完全吃透氮气物理吸附表征数据
氮气吸附法在测定材料比表面积和孑L径分布方面的应用原理
氮气吸附法在测定材料比表面积和孑L径分布方面的应用原理1. 引言1.1 氮气吸附法的概述氮气吸附法是一种常用的表面性质测试技术,广泛应用于材料科学领域。
该方法通过吸附氮气分子到材料表面,从而确定材料的比表面积和孔径分布。
氮气吸附法的原理是基于氮气分子与材料表面发生吸附反应,通过测量吸附了氮气分子的体积和压力来推算出材料的表面性质。
这种方法具有操作简单、测试速度快、结果准确等优点,因此被广泛应用于各类材料的研究和开发中。
通过氮气吸附法可以深入了解材料的微观结构,为材料设计和改进提供重要参考。
在材料科学领域,氮气吸附法已成为不可或缺的分析手段之一,为研究人员提供了丰富的信息和指导。
1.2 应用原理氮气吸附法的应用原理主要基于氮气在材料表面的吸附和脱附过程。
氮气分子在低温下与材料表面发生物理吸附,通过测量氮气分子在不同压力下吸附量来确定材料的比表面积。
根据Brunauer-Emmett-Teller(BET)理论,可以通过构建等温吸附线和计算相应的比表面积来分析材料的吸附性能。
氮气吸附法还可以用于测定材料的孔径分布。
根据巴拉德方程,在不同相对压力下测量氮气吸附量,并结合Kelvin方程和BJH理论,可以得出材料的孔径大小和分布情况。
通过分析比表面积和孔径分布的结果,可以深入了解材料的孔结构特征和表面性质,为材料研究提供重要参考。
氮气吸附法的应用原理不仅在表面测量领域具有重要意义,还在材料科学领域有着广泛的应用前景。
2. 正文2.1 氮气吸附法测定材料比表面积的步骤氮气吸附法是一种常见的表面分析技术,用于测定材料的比表面积。
其原理是通过让氮气在固体表面上吸附并脱附,从而测量表面的吸附量,进而计算出比表面积。
以下是氮气吸附法测定材料比表面积的步骤:1. 准备样品:首先需要将待测样品充分干燥,以去除表面的水分和其他杂质。
然后粉碎样品至适当粒度,并在真空中去除任何气体残留。
2. 测定参数设定:在实验仪器中设置合适的测定参数,包括温度、压力、吸附时间等。
氮气吸附脱附测量比表面积.
Page12测试方法类在相同的吸附和脱附条件下,被测样品和标准样品的比表面积正比于 其峰面积大小。计算公式如下:
Sx:被测样品比表面积 S0:标准样品比表面积, Ax:被测样品脱附峰面积 A0:标准样品脱附峰面积 Wx:被测样品质量 W0:标准样品质量
Page
13
测试方法分类
优点:无需实际标定吸附氮气量体积和进行复杂的理论计算即可求得 比表面积;测试操作简单,测试速度快,效率高 缺点:当标样和被测样品的表面吸附特性相差很大时,如吸附层数不 同,测试结果误差会较大。直接对比法仅适用于与标准样品吸附特性 相接近的样品测量,由于BET法具有更可靠的理论依据,目前国内外 更普遍认可BET法比表面积测定。
Page
6
测试方法分类
比表面积测试方法有两种分类标准
1.一是根据测定样品吸附气体量多少方法的不同,可分为:连续流动法 、容量法及重量法,重量法现在基本上很少采用; 2.再者是根据计算比表面积理论方法不同可分为:直接对比法比表面积 分析测定、Langmuir法比表面积分析测定和BET法比表面积分析测定等 。同时这两种分类标准又有着一定的联系,直接对比法只能采用连续流 动法来测定吸附气体量的多少,而BET法既可以采用连续流动法,也可 以采用容量法来测定吸附气体量。
Page 9
测试方法分类
吸附峰或脱附峰的面积大小正比于样品表面吸附的氮气量的多少,可 通过定量气体来标定峰面积所代表的氮气量。通过测定一系列氮气分 压P/P0下样品吸附氮气量,可绘制出氮等温吸附或脱附曲线,进而求 出比表面积。通常利用脱附峰来计算比表面积。
特点:连续流动法测试过程操作简单,消除系统误差能力强,同时具 有可采用直接对比法和BET方法进行比表面积理论计算。
n2 物理吸附-脱附表征
n2 物理吸附-脱附表征
物理吸附-脱附表征是指利用吸附-脱附技术来研究材料的表面
性质和孔隙结构。
这种技术主要用于研究吸附剂、催化剂和多孔材
料等。
在物理吸附-脱附表征中,常用的技术包括氮气吸附法(BET 法)、氩气吸附法、比表面积测定法、孔体积测定法等。
首先,物理吸附-脱附表征可以通过氮气吸附法来评估材料的比
表面积。
氮气吸附法是利用氮气在不同相对压力下吸附到材料表面
的原理来测定材料的比表面积。
通过绘制吸附等温线和脱附等温线,可以计算出材料的比表面积,进而了解材料的表面活性和孔隙结构。
其次,物理吸附-脱附表征也可以通过氩气吸附法来评估材料的
孔体积。
氩气吸附法利用氩气分子在不同相对压力下进入材料孔隙
的原理,来测定材料的孔体积分布。
通过分析吸附等温线和脱附等
温线的形状,可以得到材料的孔体积分布信息,从而了解材料的孔
隙结构特征。
另外,物理吸附-脱附表征还可以结合比表面积测定法和孔体积
测定法来全面评估材料的吸附性能。
比表面积和孔体积是影响材料
吸附性能的重要因素,通过综合分析两者的数据,可以更全面地了
解材料的吸附-脱附特性,为材料的应用提供重要参考。
总的来说,物理吸附-脱附表征是一种重要的材料表征技术,通过测定材料的比表面积和孔体积等参数,可以全面了解材料的表面性质和孔隙结构特征,为材料的研究和应用提供重要的参考依据。
氮气物理吸附法和压汞法表征FCC催化剂孔径分布
氮气物理吸附法和压汞法表征FCC 催化剂孔径分布研究曹庚振,王 林,张艳惠,杨周侠,杨一青,王宝杰(兰州化工研究中心,甘肃 兰州 730060)摘要:分别采用氮气物理吸附法和压汞法考察了不同类型的FCC 催化剂老化前后的孔径分布情况。
结果表明,氮气物理吸附法应用BJH 模型可以表征2~100 nm 的孔,但对大 于100 nm 的孔计算不准确。
压汞法使用Wasburn 公式能弥补氮气吸附法在大孔孔径分 析方面的不足,两者结合可以有效表征催化剂的中大孔孔径分布。
关键词:氮气物理吸附法; 压汞法; 孔径分布; 催化剂催化裂化催化剂由基质和分子筛组成,其中分子筛的质量分数仅占10%~20% ,大部分为无定型硅酸铝基质。
在重油反应过程中,大分子在基质上初步裂化,然后扩散到分子筛上进行裂化得到所需产品。
因此,油品在催化剂中的扩散性对催化剂的反应性能有着极其重要的影响[1]。
随着原料油的日趋重质化,必然要求FCC 催化剂增大孔径,以加速重油分子在催化剂中的扩散,提高催化剂的反应性能。
因此,增大催化剂的孔径、改善催化剂的孔结构已成为当前新型渣油催化裂化催化剂研究的重要课题。
孔径范围定义:大于50 nm 为大孔,2~50 nm 为中孔,小于2 nm 为微孔。
目前,氮气物理吸附法可以有效表征催化剂的微孔和中孔的孔径分布情况,对于大孔孔径分布目前广泛使用压汞法进行测试。
由于压汞法要求的圆柱体模型与催化剂复杂的孔隙相差较大,同时受技术水平的限制,其对微孔孔径和中孔孔径的分析准确度不高,仅限于大孔孔径分析[2]。
文中采用氮气物理吸附法和压汞法对不同类型的FCC 催化剂进行中孔和大孔孔径表征,分析不同类型的催化剂孔径分布的特点和催化剂老化前后孔径分布的变化,并比较2种表征测试方法的优缺点。
1 测试原理 1.1 氮气吸附法氮气吸附法将烘干脱气处理后的样品置于液氮中,调节不同试验压力,分别测出对氮气的吸附量,绘出吸附和脱附等温线。
氮气吸附脱附测量比表面积
Page 12
测试方法分类
在相同的吸附和脱附条件下,被测样品和标准样品的比表面积正比于 其峰面积大小。计算公式如下:
Sx:被测样品比表面积 S0:标准样品比表面积, Ax:被测样品脱附峰面积 A0:标准样品脱附峰面积 Wx:被测样品质量 W0:标准样品质量
Page 13
测试方法分类
优点:无需实际标定吸附氮气量体积和进行复杂的理论计算即可求得 比表面积;测试操作简单,测试速度快,效率高 缺点:当标样和被测样品的表面吸附特性相差很大时,如吸附层数不 同,测试结果误差会较大。直接对比法仅适用于与标准样品吸附特性 相接近的样品测量,由于BET法具有更可靠的理论依据,目前国内外 更普遍认可BET法比表面积测定。
Page 4
原
理
氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。通 过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效” 的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气 分子数量和分子最大横截面积来表征。
实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理 论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表 面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出 被测样品的比表面积。计算公式如下:
Page 6
测试方法分类
比表面积测试方法有两种分类标准
1. 一是根据测定样品吸附气体量多少方法的不同,可分为:连续流动 法、容量法及重量法,重量法现在基本上很少采用; 2. 再者是根据计算比表面积理论方法不同可分为:直接对比法比表面 积分析测定、Langmuir法比表面积分析测定和BET法比表面积分析 测定等。同时这两种分类标准又有着一定的联系,直接对比法只能 采用连续流动法来测定吸附气体量的多少,而BET法既可以采用连 续流动法,也可以采用容量法来测定吸附气体量。
BET-氮吸附--多孔超细粉表面特性的表征及相关知识的介绍
这是我在氮吸附方面的启蒙老师钟家湘教授写的关于氮吸附的表征文章,是几年前写的。
我这里发下,希望对大家有所帮助超细粉表面特性的表征通常用比表面和孔隙度(Porosity)两个指标,比表面指单位质量粉体的总表面积,孔隙度包括总孔体积、平均孔径、孔径分布等,对于多孔超细粉体而言,虽然还是这两个概念,但是其包含的内容及其分析方法要复杂得多。
多孔粉体颗粒的形状千变万化,只有分子筛类颗粒上的孔的形状和尺寸非常规律,是由物质的晶体结构决定的,对于其他多数无定形的粉体却十分复杂,典型的单个颗粒剖面如图1所示,颗粒中的孔分为闭孔(Closed)、通孔(Passing)、盲孔(Dead end)、内部连通的通孔(Inter-condected)等等,除了闭孔以外,都在要考察的范围;从孔形状看可分为缝隙形(Slits)、圆柱形(Cylindrical)、圆锥形(conical)、墨水瓶形(Ink Bottle)、内连通形(Iterstices)等,实际情况还要复杂得多,在孔径分布的分析中,通常取缝隙形和圆柱形两类;孔按尺寸分类(国际通用分类),可分为微孔(Micropores)孔径<2nm、中孔或介孔(Mesopores)孔径2~50nm、大孔(Macropores)孔径>50nm,微孔的下限是0.35nm,用气体吸附法可以分析的孔径范围的上限为500nm,再大需用压汞法。
图1 单粒多孔粉体的横截面示意多孔粉体尺寸小且孔的形状又十分复杂,其表面特征无法直接进行观察与测定,气体吸附法是一个非常科学而巧妙的方法,通俗的说,就是用气体分子作为度量的“标尺”,通过对物质的表面吸附进行严密的测定,实现对粉体表面特征的描述。
众所周知,气体与清洁固体表面接触时,在固体表面上气体的浓度高于气相,这种现象称为吸附,吸附气体的固体物质称为吸附剂,被吸附的气体称为吸附质,吸附可分为物理吸附和化学吸附,用气体吸附法表征粉体表面特性需采用低温物理吸附,例如在液氮温度下氮气的吸附;固体表面的吸附是一个动态过程;在一定的外界条件下,当吸附速率与脱附速率相等时,固体表面上的气体量维持不变,称为吸附平衡;在恒定温度下,固体表面上的气体吸附量取决于压力,吸附量随压力而变的曲线称为等温吸附曲线,他是固体物质吸附特性的最重要表现。
完全吃透氮气物理吸附表征数据
完全吃透氮气物理吸附表征数据——孔类型分析是重点【前言】目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。
本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习、探讨和提高。
由于内容是自己的总结和认识,很可能会有部分错误,希望大家能给予建议、批评和指导,好对内容做进一步的完善。
★★注意★★我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。
经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。
◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。
那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作用力(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作用力弱(ІІІ型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。
BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如І型中如最后上扬,则粒子未必均匀。
平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。
氮气吸附分析技术
比表面测定方法
静态法:静态容量法和静态重量法 动态法:连续流动色谱法
具体区别见表11.1
3
Company Logo
孔径分布
多孔材料孔径分类
超微孔 <0.7nm
微孔 <2nm
介孔 2-50nm
孔径分布测定方法
静态容量法:用于测量介孔结构 压汞法:可用于测量介孔和大孔结构
Ⅲ型吸附等温线
吸附质和吸附剂相互作用很弱时产生的吸附。 多分子层吸附,且不存在单层饱和吸附。
7
Company Logo
Ⅳ型吸附等温线
典型介孔固体材料的吸附。 存在滞后环,且有单层饱和吸附
Ⅴ型吸附等温线
介孔固体材料的吸附。 存在滞后环,无单层饱和吸附
Ⅵ型吸附等温线
超微孔固体的吸附,具有多种不同类型的吸附点。 呈现台阶。
(3)静态重量法
使用高精度弹簧秤。 可避免容量法必须测定死体 积等缺点。 但灵敏度较低。
18
Company Logo
孔径分布的测定方法
(1)压汞法
适用于测定大孔孔径分布和孔径4nm以上的中 孔孔径分布。
19
Company Logo
(2)静态氮气吸附容量法
原理: 毛细凝聚原理和Kalven方程
吸附时:细孔内壁上先形成吸附膜,此膜厚度随相对压力增加变化, 仅当吸附质压力增加到一定值时,才在由吸附膜围成的空腔 内发生凝聚。
H3型和H4型滞后环
说明吸附材料具有狭缝状结构。
10
Company Logo
比表面测定原理 ——Langmuir吸附
Langmuir吸附
假设:a.表面上各个吸附位置从能量角度而言是等同的,且已吸附质 点之间的作用力可以忽略,即吸附热与表面覆盖度无关;
n2吸附比表面积和振实密度
n2吸附比表面积和振实密度
N2吸附比表面积和振实密度是两个重要的参数,它们可用于描述材料孔隙结构和物理性质。
下面将分别介绍这两个参数。
N2吸附比表面积是一项重要的测试方法,可用于表征吸附材料的孔隙结构和比表面积。
这种方法利用氮气在低温下与吸附剂的孔隙表面相互作用,从而测量样品中的氮气吸附量。
根据测量结果,可以计算出材料的比表面积。
比表面积是指单位质量材料的表面积,可以用于评估吸附材料的孔隙结构、活性和性能。
N2吸附比表面积是一项非常有用的测试方法,因为它可以测量广泛的材料类型,包括多孔材料、催化剂、活性炭和其他吸附剂。
通过对该参数的测量,可以为不同领域的应用提供有价值的数据,如环境保护和化学工程。
此外,这种测试方法还可以用于研究孔径、孔隙度和表面特性等材料性质。
振实密度是指颗粒材料的密度,它是指材料在外力作用下的最高可压缩密度。
振实密度测量通常通过用震动器将样品震动,从而使颗粒间的间隙变小,直到达到最大可能的密度。
振实密度高,一般说明颗粒的堆积更紧密。
振实密度可以用于衡量颗粒材料的物理性质,如形态、大小、结构和密度。
它也可以用于确定颗粒材料的流动性和装载容量,以及研究材料工艺和制造过程中的性能问题。
因此,振实密度也是一项重要的测试和测量方法。
总的来说,N2吸附比表面积和振实密度都是非常有用的测试和测量参数,可以帮助研究人员和工程师评估吸附材料、颗粒材料和其他材料的性能和特性。
通过这些测试方法,可以为各种应用领域提供数据支持,包括环境科学、化工、材料科学和制造工业。
用氮吸附静态容量法表征催化剂及其他吸附剂的物理结构
表 2 数据都是在 300 ! 温度下, 连续脱气 4 h 所得。对多管脱气, 仪器负荷加大, 用同样时间脱 气, 样品孔内吸附气体脱不干净, 并且达不到真空 度要求。因此测得的结果偏低。要解决此问题, 可以通过延长脱气时间的办法, 使其达到一定的
0. 016 5 276 4
0. 023 3 264 -8
表 1 仪器自备样品 Al2O3 测量结果
数据
0. 108 9 270 -2
0. 180 6 278 6
0. 203 5 271 -1
0. 210 1 278 6
0. 221 6 272 00. 299 7 Nhomakorabea270 -2
0. 450 0 264 -8
多管 S A / m2 g- 1 194
191 193 192 192 185 190 186 192 189 193 190
16
齐鲁石油化工
第 34 卷
2. 3 样品管直径对比表面积的影响
表 3 样品管直径大小对比表面积的影响
9 mm 样品管
样重/ g
S A / m2 g- 1
0. 105 6
289
0. 093 7
289
0. 118 5
287
0. 107 9
291
0. 105 7
287
0. 192 7
285
0. 091 1
292
0. 119 1
288
0. 090 8
292
平均值
289
12 mm 样品管
样重/ g
S A / m2 g- 1
氮气吸附法(等温吸附)课件
Freundlich方程
Freundlich方程是一种经验公式,用于描述等温吸附行 为。
Freundlich方程可以用来估算最大吸附量、吸附强度和 吸附容量等参数。
Freundlich方程假设吸附剂表面具有非均匀性,且吸附 分子之间存在相互作用。
混合气体氮气吸附技术
利用混合气体代替单一氮气作为吸附剂,提高吸附剂的吸附容量和 选择性。
氮气吸附法的发展趋势
纳米尺度吸附剂
利用纳米技术制备具有高比表面 积和孔容的纳米级吸附剂,提高
吸附性能。
复合功能化吸附剂
通过表面修饰和功能化改性,制备 具有特定功能的复合型吸附剂,满 足特定应用需求。
智能化吸附技术
氮气吸附法的应用领域
01
02
03
材料科学
用于研究材料的表面性质 和孔结构,如催化剂、分 子筛、活性炭等。
能源领域
用于研究储氢材料、电池 电极材料等的表面性质和 孔结构。
环境科学
用于研究土壤、水体等的 污染程度和治理效果。
氮气吸附法的优缺点
优点
测量精度高、适用范围广、可测 量材料的比表面积、孔径分布和 孔容等参数。
。
BET方程适用于多分子层吸附 ,尤其在相对压力接近1时更
为准确。
Langmuir方程
Langmuir方程是等温吸附理论中的 一种,适用于单分子层吸附。
Langmuir方程可以用来计算饱和吸 附量、吸附平衡常数等参数。
Langmuir方程假设吸附剂表面是有 限的,且每个吸附位点只能吸附一个 分子。
03
实验操作与设备
气体吸附(氮气吸附法)比表面积测定
气体吸附(氮气吸附法)比表面积测定比表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威比表面积测试方法。
许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277 (Determination of the specific surface area of solid by gas adsorption-BET method)。
我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T 19587-2004《气体吸附BET法测定固体物质比表面积》。
气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。
通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。
由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和,如图所示意位置。
氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。
通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。
实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。
计算公式如下:Sg: 被测样品比表面积(m2/g)Vm: 标准状态下氮气分子单层饱和吸附量(ml)Am: 氮分子等效最大横截面积(密排六方理论值Am = 0.162 nm2)W:被测样品质量(g)N:阿佛加德罗常数(6.02x1023)代入上述数据,得到氮吸附法计算比表面积的基本公式:由上式可看出,准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。
n2 物理吸附-脱附表征
n2 物理吸附-脱附表征
物理吸附-脱附表征是一种对吸附剂表面上的物理吸附和脱附过程进行表征的方法。
物理吸附是指气体或液体分子在吸附剂表面上通过范德华力或静电作用吸附,并形成吸附层的过程。
脱附则是指吸附剂表面上的吸附分子从吸附位点离开的过程。
常用的物理吸附-脱附表征方法包括吸附等温线、脱附等温线、BJH 孔径分布等。
吸附等温线是通过测量在不同温度和压力下吸附剂吸附气体或液体的吸附量来获得的。
吸附等温线可以反映出吸附剂对不同气体或液体的吸附性能,包括吸附量随压力的变化趋势、吸附平衡常数等。
脱附等温线则是在吸附等温线基础上,通过降低压力或增加温度来脱附吸附剂上的分子,测量吸附剂脱附的量。
脱附等温线可以反映出吸附剂对吸附分子的脱附性能,包括脱附量随压力的变化趋势、脱附平衡常数等。
BJH孔径分布是一种通过脱附等温线数据计算得出的吸附剂孔径分布的方法。
根据吸附分子在孔道内的脱附速率与孔道半径的关系,可以通过拟合脱附等温线数据得到吸附剂孔径的分布情况。
这可以提供吸附剂孔径大小和分布的信息,对于研究吸附剂的孔道结构和性能具有重要意义。
物理吸附-脱附表征方法可以用于研究吸附剂的吸附性能、孔道结构
以及与吸附过程相关的物理性质。
这对于吸附剂的设计和应用具有指导意义,例如在催化剂、气体分离、废水处理等领域中的应用。
氮吸附法测定比表面及孔隙率的技术
氮吸附法测定比表面及孔隙率的技术任何粉体表面都有吸附气体分子的能力,在液氮温度下,在含氮的气氛中,粉体表面会对氮气产生物理吸附,在回到室温的过程中,吸附的氮气会全部脱附出来。
当粉体表面吸附了满满的一层氮分子时,粉体的比表面积(Sg)可由下式求出:Sg=4.36Vm/W (Vm为氮气单层饱和吸附量,W为样品重量)而实际的吸附量V并非是单层吸附,即所谓多层吸附理论,通过对气体吸附过程的热力学与动力学分析,发现了实际的吸附量V与单层吸附量Vm之间的关系,这就是著名的BET方程,用氮吸附法测定BET 比表面及孔径分布是比较成熟而广泛采用的方法,都是利用氮气的等温吸附特性曲线:在液氮温度下,氮气在固体表面的吸附量取决于氮气的相对压力(P/P0),当P/P0在0.05?0.35范围内时,吸附量与(P/P0)符合BET方程,这是氮吸附法测定比表面积的依据;当P/P0?0.4时,由于产生毛细凝聚现象,即氮气开始在微孔中凝聚,通过实验和理论分析,可以测定孔容、孔径分布。
问题的关键是用甚么方法可以准确地把吸附的氮气量测量出来。
2.1 动态氮吸附测试技术连续流动色谱法是采用气相色谱仪中的热导检测器来测定粉体表面的氮吸附量的方法,即以氮气为吸附质,氦气为载气,两种气体按指定比例混合达到一定的氮气分压,让这种气体流经装有粉末样品的样品管,当样品管置于液氮温度时,氮气在样品表面产生物理吸附,而氦气不被吸附,这时气流中氮气的浓度减少,在热导检测器的输出端产生电信号,形成一个所谓的氮气吸附峰,当样品管回到室温时,样品表面被吸附的氮气会全部脱附出来,形成一个脱附峰。
吸(脱)附峰面积的大小正比于样品表面的氮吸附量。
动态法比表面仪中,样品与其表面流动的含氮气体处于动态平衡,由于气体流速很低,可以认为接近于平衡状态,通过调节氮气与氦气的比例来改变氮气分压,可实现BET比表面及孔径分布的测试。
2.2 静态容量法氮吸附测试技术静态容量法测量氮吸附量与动态法不同,他是在一个密闭的系统中,改变粉体样品表面的氮气压力,从0逐步变化到接近1个大气压,用高精度压力传感器测出样品吸附前后压力的变化,再根据气体状态方程计算出气体的吸附量或脱附量。
bet氮气吸附数据解读
bet氮气吸附数据解读概述本文旨在解读be t氮气吸附数据,从理论和实验角度探讨其原理、应用和分析方法。
通过此文,读者将深入了解b et吸附实验原理、数据解读,以及其在材料科学、催化剂研究和环境保护等领域的应用。
一、b e t吸附原理b e t原理是指气体在孔洞表面的物理吸附现象,其中氮气吸附是最常见的实验测量手段。
b e t等温线的数据分析可以推导出材料的比表面积、孔径分布等性质。
二、b e t氮气吸附实验方法1.样品前处理:样品表面必须经过充分的脱除水分和其他气体,常用方法包括干燥、真空处理等。
2.氮气吸附实验装置:典型的b et吸附实验装置包括氮气吸附仪、恒温槽、压力控制系统等。
3.实验步骤:装填样品、恒温保持、吸附量测定、等温线测量等。
4.数据记录与处理:记录吸附等温线数据,计算吸附量、比表面积等参数。
三、b e t氮气吸附数据解读1.吸附等温线:利用等温线数据可以确定材料的吸附行为。
常见的等温线类型包括Ty pe I、T yp eI I、Ty pe III和Ty pe IV。
2.比表面积计算:be t原理可通过吸附等温线计算样品的比表面积。
常用的方法有单点BE T法、多点BE T法和D ol li mo re-H eal法。
3.孔径分布分析:基于be t吸附理论,可以通过分析等温线的斜率和形状,推导样品的孔径分布情况。
4.晶胞参数计算:对于具有晶胞结构的材料,通过分析吸附等温线可以计算晶胞参数,如孔径大小及分布。
5.Is ot he rm数据模型拟合:利用不同的等温线模型,可以对b et吸附数据进行拟合,得到更准确的参数结果。
四、b e t氮气吸附应用领域1.材料科学:b et吸附数据可以评估材料的比表面积、孔径分布和孔容等,对材料的结构与性能研究具有重要意义。
2.催化剂研究:通过b et吸附数据的解读,可以了解催化剂的活性中心、孔径大小等,对催化性能进行评估和优化。
3.环境保护:b et吸附实验可用于分析土壤和水体中的微观孔隙结构,为环境污染治理提供依据和解决方案。
氮气吸附法在测定材料比表面积和孑L径分布方面的应用原理
氮气吸附法在测定材料比表面积和孑L径分布方面的应用原理【摘要】氮气吸附法是一种常用的表征材料比表面积和孔径分布的方法。
本文首先介绍了氮气吸附法的工作原理,然后分别讨论了材料比表面积和孔径分布的测定原理。
接着详细探讨了氮气吸附法在比表面积和孔径分布测定中的应用,强调了它的重要性。
结论部分指出了氮气吸附法在材料表面积和孔径分布测定中的重要性,并对未来的发展进行了展望。
本文对氮气吸附法在材料研究领域具有重要的指导意义,为进一步研究提供了参考。
【关键词】氮气吸附法、比表面积、孔径分布、材料测定、重要性、展望、研究背景、研究意义、工作原理。
1. 引言1.1 研究背景氮气吸附法通过在一定温度下将氮气吸附至材料表面,利用气体分子在不同介孔中的吸附特性,来计算材料的比表面积和孔径分布。
该方法简单易操作,且能够准确快速地测定材料的表面积和孔隙结构,因此在材料研究领域得到了广泛的应用。
本文将探讨氮气吸附法在测定材料比表面积和孔径分布方面的应用原理,以期为材料研究提供新的测定方法和理论依据。
1.2 研究意义氮气吸附法在测定材料比表面积和孔径分布方面的应用具有重要的研究意义。
在材料科学领域,比表面积和孔径分布是评价材料性能和应用潜力的重要参数之一。
通过氮气吸附法可以快速准确地测定材料的比表面积和孔径分布,为材料研究和应用提供重要的参考数据。
氮气吸附法在表征材料方面具有广泛的适用性,可以应用于各种类型的材料,包括纳米材料、多孔材料和催化剂等。
通过氮气吸附法的应用,可以深入了解材料的结构特征和表面性质,为材料设计和改进提供科学依据。
研究氮气吸附法在材料比表面积和孔径分布测定中的应用原理具有重要的理论和应用价值,对于推动材料科学研究和技术发展具有重要意义。
2. 正文2.1 氮气吸附法的工作原理氮气吸附法是一种常用的表征材料比表面积和孔径分布的方法。
其基本原理是利用氮气在不同压力下对样品表面的吸附量进行测定,从而推导出样品的比表面积和孔径分布信息。
氮气吸附法
多孔材料的分析技术
— 氮气吸附法
主要内容
❖ 化学吸附:是气体分子与材料表 面的化学键合过程。
❖ – 只发生单层吸附 ❖ – 选择性吸附(特定气体主要H2,
CO, O2对体系中各组分的特定吸 附) ❖ – 无可逆性
2.吸附理论
吸附平衡等温线
❖ 吸附平衡等温线分为吸 附和脱附两部分。吸附 平衡等温线的形状与材 料的孔组织结构有关。
❖ 根据IUPAC分类,具有6 种不同类型。
❖多孔固体因毛细凝结(capillary condensation)而 引起的吸着作用也称为吸附作用
1.吸附现象
按吸附作用力性质的不同,可将吸附分为物 理吸附和ቤተ መጻሕፍቲ ባይዱ学吸附。
❖ 物理吸附:是由范得华力引起 的气体分子在固体表面及孔隙 中的冷凝过程。
❖ – 可发生单层吸附,多层吸附
❖ – 非选择性吸附
❖ – 有可逆性
开始凝聚
开始蒸发
H3和H4型迟滞回线
❖ 形状和尺寸均匀的孔呈现H4迟 滞环
❖ H4也是狭缝孔,区别于粒子堆 集,是一些类似由层状结构产 生的孔。
❖ 开始凝聚时,由于气液界面是 大平面,只有当压力接近饱和 蒸汽压时才发生毛细凝聚(吸 附等温线类似Ⅱ型)。蒸发时 ,气液界面是圆柱状,只有当 相对压力满足 时,蒸发才能开始。
H1型迟滞回线
❖ 均匀大小且形状规则 的孔
❖ 吸附时吸附质一层一 层的吸附在孔的表面 (孔径变小)
氮气吸附
设:表面覆盖度θ = V/Vm 则空白表面为(1 - θ )
V为吸附体积
Vm为吸满单分子层的体积
r(吸附)=ka p( 1-θ )
r(脱附)=kdθ
达到平衡时,吸附与脱附速率相等。
r(吸附)=ka p( 1-θ ) = r(脱附)=kd θ
ka p(1 - θ )=kdθ
设b = ka/kd
θ = bp
通常将比压控制在0.3以下,防止毛细凝聚 而使结果偏高。
从吸附等温线可以反映出吸附剂的表面 性质、孔分布以及吸附剂与吸附质之间的相 互作用等有关信息。
常见的吸附等温线有如下6种类型:(图
中p/ps称为比压,ps是吸附质在该温度时的饱 和蒸汽压,p为吸附质的压力)
(Ⅰ)在2.5nm以下微 孔吸附剂上的吸附 等温线属于这种类 型。例如78K时N2在 活性炭上的吸附及 水和苯蒸汽在分子 筛上的吸附。
Sg: 被测样品比表面积 (m2/g) Vm: 标准状态下氮气分子单层饱和吸附量 (ml) Am: 氮分子等效最大横截面积(密排六方理 论值Am = 0.162 nm2) W: 被测样品质量(g) N: 阿佛加德罗常数 (6.02x1023) 代入上述数据,得到氮吸附法计算比表面积 的基本公式:
由上式可看出,准确测定样品表面单层饱和 吸附量Vm是比表面积测定的关键。
S比
=
Vm ⋅ N A 0.0224
×
Am m
Vm是一个重要参数。从吸附质分子截面 积Am,可计算吸附剂的总表面积S和比表 面S(比)。
m为吸附剂质量
这时氢没有解离,两原 子核间距等于Ni和H的原子 半径加上两者的范德华半径。
放出的能量ea等于物理 吸附热Qp,这数值相当于氢 气的液化热。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完全吃透氮气物理吸附表征数据——孔类型分析是重点【前言】目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。
本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习、探讨和提高。
由于内容是自己的总结和认识,很可能会有部分错误,希望大家能给予建议、批评和指导,好对内容做进一步的完善。
★★注意★★我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。
经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。
◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。
那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作用力(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作用力弱(ІІІ型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。
BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如І型中如最后上扬,则粒子未必均匀。
平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。
◆几个常数※液氮温度77 K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354 nm※标况(STP)下1 mL氮气凝聚后(假定凝聚密度不变)体积为0.001547 mL例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61 mL※STP每mL氮气分子铺成单分子层占用面积4.354平方米例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知V m=1/(斜率+截距)◆以SBA-15分子筛的吸附等温线为例加以说明此等温线属IUPAC分类中的IV型,H1滞后环。
从图中可看出,在低压段吸附量平缓增加,此时N2分子以单层到多层吸附在介孔的内表面,对有序介孔材料用BET方法计算比表面积时取相对压力p/p0 = 0.10~0.29比较适合。
在p/p0 =0.5~0.8左右吸附量有一突增。
该段的位置反映了样品孔径的大小,其变化宽窄可作为衡量中孔均一性的根据。
在更高p/p0时有时会有第三段上升,可以反映出样品中大孔或粒子堆积孔情况。
由N2-吸脱附等温线可以测定其比表面积、孔容和孔径分布。
对其比表面积的分析一般采用BET(Brunauer-Emmett-Teller)方法。
孔径分布通常采用BJH(Barrett-Joiner- Halenda)模型。
◆Kelvin方程Kelvin方程是BJH模型的基础,由Kelvin方程得出的直径加上液膜厚度就是孔道直径。
弯曲液面曲率半径R‘=2γVm/[RT*ln(p0/p)],若要算弯曲液面产生的孔径R,则有R’Cosθ=R,由于不同材料的接触角θ不同,下图给出的不考虑接触角情况弯曲液面曲率半径R‘和相对压力p/p o对应图:◆滞后环※滞后环的产生原因这是由于毛细管凝聚作用使N2分子在低于常压下冷凝填充了介孔孔道,由于开始发生毛细凝结时是在孔壁上的环状吸附膜液面上进行,而脱附是从孔口的球形弯月液面开始,从而吸脱附等温线不相重合,往往形成一个滞后环。
还有另外一种说法是吸附时液氮进入孔道与材料之间接触角是前进角,脱附时是后退角,这两个角度不同导致使用Kelvin方程时出现差异。
当然有可能是二者的共同作用,个人倾向于认同前者,至少直觉上(玄乎?)前者说得通些。
※滞后环的种类滞后环的特征对应于特定的孔结构信息,分析这个比较考验对Kelvin方程的理解。
H1是均匀孔模型,可视为直筒孔便于理解。
但有些同学在解谱时会说由H1型滞后环可知SBA-15具有有序六方介孔结构,这是错误的说法。
H1型滞后环可以看出有序介孔,但是否是六方、四方、三角就不知道了,六方是小角XRD看出来的东西,这是明显的张冠李戴;H2比较难解释,一般认为是多孔吸附质或均匀粒子堆积孔造成的,多认为是“ink bottle”,等小孔径瓶颈中的液氮脱附后,束缚于瓶中的液氮气体会骤然逸出;H3与H4相比高压端吸附量大,认为是片状粒子堆积形成的狭缝孔;H4也是狭缝孔,区别于粒子堆集,是一些类似由层状结构产生的孔。
※中压部分有较大吸附量但不产生滞后环的情况在相对压力为0.2-0.3左右时,根据Kelvin方程可知孔半径是很小,有效孔半径只有几个吸附质分子大小,不会出现毛细管凝聚现象,吸脱附等温线重合,MCM-41孔径为2、3个nm 时有序介孔吸脱附并不出现滞后环。
◆介孔分析通常采用的都是BJH模型(Barrett-Joiner- Halenda),是Kelvin方程在圆筒模型中的应用,适用于介孔范围,所得结果比实际偏小。
针对MCM-41、SBA-15孔结构分析的具更高精度的KJS(Kruk-Jaroniec-Sayari)及其修正方法,KJS出来时用高度有序的MCM41为材料进行孔分析,结合XRD结果,得出了比BJH 有更高精度的KJS方程,适用孔径分析范围在2-6.5 nm之间。
后来又做了推广,使之有较大的适用范围,可用于SBA-15孔结构(4.6-30nm)的表征。
◆关于t-Plot和αs方法是对整条吸附或脱附曲线的处理方法,t-Plot可理解为thickness图形法,以氮气吸附量对单分子层吸附量作图,凝聚时形成的吸附膜平均厚度是平均吸附层数乘以单分子层厚度(0.354nm),比表面积=0.162*单分子层吸附量*阿伏加德罗常数。
样品为无孔材料时,t-Plot是一条过原点直线,当试样中含有微孔,介孔,大孔时,直线就会变成几段折线,需要分别分析。
αs方法中的下标是standard的意思,Sing提出用相对压力为0.4时的吸附量代替单分子层吸附量,再去作图,用这种方法先要指定一个标准,或是在仪器上做一个标样,处理方法和图形解释两种方法是类似的。
两则之间可以相互转化,t=0.538αs◆微孔分析含微孔材料的微孔分析对真空度,控制系统,温度传感器有不同的要求,测试时间也比较长,时间可能是普通样品的十倍甚至二十倍。
由于微孔尺寸和探针分子大小相差有限,部分微孔探针分子尚不能进入,解析方法要根据不同的样品来定,需要时可借鉴相关文献方法来参考,再则自己做一批样品采用的是一种分析方法,结果的趋势多半是正确的。
现在用一种模型来分析所有范围的孔径分布还是有些困难,非线性密度泛涵理论(NLDFT)听说是可以,但论文中采用的较少。
★送样提醒★明确测试目的:比表面积和孔结构对活性中心分布,反应物产物停留产生影响,因焙烧温度等处理导致比表面不同等情况,不要没事随便做个比表面的孔分布看看。
基本上以做实验时所用的状态为准,烘干送样,要说明样品种类,大约比表面积,一般要提供够100平方米表面积的样品(如活性炭比表面一般是700左右,则提供0.2 g足够)。
如果平时所用催化剂是成型后再做反应,则成型后送样,这样结果比较客观。
分子筛样品一般不用成型,特别是介孔分子筛成型时则不能用较大压力,否则辛辛苦苦做出来可能毁于一压。
列一些参考资料书目,有兴趣可找一下看看:1.刘维桥孙桂大《固体催化剂实用研究方法》中国石化出版社2.刘振宇等,多孔炭的纳米结构及其解析,化学进展,2001,13(1)3.近藤精一,石川达雄,安部郁夫著. 李国希译.《吸附科学》北京化学工业出版社,20054.陈诵英孙予罕丁云杰周仁贤罗孟飞《吸附与催化》河南科学技术出版社,20015. Gregg,S.J., Sing,K.S.W.《吸附、比表面与孔隙率》化学工业出版社,19896.Thomas W. J., Crittenden B.. Adsorption Technology and Design, Elsevier Science & Technology 19987.RuthvenD. M. Principles of Adsorption and Adsorption Processes, John Wiley & Sons (1984)8.Suzuki M., Adsorption Engineering, Elsevier (1990)论文1.Brunauer, S., Emmett P. H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, 60:309-3192.Barrett E. P.; Joyner L. G.; Halenda P. P.. The determination of pore volume and area distributions in porous substances: I. computations from nitrogen isotherms . J. Am.Chem. Soc., 1951, 73:373-3803.Sing K, Everett D, Haul R, Moscou L, Pierotti R, Rouquerol J, Siemieniewska T. Pure Appl. Chem, 1985, 57: 603-6194.Kruk M., Jaroniec M., Sayari A.. Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir, 1997, 13:6267-62735.Jaroniec M., Solovyov L. A.. Improvement of the Kruk-Jaroniec-Sayari Method for pore size analysis of ordered silicas with cylindrical mesopores. Langmuir, 2006, 22:6757-67606.Dbrowski A. Adv. Colloid Interface Sci., 2001, 93: 135-224。