为CL8860输出的高电平复位信号.图7、图8、图15及图16分别为先科、步步高的复位电路,可供参考.四、复位电路的标识复位电路的英文标识为Rest,大部分厂家简写为RST,也有部分厂家标为RET.在有多个复位电路的电路图中,为加以区分则在rst前加上代表不同芯片的字母,例如Crst、Xrst、Mrst等.复位信号有输出和输入之分,在VCD机中的区分方法是在rst后面加上i或者o,rsti代表复位输入,rsto则代表复位输出.有些DVD机图纸复杂,是以箭头来代表复位信号的输入与输出,箭头指向IC表示为复位信号复位输入,反之则为复位信号输出.五、复位电路的标识复位时间(即复位脉冲宽度)J可以通过公式J=RC来计算,R代表时间常数电阻阻值,C为复位电容容量,两者相乘就是复位时间.六、复位电路的检修复位电路最常见的故障就是复位电容击穿或失去容量,三极管或反相器也容易被击穿,因为复位脉冲虽然额定幅度只有5VP-P,但在实际应用中幅度往往会非常高,达到20VP-P以上,电容耐压值不高,也是容易损坏的部分.复位三极管若选用Z3E、Z1E 之类贴片元件则损坏的较多,但用9014、9015之类作复位三极管的则损坏的较少.时间常数电阻损坏较少见.复位电路有时也会出现互相干扰的情况.如1998年2月份以前采用飞利浦机心的VCD机,有时开机后会出现机心无动作的情况,这是因为CPU(P87C52)输出的复位信号干扰了系统控制CPU(OM5234)复位电路而产生的,如果遇到此类现象,只需将解码板对伺服板的复位线剪断即可.本文来自: 原文网址:/diycn/tech/0074098.html复位电路在单片机中的设计分析单片机目前已被广泛地应用于家电、医疗、仪器仪表、工业自动化、航空航天等领域.单片机复位电路主要有微分型复位电路、积分型复位电路、比较器型复位电路、看门狗型复位电路.单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性.许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了"死机"、"程序走飞"等现象,这主要是单片机的复位电路设计不可靠引起的.一 概述影响单片机系统运行稳定性的因素可大体分为外因和内因两部分1. 外因射频干扰,它是以空间电磁场的形式传递,在机器内部的导体 引线或零件引脚,感生出相应的干扰,可通过电磁屏蔽和合理的布线/器件布局衰减该类干扰;电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦合或直接传导,可通过电源滤波、隔离等措施来衰减该类干扰.2. 内因振荡源的稳定性,主要由起振时间、频率稳定度和占空比稳定度决定.起振时间可由电路参数整定、稳定度受振荡器类型、温度和电压等参数影响.复位电路的可靠性二 复位电路的可靠性设计1. 基本复位电路复位电路的基本功能是系统上电时提供复位信号直至系统电源稳定后撤销复位信号,为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位,但解决不了电源毛刺A点和电源缓慢下降,电池电压不足等问题;而且调整RC常数改变延时会令驱动能力变差,左边的电路为高电平复位有效;右边为低电平;Sm为手动复位开关;Ch可避免高频谐波对电路的干扰.2. 电源监控电路上述的带电压监控的复位电路又叫电源监控电路,监控电路必须具备如下功能:上电复位 保障上电时能正确地启动系统掉电复位 当电源失效或电压降到某一电压值以下时,复位系统市面上有类似的集成产品,如PHILIPS半导体公司生产的MAX809 MAX810此类产品体积小、功耗低 而且可选门槛电压 可保障系统在不同的异常条件下可靠地复位,防止系统失控.最限度地简化外围电路,也可选择PHILIPS半导体公司带手动复位功能的产品MAX708.此外,MAX708还可以监视第二个电源信号,为处理器提供电压跌落的预警功能,利用此功能系统.可在电源跌落时到复位前执行某些安全操作、保存参数、发送警报信号或切换后备电池等,MAX708电表可在电源毛刺或停电前把当前电度数保存到E2PROM中,再配合保存多个电度.数备份算法:可有效解决令工程师头疼E2PROM中的电度数掉失问题,使用该电路必须选择适当的预警电压点,以保证靠电源的储能供电情况下,VCC电压从预警电压跌到复位电压的维持时间tB必须足够长,E2PROM的写周期约为10、20ms一般取tB>200ms就可确保数据稳定写入,预警电压调整方法. 当VDC等于预警电压时调整R1和R2使PFI的电压为1.25V此时可检测/PFO来确认内部的电压比较器是否动作,调整时必须注意此比较器是窗口比较器.3. 多功能电源监控电路除上电复位和掉电复位外,很多监控电路集成了系统所需的功能.如:电源测控 供电电压出现异常时提供预警指示或中断请求信号,方便系统实现异常处理数据保护 当电源或系统工作异常时,对数据进行必要的保护,如写保护,数据备份或切换后备电池看门狗定时器 当系统程序, 跑飞或死锁时,复位系统其它的功能 如温度测控 短路测试等等我们把其称作多功能电源监控电路 下面介绍两款特别适合在工控 安防 金融行业中广泛应用多功 能的监控电路Catalyst 公司的 CAT1161 是一个集成了开门狗 电压监控和复位电路的 16K 位 E2PROM I 2C 接口,不但集成度高、功耗低,E2PROM部分静态时真正实现零功耗,而且清看门狗是通过改变SDA的电平实现的,节省系统I/O资源,其门槛电压可通过编程器修改.该修改范围覆盖绝大多数应用,当电源下降到门槛电压以下时,硬件禁止访问,E2PROM 确保数据安全,使用时注意的是 RST /RST 引脚是 I/O 脚 CAT1161 检测到两引脚中任何一个电压异常都会产生复位信号,与RST/RST引脚相连的下拉电阻R2和上拉电阻R1必须同时连接,否则CAT1161将不断产生复位,同样不需要手动复位功能时可节省Rm和Sm两个元件.PHILIPS公司的SA56600-42被设计用在电源电压降低或断电时作保护微电脑系统中SRAM的数据.当电源电压下降到通常值4.2V时,输出CS变为逻辑低电平,把CE也拉低,从而禁止对SRAM的操作.同时,产生一个低电平有效的复位信号,供系统使用.如果电源电压继续下降,到达通常值3.3V或更低时,SA56600-42切换系统操作,从主电源供电切换到后备锂电池供电.当主电源恢复正常,电压上升至3.3V或更高时,将SRAM的供电电源将由后备锂电池切换回主电源.当主电源上升至大于典型值4.2V时,输出CS变为逻辑高电平,使CE变为高电平,使能SRAM的操作. 复位信号一直持续到系统恢复正常操作为止.在系统电源电压不足或突然断电的时候,这个器件能可靠地保护系统在SRAM内的数据 .4. ARM单片机的复位电路设计无论在移动电话、高端手持仪器还是嵌入式系统32位单片机ARM,占据越来越多的份额.ARM已成为事实的高端产品工业标准 由于 ARM 高速 低功耗 低工作电压导致其噪声容限低,这是对数字电路极限的挑战,对电源的纹波,瞬态响应性能,时钟源的稳定度,电源监控可靠性等诸多方面也提出了更高的要求.ARM监控技术是复杂并且非常重要的分立元件实现的监控电路,受温度、湿度、压力等外界的影响大而且对不同元件影响不一致,较大板面积、过多过长的引脚容易引入射频干扰,功耗大也是很多应用难以接受 而集成电路能很好的解决此类问题.目前也有不少微处理器中集成监控电路,处于制造成本和工艺技术原因,此类监控电路大多数是用低电压CMOS工艺实现的,比起用高电压、高线性度的双极工艺制造的专用监控电路,性能还有一段差距结论是使用ARM而不用专用监控电路,可能导致得不偿失,经验也告诉我们使用专用监控电路可以避免很多离奇古怪的问题ARM的应用工程师,切记少走弯路.复位电路在DC/DC变换器中的设计复位电路的设计日趋多样化,并且在各行各业中都有使用到,复位电路的重要性可谓不言而喻,在正激式DC/DC变换器中磁复位电路,略哦防止变压器磁芯饱和,从而保护变压器.一、磁复位电路的设计正激式DC/DC变换器或者正激式开关电源,需要在开关功率管截止期间将高频变压器复位,以防止变压器磁芯饱和,因此,一般需要增加磁复位电路(亦称变压器复位电路).图一示出单端降压式同步整流器常用的3种磁复位电路:辅助绕组复位电路,R,C,VDZ箝位电路,有源箝位电路.3种磁复位的方法各有优缺点:辅助绕组复位法会使变压器结构复杂化;R,C,VDZ箝位法属于无源箝位,其优点是磁复位电路简单,能吸收由高频变压器漏感而产生的尖峰电压,但箝位电路本身也要消耗磁场能量;有源箝位法在上述3种方法中的效率最高,但提高了电路的成本.(a)辅助绕组复位电路 (b)R、C、VDZ箝位电路 (c)有源箝位电路图一 单端降压式同步整流器常用的三种磁复位电路磁复位要求漏极电压要高于输入电压,但要避免在磁复位过程中使DPA-Switch的漏极电压超过规定值,为此,可在次级整流管两端并联一个RS、CS网络,电路图二所示.该电路可使高频变压器在每个开关周期后的能量迅速恢复到一个安全值,保证UD>UI.当DPA-Switch关断时,磁感应电流就通过变压器的次级绕组流出,利用电容CS使磁感应电流减至零.CS的电容量必须足够小,才。

51单片机最小系统复位电路

51单片机最小系统复位电路

51单片机最小系统复位电路
51单片机是一款广泛应用的单片机,它的复位电路十分重要。

本文将介绍51单片机最小系统的复位电路设计。

复位电路的作用是在单片机启动时对其进行初始化,确保其能够正常工作。

51单片机的复位电路主要包括复位电源、复位电路元件和复位控制器三部分。

首先是复位电源,它是复位电路的基础。

复位电源可以是单独的电源,也可以是单片机电源的一部分。

在一般情况下,复位电源应该保证在单片机电源上电之前就能够正常工作。

如果复位电源是单片机电源的一部分,那么它的电源电压应该低于单片机的最小工作电压,以保证单片机能够正常工作。

接下来是复位电路元件,它是复位电路的核心。

复位电路元件主要包括电容器和电阻器两种。

其中,电容器用来储存电荷,电阻器用来限制电流。

在51单片机最小系统的复位电路中,电容器的电容量应该在1uf左右,电阻器的阻值应该在10k左右。

最后是复位控制器,它是复位电路的决策者。

复位控制器主要有两种类型,一种是基于电路的复位控制器,另一种是基于软件的复位控制器。

在51单片机最小系统的复位电路中,我们可以使用基于电路的复位控制器来实现复位功能。

综上所述,51单片机最小系统的复位电路设计需要注意复位电源、复位电路元件和复位控制器三个方面。

只有这三个方面都得到了充分的考虑和设计,才能保证51单片机最小系统的复位电路能够正
常工作。

单片机复位电路原理图

单片机复位电路原理图

单片机复位电路原理图
对不起,我无法提供图片或任何形式的视觉内容。

我可以用文字描述您想要的单片机复位电路原理图,但是我无法以文本形式提供未使用相同文字的标题。

以下是单片机复位电路原理图的描述:
- 电源正极连接到一个电阻,电阻与一个电容并联连接。

电容
的另一端连接到地线,而电阻的另一端连接到单片机的复位引脚。

- 单片机的复位引脚也连接到一个推挽放大器,推挽放大器的
输出连接到一个二极管。

二极管连接到一个电路上的电源负极,并通过一个电阻与地线相连。

- 当电源开启时,电阻与电容组成的RC电路开始充电。

电容
通过电阻慢慢充电到供电电压的阈值,同时也向单片机的复位引脚提供一个保持复位状态的电压。

- 当电源关闭时,电容开始放电,使得单片机复位引脚断开与
电源的连接,从而允许单片机重新启动。

请注意,这只是一个简单的描述,并不能取代实际的电路图。

如果您需要更详细或准确的信息,请参考相应的电子书籍、技术手册或咨询专业人士。

单片机的几种复位方式

单片机的几种复位方式

单片机的几种复位方式单片机作为嵌入式系统的核心处理器,其复位方式是非常重要的。

复位是指将单片机从非正常状态恢复到初始状态的操作,它是单片机系统中的必要环节。

本文将介绍单片机的几种复位方式。

1. 电源复位(Power-on Reset,POR):电源复位是单片机最基本的复位方式,它是在单片机上电时自动发生的。

当单片机上电时,电源管理电路会对单片机进行初始化,将其恢复到初始状态。

电源复位通常是由复位电路芯片或者单片机内部的复位电路实现的。

电源复位是最常见的复位方式,它确保了单片机在每次上电时都能处于可控的状态。

2. 外部复位(External Reset):外部复位是通过外部信号来触发的复位方式。

在单片机的外部引脚上连接一个复位按钮,当按下复位按钮时,外部复位信号会被单片机接收到并执行复位操作。

外部复位可以由用户手动触发,也可以由其他外部设备或控制器通过信号触发。

外部复位是一种常用的复位方式,它能够在系统出现故障或异常时快速恢复系统的正常工作状态。

3. 看门狗复位(Watchdog Timer Reset,WDT):看门狗复位是通过看门狗定时器来触发的复位方式。

看门狗定时器是一种计时器,它会在系统运行过程中定时检测系统是否正常工作,如果检测到系统异常或故障,就会触发复位操作。

看门狗复位通常用于监控系统的稳定性和可靠性,确保系统在长时间运行后能够自动恢复到正常状态。

4. 软件复位(Software Reset):软件复位是通过程序指令来触发的复位方式。

在单片机的编程中,可以通过特定的指令或者函数来执行软件复位操作。

软件复位可以根据系统需求灵活控制复位时机和复位方式,可以在特定条件满足时执行复位操作,也可以选择性复位系统的部分模块或寄存器。

软件复位是一种灵活可控的复位方式,常用于系统初始化和异常处理。

5. 系统复位(System Reset):系统复位是一种综合应用各种复位方式的复位方式。

在实际应用中,可以将多种复位方式结合起来,按照一定的策略和规则来执行复位操作。

单片机的复位电路

单片机的复位电路

单片机复位电路设计一、概述影响单片机系统运行稳定性的因素可大体分为外因和内因两部分:1、外因射频干扰,它是以空间电磁场的形式传递在机器内部的导体(引线或零件引脚)感生出相应的干扰,可通过电磁屏蔽和合理的布线/器件布局衰减该类干扰;电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦合或直接传导,可通过电源滤波、隔离等措施来衰减该类干扰。

2、内因振荡源的稳定性,主要由起振时间频率稳定度和占空比稳定度决定。

起振时间可由电路参数整定稳定度受振荡器类型温度和电压等参数影响复位电路的可靠性。

二、复位电路的可靠性设计1、基本复位电路复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。

为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。

图1所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。

但解决不了电源毛刺(A 点)和电源缓慢下降(电池电压不足)等问题而且调整 RC 常数改变延时会令驱动能力变差。

左边的电路为高电平复位有效右边为低电平 Sm为手动复位开关Ch 可避免高频谐波对电路的干扰。

图1 RC复位电路图2所示的复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电,一定宽度的电源毛刺也可令系统可靠复位。

图3所示复位电路输入输出特性图的下半部分是其特性,可与上半部比较增加放电回路的效果图2 增加放电回路的RC复位电路使用比较电路,不但可以解决电源毛刺造成系统不稳定,而且电源缓慢下降也能可靠复位。

图4 是一个实例当 VCC x (R1/(R1+R2) ) = 0.7V时,Q1截止使系统复位。

Q1的放大作用也能改善电路的负载特性,但跳变门槛电压 Vt 受 VCC 影响是该电路的突出缺点,使用稳压二极管可使 Vt 基本不受VCC影响。

见图5,当VCC低于Vt(Vz+0.7V)时电路令系统复位。

图3 RC复位电路输入-输出特性图4 带电压监控功能的复位电路图5 稳定门槛电压图6 实用的复位监控电路在此基础上,增加延时电容和放电二极管构成性能优良的复位电路,如图6所示。

51单片机几种实用的复位电路设计

51单片机几种实用的复位电路设计

51单片机几种实用的复位电路设计
51单片机是一种广泛应用于嵌入式系统的芯片,其稳定性和
可靠性非常重要。

复位电路是保证单片机正常工作的核心部分,如果该电路不正确设计,那么就可能会导致单片机出现故障,影响整个系统的稳定性。

本文将介绍几种51单片机常用的复
位电路设计,希望对读者有所帮助。

1. 基于RC电路的复位电路
这种设计是比较简单和常见的复位电路,在实际应用中也被广泛使用。

这种电路的原理基于RC电路的分时常数,因此当电
源电压出现波动或者干扰时,可以通过RC冲放来稳定电压并
保证单片机正常工作。

2. 基于电容的复位电路
这种设计是直接通过电容来实现复位电路的设计,相比上一种设计方法,更加精确和稳定。

当电源电压出现干扰时,可以通过电容来缓解电压的变化,从而使单片机能够正常工作。

3. 基于外部看门狗的复位电路
这种设计方法是通过在单片机的外部添加看门狗芯片来实现复位电路的设计。

在这个设计中,看门狗芯片会不断检测单片机的运行状态,如果发现单片机出现故障,那么就会触发复位操作,从而使整个系统恢复正常工作。

4. 基于软件的复位电路
这种设计方法是通过编写软件代码来实现复位电路的设计。

在这个设计中,程序会不断检测单片机的运行状态,如果发现单
片机出现故障,那么就会触发复位操作,从而保证整个系统的稳定性。

总之,复位电路是保证单片机正常工作的核心部分,其设计必须合理、稳定,才能保障系统的可靠性。

因此,在实际应用中,需要选择合适的方法来实现复位电路的设计,从而保证系统的正常运行。

stc89c51rc单片机复位电路的工作过程

stc89c51rc单片机复位电路的工作过程

stc89c51rc单片机复位电路的工作过程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!STC89C51RC单片机复位电路的工作过程STC89C51RC单片机是一款常用的微控制器,其复位电路是确保系统可靠性的重要组成部分。

单片机之复位电路一【最新精选】

单片机之复位电路一【最新精选】

单片机复位电路单片机现了“死机”、“程序跑飞”等现象,这主要是单片机复位电路设计不可靠引起的。

图1是一个单片机与大功率LED八段显示器共享一个电源,并采用微分复位电路的实例。

在这种情况下,系统有时会出现一些不可预料的现象,如无规律可循的“死机”、“程序走飞”等。

而用仿真器调试时却无此现象发生或极少发生此现象。

又如图2所示,在此图中单片机复位采用另外一种复位电路。

在此电路的应用中,用户有时会发现在关闭电源后的短时间内再次开启电源,单片机可能会工作不正常。

这些现象,都可认为是由于单片机复位电路的设计不当影响单片机系统运行稳定性的因素可大体分为外因和内因两部分:1、外因射频干扰,它是以空间电磁场的形式传递在机器内部的导体(引线或零件引脚)感生出相应的干扰,可通过电磁屏蔽和合理的布线/器件布局衰减该类干扰;电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦合或直接传导,可通过电源滤波、隔离等措施来衰减该类干扰。

2、内因振荡源的稳定性,主要由起振时间频率稳定度和占空比稳定度决定起振时间可由电路参数整定稳定度受振荡器类型温度和电压等参数影响单片机复位电路的可靠性。

二、复位电路的可靠性设计1、基本复位电路单片机复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。

为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。

图1所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。

但解决不了电源毛刺(A 点)和电源缓慢下降(电池电压不足)等问题而且调整 RC 常数改变延时会令驱动能力变差。

左边的电路为高电平复位有效右边为低电平 Sm为手动复位开关 Ch可避免高频谐波对电路的干扰图1 RC复位电路图2所示的复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电,一定宽度的电源毛刺也可令系统可靠复位。

图3所示复位电路输入输出特性图的下半部分是其特性,可与上半部比较增加放电回路的效果单片机编程器 HPOO图2 增加放电回路的RC复位电路使用比较电路,不但可以解决电源毛刺造成系统不稳定,而且电源缓慢下降也能可靠复位。

51单片机晶振与复位常用典型电路分析说明

51单片机晶振与复位常用典型电路分析说明

51单片机晶振与复位常用典型电路分析说明1.51单片机晶振电路51单片机晶振电路主要由晶振、两个电容和两个电阻组成。

晶振通过电容与单片机相连,电容的值一般在10pF-30pF之间,具体取决于晶振的频率。

电阻的作用是为了提供晶振的电流。

晶振频率的选择一般要根据具体的应用需求来确定,51单片机一般有12MHz、11.0592MHz等常用的频率。

晶振的作用是提供单片机的系统时钟,单片机的工作时序以及外设的正确工作都依赖于时钟信号。

晶振的频率决定了单片机的运行速度,频率越高,单片机执行指令的速度越快。

2.51单片机复位电路51单片机复位电路主要由复位电源、复位电路和上拉电阻组成。

复位电源一般是通过外部的按键或者复位芯片来提供的,它们会为单片机提供一个低电平复位信号。

复位电路由外部的电容和电阻组成,其中电容一端连接到复位电源,另一端连接到单片机的复位引脚,电阻一端连接到单片机的复位引脚,另一端接地。

上拉电阻的目的是为了使复位信号保持高电平,在复位信号没有被按键或复位芯片拉低时,复位信号为高电平,单片机处于复位状态。

复位电路的作用是保证单片机在上电或者复位时能够正常初始化,使其进入初始状态。

单片机在复位状态下,会重置所有寄存器的值为默认值,以便正常开始程序的执行。

总结起来,51单片机晶振与复位是单片机系统中必不可少的两个重要电路。

晶振提供时钟信号,确保单片机工作的正常运行,而复位电路则能够确保在上电或者复位时单片机能够正常初始化。

两者的合理设计和配置对单片机的正常工作和提高系统稳定性具有重要意义。

单片机各种复位电路原理

单片机各种复位电路原理

单片机各种复位电路原理单片机是一种用于控制电子设备的集成电路,复位电路是单片机电路中的一个重要部分。

复位电路主要用于对单片机进行复位操作,在系统开机、异常情况或用户指令下复位时起到确保系统正常启动的作用。

本文将介绍单片机各种复位电路的原理。

1.电源复位电路:电源复位电路又称为电源检测电路,用于检测电源电压是否达到工作范围的合理值,如果电源电压超出范围,则会触发复位信号,导致单片机进行复位操作。

电源复位电路的原理是通过电源电压检测芯片来检测电源电压的大小。

当电源电压低于设定值时,检测芯片会输出复位信号,使单片机处于复位状态。

一旦电源电压恢复到正常工作范围内,复位电路会自动解除复位信号,使单片机恢复正常工作。

2.手动复位电路:手动复位电路通过按下复位按钮来触发复位操作。

该复位电路一般被设计成一个机械按钮,用户可以通过按下按钮来手动对单片机进行复位操作。

手动复位电路的原理是通过按钮与单片机RESET引脚之间的连接来实现复位操作。

当按钮按下时,RESET引脚与电源接地,从而触发复位操作。

当按钮松开时,RESET引脚与电源脱离接地,单片机解除复位状态,恢复正常工作。

3.系统复位电路:系统复位电路是利用系统内部一些模块的故障或异常状态来触发复位操作。

常见的系统复位电路包括看门狗复位电路和软件复位电路。

看门狗复位电路原理是利用看门狗定时器来定时检查系统是否正常工作。

当系统异常或停止响应时,看门狗定时器未能在设定时间内得到刷新,触发复位操作,使单片机恢复到复位状态。

看门狗复位电路能够有效防止系统在运行过程中出现死机或卡死的情况。

软件复位电路原理是通过软件进行复位操作。

在软件中设置一些条件或标志位,当条件满足时,软件执行复位操作,使单片机恢复到复位状态。

软件复位电路一般用于实现特定的复位需求,例如在系统运行一定时间后进行自动复位操作。

总结:单片机各种复位电路的原理各有特点,但都是为了确保单片机能够在正常工作状态下启动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机复位电路设计一、概述影响单片机系统运行稳定性的因素可大体分为外因和内因两部分:1、外因射频干扰,它是以空间电磁场的形式传递在机器内部的导体(引线或零件引脚)感生出相应的干扰,可通过电磁屏蔽和合理的布线/器件布局衰减该类干扰;电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦合或直接传导,可通过电源滤波、隔离等措施来衰减该类干扰。

2、内因振荡源的稳定性,主要由起振时间频率稳定度和占空比稳定度决定。

起振时间可由电路参数整定稳定度受振荡器类型温度和电压等参数影响复位电路的可靠性。

二、复位电路的可靠性设计1、基本复位电路复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。

为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。

图1所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。

但解决不了电源毛刺(A 点)和电源缓慢下降(电池电压不足)等问题而且调整 RC 常数改变延时会令驱动能力变差。

左边的电路为高电平复位有效右边为低电平 Sm为手动复位开关Ch 可避免高频谐波对电路的干扰。

图1 RC复位电路图2所示的复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电,一定宽度的电源毛刺也可令系统可靠复位。

图3所示复位电路输入输出特性图的下半部分是其特性,可与上半部比较增加放电回路的效果图2 增加放电回路的RC复位电路使用比较电路,不但可以解决电源毛刺造成系统不稳定,而且电源缓慢下降也能可靠复位。

图4 是一个实例当 VCC x (R1/(R1+R2) ) = 0.7V时,Q1截止使系统复位。

Q1的放大作用也能改善电路的负载特性,但跳变门槛电压 Vt 受 VCC 影响是该电路的突出缺点,使用稳压二极管可使 Vt 基本不受VCC影响。

见图5,当VCC低于Vt(Vz+0.7V)时电路令系统复位。

图3 RC复位电路输入-输出特性图4 带电压监控功能的复位电路图5 稳定门槛电压图6 实用的复位监控电路在此基础上,增加延时电容和放电二极管构成性能优良的复位电路,如图6所示。

调节C1可调整延时时间,调节R1可调整负载特性,如图7所示上半部分是图5电路的特性,下半部分对应图6。

图7 带电压监控功能的复位电路的输入-输出特性2、电源监控电路上述的带电压监控的复位电路又叫电源监控电路监控电路必须具备如下功能:上电复位,保障上电时能正确地启动系统;掉电复位,当电源失效或电压降到某一电压值以下时,复位系统;市面上有类似的集成产品,如PHILIPS半导体公司生产的MAX809、MAX810。

此类产品体积小、功耗低,而且可选门槛电压。

可保障系统在不同的异常条件下可靠地复位,防止系统失控。

图8中的Rm和Sm实现手动复位无需该功能时可把Re set端(或/Reset)端直接与单片机的RST端(或/RST端)相连最大限度地简化外围电路也可选择PHILIPS半导体公司带手动复位功能的产品MAX708。

电子元件邮购图8 集成复位监控电路此外,MAX708还可以监视第二个电源信号,为处理器提供电压跌落的预警功能,利用此功能,系统可在电源跌落时到复位前执行某些安全操作,保存参数,发送警报信号或切换后备电池等。

图9电表的应用实例利用MAX708 电表可在电源毛刺或停电前把当前电度数保存到E2PROM中再配合保存多个电度数备份算法,可有效解决令工程师头疼E2PROM中的电度数掉失问题使用该电路必须选择适当的预警电压点,以保证靠电源的储能供电情况下,VCC电压从预警电压跌到复位电压的维持时间(tB)必须足够长 E2PROM的写周期约为10-20ms 一般取tB>200ms 就可确保数据稳定写入。

预警电压调整方法当VDC等于预警电压时调整R1和R2使PFI的电压为1.25V 此时可检测/PFO来确认内部的电压比较器是否动作,调整时必须注意此比较器是窗口比较器。

图10是该应用的程序流程图图9 MAX708的典型应用单片机学习 HPOO图10. 电表应用中E2PROM数据保护程序流程图3. 多功能电源监控电路除上电复位和掉电复位外,很多监控电路集成了系统所需的功能,如:电源测控,供电电压出现异常时提供预警指示或中断请求信号,方便系统实现异常处理;数据保护,当电源或系统工作异常时,对数据进行必要的保护,如写保护、数据备份或切换后备电池;看门狗定时器,当系统程序“跑飞”或“死锁”时,复位系统;其它的功能,如温度测控、短路测试等等。

单片机编程器 HPOO我们把其称作多功能电源监控电路。

下面介绍两款特别适合在工控、安防、金融行业中广泛应用多功能的监控电路 :Catalyst 公司的 CAT1161 是一个集成了开门狗、电压监控和复位电路的 16K 位 E2PROM(I2C 接口)不但集成度高、功耗低(E2PROM部分静态时真正实现零功耗)而且清看门狗是通过改变SDA的电平实现的,节省系统I/O 资源,其门槛电压可通过编程器修改,该修改范围覆盖绝大多数应用。

当电源下降到门槛电压以下时硬件禁止访问 E2PROM 确保数据安全。

使用时注意的是 RST,/RST 引脚是 I/O 脚,CAT1161 检测到两引脚中任何一个电压异常都会产生复位信号,与 RST /RST 引脚相连的下拉电阻 R2 和上拉电阻 R1 必须同时连接,否则CAT1161将不断产生复位!同样不需要手动复位功能时可节省Rm和Sm两个元件。

图11. 内置WDT RESET /RESET E PROM监控器件接口电路PHILIPS 公司的 SA56600-42 被设计用在电源电压降低或断电时作保护微电脑系统中SRAM 的数据。

当电源电压下降到通常值 4.2V 时,输出 CS 变为逻辑低电平,把 CE 也拉低,从而禁止对 SRAM 的操作。

同时,产生一个低电平有效的复位信号,供系统使用,如果电源电压继续下降,到达通常值 3.3V或更低时,SA56600-42切换系统操作,从主电源供电切换到后备锂电池供电,当主电源恢复正常(电压上升至3.3V或更高时)将SRAM的供电电源将由后备锂电池切换回主电源,当主电源上升至大于典型值4.2V 时输出 CS 变为逻辑高电平,使 CE 变为高电平,使能 SRAM 的操作,复位信号一直持续到系统恢复正常操作为止。

在系统电源电压不足或突然断电的时候,这个器件能可靠地保护系统在SRAM内的数据。

图12. 内置SRAM数据保护电路的监控器件SA56600-42的典型应用单片机编程器 HPOO4. ARM 单片机的复位电路设计无论在移动电话高端手持仪器还是嵌入式系统,32 位单片机 ARM 占据越来越多的份额,ARM 已成为事实的高端产品工业标准。

由于 ARM 高速、低功耗、低工作电压导致其噪声容限低这是对数字电路极限的挑战,对电源的纹波、瞬态响应性能、时钟源的稳定度、电源监控可靠性等诸多方面也提出了更高的要求。

AR M监控技术是复杂并且非常重要的。

分立元件实现的监控电路,受温度、湿度、压力等外界的影响大而且对不同元件影响不一致较大板面积,过多过长的引脚容易引入射频干扰,功耗大也是很多应用难以接受,而集成电路能很好的解决此类问题。

目前也有不少微处理器中集成监控电路,处于制造成本和工艺技术原因,此类监控电路大多数是用低电压CM OS工艺实现的,比起用高电压、高线性度的双极工艺制造的专用监控电路性能还有一段差距。

结论是:使用 ARM而不用专用监控电路,可能导致得不偿失,经验也告诉我们使用专用监控电路可以避免很多离奇古怪的问题。

ARM的应用工程师,切记少走弯路!图13. 用PHILIPS MAX708实现的ARM复位电路图13 是实用可靠的 ARM 复位电路。

ARM 内核的工作电压较低。

R1 可保证电压低于 MAX708 的工作电源还能可靠复位。

其中 TRST 信号是给 JTAG 接口用的。

使用 HC125 可实现多种复位源对 ARM 复位,如通过PC机串口或JTAG接口复位ARM目前为止,单片机复位电路主要有四种类型:(1)微分型复位电路;(2)积分型复位电路;(3)比较器型复位电路;(4)看门狗型复位电路。

另外,Maxim等公司也推出了专用于复位的专用芯片[1]。

1 复位电路的数学模型及可靠性分析1.1 微分型复位电路微分型复位电路的等效电路如图3所示。

以高电平复位为例。

建立如下方程:电源上电时,可以认为Us为阶跃信号,即。

其中U0是由于下拉电阻R在CPU复位端引起的电压值,一般为0.3V以下。

但在实际应用中,Us不可能为理想的阶跃信号。

其主要原因有两点:(1)稳压电源的输出开关特性;(2)设计人员在设计电路时,为保证电源电压稳定性,往往在电源的输入端并联一个大电容,从而导致了Us不可能为阶跃信号特征。

由于第一种情况与第二种情况在本质上是一样的,即对Us的上升斜率产生影响,从而影响了的URST的复位特性。

为此假Us 的上升斜率为k,从0V~Us需要T时间,即:当T<<τ时,Us上电时可等效为阶跃信号。

与前相同,当T>>τ时,令A=T/τ,则:即此时的复位可靠性较前面的好。

另一种情况就是设计人员将一些开关性质的功率器件,如大功率LED发不管与单片机系统共享一个稳压电源,而单片机系统的复位端采用微分复位电路,由此也将造成复位的不正常现象。

具体分析如图4所示。

将器件等效为电阻RL,其中开关特性即RL很小或RL很大两种工作状态。

而稳压电源的基本工作原理是:ΔRL→ΔI→ΔU→-ΔI→-ΔU。

从中可以看出,负载的变化必然引电流的变化。

为了分析简单,假设R>RL,并且R>>R0.这样,可以近似地钭以上电路网络看作两个网络的组合,并且网络之间的负载效应可以忽略不计。

第一个电路网络等效为一个分压电路。

当RL从RLmin→Rlmax时,使其变化为阶跃性持,则UA为一个赋的阶跃信号。

UA(t)=[Rlmax/(Rlmax+R0)]U t≥0UA(t)=[Rlmin/(Rlmin+R0)]U t<0用此阶跃信号作为第二个电路网络,一阶微分电路的输入,则可得下式:(d/dt)UA(t)=(1/RC)URST(t)+(d/dt)URST(t)URST(0)=0解之得:从上式可以看出,由于负载的突变和稳压电源的稳压作用,将在复位端引入一个类脉冲,从而导致CPU工作不正常。

1.2 积分型复位电路此电路的等效电路如图5所示。

仍以高电平复位为例,同样可以建立如下方程:当系统上电时,假设Us(t)=AU(t)为阶跃函数,U0=0,则:当反相器正常工作后,Uc若仍能保持在VIL以下,则其输出就可以为高电平;而且如果从反相器正常工作后开始,经过不小于复位脉冲宽度的时间TR后,Uc才能达到V IL以上,那么上电复位就能保证可靠。

相关文档
最新文档