高考解析几何定点、定值问题例题以及答案详解

合集下载

解析几何中的定点,定值问答(含答案解析)

解析几何中的定点,定值问答(含答案解析)

分析几何中的定点和定值问题【教课目的】学会集理选择参数(坐标、斜率等)表示动向图形中的几何对象,研究、证明其不变性质 ( 定点、定值等 ),领会“设而不求” 、“整体代换”在简化运算中的作用.【教课难、要点】解题思路的优化.【教课方法】议论式【教课过程】一、基础练习1 、过直线x 4 上动点 P 作圆O:x2y2 4 的切线PA、PB,则两切点所在直线AB 恒过必定点.此定点的坐标为.【答案】(1,0)yPB4xA【分析】设动点坐标为P(4,t),则以OP直径的圆C方程为:x(x 4)y( y t ) 0 ,故 AB 是两圆的公共弦,其方程为4x ty 4 .注:部分优异学生可由x0 x y0 y r 2公式直接得出.4x40令0得定点 (1,0) .y2 、已知 PQ 是过椭圆 C : 2 x2y21中心的任一弦, A 是椭圆 C 上异于P、Q的随意一点.若AP、AQ分别有斜率 k1、 k2,则 k1k2=______________.【答案】 -2【分析】设P( x, y), A( x0 , y0 ) ,则Q(x,y) y0y y0y y02y 2k1 k2x x0x 2x2,x0x02x2y 21又由 A 、 P 均在椭圆上,故有:00,2x2y21y02y2两式相减得 2( x02x 2 )( y02y2 ) 0, k1k2222x0x3 、椭圆x 2y 21,过右焦点F作不垂直于 x 轴的直线交椭圆于A、 B 两点,3627AB 的垂直均分线交x 轴于N e=1,则 NF : AB 等于_______.42【答案】1 4【分析】设直线 AB 斜率为 k ,则直线方程为y k x 3 ,与椭圆方程联立消去y 整理可得34k 2x224k2 x36k 2 1080 ,则 x1 x224k22, x1x236k 2108 34k34k2,所以 y1y218k, 34k2则 AB 中点为12k 2,9k. 34k24k23所以 AB 中垂线方程为 y9k21x12k22,34k k 3 4k令则 x3k 2即N 3k22 ,0y 0 ,34k2,34k,所以 NF33k 29(1k 2 ) 34k234k 2.AB1 k2x 1 236 1 k 2NF 1x 24x 1 x 24k 2,所以.3 AB44、已知椭圆 x 2y 2 1(a b 0) , A, F 是其左极点和左焦点,P是圆 x 2y 2b 2a 2b 2上的动点,若PA = 常数,则此椭圆的离心率是PF【答案】 e = 5 12【分析】PA常数,所以当点 P 分别在(± b ,0 )时比值相等,因为 PF即a b = a+b,整理得: b 2 ac ,b c b+c又因为 b 2 a 2 c 2 ,所以 a 2c 2ac同除以 a 2 可得 e 2 + e -1=0 ,解得离心率 e =5 1 .2二、典例议论例1、如图,在平面直角坐标系xOy 中,椭圆 C :x 2y 2 1的左极点为 A ,过原点 O 的直线(与42坐标轴不重合)与椭圆C 交于 P ,Q 两点,直线 PA ,QA 分别与 y 轴交于 M , N 两点.试问以 MN 为直径的圆能否经过定点(与直线 PQ 的斜率没关)?请证明你的结论.yMAPOQNx剖析一:设 PQ 的方程为 ykx ,设点 P x 0 , y 0 ( x 0 0 ),则点 Q x 0 , y 0 .联立方程组ykx,消去 y 得 x 24 2.22y 241x2k所以 x 02,则 y 02k.1 2k21 2 k2所以直线 AP 的方程为 ykx 2 .进而 M 0,2k1 1 2k 21 2k 21同理可得点 N0, 2k.112k 2所以以 MN 为直径的圆的方程为x 2( y12k 2k 2)( y 2k ) 01 11 2k 2整理得: x 2y 2 ( 2k2k ) y 2 011 2k 211 2k2 x 2 y 2 2 02, 0)由,可得定点 F (y剖析二 :设 P ( x 0, y 0 ),则 Q (﹣ x 0 ,﹣ y 0),代入椭圆方程可得 x 0 2 2 y 02 4 .由直线 PA 方程为:yy 0 ( x 2) ,可得 M 0,2y 02 y 0 x 0x 0,同原因直线 QA 方程可得 N 0,,可得以22x 02MN 为直径的圆为 x 2y2y 02y 2y 0 2 0 ,x 0x 0整理得: x 2y 22y 02 y 0 y 4 y 2 0x 0 2x 0 2 x 0 2 4242,代入整理即可得x 2y 24x 0 y 0 y 2 0因为 x 02y 0x 0 24此圆过定点 F (2, 0) .剖析三 :易证: k AP k AQb 2 1 a 2,2故可设直线AP 斜率为 k ,则直线 AQ 斜率为1 .2k直线 AP 方程为 y k( x2) ,进而得 M (0, 2k ) ,以1 1代 k 得 N 0,2kk故知以 MN 为直径的圆的方程为 x 2( y 2k)( y1 ) 0k整理得: x2y22 (12k ) y 0kx 2 y 22 02, 0) .由,可得定点 F (y剖析四、设 M (0, m), N (0, n) ,则 以 MN 为直径的圆的方程为x 2 ( y m)( yn) 0即 x 2y 2(m n) y mn再由k AP k AQ k AM k AN = b 21得 mn - 2 ,下略a22.例 2 、已知离心率为 e 的椭圆C :x2y2恰过两点,,a2b21(a b 0)(1 e) 和 20 .(1)求椭圆 C 的方程;(2) 已知AB、MN为椭圆C上的两动弦,此中M 、N 对于原点O对称,AB过点 E(1, 0) ,且 AB、MN 斜率互为相反数.试问:直线AM、BN的斜率之和能否为定值?证明你的结论.yMAx分析:O Ea23B Ne (1)由题意:1e22a2b21b21所以椭圆 C 的方程为x2y21. 4(2)设 AB 方程为y k( x1) , A( x1 , y1) , B( x2 , y2 ) ,则 MN 方程为y kx又设 M ( x3,kx3 ) , N ( x3 , kx3 )k AM kBNy1kx3y2kx3k( x1 1) kx3k ( x21) kx3x1x3x2x3x1x3x2x3则整理得: k AM k BN k ( x1x3 1)(x2x3 ) (x2x3 1)(x1 x3 )( x1x3 )( x2x3 )k AM kBNk 2x1x22x32( x1x2 )①( x1x3 )( x2x3 )由y k( x1)消元整理得: (4 k 21)x28k2 x 4k 240 ,x2 4 y24.所以 x1 x28k 21 , x1 x24k4k24k224②1y kx又由消元整理得:x2 4 y2 4(4 k 2 1)x2 4 ,所以 x3241③4k 2将②、③代入①式得: k AM kBN0.例 2( 变式 ) 、已知离心率为 e 的椭圆Cx2y21(a b 0),,. :a2b2恰过两点 (1 e) 和 20(3)求椭圆 C 的方程;(4)已知 AB、MN 为椭圆C上的两动弦,此中 M、N 对于原点O对称,AB过定点E(m, 0), ( 2 m 2) ,且 AB、MN 斜率互为相反数. 试问:直线 AM 、 BN 的斜率之和能否为定值?证明你的结论.yMAx分析:O Ea2B N e3(3)由题意:1e22a2b21b21所以椭圆 C 的方程为x2y21. 4(4)设 AB 方程为y k( x m) , A(x1, y1 ) , B(x2 , y2 ) ,则 MN 方程为y kx又设 M ( x3,kx3 ) , N ( x3 , kx3 ).kAM kBNy1kx3y2kx3x1x3x2x3k( x1m)kx3k (x2m)kx3 x1x3x2x3则整理得: k AM kBNk ( x1x3m)( x2x3 ) ( x2x3m)( x1x3 )(x1x3 )( x2x3 )kAMkBNk 2x1x22x32m( x1x2 )①( x1x3 )( x2x3 )y k( x m)消元整理得: (4 k21)x28k 2mx4k 2 m240 ,由4 y24x2所以 x1x28k2m, x1 x24k 2m24②4k214k21又由y kx消元整理得:x2 4 y24(4 k 21)x2 4 ,所以 x3241③4k 2将②、③代入①式得:kAMkBN0.三、课外作业1 、已知椭圆x2y2A、B是其左、右极点,动点M知足MB⊥AB,连接AM交椭圆于点P1 ,,42在 x 轴上有异于点A、B 的定点 Q,以 MP 为直径的圆经过直线BP、MQ 的交点,则点 Q 的坐标为.【答案】(0,0 )【分析】试题剖析:设M (2,t ), 则AM : y t( x 2) ,与椭圆方程联立消y 得(t28) x24t 2 x 4t 232 0,4.28t t 28t162t,所以 k BP 82,即 k BP k OM1,点Q的坐 O所以 x P28, y P22t2tt t 816t 282(0,0 )x2y21上不一样于左点A、右点 B 的随意一点,直PA, PB 的斜率2 、已知 P 是412分 k1 , k2 ,则 k1k2的.1【答案】3【分析】P( x, y) , A(23,0), B(23,0)y, k2yk1x2,x 2 33y y y2 k1k2x2,⋯⋯①x 2 3 x 2 312因 P 在上,所以x2y2 1 ,即 y212x2⋯⋯②1243把②代入①,得k1k2y21 x2123x2y21(a b0) 的离心率e=1, A,B 是的左右点,P 上不一样于3 、已知b2a22AB 的点,直PA,PB 的斜角分,, cos() =.cos()【答案】 7【分析】.试题剖析:因为A,B 是椭圆的左右极点,P 为椭圆上不一样于 AB 的动点,kPAkPBb 2 Q e1 c 1 a2 b 21 b23 kPA b 2 3 a 22 a 2a 24 a 24,k PB,a 24cos( ) cos cos sin sin 1 tan tan 1 34 7cos() cos cossinsin1 tantan1 344 、以下图,已知椭圆x 2 y 21,在椭圆 C 上任取不一样两点A ,B ,点 A 对于 x 轴的对称C :4点为 A ' ,当 A , B 变化时,假如直线 AB 经过 x 轴上的定点 T (1 , 0) ,则直线 A 'B 经过 x 轴上的定点为 ________.【答案】 (4 , 0)AB 的方程为 x = my + 1 ,由 x 2 y 2 1得 (my + 1) 2 + 4 y 2 =4 ,即 (m 2 + 4) y 2+ 【分析】设直线 4x my 12 my -3 = 0.记 A (x 1, y 1 ), B (x 2, y 2),则 A ′(x 1 ,- y 1),且 y 1+ y 2=- 2m, y 1 y 2=-3 ,m 24m 2 4当 m ≠0 时,经过点 A ′(x 1,- y 1 ),B( x 2, y 2 )的直线方程为yy 1 = x x 1.令 y = 0 ,得 x =y 2y 1 x 2x 1x 2 x 1 y 1 + x 1my 2 my 1 y 1 + my 1 + 1 = my 1 y 2-my 12+my 1 y 2+ my 12+ 1 =2my 1 y 2 + 1 =y 2y 1 =y 1y 2+ y 1y 2+ y 1y 2.-2m3m24+ 1 = 4 ,所以y= 0 时,x=4.2mm24当 m =0时,直线AB的方程为 x=1,此时A′,B重合,经过A′,B的直线有无数条,自然能够有一条经过点 (4 ,0) 的直线.当直线 AB 为 x 轴时,直线A′B就是直线 AB ,即x轴,这条直线也经过点 (4 , 0) .综上所述,当点A,B 变化时,直线A′B 经过 x 轴上的定点(4,0).x2y21的右焦点 F2的直线交椭圆于于M ,N 两点,令F2 M m, F2 N n ,则5、过椭圆34mn____ .m n【答案】34【分析】x2y 21,得 M 试题剖析:不失一般性,不如取MN垂直 x 轴的状况,此时 MN :x=1, 联立43x1(1,3),N (1,-3),∴m=n= 3 ,∴ mn3 222m n46 、已知椭圆C的中心在座标原点,焦点在 x 轴上,左极点为A,左焦点为F12,0,点B 2,2在椭圆 C 上,直线y kx k0与椭圆 C 交于E F两点,直线AE AF分别与y轴交于点M,,,N .(Ⅰ)求椭圆 C 的方程;(Ⅱ)以 MN 为直径的圆能否经过定点?若经过,求出定点的坐标;若不经过,请说明原因.x2y21(a b 0) ,分析:(Ⅰ)解法一:设椭圆 C 的方程为b2a2因为椭圆的左焦点为 F12,0 ,所以a2b2 4 .设椭圆的右焦点为F2 2,0,已知点 B2,2在椭圆 C 上,由椭圆的定义知 BF1BF22a ,所以 2a3224 2 .所以 a22,进而 b2.所以椭圆 C 的方程为x2y 2 1 .84解法二:设椭圆C 的方程为x2y 2a2b21(a b0) ,因为椭圆的左焦点为F12,0 ,所以a2b2 4 .①因为点 B 2,2421.②在椭圆 C 上,所以b2a2由①②解得, a2 2 ,b 2.所以椭圆 C 的方程为x2y 21 .84(Ⅱ)解法一:因为椭圆 C 的左极点为 A ,则点 A 的坐标为22,0.因为直线 y kx ( k0) 与椭圆x2y21交于两点E,F,84设点 E x, y(不如设 x00 ),则点 F x0 ,y0.00y kx,28联立方程组x2y2消去 y 得x2.84112k所以 x022,则 y022k.12k122 k2所以直线 AE 的方程为ykx22.112k 2因为直线 AE , AF 分别与 y 轴交于点M,N,令 x22k22k0 得 y12k2,即点 M 0,1.112k2同理可得点22kN 0,.1 1 2k222k22k2 2 12k 2.所以 MN12k 2112k2k1设 MN 的中点为P,则点P的坐标为P 0,2k.22 22 12k 2则以 MN 为直径的圆的方程为x2yk ,k即 x2y 22 2 y 4 .k令 y0 ,得 x2 4 ,即x2或 x 2 .故以 MN 为直径的圆经过两定点P12,0, P22,0.解法二:因为椭圆 C 的左端点为 A ,则点 A 的坐标为22,0 .因为直线 y kx (k0) 与椭圆x2y21交于两点 E,F,84设点 E( x0 , y0 ) ,则点 F (x0 ,y0 ) .所以直线 AE 的方程为yy0x22.x022因为直线 AE 与 y 轴交于点M,令 x2 2 y0,即点 M2 2 y0.0 得 y220,x0x022同理可得点 N 0,2 2 y0.x0222 2 y0 2 2 y016 y0.所以 MN2 2 x0x028x0 2 2因为点 E(x0 , y0 ) 在椭圆C上,所以x02y021 .84.所以 MN 8.y0设 MN 的中点为P,则点P的坐标为P2x0.0,y02则以 MN 为直径的圆的方程为x2y 2x016.y02y0即 x2y2 +2 2x0 y4 .y0令 y0 ,得 x2 4 ,即x2或 x 2 .故以 MN 为直径的圆经过两定点P12,0, P22,0.解法三:因为椭圆 C 的左极点为 A ,则点 A 的坐标为 2 2,0.因为直线 y kx ( k 0) 与椭圆x2y21交于两点E,F,84设点 E2 2 cos,2sin( 0),则点 F2 2 cos ,2sin .所以直线 AE 的方程为y2sin x22.22 cos 2 2因为直线 AE 与 y 轴交于点M,令 x 0 得 y2sin,即点 M0,2sin.cos1cos1同理可得点 N0, 2sin.cos1所以 MN2sin2sin41cos1.cos sin设 MN 的中点为P,则点P的坐标为P 0,2cos.sin2则以 MN 为直径的圆的方程为x2y2cos4,sin sin2.即 x 2y 24cosy 4 .sin令 y0 ,得 x 24 ,即 x 2或 x 2 .故以 MN 为直径的圆经过两定点P 1 2,0 ,P 2 2,0 .、已知椭圆x 2y 2(a, b)的离心率为 3 A (1 ,3在椭圆 C 上.7C: a2b 2=1>0>0,点2 )2(I) 求椭圆 C 的方程;(Ⅱ )设动直线 l 与椭圆 C 有且仅有一个公共点,判断能否存在以原点O 为圆心的圆,满足此圆与 l 订交于两点 P 1, P 2 (两点均不在座标轴上) ,且使得直线 OP 1 , OP 2 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明原因.(Ⅰ)解:由题意,得c 3 , a 2 b 2 c 2 ,又因为点 A(1, 3 )在椭圆 C 上,a22所以13 1 , 解得a2 , b 1, c3 ,a 24b 2所以椭圆 C 的方程为x 2y 21.4(Ⅱ) 结论:存在切合条件的圆,且此圆的方程为x 2y 25 .证明以下:假定存在切合条件的圆,并设此圆的方程为 x 2y 2 r 2 (r0) .当直线 l 的斜率存在时,设l的方程为ykx m .y kxm,222由方程组x 2得 (4k1) x8kmx 4m40 ,y21,4因为直线 l 与椭圆 C 有且仅有一个公共点,所以 1 (8km) 24(4k21)(4m24) 0 ,即 m 24k 2 1 ..y kx m,得 (k 222kmxm 2r 20 ,由方程组y 2r 2 ,1)xx 2则2(2km)24(k21)(m2r 2 ) 0 .设 P 1 (x 1, y 1 ) , P 2 (x 2 , y 2 ) ,则x 1x 2 2km , y2xb ,k 2 1设直线 OP 1 , OP 2 的斜率分别为 k 1 , k 2 ,y y2 (kxm)(kx 2m) k 2 x x2km( xx ) m 2k 1k 211112x 1x 2x 1 x 2x 1 x 2所以k 2 m 2 r 2 km k 2km m 2 m 2 2 2k 21 2 1r k2 r 22 r 2mmk 2 1,k 1 k 2(4 r 2 )k 2124k 214k 2(1r 2) .将m代入上式,得要使得k 1k2为定值,则4 r 21241 r2 ,即 r 5 ,考证切合题意 .所以当圆的方程为x 2 y 25 时,圆与 l 的交点 P 1, P 2 知足 k 1k 2 为定值 1 .4 当直线 l 的斜率不存在时,由题意知 l的方程为 x2 ,此时,圆 x 2 y 25 与 l 的交点 P 1 , P 2 也知足 k 1k 21 .4y 2 2228、已知椭圆 C 1 :x1( a b0) 的离心率为,且过定点 M (1 , ). a 222 2b(1) 求椭圆 C 的方程;(2) 已知直线 l : y kx1(k R) 与椭圆 C 交于 A 、 B 两点,试问在 y 轴上能否存在定点P ,使得3以弦 AB 为直径的圆恒过 P 点?若存在,求出 P 点的坐标,若不存在,说明原因.ec25a2a 222a 22(1) 解:由已知 b cb251 112a 224b∴椭圆 C 的方程为2 y24x21 55y kx 1322(2) 解:由得:9(2k4) x12kx 43 02y24x215 5设 A(x1, y1), B(x2, y 2),则 x1、 x2是方程①的两根∴x1x212k,x1 x2439(2k24)9(2k24)uuur,uuur,设 P(0, p ),则PA ( x1,p)y1p) PB ( x2y2uuur uuurp 21PA PB x1 x2y1 y2p( y1y2 )x1 x2(kx1)( kx2(18p 245)k236 p23 24 p39uuur uuur uuur 9(2k24) uuur若 PA PB ,则 PA PB即 (18 p245)k 236 p224 p39 0对随意 k∈R恒建立18p 245 0∴24 p39036 p2此方程组无解,∴不存在定点知足条件.①1) pk ( x1 x2 ) 2 p p233。

高考满分数学压轴题20 解析几何中的定值与定点问题(可编辑可打印)

高考满分数学压轴题20 解析几何中的定值与定点问题(可编辑可打印)

解析几何中的定值与定点问题一.方法综述解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下;(1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性;一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。

(2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。

二.解题策略类型一定值问题【例1】(2020•青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为()A .B .C.2p D .【答案】D【解析】抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x ﹣),所以,整理得,设点A(x1,y1),B(x2,y2),所以,所以,同理设经过焦点直线CD的方程为y=﹣(x﹣),所以,整理得,所以:|CD|=p+(p+2k2p),所以,则则+=.故选:D.【点评】求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.【举一反三】1.(2020•华阴市模拟)已知F是抛物线y2=4x的焦点,过点F的直线与抛物线交于不同的两点A,D,与圆(x﹣1)2+y2=1交于不同的两点B,C(如图),则|AB|•|CD|的值是()A.2B.2C.1D.【答案】C【解析】设A(x1,y1),D(x2,y2),抛物线方程为y2=4x的焦点为F(1,0),准线方程为x=﹣1,圆(x﹣1)2+y2=1的圆心为F(1,0),圆心与焦点重合,半径为1,又由直线过抛物线的焦点F,则|AB|=x1+1﹣1=x1,|CD|=x2+1﹣1=x2,即有|AB|•|CD|=x1x2,设直线方程为x=my+1,代入抛物线方程y2=4x,可得y2﹣4my﹣4=0,则y1y2=﹣4,x1x2==1,故选:C.2.(2020温州高三月考)如图,P为椭圆上的一动点,过点P作椭圆的两条切线P A,PB,斜率分别为k1,k2.若k1•k2为定值,则λ=()A.B.C.D.【答案】C【解析】取P(a,0),设切线方程为:y=k(x﹣a),代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2a3k2x+a4k2﹣a2b2λ=0,令△=4a6k4﹣4(b2+a2k2)(a4k2﹣a2b2λ)=0,化为:(a2﹣a2λ)k2=b2λ,∴k1•k2=,取P(0,b),设切线方程为:y=kx+b,代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2kba2x+a2b2(1﹣λ)=0,令△=4k2b2a4﹣4(b2+a2k2)a2b2(1﹣λ)=0,化为:λa2k2=b2(1﹣λ),∴k1•k2=,又k1•k2为定值,∴=,解得λ=.故选:C.3.(2020•公安县高三模拟)已知椭圆的离心率为,三角形ABC的三个顶点都在椭圆上,设它的三条边AB、BC、AC的中点分别为D、E、F,且三条边所在直线的斜率分别为k1,k2,k3(k1k2k3≠0).若直线OD、OE、OF的斜率之和为﹣1(O为坐标原点),则=.【答案】2【解析】∵椭圆的离心率为,∴,则,得.又三角形ABC的三个顶点都在椭圆上,三条边AB、BC、AC的中点分别为D、E、F,三条边所在直线的斜率分别为k1、k2,k3,且k1、k2,k3均不为0.O为坐标原点,直线OD、OE、OF的斜率之和为﹣1,设A(x1,y1),B(x2,y2),C(x3,y3),则,,两式作差得,,则,即,同理可得,.∴==﹣2×(﹣1)=2.类型二定点问题【例2】(2020•渝中区高三模拟)已知抛物线C:x2=4y的焦点为F,A是抛物线C上异于坐标原点的任意一点,过点A的直线l交y轴的正半轴于点B,且A,B同在一个以F为圆心的圆上,另有直线l′∥l,且l′与抛物线C相切于点D,则直线AD经过的定点的坐标是()A.(0,1)B.(0,2)C.(1,0)D.(2,0)【答案】A【解析】设A(m,m2),B(0,n),∵抛物线C:x2=4y的焦点为F(0,1)又A,B同在一个以F为圆心的圆上,∴|BF|=|AF|∴n﹣1==m2+1∴n=m2+2∴直线l的斜率k==﹣∵直线l′∥l,∴直线l′的斜率为k,设点D(a,a2),∵y=x2,∴y′=x,∴k=a,∴a=﹣,∴a=﹣∴直线AD的斜率为===,∴直线AD的方程为y﹣m2=(x﹣m),整理可得y=x+1,故直线AD经过的定点的坐标是(0,1),故选:A.【点评】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 【举一反三】1.(2020·全国高考模拟(理))已知抛物线28x y =,过点(),4P b 作该抛物线的切线PA ,PB ,切点为A ,B ,若直线AB 恒过定点,则该定点为( )A .()4,0B .()3,2C .()0,4-D .()4,1【答案】C【解析】设A B ,的坐标为()11x y ,,()22x y ,28x y =,4x y '=, PA PB ,的方程为()1114x y y x x -=-,()2224xy y x x -=- 由22118x y =,22228x y =,可得114x y x y =-,224x y x y =-切线PA PB ,都过点()4P b ,1144x b y ∴=⨯-,2244xb y =⨯-, 故可知过A ,B 两点的直线方程为44bx y =-, 当0x =时,4y =∴直线AB 恒过定点()04-,,故选C2.(2020·重庆高考模拟(理))已知圆22:1C x y +=,点P 为直线142x y+=上一动点,过点P 向圆C 引两条切线,,,PA PB A B 为切点,则直线AB 经过定点.( )A .11,24⎛⎫ ⎪⎝⎭B .11,42⎛⎫⎪⎝⎭ C.4⎛⎫ ⎪ ⎪⎝⎭D.0,4⎛⎫ ⎪ ⎪⎝⎭ 【答案】B【解析】设()42,,,P m m PA PB -是圆C 的切线,,,CA PA CB PB AB ∴⊥⊥∴是圆C 与以PC 为直径的两圆的公共弦,可得以PC 为直径的圆的方程为()()22222224m m x m y m ⎛⎫⎡⎤--+-=-+ ⎪⎣⎦⎝⎭, ① 又221x y += , ②①-②得():221AB m x my -+=, 可得11,42⎛⎫⎪⎝⎭满足上式,即AB 过定点11,42⎛⎫⎪⎝⎭,故选B. 3.(2020大理一模)已知椭圆221164x y +=的左顶点为A ,过A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,满足122k k ⋅=-,则直线MN 经过的定点为___________. 【答案】28,09T ⎛⎫-⎪⎝⎭【解析】 由()2221211141616414=+4M x y k x k y k x ⎧+=-⎪⇒=⎨+⎪⎩, 同理222122214164641416N k k x k k --==++. 121814M k y k =+,1211616Nk y k -=+,取11k =,由对称性可知,直线MN 经过x 轴上的定点28,09T ⎛⎫-⎪⎝⎭. 【归纳总结】在平面直角坐标系xOy 中,过椭圆()222210x y a b a b+=>>上一定点A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,当12k k ⋅为非零常数时,直线MN 经过定点.三.强化训练1.(2020·黑龙江高三模拟)直线l 与抛物线x y C 2:2=交于B A ,两点,O 为坐标原点,若直线OB OA ,的斜率1k ,2k 满足3221=k k ,则l 的横截距( ) A .为定值3- B .为定值3 C .为定值1- D .不是定值 【答案】A【解析】设直线l 的方程为y kx b =+,由题意得22y kx b y x=+⎧⎨=⎩,则得()222220k x kb x b +-+=; 设A ,B 两点的坐标为()11,A x y ,()22,B x y ,则得12222kb x x k -+=,2122b x x k =;又因为3221=k k ,即121223y y x x =,所以()2222222121222221222222222223k x x kb x x b kb k b k k b k b k k b k k k k x x b b b b +++--+-=++=+=== , 则得3b k =,直线l 的方程为()33y kx b kx k k x =+=+=+; 当0y =时,3x =-,所以直线l 的横截距为定值3-.故选A.2.(2020·辽宁省朝阳市第二高级中学高二期中(文))如果直线7ax by +=(0a >,0b >) 和函数()1log m f x x =+(0m >,1m ≠)的图象恒过同一个定点,且该定点始终落在圆22(1)(1)25x b y a +-++-=的内部或圆上,那么ba的取值范围是( )A .3443⎡⎤⋅⎢⎥⎣⎦B .30,4⎛⎤ ⎥⎝⎦C .4,3⎡⎫+∞⎪⎢⎣⎭D .340,,43⎛⎤⎡⎫⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】A【解析】根据指数函数的性质,可得函数()1log ,(0,1)m f x x m m >≠=+,恒过定点(1,1). 将点(1,1)代入7ax by +=,可得7a b +=.由于(1,1)始终落在所给圆的内部或圆上,所以2225a b +.又由227,25,a b a b +=⎧⎨+=⎩解得34a b =⎧⎨=⎩或43a b =⎧⎨=⎩,所以点(,)a b 在以(3,4)和(4,3)为端点的线段上运动, 当取点(3,4)时,43b a =,取点(4,3)时,34b a,所以b a 的取值范围是34,43⎡⎤⎢⎥⎣⎦.3.(2020·全国高三模拟)过x 轴上的点(),0P a 的直线与抛物线28y x =交于,A B 两点,若2211||||AP BP +为定值,则实数a 的值为( )A.1B.2 C .3 D .4 【答案】D【解析】设直线AB 的方程为x my a =+,代入28y x =,得2880y my a --=, 设()()1122,,,A x y B x y ,则12128,8y y m y y a +=⋅=-.()()()2222222111111AP x a y my y m y =-+=+=+,同理,()22221BP m y =+,∴()21212222222221212211111111y y y y m y y m y y AP BP+-⎛⎫+=+= ⋅⎪++⎝⎭ ()()22222264284164114m a m am a a m -⨯-+=+⋅=+,∵2211||||AP BP +为定值, 是与m 无关的常数,∴4a =.故选D .4.(2020•越城区高三期末)已知A 、B 是抛物线y 2=4x 上异于原点O 的两点,则“•=0”是“直线AB 恒过定点(4,0)”的( )A .充分非必要条件B .充要条件C .必要非充分条件D .非充分非必要条件【答案】B【解析】根据题意,A 、B 是抛物线y 2=4x 上异于原点O 的两点,设A (x 1,y 1),B (x 2,y 2), 若“•=0”,则设直线AB 方程为x =my +b ,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣4b =0,则y 1+y 2=4m ,y 1y 2=﹣4b , 若•=0,则•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=b 2﹣4b =0,解可得:b =4或b =0,又由b ≠0,则b =4,则直线AB 的方程为x =my +4,即my =x ﹣4,则直线AB 恒过定点(4,0), “•=0”是“直线AB 恒过定点(4,0)”的充分条件;反之:若直线AB 恒过定点(4,0),设直线AB 的方程为x =my +4,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣16=0,则有y 1y 2=﹣16, 此时•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=0,故“•=0”是“直线AB 恒过定点(4,0)”的必要条件;综合可得:“•=0”是“直线AB 恒过定点(4,0)”的充要条件;故选:B .5.(2020·湖北高考模拟)设12(,0),(,0)F c F c -是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则||OQ 的长为( ) A .定值a B .定值bC .定值cD .不确定,随P 点位置变化而变化【答案】A【解析】依题意如图,延长F 1Q ,交PF 2于点T , ∵PQ 是∠F 1PF 2的角分线.TF 1是PQ 的垂线, ∴PQ 是TF 1的中垂线,∴|PF 1|=|PT |,∵P 为双曲线2222x y a b-=1上一点,∴|PF 1|﹣|PF 2|=2a , ∴|TF 2|=2a ,在三角形F 1F 2T 中,QO 是中位线, ∴|OQ |=a . 故选:A .6.(2020·浙江省杭州第二中学高三)设点(),P x y 是圆22:2210C x y x y ++-+=上任意一点,若212x y x y a -+++--为定值,则a 的值可能为( )A .3-B .4-C .5-D .6-【答案】D【解析】圆C 标准方程为22(1)(1)1x y ++-=,圆心为(1,1)C -,半径为1r =, 直线:20l x y a --=2115a---=,35a =-当35a =-+C 在直线l 上方,20x y a --≤,当=--35a C 在直线l 下方,20x y a --≥,若212x y x y a -+++--为定值,则20x y a --≥,因此35a ≤-D 满足. 故选:D.7.(2020·湖北高考模拟(理))已知圆C : 224x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线,PA PB , ,A B 为切点,则直线AB 经过定点( )A .48,99⎛⎫⎪⎝⎭ B .24,99⎛⎫⎪⎝⎭C .()2,0D .()9,0 【答案】A【解析】设()()()112200,,,,,,A x y B x y P x y 则1122:4;:4;PA x x y y PB x x y y +=+= 即101020204;4;x x y y x x y y +=+=因此A 、B 在直线004x x y y +=上,直线AB 方程为004x x y y +=, 又00290x y +-=,所以()()0009242940y x y y y y x x -+=⇒-+-= 即8420,940,99y x x y x -=-=⇒==,直线AB 经过定点48,99⎛⎫⎪⎝⎭,选A. 8.(2020·全国高三期末(理))已知圆O :2214x y +=,直线l :y =kx +b (k ≠0),l 和圆O 交于E ,F 两点,以Ox 为始边,逆时针旋转到OE ,OF 为终边的最小正角分别为α,β,给出如下3个命题: ①当k 为常数,b 为变数时,sin (α+β)是定值; ②当k 为变数,b 为变数时,sin (α+β)是定值; ③当k 为变数,b 为常数时,sin (α+β)是定值. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3【答案】B【解析】设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,, 将直线EF 的方程与的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得2221(1)204k x kbx b +++-=, 由韦达定理得122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩,,所以2112sin()sin cos cos sin 44x y x y αβαβαβ+=+=+=222112121222188244()4()84()11k b kb k x kx b x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭+++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B (特值法可秒杀)9.(2020·浙江高三期末)斜率为k 的直线l 过抛物线22(0)y px p =>焦点F ,交抛物线于,A B 两点,点00(,)P x y 为AB 中点,作OQ AB ⊥,垂足为Q ,则下列结论中不正确的是( )A .0ky 为定值B .OA OB ⋅为定值C .点P 的轨迹为圆的一部分D .点Q 的轨迹是圆的一部分【答案】C【解析】设抛物线22(0)y px p =>上,A B 两点坐标分别为()()1122,,,A x y B x y ,则2211222,2,y px y px ==两式做差得,121212()()2()y y y y p x x +-=-,整理得1201212022,,2.y y p pk ky p x x y y y -=∴=∴=-+为定值,所以A 正确.因为焦点(,0)2p F ,所以直线AB 方程为()2p y k x =-.由2()22p y k x y px⎧=-⎪⎨⎪=⎩得2222244(2)0k x p k x p k -++=,则22121222(2),,4p k p x x x x k ++== 222212121212()()[()]2224p p p p y y k x x k x x x x p =--=-++=-.2121234OA OB x x y y p ∴⋅=+=-为定值.故B 正确. ,OQ AB ⊥∴点Q 的轨迹是以OF 为直径的圆的一部分,故D 正确.本题选择C 选项.10.(2020·安徽高三月考(理))已知抛物线2:8C y x =,圆22:(2)4F x y -+=,直线:(2)(0)l y k x k =-≠自上而下顺次与上述两曲线交于1234,,,M M M M 四点,则下列各式结果为定值的是( ) A .1324M M M M ⋅ B .14FM FM ⋅ C .1234M M M M ⋅ D .112FM M M ⋅【答案】C 【解析】由()228y k x y x⎧=-⎨=⎩消去y 整理得2222(48)40(0)k x k x k k -++=≠,设111422(,),(,)M x y M x y ,则21212248,4k x x x x k++==. 过点14,M M 分别作直线:2l x '=-的垂线,垂足分别为,A B , 则11422,2M F x M F x =+=+.对于A ,13241412(2)(2)(4)(4)M M M M M F M F x x ⋅=++=++12124()16x x x x =+++,不为定值,故A 不正确.对于B ,14121212(2)(2)2()4FM FM x x x x x x ⋅=++=+++,不为定值,故B 不正确. 对于C ,12341412(2)(2)4M M M M M F M F x x ⋅=--==,为定值,故C 正确.对于D ,1121111(2)(2)FM M M M F M F x x ⋅=⋅-=+,不为定值,故D 不正确.选C .11.(2020·南昌县莲塘第一中学高三月考(理))在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L -距离”定义为121212|||||.PP x x y y =-+-‖则平面内与x 轴上两个不同的定点12,F F 的“L -距离”之和等于定值(大于12|F F )的点的轨迹可以是( )A .B .C .D .【答案】A【解析】设12(,0),(,0)F c F c -,再设动点(,)M x y ,动点到定点12,F F 的“L­距离”之和等于(20)m m c >>,由题意可得:x c y x c y m ++-++=,即2x c x c y m -+++=, 当,0x c y <-≥时,方程化为220x y m -+=; 当,0x c y <-<时,方程化为220x y m ++=;当,0c x c y -≤<≥时,方程化为2my c =-; 当,0c x c y -≤<<时,方程化为2my c =-;当,0x c y ≥≥时,方程化为220x y m +-=; 当,0x c y ≥<时,方程化为220x y m --=;结合题目中给出四个选项可知,选项A 中的图象符合要求,故选A . 12.(2020·东北育才学校高三月考(理))有如下3个命题;①双曲线22221(0,0)x y a b a b-=>>上任意一点P 到两条渐近线的距离乘积是定值;②双曲线2222222211(0,0)x y x y a b a b b a-=-=>>与的离心率分别是12e e 、,则22122212e e e e +是定值;③过抛物线22(0)x py p =>的顶点任作两条互相垂直的直线与抛物线的交点分别是A B 、,则直线AB 过定点;其中正确的命题有( ) A .3个 B .2个C .1个D .0个【答案】A【解析】①双曲线22221x y a b-=(a >0,b >0)上任意一点P ,设为(m ,n ),两条渐近线方程为y=±ba x=222222b m a n a b -+, 由b 2m 2﹣a 2n 2=a 2b 2,可得两个距离乘积是定值2222a b a b+; ②双曲线2222x y a b -=1与22221x y b a -=(a >0,b >0)的离心率分别是e 1,e 2,即有e 12=222a b a +,e 22=222a b b +,可得22122212e e e e +为定值1;③过抛物线x 2=2py (p >0)的顶点任作两条互相垂直的直线与抛物线的交点分别是A ,B ,可设A (s ,22s p),B (t ,22t p ),由OA ⊥OB 可得st+2224s t p=0,即有st=﹣4p 2, k AB =()222t s p t s --=2t s p +,可得直线AB 的方程为y ﹣22s p=2t s p +(x ﹣s ),即为y=2t s p +x+2p , 则直线AB 过定点(0,2p ).三个命题都正确.故选A .13.已知O 为坐标原点,点M 在双曲线22:C x y λ-=(λ为正常数)上,过点M 作双曲线C 的某一条渐近线的垂线,垂足为N ,则ON MN ⋅的值为( ) A .2λB .λC .2λD .无法确定【来源】四川省南充市2021届高三第三次模拟考试数学(文)试题 【答案】A【解析】设(,)M m n ,即有22m n λ-=,双曲线的渐近线为y x =±,可得MN =,由勾股定理可得ON ===,可得2222m n ON MN λ-⋅=== .故选:A .14.已知1F 、2F 是双曲线C :2214y x -=的左、右两个焦点,若双曲线在第一象限上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||||PF PF λ=,则λ的值为( ).A .13B .12C .2D .3【来源】河南省豫南九校2020-2021学年高三上学期期末联考理数试题 【答案】C 【解析】1a =,2b =,∴c =1(F,2F, 设点)P m ,∴2222()(1))1504m OP OFF P m m m +⋅=⋅=+-+=, ∴2165m =,m =,则P ±,14PF ===, ∴2122PF PF a =-=,∴12422PF PF λ===, 故选:C.15.已知1F ,2F 是双曲线221169x y -=的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为60︒,那么22||+-PF QF PQ 的值为A .16B .12C .8D .随α变化而变化【答案】A【解析】由双曲线方程221169x y -=知,28a =,双曲线的渐近线方程为34y x 直线PQ 的倾斜角为60︒,所以334PQ k =>,又直线PQ 过焦点1F ,如图 所以直线PQ 与双曲线的交点都在左支上.由双曲线的定义得,2128PF PF a -==…………(1),2128QF QF a -== (2)由(1)+(2)得2211()16PF QF QF PF +-+=,2216PF QF PQ ∴+-=. 故选:A16.已知椭圆()2221024x y b b+=<<,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,()2,1M ,1MF 平分角12PF F ∠,则1MPF 与2MPF 的面积之和为( ) A .1B .32C .2D .3【来源】中学生标准学术能力诊断性测试2020-2021学年高三上学期1月测试理文数学(一卷)试题 【答案】C【解析】如图,椭圆()222210x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,作一圆与线段F 1P ,F 1F 2的延长线都相切,并且与线段PF 2也相切,切点分别为D ,A ,B ,1111221122||||||||||||||||||||F D F A PF PD F F F A PF PB F F F A =⇔+=+⇔+=+, 12122212122||||||||||||||||||2||PF PB F B F F F A F B PF PF F F F A ⇔++=++⇔+=+,所以2||F A a c =-(c 为椭圆半焦距),从而点A 为椭圆长轴端点,即圆心M 的轨迹是直线x =a (除点A 外). 因点M (2,1)在12PF F ∠的平分线上,且椭圆右端点A (2,0),所以点M 是上述圆心轨迹上的点,即点M 到直线F 1P ,PF 2,F 1F 2的距离都相等,且均为1,1MPF 与2MPF 的面积之和为1212111||1||1(||||)2222PF PF PF PF ⋅⋅+⋅⋅=+=.故选:C17.已知椭圆2214x y +=的上顶点为,A B C 、为椭圆上异于A 的两点,且AB AC ⊥,则直线BC 过定点( ) A .(1,0) B .(3,0)C .10,2⎛⎫ ⎪⎝⎭D .30,5⎛⎫- ⎪⎝⎭【答案】D【解析】设直线BC 的方程为x ky m =+,()()1122,,B x y C x y 、,则由2214x ky m x y =+⎧⎪⎨+=⎪⎩整理得()2224240k y mky m +++-=, 所以212122224,44mk m y y y y k k --+==++, ()22222121212224244m mkx x k y y mk y y m k mk m k k --=+++=++++,因为()0,1A ,()()1122,1,1A x y B C x y A --==,,AB AC ⊥, 所以()()()1212121212111x x y y x x y y y y AB AC +-=-=++⋅-+22222222224242125304444m mk m mk k mk m km m k k k k k ---=+++++=+-=++++解得m k =-或35m k =, 当m k =-时,直线BC 的方程为()1x ky k k y =-=-,直线过()0,1点而()0,1A ,而,A B C 、不在同一直线上,不合题意; 当35m k =时,直线BC 的方程为3355x ky k k y ⎛⎫=+=+ ⎪⎝⎭,直线过30,5⎛⎫- ⎪⎝⎭,符合题意.故选:D.18.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54B .45C .43D .34【来源】安徽省宣城市第二中学2020-2021学年高三下学期第一次月考理科数学试题 【答案】D【解析】设112233(,),(,),(,)P x y Q x y G x y ,则切线GP 的方程为114x x y y +=,切线GQ 的方程为224x x y y +=, 因为点G 在切线,GP GQ 上,所以13134x x y y +=,23234x x y y +=,所以直线PQ 的方程为334x x y y +=, 所以3344(,0),(0,)M N x y , 因为点33(,)G x y 在椭圆221124y x +=上,所以2233312x y +=,所以22223333223311123(3)161616164x y x y OM ON+=+=+==, 故选:D19.已知椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q 两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =( ) A .13B .3C .12D .2【来源】湖北省“大课改、大数据、大测评”2020-2021学年高三上学期联合测评数学试题 【答案】A【解析】设(),N x y ,()11,P x y ,()22,Q x y ,设直线PQ 的方程:4x my =-由,,P N A 和,,Q N B 三点共线可知11222222y y x x y y x x ⎧=⎪++⎪⎨⎪=⎪--⎩ , 解得:()()()()()()()()1221122112211221222226222262y x y x y my y my x y x y x y my y my -++-+-==--++--+-1212122623my y y y x y y --∴=-,12121226643my y y y x y y +-+=-,(*)联立224142x my x y =-⎧⎪⎨+=⎪⎩ ,得()2228120m y my +-+=,22226448(2)16(6)0,6m m m m ∆=-+=->>,12121212228123,,()222m y y y y my y y y m m +==∴=+++, 代入(*)得121293433y y x y y -+==-,14y k x =+,22y k x =+ ,122211443k x k x x +∴==-=++.故选:A20.(2020·北京市第二中学分校高三(理))抛物线24y x =上两个不同的点A ,B ,满足OA OB ⊥,则直线AB 一定过定点,此定点坐标为__________. 【答案】(4,0).【解析】设直线l 的方程为x ty b =+代入抛物线24y x =,消去x 得2440y ty b --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y b =-,∴()()()221212121212OA OB ty b ty b y y t y y bt y y b y y ⋅=+++=++++222444bt bt b b =-++- 24b b =-=0,∴0b =(舍去)或4b =, 故直线l 过定点()4,0.21.(2020·江苏扬州中学高三月考)已知点(2,0),(4,0)A B -,圆,16)()4(:22=+++b y x C 点P 是圆C 上任意一点,若PAPB为定值,则b =________.【答案】0【解析】设(,)P x y ,PAk PB =k =, 整理得222222(1)(1)(48)4160k x k y k x k -+-+++-=, 又P 是圆C 上的任意一点,故1k ≠,圆C 的一般方程为222820x y x by b ++++=,因此20b =,22222484168,11k k b k k+-==--,解得0b =. 22.(2020·江苏海安高级中学高三)在平面直角坐标系xOy 中,A ,B 为x 轴正半轴上的两个动点,P (异于原点O )为y 轴上的一个定点.若以AB 为直径的圆与圆x 2+(y -2)2=1相外切,且∠APB 的大小恒为定值,则线段OP 的长为_____.【解析】设O 2(a ,0),圆O 2的半径为r (变量),OP=t (常数),则222222221)222tan ,tan ,2tan 141,(4,22tan 3232r a r a rOPA OPB t t a r a rrtt t APB a r t a r t a r a rt tAPB t t r r +-+∠=∠=+--∴∠==-+-++=+∴=-∴∠==-+-+∵∠APB 的大小恒为定值,∴t23.在平面直角坐标系xOy 中,椭圆22184x y +=上一点A ,点B 是椭圆上任意一点(异于点A ),过点B 作与直线OA 平行的直线l 交椭圆于点C ,当直线AB 、AC 斜率都存在时,AB AC k k +=___________. 【答案】0【解析】取特殊点B ()0,2-,则BC的方程为22y x +=,由22242y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩得C ()所以202AB AC k k +==. 24.(2020·河北定州一中高三月考)P 为圆()22:15C x y -+=上任意一点,异于点()2,3A 的定点B 满足PBPA为常数,则点B 的坐标为______. 【答案】33,22⎛⎫⎪⎝⎭【解析】设()()00,,,,PA P x y B x y PBλ=,则()2215x y -+=,可得2242x y x +=+,① ()()()()222220023x x y y x y y λ⎡⎤-+-=-+-⎣⎦,②由①②得()2200002224x x y y x y --+++2222617x y λλλ=--+,可得202002220022226417x y x y λλλ⎧-=-⎪-=-⎨⎪++=⎩,解得002323212x y λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,B ∴点坐标为33,22⎛⎫ ⎪⎝⎭,故答案为33,22⎛⎫ ⎪⎝⎭. 25.(2020·上海长岛中学高三)在平面直角坐标系中,O 为坐标原点,M 、N 是双曲线22124x y -=上的两个动点,动点P 满足2OP OM ON =-,直线OM 与直线ON 斜率之积为2,已知平面内存在两定点1F 、2F ,使得12PF PF -为定值,则该定值为________【答案】【解析】设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由2OP OM ON =-,得(x ,y )=2(x 1,y 1)-(x 2,y 2), 即x=2x 1-x 2,y=2y 1-y 2,∵点M ,N 在双曲线22124x y -=上,所以2211124x y -=,2222124x y -=,故2x 2-y 2=(8x 12+2x 22-8x 1x 2)-(4y 12+y 22-4y 1y 2)=20-4(2x 1x 2-y 1y 2), 设k 0M ,k ON 分别为直线OM ,ON 的斜率,根据题意可知k 0M k ON =2, ∴y 1y 2-2 x 1x 2=0, ∴2x 2-y 2=20,所以P 在双曲线2x 2-y 2=20上; 设该双曲线的左,右焦点为F 1,F 2,由双曲线的定义可推断出12PF PF -为定值,该定值为26.(2020·江苏高三月考)椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k-+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k+-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为:(1,0).27.已知双曲线22:13y C x -=的右焦点为F ,过点F 的直线l 与双曲线相交于P 、Q 两点,若以线段PQ为直径的圆过定点M ,则MF =______.【来源】金科大联考2020届高三5月质量检测数学(理科)试题 【答案】3【解析】点F 的坐标为()2,0,双曲线的方程可化为2233x y -=,①当直线l 的斜率不存在时,点P 、Q 的坐标分别为()2,3、()2,3-, 此时以线段PQ 为直径的圆的方程为()2229x y -+=;②当直线l 的斜率存在时,设点P 、Q 的坐标分别为()11,x y ,()22,x y , 记双曲线C 的左顶点的坐标为()1,0A -,直线l 的方程为()2y k x =-,联立方程()22332x y y k x ⎧-=⎪⎨=-⎪⎩,消去y 后整理为()()222234340kxk x k -+-+=,2422230164(3)(34)36(1)0k k k k k ⎧-≠⎨∆=+-+=+>⎩,即k ≠ 有2122212243343k x x k k x x k ⎧+=⎪⎪-⎨+⎪=⎪-⎩,()()()22121212122224y y k x x k x x x x =--=-++⎡⎤⎣⎦,222222234894333k k k k k k k ⎛⎫+=-+- ⎪---⎝⎭,()111,AP x y =+,()221,AQ x y =+,()()()1212121212111AP AQ x x y y x x x x y y ⋅=+++=+++⎡⎤⎣⎦ 22222222344931103333k k k k k k k k +-=+-+=+=----. 故以线段PQ 为直径的圆过定点()1,0M -,3MF =.28.双曲线22:143x y C -=的左右顶点为,A B ,以AB 为直径作圆O ,P 为双曲线右支上不同于顶点B 的任一点,连接PA 交圆O 于点Q ,设直线,PB QB 的斜率分别为12,k k ,若12k k λ=,则λ=_____. 【答案】34-【解析】设()()()00,,2,02,0P x y A B - 2200143x y -=,()222000331444x y x ⎛⎫=-=- ⎪⎝⎭2000200032424PA PBy y y x x k k x =⋅=+--= PA 交圆O 于点Q ,所以PA QB ⊥ 易知:33441PA PB PB QBPA QB k k k k k k λ⎧=⎪⇒==-⎨⎪⋅=-⎩即1234k k λ==-. 故答案为:34-29.过双曲线22221x y a b-=的右焦点(,0)F c 的直线交双曲线于M 、N 两点,交y 轴于P 点,若1PM MF λ=,2PN NF λ=,规定12λλ+=PM PN MF NF +,则PM PNMF NF +的定值为222a b .类比双曲线这一结论,在椭圆22221(0)x y a b a b +=>>中,PM PN MF NF+的定值为________. 【来源】贵州省铜仁市思南中学2020-2021学年高三上学期期末考试数学(理)试题【答案】222a b-【解析】如图,设椭圆()222210x y a b a b+=>>的右焦点为(),0F c ,过点(),0F c 的直线为()y k x c =-,代入椭圆的方程得:()2222222222220b a kxa k cx a k c ab +-+-=,设()11,M x y ,()22,N x y ,则22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k-⋅=+, 过点,M N 分别作x 轴的垂线,垂足为,D E ,则111x PM x c MF λ==--,222=x PNx c NFλ=--,所以()()()()()1221121212122212121212122x x c x x c x x c x x x x x c x c x x c x x c x x c x x c λλ-+--+⎛⎫+=-+=-=-⎪---++-++⎝⎭将22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k -⋅=+代入化简得:21222a b λλ+=-. 故答案为:222a b-.30.若M ,P 是椭圆2214x y +=两动点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于不同的两点A (m ,0),B (n ,0),则mn =_________.【来源】四川省资阳市2020-2021学年高三上学期期末数学文科试题 【答案】4 【解析】设(),M a b ,则(),N a b -,(),P c d ,则2214a b +=,2214c d +=所以PM d bk c a-=- 直线PM 的方程为()d b y b x a c a --=--,令0y =可得ad bcm d b-=- 同理有PM d b k c a+=- 直线PN 的方程为()d b y b x a c a ++=--,令0y =可得ad bcn d b+=+ 则222222ad bc ad bc a d b c mn d b d b d b -+-⎛⎫⎛⎫== ⎪⎪-+-⎝⎭⎝⎭222222111144111144a c c a c a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭()2222414a c a c -==- 31.椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k -+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k +-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为(1,0).。

专题04 解析几何中的定值问题 (解析版)

专题04 解析几何中的定值问题  (解析版)

专题04 解析几何中的定值问题常见考点考点一 定值问题典例1.已知抛物线2:2(0)C x py p =>的焦点为F ,点()0,4P x 是抛物线C 上一点,6PF =. (1)求抛物线C 的方程;(2)过()0,4Q 的直线l 与抛物线C 相交于A ,B 两点,求证:2211||||AQ BQ +为定值. 【答案】(1)28x y = (2)证明见解析 【解析】 【分析】(1)由6PF =,根据抛物线的定义得到462p+=,求得4p =,即可求得抛物线的方程; (2)设直线l 的方程为4y kx =+,联立方程组利用韦达定理12128,32x x k x x +==-,结合两点距离公式,化简21212222212()2111||||1()x x x x AQ BQ k x x +-+=⋅+,代入即可求解. (1)解:因为点()0,4P x 在抛物线2:2C x py =上,且6PF =, 由抛物线的定义可得462pPF =+=,解得4p =, 所以抛物线的方程为28x y =. (2)解:设直线l 的斜率为k ,可得直线l 的方程为4y kx =+, 联立方程组248y kx x y=+⎧⎨=⎩,整理得28320x kx --=, 设1122(,),(,)A x y B x y ,可得2(8)4(32)0k ∆=-⨯->且12128,32x x k x x +==-, 由222222222211221122111111||||(4)(4)(44)(44)AQ BQ x y x y x kx x kx +=+=++-+-++-++- 22212121222222222121212()21111(1)(1)1()1()x x x x x x k x k x k x x k x x ++-=+=⋅=⋅++++ 222221(8)2(32)1111(32)11616k k k k -⨯-+=⋅=⋅=+-+.变式1-1.已知椭圆C :22221(0)x y a b a b +=>>的短轴长为2设点()(),00,M m m m a ≠≠±是x 轴上的定点,直线l :222a mx m+=,设过点M 的直线与椭圆相交于A 、B 两点,A 、B 在l 上的射影分别为A '、B '. (1)求椭圆C 的方程;(2)判断AA BB '⋅'是否为定值,若是定值,求出该定值;若不是定值,请说明理由.【答案】(1)2214x y +=;(2)是定值,定值为222(4)4m m -.【解析】 【分析】(1)根据题意列方程得出a ,b 的值即可得出椭圆方程;(2)求出当直线AB 斜率为0时AA BB '⋅'的值,再求当直线AB 斜率不为零或不存在时AA BB '⋅'的值.当直线AB 斜率不为零或不存在时,设直线AB 方程为x ky m =+,和椭圆方程联立,根据韦达定理计算AA BB '⋅'.由此即可得出结论. (1)由题意可知1b =,ca=又222a c b -=,2a ∴=,1b =,c∴椭圆的标准方程为:2214x y +=;(2)当直线AB 斜率为0时,A 、B 分别为椭圆的左右顶点,A '、B '均为22,02a m m ⎛⎫+ ⎪⎝⎭, 则222244222222222222()(4)22444a m a m a m a m a m m AA BB a a a m m m m m ++++--'⋅'=-⋅+=-==,当直线AB 斜率不为0时,设直线AB 的方程为x ky m =+,联立方程组2214x ky m x y =+⎧⎪⎨+=⎪⎩, 消去y 得:2222(4)8440k x mx m k +-+-=,设1(A x ,1)y ,2(B x ,2)y ,则0∆>时,12284mx x k +=+,22122444m k x x k -=+,222221212122444(4)()2224m m m m AA BB x x x x x x m m m m ++++''∴⋅=-⋅-=-++222222(4)(4)444m m m m +-=-+=.综上,AA BB '⋅'为定值222(4)4m m -.变式1-2.已知椭圆C :22221x y a b+=(a >b >0),点P (1,32)在椭圆上,且离心率e =12.(1)求椭圆C 的方程;(2)若椭圆C 的右焦点为F ,过B (4,0)的直线l 与椭圆C 交于D ,E 两点,求证:直线FD 与直线FE 斜率之和为定值.【答案】(1)22143x y +=(2)证明见解析 【解析】 【分析】(1)根据条件可得12c a=,然后将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程求解即可;(2)设直线l 的方程为y =k (x -4),D (x 1,y 1),E (x 2,y 2),然后联立椭圆与直线的方程消元,然后韦达定理可得21223234k x x k +=+,2122641234k x x k-=+,然后可算出FD FE k k +为定值. (1)由题意知,12c e a ==,所以a =2c ,22b a =-2c =23c , 故椭圆的方程为2222143x y c c+=,又点P (1,32)在椭圆上,代入解得21c = 所以2a =4, 23b =,故椭圆C 的方程为22143x y +=.(2)设直线l 的方程为y =k (x -4),D (x 1,y 1),E (x 2,y 2),联立方程组()224143y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222343264120k x k x k +-+-=,则0∆>,解得2k <14,∴21223234k x x k +=+,2122641234k x x k-=+, FDFE k k +=()121212*********(1)(1)k x x x x y y x x x x ⎡⎤-++⎣⎦+=----()()()()22222222121264123212824160243225834343401111k k k k k k k k k k x x x x ⎛⎫⎛⎫---++⨯-⨯+ ⎪⎪+++⎝⎭⎝⎭===---- 所以直线FD 与直线FE 斜率之和为0.变式1-3.如图,已知圆22:4O x y +=,点(1,0)B ,以线段AB 为直径的圆内切于圆O ,点A 的集合记为曲线C .(1)求曲线C 的方程;(2)已知直线:4l x =,3(1,)2Q ,过点B 的直线1l 与C 交于,M N 两点,与直线l 交于点K ,记,,QM QN QK 的斜率分别为123,,k k k ,问:1223k k k k --是否为定值?若是,给出证明,并求出定值;若不是,说明理由. 【答案】(1)22143x y +=(2)是定值,证明见解析,2- 【解析】 【分析】(1)按照所给的条件,分析图中的几何关系即可;(2)作图,联立方程,按步骤写出相应点的坐标,求对应的斜率即可. (1)设AB 的中点为P ,切点为Q ,连接,OP PQ , 取B 关于y 轴的对称点D ,则2BD = ,连接AD ,由于P 是AB 的中点,O 是BD 的中点,∴=2AD OP ,故=2222AB AD OP PB OP PQ ++=+()242OP PB BD =+=>=.所以点A 的轨迹是以,B D 为焦点,长轴长为4的椭圆.其中2,1,a c b ===C 的方程为22143x y +=;(2)由第一问,作图如下:设1122(,),(,),M x y N x y 依题意,直线1l 的斜率必定存在, 设1:1(0)l x my m =+≠,将其与椭圆方程联立:221(0)143x my m x y =+≠⎧⎪⎨+=⎪⎩得22(34)690m y my ++-=, 由韦达定理,得:12122269,3434m y y y y m m --+==++ 易得点3(4,)K m ,33311232m k m -==-111113322,1y y k x my --==-22232y k my -= 133213122323231k k k k k k k k k k k k k k -+---==---- 而121213122231212112311()()3223113()()22y y m y y k k my y y m k k my y y y y m y y m -----==-----……① 由12122269,3434m y y y y m m --+==++得:12123()2y y y y m =+, 代入①得:1312223121313k k my y y k k my y y --==---,得1332131223232312k k k k k k k kk k k k k k -+---==-=----故答案为:22143x y +=,是定值,理由见解析,-2.典例2.已知椭圆1C:(22216x y a a +=>,1C 的左右焦点1F ,2F 是双曲线2C 的左右顶点,1C 的离2C,点E 在2C 上,过点E 和1F ,2F 分别作直线交椭圆1C 于F ,G 和M ,N 点,如图.(1)求1C ,2C 的方程;(2)求证:直线1EF 和2EF 的斜率之积为定值; (3)求证:11FG MN +为定值.【答案】(1)1C :221186x y+=;1C :221x y -=(2)证明见解析 (3)证明见解析 【解析】【分析】(1)利用待定系数法,根据条件先求曲线1C 的方程,再求曲线2C 的方程; (2)首先设()00,E x y ,表示直线1EF 和2EF 的斜率之积,即可求解定值;(3)首先表示直线1EF (1y k x =+与1C 方程联立消y ,利用韦达定理表示弦长FG ,以及利用直线1EF 和2EF 的斜率关系121k k =,表示弦长MN ,并证明11FG MN +为定值. (1)由题设知,椭圆1C =解得218a =∴()1F -,()2F∵椭圆1C 的左右焦点1F ,2F 是双曲线2C 的左右顶点, ∴设双曲线2C :()2221012x y n n -=>∴2C =212n =.∴1C :221186x y+=2C :2212x y -=;(2)证明:∵点E 在2C 上 ∴设()00,E x y则220012y x =-,∴122020112EF EFy k k x ⋅==-. ∴直线1EF 和2EF 的斜率之积为定值1; (3)证明:设直线1EF 和2EF 的斜率分别为1k ,2k ,则121k k = 设()11,F x y ,()22,G x y1EF:(1y k x =+与1C 方程联立消y 得()()22221113118210kx x k +++-=“*”则1x ,2x 是“*”的二根则()121211221182131x x k x x k ⎧+=⎪⎪⎨-⎪=⎪+⎩则FG =)2121131k k ++ 同理))2222112221211111131331k k k MN k k k ⎫+⎪++⎝⎭===++⋅+∴2211FG MN+== 变式2-1.已知()2222:10x y C a ba b +=>>左、右顶点分为A ,B 点围成的四边形面积为4. (1)求椭圆C 的标准方程;(2)过点()4,0M -作直线PQ 交椭圆C 于P ,Q 两点(点P ,Q 异于A ,B ),若直线AP 和BQ 的交点为N .求证:MB AN ⋅为定值.【答案】(1)22142x y +=(2)证明见解析 【解析】 【分析】(1)根据题意和离心率求出2a =,b(2)设设()00,N x y ,()11,P x y ,()22,Q x y ,直线PQ 的方程,联立椭圆方程并消去x ,利用韦达定理表示出1212y y y y +、,根据直线的点斜式方程求出直线AP 、BQ ,结合平面向量的坐标表示化简计算即可. (1)由题意得:c e a =12242b c ⋅=,即a ,2bc =,又222a b c =+,则有2a =,b =则椭圆C 的标准方程为:22142x y +=.(2)由题意知:直线PQ 的斜率不为0, 设直线:4PQ x my =-, 由224,24,x my x y =-⎧⎨+=⎩,得()2228120m y my +-+=, 设()00,N x y ,()11,P x y ,()22,Q x y ,则()21660m ∆=->,12282m y y m +=+,122122y y m =+. 因为()2,0A -,()2,0B ,则0612MB AN x ⋅=+.则()1212212322m my y y y m ==++①, 直线()11:22y AP y x x =++②,直线()22:22y BQ y x x =--③, 由②③得:()()1200122222y yx x x x +=-+-, 则()()()()221210212210121212112222222662y y x y my x x my y y y x y x y my my y y x +-+--====----+④ 将①代入④得:()()122001213221232362y y y x x y y y+-+==--+-,则01x =-, 则06126MB AN x ⋅=+=-.变式2-2.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,椭圆上的点到焦点的最大距离为方程2610x x -+=的根,离心率e 满足228a e =. (1)求椭圆C 的方程;(2)若直线():0l y kx m k =+≠与椭圆C 相交于A ,B 两点,且AB 的垂直平分线过点10,2P ⎛⎫- ⎪⎝⎭,求证:2169m k -为定值.【答案】(1)2219x y +=(2)证明见解析 【解析】 【分析】(1)根据已知条件得出关于a c +的等式,结合离心率c e a=,228a e =,222a b c =+,求出a ,b 的值,即得椭圆C 的方程;(2)设()11,A x y ,()22,B x y ,将直线l 的方程与椭圆C 的方程联立,利用根与系数的关系求12x x +,12y y +的表达式,进而得到AB 的中点M 的坐标,利用直线1PM l k k ⋅=-即可证明2169m k -为定值.(1)因为方程2610x x -+=的实数根为3±①若3a c +=+228a e =,所以28c =,即c =3a =.因为222a b c =+,所以1b =,此时椭圆C 的方程为2219x y +=;②若3a c +=-228a e =,所以28c =,即c =所以30a =-<,不符合题意,所以椭圆C 的方程为2219x y +=;(2)证明:设()11,A x y ,()22,B x y ,联立221,9,x y y kx m ⎧+=⎪⎨⎪=+⎩得()2221918990k x mkx m +++-=.因为直线y kx m =+与椭圆C 相交于A ,B 两点,所以()()2222324419990m k k m ∆=-⨯+⨯->,即2291m k <+,由韦达定理知1221819mk x x k +=-+,122219my y k +=+, 所以AB 的中点229,1919mkm M k k ⎛⎫-⎪++⎝⎭.又因为AB 的中垂线过点10,2P ⎛⎫- ⎪⎝⎭,且0k ≠,所以22119219019m k k mk k ++⋅=---+, ()2222191919219m k k k mk k ⎛⎫+++⋅-⋅=- ⎪+⎝⎭,221918m k m ++=,所以21691m k -=, 所以2169m k -为定值.变式2-3.斜率为1的直线交抛物线()2:20C y px p =>于A ,B 两点,且弦AB 中点的纵坐标为2.(1)求抛物线C 的标准方程;(2)已知点()1,P m 在抛物线C 上,过点P 作两条直线PM ,PN 分别交抛物线C 于M ,N (M ,N 不同于点P )两点,且MPN ∠的平分线与y 轴垂直,求证:MN 的斜率为定值. 【答案】(1)24y x = (2)证明见解析 【解析】 【分析】(1)利用点差法求得p ,由此求得抛物线C 的标准方程.(2)求得P 点的坐标,设出直线,PM PN 的方程,通过联立方程求得,M N 两点的坐标,进而判断MN 的斜率为定值. (1)设()()1122,,,A x y B x y ,12122,42y y y y +=+=, 21122222y px y px ⎧=⎨=⎩,两式相减并化简得1212122y y p x x y y -=-+,21,24p p ==, 所以抛物线方程为24y x =. (2)当1x =时,2414,2y y =⨯==±,所以()1,2P ±. 不妨设()1,2P ,依题意可知直线,PM PN 的斜率存在、不为0且互为相反数,设直线PM 的斜率为k ,则直线PN 的斜率为k -, 直线PM 的方程为()21,2y k x y kx k -=-=+-, 直线PN 的方程为()21,2y k x y kx k -=--=-++,224y kx k y x=+-⎧⎨=⎩,解得24441,2M k k k ⎛⎫-+- ⎪⎝⎭, 同理可求得24441,2N k k k ⎛⎫++-- ⎪⎝⎭,所以直线MN 的斜率为224482218444411k k k k k k kk ⎛⎫-----⎪⎝⎭==-⎛⎫++--+ ⎪⎝⎭,是定值.巩固练习练习一 定值问题1.已知定点()0,1F ,定直线:1m y =-,动圆M 过点F ,且与直线m 相切. (1)求动圆M 的圆心轨迹E 的方程;(2)过焦点F 的直线l 与抛物线E 交于A B 、两点,与圆22:20N x y y +-=交于C D 、两点(A ,C 在y 轴同侧),求证:AC DB ⋅是定值. 【答案】(1)24x y = (2)1 【解析】 【分析】(1)利用抛物线的定义先判定动点的轨迹形状,再求其标准方程;(2)设出直线方程,联立直线和抛物线的方程,得到关于x 的一元二次方程,利用根与系数的关系、抛物线的定义进行证明. (1)解:由题意,得动圆的圆心M 到点()0,1F 的距离等于到直线1y =-的距离,所以M 的轨迹是以点()0,1F 为焦点的抛物线,其轨迹方程为2:4E x y =;(2)解:设经过焦点F 的直线为:1l y kx =+, 联立214y kx x y=+⎧⎨=⎩,得2440x kx --=; 设11(,)A x y ,22(,)B x y ,则2=16(1)0k ∆,且124x x k +=,124x x =-;因为圆22:20N x y y +-=的圆心为()0,1N (即抛物线的焦点),半径为1, 由抛物线的定义,得1||1AF y =+,2||1BF y =+, 则1||||1AC AF y =-=,2||||1BD BF y =-=, 所以1212(1)(1)AC DB y y kx kx ⋅==++2221212()14411k x x k x x k k =+++=-++=,即AC DB ⋅是定值,定值是1.2.已知椭圆22:14x C y +=,下顶点为A ,不与坐标轴垂直的直线l 与C 交于P ,Q 两点.(1)若线段PQ 的中点为11,2⎛⎫- ⎪⎝⎭R ,求直线l 的斜率;(2)若l 与y 轴交于点(0,2)B ,直线,AP AQ 分别交x 轴于点M ,N ,求证:M ,N 的横坐标乘积为定值.【答案】(1)12; (2)证明见解析. 【解析】 【分析】(1)设1122(,),(,)P x y Q x y ,应用点差法可得121212124()y y x xx x y y -+=--+,结合PQ 的中点R 有12122,1x x y y +=-+=,即可求直线l 的斜率;(2)设直线:2l y kx =+,联立椭圆方程应用韦达定理求12x x +、12x x ,由判别式求k 的范围,进而写出直线,AP AQ 并求M ,N 坐标,化简M N x x 即可证明结论. (1)设1122(,),(,)P x y Q x y ,由,P Q 在椭圆C 上,则221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得12121212()()()()04x x x x y y y y -++-+=,即121212124()y y x x x x y y -+=--+,又PQ 的中点R11,2且R 在椭圆C 内,则12122,1x x y y +=-+=,所以直线l 的斜率为121212y yx x -=-.(2)由题意知,直线l 的斜率存在,设直线:2l y kx =+,1122(,),(,)P x y Q x y ,联立22214y kx x y =+⎧⎪⎨+=⎪⎩得:22(14)16120k x kx +++=. 由22(16)48(14)0k k ∆=-+>得:234k >,即k <或k >1221614k x x k -+=+,1221214x x k =+.直线AP 为1111y y x x +=-,令0y =得:111x x y =+,则11,01x M y ⎛⎫ ⎪+⎝⎭,同理得22,01x N y ⎛⎫⎪+⎝⎭, 所以121212212121212(1)(1)(3)(3)3()9M N x xx xx xy y kx kx k x x x x k x x ===+++++++22212412489(14)3k k k ==-++,所以,M N 的横坐标乘积为定值43.3.已知椭圆2222:1(0)x y E a b a b +=>>的长轴长为4,1F ,2F 为E 的左、右焦点,M 为E 上一动点,当12MF F △的面积最大时,其内切圆半径为3b.(1)求E 的标准方程:(2)过点1F 作斜率之和为3的两条直线1l ,2l ,1l 与E 交于点A ,B ,2l 与E 交于点C ,D ,线段AB ,CD 的中点分别为P ,Q ,过点1F 作1F H PQ ⊥,垂足为H .试问:是否存在定点T ,使得线段TH 的长度为定值.【答案】(1)22143x y +=;(2)存在11,8T ⎛⎫- ⎪⎝⎭,TH 为定值,证明见解析.【解析】 【分析】(1)根据内切圆的半径表示出三角形的面积,结合长轴的定义即可求出a 、b ,进而求得椭圆方程;(2)设直线PQ 的方程为y kx m =+,直线AB 的方程为1(1)y k x =+,直线CD 的方程为2(1)y k x =+,由直线PQ 和直线AB 的方程求出点P 的横坐标,直线AB 联立椭圆方程,利用韦达定理,结合题意即可求出当T 为1F G 的中点时,TH 为定值. (1)设椭圆的焦距为2c ,由12MF F △的面积最大时,其内切圆半径为3b , 得112(22)223b c b a c ⨯⨯=+⨯,化简,得12c a=, 又24a =,所以21a c ==,,所以2223b a c =-=,故椭圆的标准方程为22143x y +=;(2)当直线PQ 的斜率不存在时,PQ x ⊥轴,点P 与点Q 关于x 轴对称, 则120k k +=,与题意中的123k k +=矛盾,不符合题意; 设直线PQ 的方程为y kx m =+,则直线AB 的方程为1(1)y k x =+,直线CD 的方程为2(1)y k x =+,由1(1)y k x y kx m=+⎧⎨=+⎩,得11P m k x k k -=-,由122(1)143y k x x y =+⎧⎪⎨+=⎪⎩,得2222111(34)84120k x k x k +++-=,设()()1122,,A x y B x y ,,则2121214234P x x k x k +==-+, 所以2121434k k -=+11m k k k --,化简得2114()330k m k k m -+-=, 同理,2224()330k m k k m -+-=,所以12k k 、为方程24()330k m x x m -+-=的两个根, 有1234()k k k m +=--,又123k k +=,所以14k m =-,所以直线PQ 的方程为111()()(1)444y m x m m x =-+=-++,得直线PQ 过定点1(1,)4G -,又1(1,0)F -,1F H PQ ⊥,所以1F H HG ⊥, 则点H 在以1F G 为直径、以1(1,)8T -为圆心的圆上, 故点H 到圆心1(1,)8T -的距离恒为定值,即存在点1(1,)8T -为1F G 的中点时,TH 为定值.4.如图,在平面直角坐标系中,12,F F 分别为双曲线()2222:10,0x y a b a bΓ-=>>的左、右焦点,双曲若点A 为双曲线右支上一点,且12AF AF -=直线2AF 交双曲线于B 点,点D 为线段1F O 的中点,延长,AD BD ,分别与双曲线Γ交于,P Q 两点.(1)若()()1122,,,A x y B x y ,求证:()1221212x y x y y y -=-; (2)若直线,AB PQ 的斜率都存在,且依次设为12,k k .试判断21k k 是否为定值,如果是,请求出21k k 的值;如果不是,请说明理由. 【答案】(1)证明见解析 (2)为定值,7 【解析】 【分析】(1)分两种情况讨论,斜率不存在时,直接验证,斜率存在时,运用斜率公式可证明;(2)设直线AD 的方程为()1111y y x x =++,与双曲线联立得111134,2323x y P x x ⎛⎫--- ⎪++⎝⎭,同理得222234,2323x y Q x x ⎛⎫--- ⎪++⎝⎭,由斜率公式及(1)中的结论可得结论. (1) 证明:由双曲线离心率ce a==12||||2AF AF a -=,及222c a b =+, 可得2222,2,4a b c ===,所以双曲线方程为22122x y -=,2(2,0)F .当直线AB 的斜率不存在时,122x x ==,()12212121222x y x y y y y y -=-=-,直线AB 的斜率存在时,22AF BF k k =,121222y yx x =--,整理得()1221212x y x y y y -=-, 综上所述,()1221212x y x y y y -=-成立; (2)依题意可知直线AD 的斜率存在且不为0, 设直线AD 的方程为()1111y y x x =++, 代入双曲线222x y -=并化简得:()()()2222211111210x x y x x +-+-+=,①由于22112x y -=,则22112y x =-代入①并化简得:()()22211112322340x x x x x x +----=,设00(,)P x y ,则2111013423x x x x x --=+,211100112(2)342323x x x x x x x ---+=⇒=++,代入()1111y y x x =++,得10123yy x -=+,即111134,2323x y P x x ⎛⎫--- ⎪++⎝⎭,同理可得222234,2323x y Q x x ⎛⎫--- ⎪++⎝⎭,所以()()2112212121221122123232334342323y y x y x y y y x x k x x x x x x -------++==------++ ()()()212121112124377y y y y y yk x x x x -----==-⋅=--,所以217k k =是定值.5.在平面直角坐标系xOy 中,已知点(1,0)F ,点M 满足以MF 为直径的圆均与y 轴相切,记M 的轨迹为C . (1)求C 的方程;(2)设直线l 与C 交于A ,B 两点且△OAB 的面积是△FAB 面积的43倍,在x 轴上是否存在一点P 使得直线l 变动时,总有直线P A 的斜率与PB 的斜率之积为定值,若存在,求出该定值及点P 的坐标;若不能,请说明理由. 【答案】(1)24y x =(2)存在,定值1-或7-,()0,0P 【解析】 【分析】(1)设(,)M x y ,利用点M 满足以MF 为直径的圆均与y 轴相切列方程即可求解; (2)设直线AB 的方程为x ty m =+,根据△OAB 的面积是△FAB 面积的43倍,可以求出m 的值,利用韦达定理求出PA PB k k ⋅的值,由PA PB k k ⋅为定值即可判断出点P 的坐标,进而求出定值.(1)设(,)M x y ,则MF 的中点为G ,其坐标为1,22x y G +⎛⎫⎪⎝⎭,MF =G 到y 轴的距离为12x +, 则由题意可知,点M 满足以MF 为直径的圆均与y 轴相切,则|1|2x +=24y x =; (2)设直线AB 的方程为x ty m =+,由△OAB 的面积是△FAB 面积的43倍可知,点O 到直线AB 的距离是点F 到直线AB 的距离的43倍,4m =或47=m , 可知直线AB 过点(4,0)且斜率不为0, 设()()()01122,0,,,,P x A x y B x y ,则()121221020120120PA PB y y y yk k x x x x x x x x x x =⨯=---++⋅,将直线方程与抛物线方程2,4,x ty m y x =+⎧⎨=⎩联立得2440y ty m --=, 则124y y t +=,124y y m =-,即()21212242x x t y y m t m +=++=+,()21221216y y x x m ==,故()22200442PA PB mm k t x x k m -⋅-++=,由此可知,只有当00x =时,PA PB k k ⋅才是定值, 即4PA PB k k m=-⋅, 当4m =时,1PA PB k k ⋅=-,当47=m 时,7PA PB k k =-⋅,故定点()0,0P ,定值为1-或7-. 6.已知圆1C :()22125x y ++=,圆2C :()2211x y -+=,动圆C 与圆1C 和圆2C 均内切.(1)求动圆圆心C 的轨迹E 的方程(2)点()1,P t (0t >)为轨迹E 上的点,过点P 作两条直线与轨迹E 交于AB 两点,直线P A ,PB 的斜率互为相反数,则直线AB 的斜率是否为定值?若是,求出定值:若不是,请说明理由.【答案】(1)22143x y +=;(2)是定值,定值为12. 【解析】 【分析】(1)利用椭圆的定义即得;(2)由题可得直线P A 的方程,联立椭圆方程可得点A 、B 横坐标,进而利用斜率公式即得.(1)由题意得()11,0C -,()21,0C .设动圆圆心C 的坐标为(),x y ,半径为r , 则15CC r =-,21CC r =-. 从而()121244CC CC C C +=>.∴动圆圆心C 的轨迹E 是焦点为()11,0C -,()21,0C ,长轴长等于4的椭圆,且1c =,2a =. 又222a b c =+,得b =∴动圆圆心C 的轨迹E 的方程为22143x y +=.(2)由(1)可得31,2P ⎛⎫⎪⎝⎭.设直线P A 的方程为()()3102y k x k -=-≠ 则直线PB 的方程为()312y k x -=--. 设()11,A x y ,()22,B x y .由()22312143y k x x y ⎧=+-⎪⎪⎨⎪+=⎪⎩消去y ,整理得()()22223412841230k x k k x k k ++-+--=, 则212412334P k k x x k --=+,即212412334k k x k--=+.(1) 同理可得222412334k k x k +-=+.(2) ∴()()()1212121212123311222ABk x k x k x x k y y kx x x x x x ⎡⎤⎡⎤+----⎢⎥⎢⎥+--⎣⎦⎣⎦===---. 将(1)(2)代入上式,化简得12AB k =. 故直线AB 的斜率为定值12.7.已知抛物线2:2(0)C y px p =>的焦点为F ,点()04,P y 是抛物线C 上一点,点Q 是PF 的中点,且Q 到抛物线C 的淮线的距离为72. (1)求抛物线C 的方程;(2)已知圆22:(2)4M x y -+=,圆M 的一条切线l 与抛物线C 交于A ,B 两点,O 为坐标原点,求证:OA ,OB 的斜率之差的绝对值为定值. 【答案】(1)24y x =; (2)2. 【解析】 【分析】(1)根据题意即可列出等式472pp ++=,即可求出答案; (2)当直线AB 的斜率不存在时,2OA OB k k -=,当直线AB 的斜率存在时,设出直线AB 的方程为y kx b =+即点,A B 的坐标,把直线AB 与抛物线进行联立,写出韦达定理,利用到直线AB 的距离等于半径2,找到k 与b 之间的关系式,在计算OA ,OB 的斜率之差的绝对值,化简即可求出答案. (1)根据题意可列4722pp p ++=⇒= 故抛物线C 的方程为24y x =. (2)①当直线AB 的斜率不存在时,直线AB 的方程为4x =,(4,4),(4,4)A B -,1,1,2OA OB OA OB k k k k =-=-=. ②当直线AB 的斜率存在且不为0时,故设直线AB 的方程为y kx b =+, 圆M 的一条切线l 与抛物线C 交于A ,B两点,故2214b d kb ==⇒=- 设(,),(,)A A B B A x y B x y把直线AB 的方程与抛物线进行联立2222(24)04y kx bk x kb x b y x=+⎧⇒+-+=⎨=⎩ 22242,A B A B kb b x x x x k k -+=⋅=.,A B OA OB A B y y k k x x ==B A A B A B A BOA OBA B A B A Bb x x y y y x x y k k x x x x x x ---=-===22bb=====.综上所述:,OA OB的斜率之差的绝对值为定值为2.8.已知双曲线2222:1Γ-=x ya b(0a>,0b>)的左、右顶点分别为()11,0A-、()21,0A,离心率为2,过点()2,0F斜率不为0的直线l与Γ交于P、Q两点.(1)求双曲线Γ的渐近线方程;(2)记直线1A P、2A Q的斜率分别为1k、2k,求证:12kk为定值.【答案】(1)y=;(2)证明见解析.【解析】【分析】(1)由双曲线的顶点坐标、离心率,结合双曲线参数的关系求a、b,进而写出双曲线方程,即可得渐近线方程.(2)讨论l的斜率:当l k不存在求P、Q的坐标,进而可得1213kk=-;当lk存在,设()11,P x y,()22,Q x y,l为(2)y k x=-,并联立双曲线方程,应用韦达定理及斜率的两点式求证1230k k+=是否成立即可. (1)设双曲线Γ的半焦距为c,由题设,1a=,2cea==,2223b c a=-=双曲线Γ的方程为2213yx-=,故渐近线方程为y=.(2)当l的斜率不存在时,点P、Q的坐标分别为()2,3和()2,3-,所以,当11k=时有23k=-;当11k=-时有23k=,此时1213kk=-,当l的斜率k存在时,设()11,P x y,()22,Q x y,l为(2)y k x=-,将直线l代入双曲线方程得()222234430--++=k x k x k,所以212243k x x k +=-,2122433k x x k +=-,()()1212121212322331111k x k x y y k k x x x x --+=+=++-+-()()()()()()()1212123211211--++-=+-k x x x x x x ()()()()()12121212123222211--++-+-=+-k x x x x x x x x x x ()()()()12121245411-++=+-k x x x x x x因为()()()22212122443204345403+-+--++==-k k k x x x x k ,所以1230k k +=,即1213kk =-,综上,12k k 为定值,得证.。

江苏高考 解析几何 定值定点问题 含答案解析

江苏高考  解析几何   定值定点问题  含答案解析

第2课时 定点、定值问题题型一 定点问题例1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎨⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝ ⎛⎭⎪⎫t ,4-t 22,⎝⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1,2=-8km ±16(4k 2-m 2+1)2(4k 2+1), 所以x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.由题设知k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)· 4m 2-44k 2+1+(m -1)· -8km4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).思维升华 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 跟踪训练1 已知焦距为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,直线y =43与椭圆C交于P ,Q 两点(P 在Q 的左边),Q 在x 轴上的射影为B ,且四边形ABPQ 是平行四边形. (1)求椭圆C 的方程;(2)斜率为k 的直线l 与椭圆C 交于两个不同的点M ,N .①若直线l 过原点且与坐标轴不重合,E 是直线3x +3y -2=0上一点,且△EMN 是以E 为直角顶点的等腰直角三角形,求k 的值;②若M 是椭圆的左顶点,D 是直线MN 上一点,且DA ⊥AM ,点G 是x 轴上异于点M 的点,且以DN 为直径的圆恒过直线AN 和DG 的交点,求证:点G 是定点. (1)解 由题意可得2c =22,即c =2, 设Q ⎝⎛⎭⎫n ,43,因为四边形ABPQ 为平行四边形, PQ =2n ,AB =a -n ,所以2n =a -n ,n =a 3,则⎝⎛⎭⎫a 32a 2+169b2=1,解得b 2=2,a 2=b 2+c 2=4, 可得椭圆C 的方程为x 24+y 22=1.(2)①解 将直线y =kx (k ≠0)代入椭圆方程, 可得(1+2k 2)x 2=4, 解得x =±21+2k2,可设M ⎝ ⎛⎭⎪⎫21+2k 2,2k 1+2k 2, 由E 是3x +3y -2=0上一点, 可设E ⎝⎛⎭⎫m ,23-m ⎝⎛⎭⎫m ≠0,且m ≠23, E 到直线kx -y =0的距离为d =⎪⎪⎪⎪km +m -231+k2,因为△EMN 是以E 为直角顶点的等腰直角三角形, 所以OE ⊥MN ,OM =d , 即有23-m m =-1k,①4+4k21+2k 2=⎪⎪⎪⎪km +m -231+k2,②由①得m =2k3(k -1)(k ≠1),代入②式,化简整理可得7k 2-18k +8=0,解得k =2或47.②证明 由M (-2,0),可得直线MN 的方程为y =k (x +2)(k ≠0),代入椭圆方程可得(1+2k 2)x 2+8k 2x +8k 2-4=0, 解得x N =2-4k 21+2k 2,y N =k (x N +2)=4k1+2k 2,即N ⎝ ⎛⎭⎪⎫2-4k 21+2k 2,4k 1+2k 2, 设G (t,0)(t ≠-2),由题意可得D (2,4k ),A (2,0), 以DN 为直径的圆恒过直线AN 和DG 的交点, 可得AN ⊥DG ,即有AN →·DG →=0,即为⎝ ⎛⎭⎪⎫-8k 21+2k 2,4k 1+2k 2·(t -2,-4k )=0,解得t =0. 故点G 是定点,即为原点(0,0).题型二 定值问题例2 (2018·苏锡常镇模拟)在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为2,离心率为22,椭圆的右顶点为A .(1)求该椭圆的方程;(2)如图,过点D (2,-2)作直线PQ 交椭圆于两个不同点P ,Q ,求证:直线AP ,AQ 的斜率之和为定值.(1)解 由题意可知,椭圆x 2a 2+y 2b 2=1(a >b >0),焦点在x 轴上,2c =2,c =1,椭圆的离心率e =c a =22,则a =2,b 2=a 2-c 2=1,则椭圆的标准方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2),A (2,0), 由题意知直线PQ 斜率存在, 设其方程为y =k (x -2)-2,则⎩⎪⎨⎪⎧y =k (x -2)-2,x 22+y 2=1,整理得(2k 2+1)x 2-(42k 2+42k )x +4k 2+8k +2=0.所以x 1,2=(42k 2+42k )±[-(42k 2+42k )]2-4(2k 2+1)(4k 2+8k +2)2(2k 2+1),所以x 1+x 2=42k 2+42k 2k 2+1,x 1x 2=4k 2+8k +22k 2+1, 则y 1+y 2=k (x 1+x 2)-22k -22=-22-22k2k 2+1,则k AP +k AQ =y 1x 1-2+y 2x 2-2=y 1x 2+y 2x 1-2(y 1+y 2)x 1x 2-2(x 1+x 2)+2.由y 1x 2+y 2x 1=[k (x 1-2)-2]x 2+[k (x 2-2)-2]x 1 =2kx 1x 2-(2k +2)(x 1+x 2)=-4k2k 2+1, k AP +k AQ =y 1x 2+y 2x 1-2(y 1+y 2)x 1x 2-2(x 1+x 2)+2=-4k2k 2+1-2×-22-22k 2k 2+14k 2+8k +22k 2+1-2×42k 2+42k2k 2+1+2=1,∴直线AP ,AQ 的斜率之和为定值1.思维升华 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.跟踪训练2 (2018·南通考试)如图,已知圆O 的方程为x 2+y 2=4,过点P (0,1)的直线与圆O 交于点A ,B ,与x 轴交于点Q ,设QA →=λP A →,QB →=uPB →,求证:λ+u 为定值.证明 当AB 与x 轴垂直时,此时点Q 与点O 重合, 从而λ=2,u =23,λ+u =83.当点Q 与点O 不重合时,直线AB 的斜率存在. 设直线AB 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2), 则Q ⎝⎛⎭⎫-1k ,0. 由题设,得x 1+1k =λx 1,x 2+1k=ux 2,即λ=1+1x 1k ,u =1+1x 2k.所以λ+u =1+1x 1k +1+1kx 2=2+x 1+x 2kx 1x 2,将y =kx +1代入x 2+y 2=4,得(1+k 2)x 2+2kx -3=0, 则Δ>0,x 1,2=-2k ±4k 2+12(1+k 2)2(1+k 2), x 1+x 2=-2k1+k 2,x 1x 2=-31+k2, 所以λ+u =2+-2k1+k 2k · ⎝ ⎛⎭⎪⎫-31+k 2=83. 综上,λ+u 为定值83.直线与圆锥曲线的综合问题数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的过程.主要包括:理解运算对象,掌握运算法则,探究运算方向,选择运算方法,设计运算程序,求得运算结果等.例 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,离心率为32,过F 1且垂直于x轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连结PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线PF 1,PF 2的斜率分别为k 1,k 2,若k 2≠0,证明1kk 1+1kk 2为定值,并求出这个定值. 解 (1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a .由题意知2b 2a =1,即a =2b 2.又e =c a =32,所以a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)设P (x 0,y 0)(y 0≠0), 又F 1(-3,0),F 2(3,0), 所以直线PF 1,PF 2的方程分别为1PF l :y 0x -(x 0+3)y +3y 0=0,2PF l :y 0x -(x 0-3)y -3y 0=0.由题意知|my 0+3y 0|y 20+(x 0+3)2=|my 0-3y 0|y 20+(x 0-3)2.由于点P 在椭圆上,所以x 204+y 20=1. 所以|m +3|⎝⎛⎭⎫32x 0+22=|m -3|⎝⎛⎭⎫32x 0-22.因为-3<m <3,-2<x 0<2, 可得m +332x 0+2=3-m 2-32x 0,所以m =34x 0,因此-32<m <32.(3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0). 联立得⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0. 由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0. 又x 24+y 20=1,所以16y 02k 2+8x 0y 0k +x 20=0,故k =-x 04y 0. 由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0,所以1kk 1+1kk 2=1k ⎝⎛⎭⎫1k 1+1k 2=⎝⎛⎭⎫-4y 0x 0· 2x 0y 0=-8,因此1kk 1+1kk 2为定值,这个定值为-8.素养提升 典例的解题过程体现了数学运算素养,其中设出P 点的坐标而不求解又体现了数学运算素养中的一个运算技巧——设而不求,从而简化了运算过程.1.(2019·江苏省明德实验学校调研)如图,已知A ,B 是圆x 2+y 2=4与x 轴的交点,P 为直线l :x =4上的动点,P A ,PB 与圆的另一个交点分别为M ,N .(1)若P 点坐标为(4,6),求直线MN 的方程; (2)求证:直线MN 过定点.(1)解 由题意可知直线P A 的方程为y =x +2,由⎩⎪⎨⎪⎧ y =x +2,x 2+y 2=4,解得M (0,2),直线PB 的方程为y =3x -6,由⎩⎪⎨⎪⎧y =3x -6,x 2+y 2=4,解得N ⎝⎛⎭⎫85,-65,所以MN 的方程为y =-2x +2, 即2x +y -2=0.(2)证明 设P (4,t ),则直线P A 的方程为y =t6(x +2),直线PB 的方程为y =t2(x -2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =t 6(x +2),得M ⎝ ⎛⎭⎪⎫72-2t 236+t 2,24t 36+t 2, 同理N ⎝ ⎛⎭⎪⎫2t 2-84+t 2,-8t 4+t 2, 直线MN 的斜率k =24t36+t 2--8t4+t 272-2t 236+t 2-2t 2-84+t 2=8t 12-t2, 直线MN 的方程为y =8t 12-t 2⎝ ⎛⎭⎪⎫x -2t 2-84+t 2-8t4+t 2, 化简得y =8t 12-t 2x -8t12-t 2, 所以直线MN 过定点(1,0).2.设F 1,F 2为椭圆C :x 24+y 2b 2=1(b >0)的左、右焦点,M 为椭圆上一点,满足MF 1⊥MF 2,已知△MF 1F 2的面积为1. (1)求C 的方程;(2)设C 的上顶点为H ,过点(2,-1)的直线与椭圆交于R ,S 两点(异于H ),求证:直线HR 和HS 的斜率之和为定值,并求出这个定值. 解 (1)由椭圆定义得MF 1+MF 2=4,①由垂直得MF 21+MF 22=F 1F 22=4(4-b 2),②由题意得12MF F S=12MF 1· MF 2=1,③ 由①②③,可得b 2=1,C 的方程为x 24+y 2=1.(2)依题意,H (0,1),显然直线的斜率存在且不为0,设直线RS 的方程为y =kx +m (k ≠0),因为直线RS 过点(2,-1),所以-1=2k +m ,即2k =-m -1,代入椭圆方程化简得(4k 2+1)x 2+8kmx +4m 2-4=0.由题意知,Δ=16(4k 2-m 2+1)>0,设R (x 1,y 1),S (x 2,y 2),x 1x 2≠0,故x 1,2=-8km ±16(4k 2-m 2+1)2(4k 2+1), 所以x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1. k HR +k HS =y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2k +(m -1)x 1+x 2x 1x 2=2k +(m -1)-8km 4m 2-4=2k -2kmm +1=2k m +1=-1. 故k HR +k HS 为定值-1.3.(2018·苏北四市期末)如图,在平面直角坐标系xOy 中,已知点A (-3,4),B (9,0),C ,D 分别为线段OA ,OB 上的动点,且满足AC =BD .(1)若AC =4,求直线CD 的方程;(2)求证:△OCD 的外接圆恒过定点(异于原点O ).(1)解 由题意可知OA =5,因为AC =4,所以OC =1,所以C ⎝⎛⎭⎫-35,45, 由题意可知D (5,0),显然,直线CD 的斜率存在,设直线CD 的方程为y =kx +b ,将C ,D 两点坐标代入方程得直线CD 的方程为x +7y -5=0.(2)证明 设C (-3m,4m )(0<m ≤1),则OC =5m .则AC =OA -OC =5-5m ,所以OD =OB -BD =5m +4,所以D 点坐标为(5m +4,0).设△OCD 的外接圆的方程为x 2+y 2+Dx +Ey +F =0,则有⎩⎪⎨⎪⎧ F =0,9m 2+16m 2-3mD +4mE +F =0,(5m +4)2+(5m +4)D +F =0,所以△OCD 的外接圆的方程为x 2+y 2-4x -3y -5m (x +2y )=0,令⎩⎪⎨⎪⎧x 2+y 2-4x -3y =0,x +2y =0, 解得x =0,y =0(舍)或x =2,y =-1.△OCD 的外接圆恒过定点(2,-1).4.已知动圆E 经过定点D (1,0),且与直线x =-1相切,设动圆圆心E 的轨迹为曲线C .(1)求曲线C 的方程;(2)设过点P (1,2)的直线l 1,l 2分别与曲线C 交于A ,B 两点,直线l 1,l 2的斜率存在,且倾斜角互补,证明:直线AB 的斜率为定值.(1)解 由已知,动点E 到定点D (1,0)的距离等于E 到直线x =-1的距离,由抛物线的定义知E 点的轨迹是以D (1,0)为焦点,以x =-1为准线的抛物线,故曲线C 的方程为y 2=4x .(2)证明 由题意直线l 1,l 2的斜率存在,倾斜角互补,得斜率互为相反数,且不等于零. 设A (x 1,y 1),B (x 2,y 2),直线l 1的方程为y =k (x -1)+2,k ≠0.直线l 2的方程为y =-k (x -1)+2,由⎩⎪⎨⎪⎧y =k (x -1)+2,y 2=4x 得k 2x 2-(2k 2-4k +4)x +(k -2)2=0,Δ=16(k -1)2>0,∴x 1=k 2-4k +4k 2, 同理x 2=k 2+4k +4k 2, ∴x 1+x 2=2k 2+8k 2,x 1-x 2=-8k k 2=-8k, ∴y 1-y 2=[k (x 1-1)+2]-[-k (x 2-1)+2]=k (x 1+x 2)-2k=k · 2k 2+8k 2-2k =8k, ∴k AB =y 1-y 2x 1-x 2=8k -8k=-1, ∴直线AB 的斜率为定值-1.5.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,左顶点M 到直线x a +y b =1的距离d =455,O 为坐标原点.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于A ,B 两点,若以AB 为直径的圆经过坐标原点,证明:点O 到直线AB 的距离为定值.(1)解 由e =32,得c =32a ,又b 2=a 2-c 2, 所以b =12a ,即a =2b . 由左顶点M (-a,0)到直线x a +y b=1, 即到直线bx +ay -ab =0的距离d =455, 得|b (-a )-ab |a 2+b 2=455,即2aba 2+b 2=455, 把a =2b 代入上式,得4b 25b=455,解得b =1. 所以a =2b =2,c = 3.所以椭圆C 的方程为x 24+y 2=1. (2)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,由椭圆的对称性,可知x 1=x 2,y 1=-y 2.因为以AB 为直径的圆经过坐标原点,故OA →· OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214+y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时,设直线AB 的方程为y =kx +m ,与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0,所以x 1,2=-8km ±64k 2m 2-4(1+4k 2)(4m 2-4)2(1+4k 2), 所以x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2. 因为以AB 为直径的圆过坐标原点O ,所以OA ⊥OB ,所以OA →· OB →=x 1x 2+y 1y 2=0,所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0,所以(1+k 2)· 4m 2-41+4k 2-8k 2m 21+4k 2+m 2=0, 整理得5m 2=4(k 2+1),所以点O 到直线AB 的距离d 1=|m |k 2+1=255. 综上所述,点O 到直线AB 的距离为定值255.6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过⎝⎛⎭⎫1,32与⎝⎛⎭⎫62,304两点.(1)求椭圆C 的方程;(2)过原点的直线l 与椭圆C 交于A ,B 两点,椭圆C 上一点M 满足MA =MB .求证:1OA 2+1OB2+2OM 2为定值. (1)解 将⎝⎛⎭⎫1,32与⎝⎛⎭⎫62,304两点代入椭圆C 的方程,得⎩⎪⎨⎪⎧ 1a 2+94b 2=1,32a 2+3016b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=3. 所以椭圆C 的方程为x 24+y 23=1. (2)证明 由MA =MB ,知M 在线段AB 的垂直平分线上,由椭圆的对称性知点A ,B 关于原点对称.①若点A ,B 是椭圆的短轴顶点,则点M 是椭圆的一个长轴顶点,此时1OA 2+1OB 2+2OM 2=1b 2+1b 2+2a 2=2⎝⎛⎭⎫1a 2+1b 2=76. 同理,若点A ,B 是椭圆的长轴顶点,则点M 是椭圆的一个短轴顶点,此时1OA 2+1OB 2+2OM 2=1a 2+1a 2+2b 2=2⎝⎛⎭⎫1a 2+1b 2=76. ②若点A ,B ,M 不是椭圆的顶点,设直线l 的方程为y =kx (k ≠0),则直线OM 的方程为y =-1kx , 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧ y =kx ,x 24+y 23=1,解得x 12=123+4k 2,y 12=12k 23+4k 2,所以OA 2=OB 2=x 12+y 12=12(1+k 2)3+4k 2, 同理,OM 2=12(1+k 2)4+3k 2. 所以1OA 2+1OB 2+2OM 2=2×3+4k 212(1+k 2)+2(4+3k 2)12(1+k 2)=76.1 OA2+1OB2+2OM2为定值76.综上,。

解析几何中的定点与定值问题

解析几何中的定点与定值问题
题型一、设点坐标强化坐标运算、整体运算、消元思想
例1:在平面直角坐标系xoy中,已知椭圆T的方程为


+ = , 设, , 是椭圆上的三点(异于椭圆顶
点),且存在锐角θ,使
= + .
(1)求证:直线OA与OB的斜率之积为定值;
(2)求 + 的值。
两点,设两直线的斜率分别为
, , 且 + = , 求直线
AB恒过定点的坐标。
小结:
2、通过设动直线方程再利用
条件,寻找动直线中的字母关
系(k与b);或者解出动点坐
标,再出动直线方程,通过
化简求出定点;或者利用两个
特殊位置先求出定点,再证明。
变式训练:
在平面直角坐标系xoy中,椭圆C;
右顶点B的任意一点P,
记直线PA,PB的斜率分别为 , ,则 ∙
的值为_____________.
题型二、特值法(再证明)、设动直线方程、
解动点坐标等方法处理定点问题

例2、已知椭圆C: + =1,M(0,2)

是椭圆的一个顶点,过点M分
别作直线MA,MB交椭圆于A,B

+

= , 过点 , −
的动直线与
椭圆交于, 两点,试判断以为
直径的圆是否恒过定点,说明理
由。
课堂小结:
本节课你学习到了?
小结:
1、设曲线上的动点坐
标,利用动点在曲线上
进行坐标运算、
以及整体运算、和消元
思想。
变式训练:

1、设M为双曲线


− =1(a>0,b>0)上的任意

解析几何题型2——《解析几何中的定值定点问题》

解析几何题型2——《解析几何中的定值定点问题》

解析几何题型——《解析几何中的定值定点问题》题型特点:定值、定点问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点。

解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

这类试题考查的是在运动变化过程中寻找不变量的方法。

典例 1 如图,已知双曲线)0(1:222>=-a y ax C 的右焦点为F ,点A ,B 分别在C 的两条渐近线上,x AF ⊥轴,OB AB ⊥,OA BF //(O 为坐标原点)。

(1)求双曲线C 的方程;(2)过C 上一点),(00y x P 的直线1:020=-y y a x x l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NF MF恒为定值,并求此定值。

典例2 已知动圆过定点)0,4(A ,且在y 轴上截得的弦MN 的长为8。

(1)求动圆圆心的轨迹C 的方程;(2)已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。

典例3 已知直线6:+=x y l ,圆5:22=+y x O ,椭圆)0(1:2222>>=+b a b x a y E 的离心率33=e ,直线l 被圆O 截得的弦长与椭圆的短轴长相等。

(1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值。

典例4 椭圆的两焦点坐标分别为)0,3(1-F 和)0,3(2F ,且椭圆过点)23,1(-。

(1)求椭圆方程;(2)过点)0,56(-作不与y 轴垂直的直线l 交该椭圆于M 、N 两点,A 为椭圆的左顶点,试判断MAN ∠的大小是否为定值,并说明理由。

椭圆中的定点、定值-2024年新高考数学(解析版)

椭圆中的定点、定值-2024年新高考数学(解析版)

椭圆中的定点、定值1(2023春·河北石家庄·高二校考开学考试)已知椭圆C:x28+y24=1,直线l:y=kx+n(k>0)与椭圆C交于M,N两点,且点M位于第一象限.(1)若点A是椭圆C的右顶点,当n=0时,证明:直线AM和AN的斜率之积为定值;(2)当直线l过椭圆C的右焦点F时,x轴上是否存在定点P,使点F到直线NP的距离与点F到直线MP的距离相等?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)见解析;(2)存在,P(4,0).【分析】(1)联立直线方程和椭圆方程得(1+2k2)x2-8=0,由韦达定理可得x1,x2的关系,再由k AM⋅k AN=y1x1-22⋅y2x2-22计算即可得证;(2)由题意可得直线l的方程为y=k(x-2),联立直线方程与椭圆方程得(1+2k2)x2-8k2x+8(k2-1)= 0,由韦达定理x3,x4之间的关系,假设存在满足题意的点P,设P(m,0),由题意可得k PM+k PN=0.代入计算,如果m有解,则存在,否则不存在.【详解】(1)证明:因为n=0,所以直线l:y=kx,联立直线方程和椭圆方程:y=kxx2+2y2-8=0,得(1+2k2)x2-8=0,设M(x1,y1),N(x2,y2),则有x1+x2=0,x1x2=-81+2k2,所以y1y2=k2x1x2=-8k21+2k2,又因为A(22,0),所以k AM=y1x1-22,k AN=y2x2-22,所以k AM⋅k AN=y1x1-22⋅y2x2-22=y1y2x1x2-22(x1+x2)+8=y1y2x1x2+8=-8k21+2k2-81+2k2+8=-8k21+2k216k21+2k2=-8k2 16k2=-12所以直线AM和AN的斜率之积为定值-1 2;(2)解:假设存在满足题意的点P,设P(m,0),因为椭圆C的右焦点F(2,0),所以2k+n=0,即有n=-2k,所以直线l的方程为y=k(x-2).由y=k(x-2)x2+2y2-8=0,可得(1+2k2)x2-8k2x+8(k2-1)=0,设M(x3,y3),N(x4,y4),则有x3+x4=8k21+2k2,x3x4=8(k2-1)1+2k2;因为点F到直线NP的距离与点F到直线MP的距离相等,所以PF平分∠MPN,所以k PM+k PN=0.即y 3x 3-m +y 4x 4-m =k (x 3-2)x 3-m +k (x 4-2)x 4-m =k (x 3-2)(x 4-m )+k (x 3-m )(x 4-2)(x 3-m )(x 4-m )=k [2x 3x 4-(m +2)(x 3+x 4)+4m ](x 3-m )(x 4-m )=0,又因为k >0,所以2x 3x 4-(m +2)(x 3+x 4)+4m =0,代入x 3+x 4=8k 21+2k 2,x 3x 4=8(k 2-1)1+2k 2,即有4m -161+2k 2=0,解得m =4.故x 轴上存在定点P (4,0),使得点F 到直线NP 的距离与点F 到直线MP 的距离相等.2(2023·全国·模拟预测)在平面直角坐标系xOy 中,A -2,0 ,B 2,0 ,M -1,0 ,N 1,0 ,点P 是平面内的动点,且以AB 为直径的圆O 与以PM 为直径的圆O 1内切.(1)证明PM +PN 为定值,并求点P 的轨迹Ω的方程.(2)过点A 的直线与轨迹Ω交于另一点Q (异于点B ),与直线x =2交于一点G ,∠QNB 的角平分线与直线x =2交于点H ,是否存在常数λ,使得BH =λBG恒成立?若存在,求出λ的值;若不存在,请说明理由.【答案】(1)证明见解析,x 24+y 23=1(2)存在,λ=12【分析】(1)依题意可得OO 1 =2-PM 2,连接PN ,可得OO 1 =PN2,即可得到PM +PN 为定值,根据椭圆的定义得到点P 的轨迹是以M ,N 为焦点的椭圆,且2a =4,c =1,即可求出椭圆方程;(2)设Q x 0,y 0 ,G 2,y 1 ,H 2,y 2 ,直线AQ 的方程为x =my -2m ≠0 ,即可得到m =4y 1,再联立直线与椭圆方程,解出y 0,从而得到k QN ,k NH ,设∠BNH =θ,再根据二倍角的正切公式得到方程,即可得到y 2=12y 1,从而得解;【详解】(1)解:如图,以AB 为直径的圆O 与以PM 为直径的圆O 1内切,则OO 1 =AB 2-PM 2=2-PM2.连接PN ,因为点O 和O 1分别是MN 和PM 的中点,所以OO 1 =PN2.故有PN 2=2-PM2,即PN +PM =4,又4>2=MN,所以点P的轨迹是以M,N为焦点的椭圆.因为2a=4,c=1,所以b2=a2-c2=3,故Ω的方程为x24+y23=1.(2)解:存在λ=12满足题意.理由如下:设Q x0,y0,G2,y1,H2,y2.显然y1y2>0.依题意,直线AQ不与坐标轴垂直,设直线AQ的方程为x=my-2m≠0,因为点G在这条直线上,所以my1=4,m=4 y1 .联立x=my-2,3x2+4y2=12,得3m2+4y2-12my=0的两根分别为y0和0,则y0=12m3m2+4,x0=my0-2=6m2-83m2+4,所以k QN=y0x0-1=12m3m2+46m2-83m2+4-1=4mm2-4=4y14-y21,k NH=y2.设∠BNH=θ,则∠BNQ=2θ,则k QN=tan2θ,k NH=tanθ,所以tan2θ=2tanθ1-tan2θ=2y21-y22=4y14-y21,整理得y1-2y2y1y2+2=0,因为y1y2>0,所以y1-2y2=0,即y2=12y1.故存在常数λ=12,使得BH=λBG.3(2023·全国·高三专题练习)仿射变换是处理圆锥曲线综合问题中求点轨迹的一类特殊而又及其巧妙的方法,它充分利用了圆锥曲线与圆之间的关系,具体解题方法为将C:x2a2+y2b2=1(a>b>0)由仿射变换得:x =xa,y=yb,则椭圆x2a2+y2b2=1变为x 2+y 2=1,直线的斜率与原斜率的关系为k =abk,然后联立圆的方程与直线方程通过计算韦达定理算出圆与直线的关系,最后转换回椭圆即可.已知椭圆C:x2 a2+y2b2=1(a>b>0)的离心率为55,过右焦点F2且垂直于x轴的直线与C相交于A,B两点且AB=855,过椭圆外一点P作椭圆C的两条切线l1,l2且l1⊥l2,切点分别为M,N.(1)求证:点P的轨迹方程为x2+y2=9;(2)若原点O到l1,l2的距离分别为d1,d2,延长表示距离d1,d2的两条直线,与椭圆C交于Y,W两点,过O作OZ⊥YW交YW于Z,试求:点Z所形成的轨迹与P所形成的轨迹的面积之差是否为定值,若是,求出此定值;若不是,请求出变化函数.【答案】(1)证明见解析(2)是定值,定值为619π【分析】(1)利用仿射变换将椭圆方程变为圆的方程,设原斜率分别为k1,k2,k1k2=-1,则变换后斜率k 1⋅k 2=a2b2k1k2,设变换后坐标系动点Q x0,y0,过点Q x0,y0的直线为l:y-y0=k x-x0,将圆的方程和直线方程联立,利用直线和圆相切结合韦达定理求解即可;(2)由图中的垂直关系,利用等面积法S△OYW=12OYOW=12YWOZ和1|OY|2+1|OW|2=OY|2+OW|2 OY|2OW|2=|YW|2OW|2OY|2,结合椭圆的性质求解即可.【详解】(1)由仿射变换得:x =xa,y=yb,则椭圆x2a2+y2b2=1变为x 2+y 2=1设原斜率存在分别为k1,k2,k1k2=-1,变换后为k 1=abk1,k 2=abk2,所以k 1⋅k 2=a2b2k1k2=-a2b2=e2-1,设变换后的坐标系动点Q x0,y0,过点Q x0,y0的直线为l:y-y0=k x-x0l:kx-y-kx0-y0=0到原点距离为d=kx0-y0k2+1=1,即kx0-y02=k2+1⇒x20-1k2-2x0y0k+y20-1=0,由韦达定理得:k 1k 2=y20-1x20-1=-a2b2,化简得:a2x20+b2y20=a2+b2由于原坐标系中x0=xa,y0=yb⇒x=ax0,y=by0所以在原坐标系中轨迹方程为:x2+y2=a2+b2,由e=ca=55b2a=455解得a2=5b2=4,所以点P的轨迹方程为x2+y2=9,当切线斜率不存在时,由椭圆方程x25+y24=1易得P点在x2+y2=9上.(2)如图所示延长OY交l1于N,延长OW交l2于M,由题意可知∠GPM=∠OGP=∠OHP=π2,所以四边形OGPH为矩形,∠YOW=π2,所以S△OYW=12OYOW=12YWOZ,且1|OY|2+1|OW|2=OY|2+OW|2OY|2OW|2=|YW|2OW|2OY|2,|YW |2OW |2OY |2分子分母同乘|OZ |2得4S 24OZ 2S 2=1OZ 2=1OY 2+1OW 2,因为OY ⊥OW ,当直线OY ,OW 斜率存在时,设l OY :y =k 3x ,l OW :y =-1k 3x ,由x 2a 2+y 2b 2=1y =k 3x解得x 2Y=a 2b 2b 2+a 2k 23,y 2Y =a 2b 2k 23b 2+a 2k 23,所以OY 2=a 2b 21+k 23 b 2+a 2k 23,由x 2a 2+y 2b 2=1y =-1k 3x解得x 2W=a 2b 2k 23b 2k 23+a 2,y 2W =a 2b 2b 2k 23+a 2,所以OW 2=a 2b 21+k 23 b 2k 23+a2,所以1OY 2+1OW 2=b 2+a 2k 23a 2b 2(1+k 23)+b 2k 23+a 2a 2b 2(1+k 23)=a 2+b 2a 2b 2,当斜率不存在时仍成立,所以1|OZ |2=a 2+b 2a 2b 2,OZ 2=x 2+y 2=a 2b 2a 2+b 2=209,所以Z 所形成的轨迹与P 所形成的轨迹的面积之差=9-209 π=619π是定值.4(2023·湖南·湖南师大附中校联考模拟预测)在平面直角坐标系xOy 中,已知椭圆W :x 2a 2+y 2b2=1(a >b >0)的离心率为22,椭圆W 上的点与点P 0,2 的距离的最大值为4.(1)求椭圆W 的标准方程;(2)点B 在直线x =4上,点B 关于x 轴的对称点为B 1,直线PB ,PB 1分别交椭圆W 于C ,D 两点(不同于P 点).求证:直线CD 过定点.【答案】(1)x 28+y 24=1(2)证明见解析【分析】(1)根据离心率可得a =2b =2c ,设点T m ,n 结合椭圆方程整理得TP =-(n +2)2+8+2b 2,根据题意分类讨论求得b =2,即可得结果;(2)设直线CD 及C ,D 的坐标,根据题意结合韦达定理分析运算,注意讨论直线CD 的斜率是否存在.【详解】(1)设椭圆的半焦距为c ,由椭圆W 的离心率为22,得a =2b =2c ,设点T m ,n 为椭圆上一点,则m 22b 2+n 2b2=1,-b ≤n ≤b ,则m 2=2b 2-2n 2,因为P 0,2 ,所以TP =m 2+(n -2)2=2b 2-2n 2+n 2-4n +4=-(n +2)2+8+2b 2,①当0<b <2时,|TP |max =-(-b +2)2+8+2b 2=4,解得b =2(舍去);②当b ≥2时,|TP |max =8+2b 2=4,解得b =2;综上所述:b =2,则a =22,c =2,故椭圆W 的标准方程为x 28+y 24=1.(2)①当CD 斜率不存在时,设C x 0,y 0 ,-22<x 0<22且x 0≠0,则D x 0,-y 0 ,则直线CP 为y =y 0-2x 0x +2,令x =4,得y =4y 0-8x 0+2,即B 4,4y 0-8x 0+2,同理可得B 14,-4y 0-8x 0+2.∵B 与B 1关于x 轴对称,则4y 0-8x 0+2+-4y 0-8x 0+2=0,解得x 0=4>22,矛盾;②当直线CD 的斜率存在时,设直线CD 的方程为y =kx +m ,m ≠2,设C x 1,y 1 ,D x 2,y 2 ,其中x 1≠0且x 2≠0,联立方程组y =kx +mx 28+y 24=1,消去y 化简可得2k 2+1 x 2+4kmx +2m 2-8=0,Δ=16k 2m 2-42k 2+1 2m 2-8 =88k 2+4-m 2 >0,则m 2<8k 2+4,所以x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-81+2k 2,由P 0,2 ,可得k PC =y 1-2x 1,k PD =y 2-2x 2,所以直线PC 的方程为y =y 1-2x 1x +2,令x =4,得y =4y 1-8x 1+2,即4,4y 1-8x 1+2,直线PD 的方程为y =y 2-2x 2x +2,令x =4,得y =4y 2-8x 2+2,即4,4y 2-8x 2+2,因为B 1和B 关于x 轴对称,则4y 1-8x 1+2+4y 2-8x 2+2=0,把y 1=kx 1+m ,y 2=kx 2+m 代入上式,则4kx 1+m -8x 1+2+4kx 2+m -8x 2+2=0,整理可得1+2k x 1x 2+m -2 x 1+x 2 =0,则1+2k ×2m 2-81+2k 2+m -2 ×-4km1+2k2=0,∵m ≠2,则m -2≠0,可得1+2k ×m +2 -2km =0,化简可得m =-4k -2,则直线CD 的方程为y =kx -4k -2,即y +2=k x -4 ,所以直线CD 过定点4,-2 ;综上所述:直线CD 过定点4,-2 .【点睛】方法定睛:过定点问题的两大类型及解法(1)动直线l 过定点问题.解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题.解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.5(2023春·四川眉山·高二校考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)点D (4,0),斜率为k 的直线l 不过点D ,且与椭圆C 交于A ,B 两点,∠ADO =∠BDO (O 为坐标原点).直线l 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.【答案】(1)x 24+y 2=1;(2)过定点,1,0 .【分析】(1)根据已知条件列方程即可解得a ,b 值,方程可求解;(2)设直线l 的方程为y =kx +m ,联立椭圆方程结合韦达定理得x 1,x 2关系,又∠ADO =∠BDO 得k AD +k BD =0,代入坐标化简即可求解.【详解】(1)由题意可得2b =2ca =32c 2=a 2-b 2,解得a 2=4,b 2=1所以椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 联立y =kx +mx 24+y 2=1整理得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=8km 2-44k 2+1 (4m 2-4)>0,即4k 2-m 2+1>0又x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1因为∠ADO =∠BDO ,所以k AD +k BD =0,所以y 1x 1-4+y 2x 2-4=kx 1+m x 2-4 +kx 2+m x 1-4x 1-4 x 2-4 =0所以2kx 1x 2+(m -4k )x 1+x 2 -8m =0,即2k ⋅4m 2-44k 2+1+(m -4k )⋅-8km 4k 2+1-8m =0整理得8k +8m =0,即m =-k ,此时Δ=3k 2+1>0则直线l 的方程为y =kx -k ,故直线l 过定点1,0 .6(2023·内蒙古赤峰·校联考模拟预测)已知椭圆C :y 2a 2+x 2b2=1a >b >0 的离心率为12,且经过点6,2 ,椭圆C 的右顶点到抛物线E :y 2=2px p >0 的准线的距离为4.(1)求椭圆C 和抛物线E 的方程;(2)设与两坐标轴都不垂直的直线l 与抛物线E 相交于A ,B 两点,与椭圆C 相交于M ,N 两点,O 为坐标原点,若OA ⋅OB=-4,则在x 轴上是否存在点H ,使得x 轴平分∠MHN ?若存在,求出点H 的坐标;若不存在,请说明理由.【答案】(1)y 212+x 29=1;y 2=4x(2)存在;H 92,0 【分析】(1)依题意得到方程组,即可求出a 2,b 2,从而得到椭圆方程,再求出椭圆的右顶点,即可求出p ,从而求出抛物线方程;(2)设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 ,联立直线与抛物线方程,消元、列出韦达定理,根据OA ⋅OB=-4得到m =-2k ,再假设在x 轴上存在点H x 0,0 ,使得x 轴平分∠MHN ,则直线HM 的斜率与直线HN 的斜率之和为0,设M x 3,y 3 ,N x 4,y 4 ,联立直线与椭圆方程,消元、列出韦达定理,由y 3x 3-x 0+y 4x 4-x 0=0,即可求出x 0,从而求出H 的坐标;【详解】(1)解:由已知得c a =124a 2+6b 2=1a 2=b 2+c 2,∴a 2=12,b 2=9.∴椭圆C 的方程为y 212+x 29=1.∴椭圆C 的右顶点为3,0 .∴3+p2=4,解得p =2.∴抛物线E 的方程为y 2=4x .(2)解:由题意知直线l 的斜率存在且不为0.设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 .由y =kx +my 2=4x消去y ,得k 2x 2+2km -4 x +m 2=0.∴Δ1=2km -4 2-4k 2m 2=-16km +16>0,∴km <1.∴x 1+x 2=4-2km k 2,x 1x 2=m 2k2.∴y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2=km 4-2km k2+2m 2=4m k .∴OA ⋅OB =x 1x 2+y 1y 2=m 2k2+4m k =-4.∴m k +2 2=0,∴mk=-2.∴m =-2k ,此时km =-2k 2<1.∴直线l 的方程为y =k x -2 .假设在x 轴上存在点H x 0,0 ,使得x 轴平分∠MHN ,则直线HM 的斜率与直线HN 的斜率之和为0,设M x 3,y 3 ,N x 4,y 4 ,由y =k x -2y 212+x 29=1消去y ,得3k 2+4 x 2-12k 2x +12k 2-36=0.∴Δ2=12k 2 2-43k 2+4 12k 2-36 >0,即5k 2+12>0恒成立.∴x 3+x 4=12k 23k 2+4,x 3x 4=12k 2-363k 2+4.∵y 3x 3-x 0+y 4x 4-x 0=0,∴k x 3-2 x 4-x 0 +k x 4-2 x 3-x 0 =0.∴2x 3x 4-x 0+2 x 3+x 4 +4x 0=0.∴24k 2-723k 2+4-x 0+2 12k 23k 2+4+4x 0=0.∴16x 0-723k 2+4=0.解得x 0=92.∴在x 轴上存在点H 92,0 ,使得x 轴平分∠MHN .【点睛】本题考查直线与圆锥曲线的综合问题,考查椭圆的方程以及韦达定理法在圆锥曲线综合中的应用,属于难题;在解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.7(2023·宁夏·六盘山高级中学校考一模)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为B 1,若△F 1B 1F 2为等边三角形,且点P 1,32在椭圆E 上.(1)求椭圆E 的方程;(2)设椭圆E 的左、右顶点分别为A 1,A 2,不过坐标原点的直线l 与椭圆E 相交于A 、B 两点(异于椭圆E 的顶点),直线AA 1、BA 2与y 轴的交点分别为M 、N ,若|ON |=3|OM |,证明:直线过定点,并求该定点的坐标.【答案】(1)x 24+y 23=1(2)点1,0 或4,0【分析】(1)由已知条件,椭圆的定义及a ,b ,c 的关系可知a 2=4c 2和b 2=3c 2,再设出椭圆的方程,最后将点代入椭圆的方程即可求解;(2)设点A x 1,y 1 ,B x 2,y 2 ,由直线AA 1的方程即可求出点M 的坐标,由BA 2的方程即可求出点N 的坐标,由已知条件可知5x 1+x 2 -2x 1x 2-8=0,分直线AB 的斜率存在和直线AB 的斜率不存在两种情况分别求解,得出直线AB 的方程,即可判断出直线恒过定点的坐标.【详解】(1)∵△F 1B 1F 2为等边三角形,且B 1F 1 +B 1F 2 =2a ,∴a =2c ,又∵a 2=b 2+c 2,∴b 2=3c 2,设椭圆的方程为x 24c 2+y 23c 2=1,将点P 1,32 代入椭圆方程得14c 2+912c2=1,解得c 2=1,所以椭圆E 的方程为x 24+y 23=1.(2)由已知得A 1-2,0 ,A 22,0 ,设A x 1,y 1 ,B x 2,y 2 ,则直线AA 1的斜率为y 1x 1+2,直线AA 1的方程为y =y 1x 1+2x +2 ,即点M 坐标为0,2y 1x 1+2,直线BA 2的斜率为y 2x 2-2,直线AA 1的方程为y =y 2x 2-2x -2 ,即点N 坐标为0,-2y 2x 2-2,∵|ON |=3|OM |,∴|ON |2=9|OM |2,∴4y 22x 2-2 2=36y 21x 1+2 2,又∵y 21=3-3x 214=12-3x 214,y 22=3-3x 224=12-3x 224,∴4-x 22x 2-2 2=9×4-x 21x 1+22,即2+x 22-x 2=92-x 1 2+x 1,整理得5x 1+x 2 -2x 1x 2-8=0,①若直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,将直线方程与椭圆方程联立y =kx +bx 24+y 23=1得3+4k 2 x 2+8kbx +4b 2-12=0,其中Δ=64k 2b 2-43+4k 2 4b 2-12 =1612k 2-3b 2+9 >0,x 1+x 2=-8kb 3+4k 2,x 1x 2=4b 2-123+4k 2,即-5×8kb 3+4k 2-2×4b 2-123+4k2-8=0,4k 2+5kb +b 2=0,4k +b k +b =0,所以b =-4k 或b =-k ,当b =-4k 时,直线AB 的方程为y =kx -4k =k x -4 ,此时直线AB 恒过点4,0 ,当b =-k 时,直线AB 的方程为y =kx -k =k x -1 ,此时直线AB 恒过点1,0 ,②若直线AB 的斜率不存在时x 1=x 2,由2+x 22-x 2=92-x 1 2+x 1得2+x 22-x 2=92-x 2 2+x 2,即x 22-5x 2+4=0,解得x 2=1或x 2=4,此时直线AB 的方程为x =1或x =4,所以此时直线AB 恒过点1,0 或4,0 ,综上所述,直线AB 恒过点1,0 或4,0 .8(2023·江苏扬州·仪征中学校考模拟预测)已知F 1(-2,0),F 2(2,0)为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,且A 2,53为椭圆上的一点.(1)求椭圆E 的方程;(2)设直线y =-2x +t 与抛物线y 2=2px (p >0)相交于P ,Q 两点,射线F 1P ,F 1Q 与椭圆E 分别相交于M 、N .试探究:是否存在数集D ,对于任意p ∈D 时,总存在实数t ,使得点F 1在以线段MN 为直径的圆内?若存在,求出数集D 并证明你的结论;若不存在,请说明理由.【答案】(1)x 29+y 25=1(2)存在,D =(5,+∞),证明见解析【分析】(1)求出点A 2,53到两焦点的距离,再用椭圆的定义可得a =3,结合b 2=a 2-c 2可得b 2,从而可得椭圆的方程;(2)直线l 与抛物线联立,结合判别式有p +4t >0,要使得点F 1在以线段MN 为直径的圆内,根据题意,有F 1P ⋅F 1Q<0,结合韦达定理可得p >5,从而可证明问题.【详解】(1)由题意知c =2,A 2,53为椭圆上的一点,且AF 2垂直于x 轴,则AF 2 =53,AF 1 =(2+2)2+53 2=133,所以2a =AF 1 +AF 2 =133+53=6,即a =3,所以b 2=32-22=5,故椭圆的方程为x 29+y 25=1;(2)l 方程为y =-2x +t ,联立抛物线方程,得y 2=2px y =-2x +t ,整理得y 2+py -pt =0,则Δ=p 2+4tp >0,则p +4t >0①,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=-p ,y 1y 2=-pt ,则x 1+x 2=t +p 2,x 1x 2=(y 1y 2)24p 2=t 24,由F 1的坐标为(-2,0),则F 1P =(x 1+2,y 1),F 1Q=(x 2+2,y 2),由F 1M 与F 1P 同向,F 1N 与F 1Q 同向,则点F 1在以线段MN 为直径的圆内,则F 1M ⋅F 1N <0,则F 1P ⋅F 1Q<0,则(x 1+2)(x 2+2)+y 1y 2<0,即x 1x 2+2(x 1+x 2)+4+y 1y 1<0,则t 24+2t +p 2 +4-pt <0,即t 24+(2-p )t +p +4<0②,当且仅当Δ=(2-p )2-4×14(p +4)>0,即p >5,总存在t >-p4使得②成立,且当p >5时,由韦达定理可知t 24+(2-p )t +p +4=0的两个根为正数,故使②成立的t >0,从而满足①,故存在数集D =(5,+∞),对任意p ∈D 时,总存在t ,使点F 1在线段MN 为直径的圆内.9(2023·四川绵阳·四川省绵阳南山中学校考模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右顶点分别为M 1、M 2,短轴长为23,点C 上的点P 满足直线PM 1、PM 2的斜率之积为-34.(1)求C 的方程;(2)若过点1,0 且不与y 轴垂直的直线l 与C 交于A 、B 两点,记直线M 1A 、M 2B 交于点Q .探究:点Q是否在定直线上,若是,求出该定直线的方程;若不是,请说明理由.【答案】(1)x 24+y 23=1(2)点Q 在定直线x =4上【分析】(1)设点P x 0,y 0 ,则x 0≠±a ,可得出y 20=b 21-x 20a2,利用斜率公式结合已知条件可得出b 2=34a 2,再利用椭圆的短轴长可得出b 2、a 2的值,即可得出椭圆C 的方程;(2)设l 的方程为x =my +1,设点A x 1,y 1 、B x 2,y 2 ,设点Q x ,y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,写出直线M 1A 、M 2B 的方程,联立这两条直线方程,可得出点Q 的横坐标,即可得出结论.【详解】(1)解:设P x 0,y 0 ,则x 0≠±a ,且x 20a 2+y 20b 2=1,所以,y 20=b 21-x 20a2,则k PM 1⋅k PM 2=y 0x 0+a ⋅y 0x 0-a =y20x 20-a 2=b 21-x 20a 2x 20-a2=-b 2a2=-34,故b 2=34a 2①,又2b =23②,联立①②,解得a 2=4,b 2=3,故椭圆C 的方程为x 24+y 23=1.(2)解:结论:点Q 在定直线上x =4.由(1)得,M 1-2,0 、M 22,0 ,设Q x ,y ,设直线l 的方程为x =my +1,设点A x 1,y 1 、B x 2,y 2 ,联立x 24+y 23=1x =my +1,整理得3m 2+4 y 2+6my -9=0,Δ=36m 2+363m 2+4 =144m 2+1 >0,∴y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 直线M 1A 的方程为y =y 1x 1+2x +2 ,直线M 2B 的方程为y =y 2x 2-2x -2 ,所以,y 1x 1+2x +2 =y 2x 2-2x-2 ,可得x +2x -2=y 2x 1+2 y 1x 2-2 =y 2my 1+3 y 1my 2-1 =my 1y 2+3y 2my 1y 2-y 1=-9m 3m 2+4+3-6m 3m 2+4-y 1 -9m 3m 2+4-y 1=-27m 3m 2+4-3y 1-9m 3m 2+4-y 1=3,解得x =4,因此,点Q 在直线x =4上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 、x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.10(2023·全国·高三专题练习)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)内切于矩形ABCD ,其中AB ,CD 与x 轴平行,直线AC ,BD 的斜率之积为-12,椭圆的焦距为2.(1)求椭圆E 的标准方程;(2)椭圆上的点P ,Q 满足直线OP ,OQ 的斜率之积为-12,其中O 为坐标原点.若M 为线段PQ 的中点,则MO 2+MQ 2是否为定值?如果是,求出该定值;如果不是,说明理由.【答案】(1)x 22+y 2=1(2)是定值,定值为32【分析】(1)由题意求出直线AC ,BD 的斜率,即可求出-b 2a2=-12,又因为焦距为2,即可就出椭圆的标准方程.(2)方法一:联立直线PQ 与椭圆的方程由k OP ⋅k OQ =-12可求出2t 2=1+2k 2,又因为:MO 2+MQ 2=x 21+x 222+y 21+y 222,又点P ,Q 在椭圆上,代入即可求出答案.方法二:由P ,Q 是椭圆C 上的点,可得x 21+2y 21=2x 22+2y 22=2,联立直线PQ 与椭圆的方程由k OP ⋅k OQ =-12可求出y 1=-x 1x 22y 2,代入化简得x 21=2y 22,即可求出答案.【详解】(1)由题意,c =1,则A -a ,-b ,B a ,-b ,C a ,b ,D -a ,b ,所以k AC =2b 2a =b a ,k BD =2b-2a=b -a ,所以k AC ⋅k BD =-b 2a2=-12,解得:a =2,=1,∴椭圆的标准方程为x 22+y 2=1.(2)(方法一)设P x 1,y 1 ,Q x 2,y 2 ,则M x 1+x 22,y 1+y 22.设直线PQ :y =kx +t ,由y =kx +t x 22+y 2=1,得:1+2k 2 x 2+4ktx +2t 2-2=0,x 1+x 2=-4kt1+2k2x 1x 2=2t 2-21+2k2,由k OP ⋅k OQ =-12,得x 1x 2+2y 1y 2=1+2k 2 x 1x 2+2kt x 1+x 2 +2t 2=0,代入化简得:2t 2=1+2k 2.∵MO 2+MQ 2=x 1+x 22 2+y 1+y 22 2+x 1-x 1+x 22 2+y 1-y 1+y 222=x 21+x 222+y 21+y 222,又点P ,Q 在椭圆上,∴x 212+y 21=1,x 222+y 22=1,即x 21+x 224+y 21+y 222=1,∵x 21+x 22=x 1+x 2 2-2x 1x 2=-4kt 2t 22-2⋅2t 2-22t 2=2,∴x 21+x 224=12.∴MO 2+MQ 2=x 21+x 224+y 21+y 222+x 21+x 224=32.即MO 2+MQ 2=32为定值.(方法二)由P ,Q 是椭圆C 上的点,可得x 21+2y 21=2x 22+2y 22=2 ,把y 1=-x 1x 22y 2代入上式,化简x 21=2y 22,得y 21+y 22=1,x 21+x 22=2,MO 2+MQ 2=12x 21+x 22+y 21+y 22 =32.11(2023春·湖北襄阳·高三襄阳五中校考阶段练习)已知离心率为22的椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F ,左、右顶点分别为A 1、A 2,上顶点为B ,且△A 1BF 的外接圆半径大小为3.(1)求椭圆C 方程;(2)设斜率存在的直线l 交椭圆C 于P ,Q 两点(P ,Q 位于x 轴的两侧),记直线A 1P 、A 2P 、A 2Q 、A 1Q 的斜率分别为k 1、k 2、k 3、k 4,若k 1+k 4=53k 2+k 3 ,求△A 2PQ 面积的取值范围.【答案】(1)x 24+y 22=1(2)0,5830 【分析】(1)根据椭圆离心率确定椭圆中a ,b ,c 的关系,再结合正弦定理的推论确定外接圆半径与边角关系即可得c 的值,从而求得椭圆方程;(2)由题可设直线l :x =ty +m t ≠0 ,P x 1,y 1 ,Q x 2,y 2 ,联立直线与椭圆即可得交点坐标关系,根据斜率的计算式可得k 1k 2=-12,k 3k 4=-12,再由已知等式k 1+k 4=53k 2+k 3 确定k 2k 3=-310,由坐标关系进行转化可求得m 的值,求解△A 2PQ 面积的表达式,结合函数性质即可得△A 2PQ 面积的取值范围.【详解】(1)根据椭圆C 的离心率为22知a =2c ,所以b =a 2-c 2=c ,如图,则OF =OB =c则在△A 1BF 中,可得∠BFA 1=3π4,A 1B =OA 1 2+OB 2=3c ,由正弦定理得A 1Bsin ∠BFA 1=3c22=6c =2×3,解得c =2,所以a =2,b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由条件知直线l 的斜率不为0,设直线l :x =ty +m t ≠0 ,P x 1,y 1 ,Q x 2,y 2 ,联立x =ty +mx 24+y 22=1,得t 2+2 y 2+2mty +m 2-4=0,Δ>0得2t 2+4>m 2于是y 1+y 2=-2mt t 2+2,y 1y 2=m 2-4t 2+2,因为A 1-2,0 ,A 22,0 ,P x 1,y 1 代入椭圆方程得x 214+y 212=1,所以k 1k 2=y 1x 1+2⋅y 1x 1-2=y 21x 21-4=21-x 214 x 21-4=-12,同理k 3k 4=-12,于是k 1=-12k 2,k 4=-12k 3,因为k 1+k 4=53k 2+k 3 ,所以-12k 2-12k 3=53k 2+k 3 ,即-k 2+k 32k 2k 3=53k 2+k 3 .又直线l 的斜率存在,所以k 2+k 3≠0,于是k 2k 3=-310,所以y 1x 1-2⋅y 2x 2-2=-310,即10y 1y 2+3x 1-2 x 2-2 =0,又x 1=ty 1+m ,x 2=ty 2+m ,所以10y 1y 2+3ty 1+m -2 ty 2+m -2 =0,整理得3t 2+10 y 1y 2+3t m -2 y 1+y 2 +3m -2 2=0,所以3t 2+10 m 2-4t 2+2 +3t m -2 -2mt t 2+2+3m -2 2=0,化简整理得m -2 2m +1 =0,又P 、Q 位于x 轴的两侧,所以y 1y 2=m 2-4t 2+2<0,解得-2<m <2,所以m =-12,此时直线l 与椭圆C 有两个不同的交点,于是直线l 恒过定点D -12,0 .当m =-12时,y 1+y 2=t t 2+2,y 1y 2=-154t 2+2,△A 2PQ 的面积S △A 2PQ =12A 2D ⋅y 1-y 2 =12×52×y 1+y 2 2-4y 1y 2=54t t 2+22-4-154t 2+2 =54⋅16t 2+30t 2+2,令16t 2+30=λ,因为直线l 的斜率存在,则λ>30,t 2=λ2-3016,于是S △A 2PQ =54⋅16λλ2+2=20λ+2λ,又函数y =20λ+2λ在30,+∞ 上单调递减,所以△A 2PQ 面积的取值范围为0,5830 .【点睛】关键点点睛:本题考查了直线与椭圆相交的坐标关系,利用坐标运算解决直线斜率关系及面积关系.解决本题的关键是确定直线直线A 1P 、A 2P 、A 2Q 、A 1Q 之间的斜率关系,结合椭圆上的任意一点与左右顶点之间的斜率关系,可将四个斜率值简化为两个斜率关系,即可减少位置数,从而利用坐标运算及坐标关系确定所设直线过定点,于是简化所求面积表达式中的变量个数从而可结合函数关系确定取值范围,得以解决问题.12(2023·江西南昌·统考模拟预测)已知A 2,0 ,B 0,1 是椭圆E :x 2a 2+y 2b2=1a >b >0 的两个顶点.(1)求椭圆E 的标准方程;(2)过点P 2,1 的直线l 与椭圆E 交于C ,D ,与直线AB 交于点M ,求PM PC +PMPD的值.【答案】(1)x 24+y 2=1(2)PM PC +PM PD =2【分析】(1)根据椭圆顶点坐标直接可得椭圆方程;(2)设直线方程,可得点M ,联立直线与椭圆结合韦达定理,再根据两点间距离化简可得解.【详解】(1)由A 2,0 ,B 0,1 是椭圆E :x 2a 2+y 2b2=1a >b >0 的两个顶点,得a =2,b =1,即E :x 24+y 2=1;(2)当直线l 的斜率不存在时,直线l 与椭圆有且只有一个公共点,不成立,所以设C x 1,y 1 ,D x 2,y 2 ,M x 3,y 3 ,直线l 的斜率为k ,则PC =x P -x 1 1+k 2=2-x 1 1+k 2,同理PD =2-x 2 1+k 2,PM =2-x 3 1+k 2,则PM PC+PM PD=2-x 32-x 1+2-x 32-x 2.设l :y -1=k x -2 ,而AB :x 2+y =1,联立解得x 3=4k2k +1,所以2-x 3=2-4k 2k +1=22k +1;联立直线l 与椭圆E 方程,消去y 得:4k 2+1 x 2-8k 2k -1 x +16k 2-16k =0,所以x 1+x 2=8k 2k -1 4k 2+1,x 1x 2=16k 2-16k 4k 2+1,所以12-x 1+12-x 2=-x 1+x 2-4x 1-2 x 2-2=-x 1+x 2-4x 1x 2-2x 1+x 2 +4=-8k 2k -14k 2+1-416k 2-16k4k 2+1-2×8k 2k -1 4k 2+1+4=2k +1,所以2-x 32-x 1+2-x 32-x 2=22k +1×2k +1 =2,即PM PC +PMPD =2.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.13(2023·江苏盐城·校考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点A 在C 上,当AF 1⊥x 轴时,AF 1 =12;当AF 1 =2时,∠F 1AF 2=2π3.(1)求C 的方程;(2)已知斜率为-1的直线l 与椭圆C 交于M ,N 两点,与直线x =1交于点Q ,且点M ,N 在直线x =1的两侧,点P (1,t )(t >0).若|MP |⋅|NQ |=|MQ |⋅|NP |,是否存在到直线l 的距离d =2的P 点?若存在,求t 的值;若不存在,请说明理由.【答案】.(1)x 24+y 2=1(2)存在,t =52【分析】(1)利用通径公式和椭圆定义,结合余弦定理即可建立方程,从而可求解椭圆方程;(2)由点M ,N 在直线x =1的两侧可得1-32<m <1+32,设直线l :x +y =m ,点M x 1,y 1 ,N x 2,y 2 ,联立椭圆方程,消元,利用韦达定理可得y 1+y 2=2m 5,y 1y 2=m 2-45.根据MP ⋅NQ =MQ ⋅NP ,得到k MP +k NP =0.代入斜率公式,得到4m -5 t =4-m ,再由d =1+t -m2=12-4m 2+8m -14m -5=2,求出m 的取值范围即可.【详解】(1)当AF 1⊥x 轴时,AF 1 =b 2a =12,即b 2=12a ①,当AF 1 =2时,AF 2 =2a -2,在△AF 1F 2中,F 1F 2 =2c ,由余弦定理可知,AF 12+AF 2 2-F 1F 2 2=2AF 1 AF 2 cos ∠F 1AF 2,即22+2a -2 2-2c 2=2×2×2a -2 ×-12,整理,可得a 2-c 2-a +1=0,即b 2=a -1②,由①②,解得a =2,b =1.所以C 的方程为x 24+y 2=1.(2)设直线l :x +y =m ,点M x 1,y 1 ,N x 2,y 2 ,令x =1,则14+y 2=1,y =±32,由点M ,N 在直线x =1的两侧,可得1-32<m <1+32,联立x +y =m x 24+y 2=1,消去x ,可得5y 2-2my +m 2-4=0,则Δ=4m 2-20m 2-4 =165-m 2 >0恒成立,所以y 1+y 2=2m 5,y 1y 2=m 2-45.因为MP ⋅NQ =MQ ⋅NP ,所以MP MQ=NP NQ,由正弦定理,得sin ∠MQP sin ∠MPQ =sin ∠NQPsin ∠NPQ,而∠MQP +∠NQP =π,即sin ∠MQP =sin ∠NQP ,所以sin ∠MPQ =sin ∠NPQ ,而∠MPQ +∠NPQ =∠MPN <π,则∠MPQ =∠NPQ ,所以k MP +k NP =0,则y 1-t x 1-1+y 2-t x 2-1=0,即y 1-t -y 1+m -1+y 2-t-y 2+m -1=0,即-2y 1y 2+m +t -1 y 1+y 2 -2m -1 t =0,整理,得4-m -4mt +5t =0,所以4m -5 t =4-m ,因为1-32<m <1+32,所以4-m >0,又t =4-m 4m -5>0,所以54<m <1+32,所以d =1+t -m 2=121+4-m 4m -5-m =12-4m 2+8m -14m -5 .令d =12-4m 2+8m -14m -5=2,结合54<m <1+32,解得m =32,则t =4-324×32-5=52.所以t =52时,点P 到直线l 的距离d =2.【点睛】关键点睛:第二问中的关键是能把MP ⋅NQ =MQ ⋅NP 转化为MP MQ=NP NQ,由正弦定理,得sin ∠MQP sin ∠MPQ =sin ∠NQPsin ∠NPQ,从而得到∠MPQ =∠NPQ ,即k MP +k NP =0,从而利用斜率公式和韦达定理求解.14(2023·全国·高三专题练习)已知椭圆C :x 2b 2+y 2a2=1a >b >0 与椭圆x 28+y 24=1的离心率相同,P 22,1为椭圆C 上一点.(1)求椭圆C 的方程.(2)若过点Q 13,0 的直线l 与椭圆C 相交于A ,B 两点,试问以AB 为直径的圆是否经过定点T ?若存在,求出T 的坐标;若不存在,请说明理由.【答案】(1)x 2+y 22=1(2)存在T 的坐标为(-1,0),理由见解析【分析】(1)先求出椭圆x 28+y 24=1的离心率为22,由此得到a 2=2b 2,将点P 的坐标代入椭圆C ,得到12b 2+1a2=1,再代入a 2=2b 2,解得b 2=1,a 2=2,则可得结果;(2)先用两个特殊圆求出交点(-1,0),再猜想以AB 为直径的圆经过定点T (-1,0),再证明猜想,设直线l :x =my +13,并与x 2+y 22=1联立,利用韦达定理得到y 1+y 2,y 1y 2,进一步得到x 1+x 2,x 1x 2,利用y 1+y 2,y 1y 2,x 1+x 2,x 1x 2证明TA ⋅TB=0即可.【详解】(1)在椭圆x 28+y 24=1中,a 1=22,b 1=2,c 1=8-4=2,离心率e =c 1a 1=222=22,在椭圆C :x 2b 2+y 2a2=1a >b >0 中,e =c a =a 2-b 2a =1-b 2a 2,所以1-b 2a2=22,化简得a 2=2b 2,因为P 22,1 在椭圆C :x 2b 2+y 2a 2=1a >b >0 上,所以12b 2+1a 2=1,所以12b 2+12b2=1,所以b 2=1,a 2=2,所以椭圆C :x 2+y22=1.(2)当直线l 的斜率为0时,线段AB 是椭圆的短轴,以AB 为直径的圆的方程为x 2+y 2=1,当直线l 的斜率不存在时,直线l 的方程为x =13,代入x 2+y 22=1,得y =±43,以AB 为直径的圆的方程为x -13 2+y 2=169,联立x 2+y 2=1x -13 2+y 2=169,解得x =-1y =0 ,由此猜想存在T (-1,0),使得以AB 为直径的圆是经过定点T (-1,0),证明如下:当直线l 的斜率不为0且斜率存在时,设直线l :x =my +13,联立x =my +13x 2+y 22=1,消去x 并整理得m 2+12 y 2+23my -89=0,Δ=49m 2+4m 2+12 ⋅89>0,设A (x 1,y 1)、B (x 2,y 2),则y 1+y 2=-2m 3m 2+12 ,y 1y 2=-89m 2+12,则x 1+x 2=my 1+13+my 2+13=m (y 1+y 2)+23=-2m 23m 2+12 +23,x 1x 2=my 1+13 my 2+13 =m 2y 1y 2+13m (y 1+y 2)+19=-8m 29m 2+12 -2m 29m 2+12 +19=-10m 29m 2+12 +19,因为TA ⋅TB=(x 1+1,y 1)⋅(x 2+1,y 2)=(x 1+1)(x 2+1)+y 1y 2=x 1x 2+x 1+x 2+1+y 1y 2=-10m 29m 2+12 +19-2m 23m 2+12 +23+1-89m 2+12 =-16m 2+89m 2+12+169=0,所以TA⊥TB,所以点T(-1,0)在以AB为直径的圆上,综上所述:以AB为直径的圆是经过定点T(-1,0).【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x1,y1,x2,y2;(2)联立直线与圆锥曲线的方程,得到关于x(或y)的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x1+x2、x1x2(或y1+y2、y1y2)的形式;(5)代入韦达定理求解.15(2023·广东广州·广州市从化区从化中学校考模拟预测)已知双曲线C:x2a2-y23a2=1(a>0)的左、右焦点分别为F1,F2,且F2到C的一条渐近线的距离为3.(1)求C的方程;(2)过C的左顶点且不与x轴重合的直线交C的右支于点B,交直线x=12于点P,过F1作PF2的平行线,交直线BF2于点Q,证明:Q在定圆上.【答案】(1)x2-y23=1(2)证明见解析【分析】(1)根据焦点到渐近线的距离求出c=2即可得解;(2)由题意可设PA,PF2的斜率分别为k,-k,设直线AP的方程为y=k x+1,联立双曲线方程,求出B3+k23-k2,6k 3-k2,由三角函数可得∠F2F1Q=∠PF2A=∠BF2P=∠F1QF1,即化为QF2= F1F2=4得证.【详解】(1)根据题意可知C的一条渐近线方程为y=3aax=3x,设F2c,0(c>0),F2到渐近线y=3x的距离为d=3c3+1=3,所以c=2,c2=4=a2+3a2,a2=1,所以C的方程为x2-y23=1.(2)设C的左顶点为A,则A(-1,0),故直线x=12为线段AF2的垂直平分线.所以可设PA,PF2的斜率分别为k,-k,故直线AP的方程为y=k x+1.与C 的方程联立有3-k 2 x 2-2k 2x -k 2-3=0,设B (x 1,y 1),则-1+x 1=2k 23-k 2,即x 1=3+k 23-k 2,所以B 3+k 23-k 2,6k3-k 2当BF 2⊥x 轴时,BF 2= AF 2 =3,△AF 2B 是等腰直角三角形,且易知∠PF 2A =∠BF 2P =π4当BF 2不垂直于x 轴时,直线BF 2的斜率为2k k 2-1,故tan ∠BF 2A =2kk 2-1因为tan ∠PFA =-1,所以tan2∠PF 2A =2kk 2-1=tan ∠BF 2A ,所以∠BF 2A =2∠PF 2A ,∠PF 2A =∠BF 2P因为QF 1∥PF 2所以∠F 2F 1Q =∠PF 2A =∠BF 2P =∠F 1QF 1所以QF 2= F 1F 2 =4为定值,所以点Q 在以F 2为圆心且半径为4的定圆上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.16(2023春·湖南常德·高二临澧县第一中学校考开学考试)如图,椭圆M :y 2a 2+x 2b2=1a >b >0 的两顶点A -2,0 ,B 2,0 ,离心率e =32,过y 轴上的点F 0,t t <4,t ≠0 的直线l 与椭圆交于C ,D两点,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(1)当t =23且CD =4时,求直线l 的方程;(2)当点P 异于A ,B 两点时,设点P 与点Q 横坐标分别为x P ,x Q ,是否存在常数λ使x P ⋅x Q =λ成立,若存在,求出λ的值;若不存在,请说明理由.【答案】(1)2x -y +23=0或2x +y -23=0(2)存在,λ=4【分析】(1)先求得椭圆M 的方程,再以设而不求的方法即可求得直线l 的方程;(2)先以设而不求的方法得到x P 、x Q 的解析式,再去计算x P ⋅x Q 是否为定值即可解决.【详解】(1)椭圆的方程y 2a 2+x 2b2=1a >b >0 ,由题可得b =2;由e =c a =32,结合a 2=b 2+c 2,得a =4,椭圆的标准方程:y 216+x 24=1;当直线l 的斜率不存在时,CD =8,与题意不符,故设直线l 的方程为y =kx +23,代入椭圆方程y 2+4x 2=16整理得k 2+4 x 2+43kx -4=0,设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-43k k 2+4,x 1⋅x 2=-4k 2+4;∴CD =1+k 2x 1+x 2 2-4x 1x 2=1+k 2-43k k 2+42-4-44+k 2=8k 2+1 k 2+4=4,解得k =± 2.则直线l 的方程为2x -y +23=0或2x +y -23=0.(2)当直线l 的斜率不存在时,直线l 与y 轴重合,由椭圆的对称性可知直线AC 与直线BD 平行,不符合题意;∴由题意可设直线的方程:x =my +n m ≠0,n ≠0 代入椭圆方程,得1+4m 2 y 2+8mny +4n 2-16=0;设C x 1,y 1 ,D x 2,y 2 ,∴y 1+y 2=-8mn 1+4m 2,y 1⋅y 2=4n 2-161+4m 2;∴my 1⋅y 2=4-n 22ny 1+y 2 ①直线AC 的方程为y =y 1x 1+2x +2 ②则直线BD 的方程为y =y 2x 2-2x -2 ③由②③得x -2x +2=y 1x 2-2 y 2x 1+2 =y 1my 2+n -2 y 2my 1+n +2 =my 1y 2+y 1n -2 my 1y 2+y 2n +2由①代入,得x -2x +2=2-n n +2 y 2+2-n y 1 2+n n +2 y 2+2-n y 1 =2-n 2+n ,解得x =4n ,即x Q =4n ;且知x P =n ;∴x P ⋅x Q =n ×4n=4(常数)即点P 与点Q 横坐标之积为定值4.故存在常数λ=417(2023春·四川遂宁·高三射洪中学校考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,62 ,且离心率为22.(1)求椭圆C 的方程;(2)已知直线l :y =mx +2与椭圆交于不同的两点P ,Q ,那么在x 轴上是否存在点M ,使MP =MQ 且MP ⊥MQ ,若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1)x 24+y 22=1(2)详见解析【分析】(1)根据条件得到关于a ,b ,c 的方程组,即可求得椭圆方程;。

定点、定值问题

定点、定值问题

第29练 定点、定值问题[考情分析] 解析几何是数形结合的典范,是高中数学的主要知识模块,定点和定值问题是高考考查的重点知识,在解答题中一般会综合考查直线、圆、圆锥曲线等,试题难度较大,多次以压轴题出现.一、定点问题例1 (2022·全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B ⎝⎛⎭⎫32,-1两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT →=TH →.证明:直线HN 过定点.(1)解 设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0且m ≠n ),由椭圆E 过A (0,-2),B ⎝⎛⎭⎫32,-1两点, 得⎩⎪⎨⎪⎧4n =1,94m +n =1, 解得⎩⎨⎧m =13,n =14, 所以椭圆E 的方程为y 24+x 23=1. (2)证明 当直线MN 的斜率不存在时,l MN :x =1,由⎩⎪⎨⎪⎧x =1,x 23+y 24=1得y 2=83, ∴y =±263. 结合题意可知M ⎝⎛⎭⎫1,-263,N ⎝⎛⎭⎫1,263, ∴过M 且平行于x 轴的直线的方程为y =-263. 易知点T 的横坐标x T ∈⎣⎡⎦⎤0,32, 直线AB 的方程为y -(-2)=-1-(-2)32-0×(x -0),即y =23x -2, 由⎩⎨⎧ y =-263,y =23x -2,得x T =3-6,∴T ⎝⎛⎭⎫3-6,-263. ∵MT →=TH →,∴H ⎝⎛⎭⎫5-26,-263, 则l HN :y -263=46326-4(x -1), 即y =2(3+6)3x -2. 此时直线HN 过定点(0,-2).当直线MN 的斜率存在时,如图,设M (x 1,y 1),N (x 2,y 2),l MN :y =kx +m (由直线MN 过点P (1,-2)可得k +m =-2).由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 24=1,得(3k 2+4)x 2+6kmx +3m 2-12=0,Δ>0,∴x 1+x 2=-6km 3k 2+4,x 1x 2=3m 2-123k 2+4. 过M 且平行于x 轴的直线的方程为y =y 1,与直线AB 的方程联立,得⎩⎪⎨⎪⎧ y =y 1,y =23x -2,得x T =3(y 1+2)2, ∴T ⎝ ⎛⎭⎪⎫3(y 1+2)2,y 1. ∵MT →=TH →,∴H (3y 1+6-x 1,y 1),则l HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2), 即y =y 1-y 23y 1+6-x 1-x 2·x +y 2- y 1-y 23y 1+6-x 1-x 2·x 2. 令x =0,得y =y 2-(y 1-y 2)x 23y 1+6-x 1-x 2=-(x 1y 2+x 2y 1)+3y 1y 2+6y 2-(x 1+x 2)+6+3y 1=-(x 1y 2+x 2y 1)+3y 1y 2+6y 2-(x 1+x 2)+6+3(y 1+y 2)-3y 2. ∵y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=-12k 2+4m 23k 2+4,y 1+y 2=(kx 1+m )+(kx 2+m )=k (x 1+x 2)+2m =8m 3k 2+4,x 1y 2+x 2y 1=x 1(kx 2+m )+x 2(kx 1+m )=2kx 1x 2+m (x 1+x 2)=-24k3k 2+4, ∴-(x 1y 2+x 2y 1)+3y 1y 2=24k 3k 2+4+-36k 2+12m 23k 2+4=-36k 2+12m 2+24k 3k 2+4=-24(k 2-3k -2)3k 2+4, -(x 1+x 2)+6+3(y 1+y 2)=6km 3k 2+4+ 6+24m 3k 2+4=6km +18k 2+24+24m 3k 2+4=12(k 2-3k -2)3k 2+4, ∴y =-24(k 2-3k -2)3k 2+4+6y 212(k 2-3k -2)3k 2+4-3y 2=-2, ∴直线HN 过定点(0,-2).综上,直线HN 过定点(0,-2).规律方法 求解定点问题常用的方法(1)“特殊探路,一般证明”,即先通过特殊情况确定定点,再转化为有方向、有目标的一般性证明.(2)“一般推理,特殊求解”,即先由题设条件得出曲线的方程,再根据参数的任意性得到定点坐标.(3)求证直线过定点(x 0,y 0),常利用直线的点斜式方程y -y 0=k (x -x 0)来证明.跟踪训练1 (2022·上海模拟)已知F 1,F 2分别为椭圆E :x 24+y 23=1的左、右焦点,过F 1的直线l 交椭圆E 于A ,B 两点.(1)当直线l 垂直于x 轴时,求弦长|AB |;(2)当OA →·OB →=-2时,求直线l 的方程;(3)记椭圆的右顶点为T ,直线AT ,BT 分别交直线x =6于C ,D 两点,求证:以CD 为直径的圆恒过定点,并求出定点坐标.解 (1)由题意知F 1(-1,0),将x =-1代入椭圆方程得y =±32, 所以|AB |=3.(2)由(1)知当直线l 的斜率不存在时,A ⎝⎛⎭⎫-1,32,B ⎝⎛⎭⎫-1,-32, 此时OA →·OB →=-54,不符合题意,舍去; 故直线l 的斜率存在,设直线l 的方程为y =k (x +1),联立⎩⎪⎨⎪⎧ x 24+y 23=1,y =k (x +1),得(3+4k 2)x 2+8k 2x +4k 2-12=0,设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,由OA →·OB →=x 1x 2+y 1y 2=x 1x 2+k (x 1+1)·k (x 2+1)=(1+k 2)x 1x 2+k 2(x 1+x 2)+k 2=(1+k 2)·4k 2-123+4k 2+k 2·-8k 23+4k 2+k 2 =-5k 2-123+4k 2=-2, 解得k 2=2,即k =±2,所以直线l 的方程为y =±2(x +1).(3)①当直线l 的斜率不存在时,A ⎝⎛⎭⎫-1,32,B ⎝⎛⎭⎫-1,-32,T (2,0), 直线AT 的方程为y =-12x +1, C 点坐标为(6,-2),直线BT 的方程为y =12x -1,D 点坐标为(6,2), 以CD 为直径的圆的方程为(x -6)2+y 2=4,由椭圆的对称性知,若以CD 为直径的圆恒过定点,则定点在x 轴上,令y =0,得x 1=4,x 2=8.即圆过点(4,0),(8,0).②当直线l 的斜率存在时,同(2)联立,直线AT 的方程为y =y 1x 1-2(x -2), C 点坐标为⎝ ⎛⎭⎪⎫6,4y 1x 1-2, 同理D 点坐标为⎝ ⎛⎭⎪⎫6,4y 2x 2-2, 以CD 为直径的圆的方程为(x -6)(x -6)+⎝ ⎛⎭⎪⎫y -4y 1x 1-2⎝ ⎛⎭⎪⎫y -4y 2x 2-2=0, 令y =0,得x 2-12x +36+16y 1y 2x 1x 2-2(x 1+x 2)+4=0, 由16y 1y 2x 1x 2-2(x 1+x 2)+4=16k (x 1+1)k (x 2+1)x 1x 2-2(x 1+x 2)+4=16k 2⎝ ⎛⎭⎪⎫4k 2-123+4k 2+-8k 23+4k 2+14k 2-123+4k 2-2×-8k 23+4k 2+4=-4, 得x 2-12x +32=0,解得x 1=4,x 2=8,即圆过点(4,0),(8,0).综上,以CD 为直径的圆恒过定点(4,0),(8,0).二、定值问题例2 (2020·新高考全国Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1). (1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.(1)解 由题设得4a 2+1b 2=1,a 2-b 2a 2=12,解得a 2=6,b 2=3.所以C 的方程为x 26+y 23=1. (2)证明 设M (x 1,y 1),N (x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m ,代入x 26+y 23=1, 得(1+2k 2)x 2+4kmx +2m 2-6=0.于是x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2.① 由AM ⊥AN ,得AM →·AN →=0,故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,整理得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0.将①代入上式,可得(k 2+1)2m 2-61+2k 2-(km -k -2)·4km 1+2k 2+(m -1)2+4=0, 整理得(2k +3m +1)(2k +m -1)=0.因为A (2,1)不在直线MN 上,所以2k +m -1≠0,所以2k +3m +1=0,k ≠1.所以直线MN 的方程为y =k ⎝⎛⎭⎫x -23-13(k ≠1). 所以直线MN 过点P ⎝⎛⎭⎫23,-13. 若直线MN 与x 轴垂直,可得N (x 1,-y 1).由AM →·AN →=0,得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 216+y 213=1,所以3x 21-8x 1+4=0.解得x 1=2(舍去),x 1=23. 此时直线MN 过点P ⎝⎛⎭⎫23,-13. 令Q 为AP 的中点,即Q ⎝⎛⎭⎫43,13.若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边,故|DQ |=12|AP |=223. 若D 与P 重合,则|DQ |=12|AP |. 综上,存在点Q ⎝⎛⎭⎫43,13,使得|DQ |为定值.规律方法 求圆锥曲线中定值问题常用的方法(1)引出变量法:其解题流程为 变量→选择适当的量为变量 ↓ 函数→把要证明为定值的量表示成上述变量的函数 ↓ 定值→把得到的函数化简,消去变量得到定值(2)特例法:从特殊入手,求出定值,再证明这个值与变量无关.跟踪训练2 (2022·南通模拟)已知F 1(-6,0),F 2(6,0)为双曲线C 的焦点,点P (2,-1)在C 上.(1)求C 的方程;(2)点A ,B 在C 上,直线P A ,PB 与y 轴分别交于点M ,N ,点Q 在直线AB 上,若OM →+ON→=0,PQ →·AB →=0,证明:存在定点T ,使得|QT |为定值.(1)解 设双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0), 由题意知⎩⎪⎨⎪⎧ c =6,4a 2-1b 2=1,a 2+b 2=6,解得⎩⎪⎨⎪⎧a =3,b =3,∴双曲线C 的方程为x 23-y 23=1. (2)证明 设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),P (2,-1),联立⎩⎪⎨⎪⎧y =kx +m ,x 23-y 23=1,整理得(1-k 2)x 2-2kmx -m 2-3=0,则1-k 2≠0,Δ>0,x 1+x 2=2km 1-k 2, x 1x 2=-m 2-31-k 2, ∴直线P A 的方程为y =y 1+1x 1-2(x -2)-1, 令x =0,则M ⎝ ⎛⎭⎪⎫0,x 1+2y 12-x 1, 同理N ⎝⎛⎭⎪⎫0,x 2+2y 22-x 2, 由OM →+ON →=0,可得x 1+2y 12-x 1+x 2+2y 22-x 2=0, ∴x 1+2(kx 1+m )2-x 1+x 2+2(kx 2+m )2-x 2=0, [(2k +1)x 1+2m ](2-x 2)+[(2k +1)x 2+2m ]·(2-x 1)=0,∴(4k +2-2m )(x 1+x 2)-(4k +2)x 1x 2+8m =0,∴(4k -2m +2)·2km 1-k 2-(4k +2)·-m 2-31-k 2+8m =0, ∴(2k -m +1)·2km +(2k +1)(m 2+3)+4m ·(1-k 2)=0,∴4k 2m -2km 2+2km +2km 2+6k +m 2+3+4m -4mk 2=0,∴m 2+(2k +4)m +6k +3=0,即(m +3)(m +2k +1)=0,当m +2k +1=0时,m =-2k -1,此时直线AB 的方程为y =k (x -2)-1,恒过定点P (2,-1),显然不可能, ∴m =-3,此时直线AB 的方程为y =kx -3,恒过定点E (0,-3), ∵PQ →·AB →=0,∴PQ ⊥AB ,取PE 的中点T ,∴T (1,-2),∴|QT |=12|PE |=2为定值, ∴存在T (1,-2),使得|QT |为定值 2.。

高考数学压轴题及答案:解析几何中的定值问题

高考数学压轴题及答案:解析几何中的定值问题

高考数学压轴题及答案:解析几何中的定值问题1500字高考数学压轴题及答案:解析几何中的定值问题解析几何是高考数学中的一个重要章节,涉及到直线、平面、圆、曲线等几何图形的性质和相关定理。

在解析几何中,定值问题是一类常见的问题,它要求在满足一定条件下确定某个几何图形的具体位置或性质。

下面我们就来看一道典型的解析几何定值问题。

【题目】已知平面上有一个圆O,其圆心坐标为(-5, 3),过点A(8, -4)的直线与圆O交于点B和点C。

若点A与点B的距离为6,点A与点C的距离为10,则圆O的半径为多少?【思路与解答】解析几何的定值问题通常需要通过建立坐标系来解决。

首先,我们可以建立直角坐标系,以点A为原点,建立平面直角坐标系xOy。

由于圆O的圆心坐标为(-5, 3),我们可以据此求得点O在坐标系中的位置。

由题意可知,直线AB与圆O相交于点B,根据垂径定理,我们可以得知点B到圆心O 的距离和圆O的半径是相等的。

设圆O的半径为r,则直线AB的斜率为k1 = -4/8 = -1/2。

设点C的坐标为(x, y),则直线AC的斜率为k2 = (y - (-4))/(x - 8) = (y + 4)/(x - 8)。

由于直线AC与圆O相交于点C,根据切径垂直定理可知直线AC的斜率k2与直线BC 的斜率k1的乘积为-1。

即 k1 * k2 = -1。

将k1和k2带入上式,可以得到 (-1/2) * ((y + 4)/(x - 8)) = -1。

通过求解上式,我们可以得到点C的坐标为 (x, y) = (2, -4)。

使用两点之间的距离公式,可以得到点B与点O之间的距离 d1 = OB = √[(-5 - 2)^2 + (3 - (-4))^2] = √(49 + 49) = √98。

同时,使用两点之间的距离公式,可以得到点C与点O之间的距离 d2 = OC = √[(-5 - 2)^2 + (3 - (-4))^2] = √(49 + 49) = √98。

解析几何定点定值问题答案

解析几何定点定值问题答案
4k
2k
■ 2
X-!X2
2,
Xt^
亠・2,
8分
1 2k
1
2k
Q MQ
的方程为y
y1
y1
y2(x
X1)
X1
X2
令y
0,
得X
vy"
X1
X1)
X1
k(x1
1)(x2
xj
2x1x2
(X1X2)2
…10分
y1
y2
k(x1
X2
2)
X1
x22
6分
直线MQ过定点(2,0).
12分
g 0
1 2k
设B(X1,yJ, E(X2,y2), C(X3, y3), Dg yj,过F?与x轴不垂直的直线为x
yiyo
将x2代入直线PA,pb的方程得
Y2YiY2P2Yo(YiY2)p
YiY2Yo(YiY2)Y
2234
P Yo2p yoP
令y o.
ym
得xx,
Y1y2
X1)
my11my1(y2y1)
Y1y2
2my1y2
1 2
Y1y2
1o分
解二:设M (Xi, yj, Ng, y2),Q(X2, y?),l:y k(x 1),
斗,口2x1X24(x1x2)— 八
整理,得x=--.②…8分
由①得X1+X2=-,
4k23
2
X1X2=64k212…10分 代入②整理,得
4k23
x=1.
所以直线AE与x轴相交于定点Q(1,0).
12分
A(x「yj, B&y),(1)由条件知直线l:y x

2024高考数学常考题型 圆锥曲线中定点定值定直线问题(解析版)

2024高考数学常考题型  圆锥曲线中定点定值定直线问题(解析版)

第23讲圆锥曲线中定点定值定直线问题【考点分析】考点一:直线过定点问题①设直线为m kx y +=,根据题目给出的条件找出m 与k 之间的关系即可②求出两点的坐标(一般含参数),再求出直线的斜率,利用点斜式写出直线的方程,再化为()()n m x k f y +-=的形式,即可求出定点。

考点二:定值问题探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.③求斜率,面积等定值问题,把斜率之和,之积,面积化为坐标之间的关系,再用韦达定理带入化简一般即可得到定值考点三:定直线问题①一般设出点的坐标,写出两条直线的方程,两直线的交点及两个直线中的y x ,相同,然后再用韦达定理带入化简即可得y x ,的关系即为定直线【题型目录】题型一:直线圆过定点问题题型二:斜率面积等定值问题题型三:定直线问题【典型例题】题型一:直线过定点问题【例1】已知点()1,1P 在椭圆()2222:10x y C a b a b+=>>上,椭圆C 的左右焦点分别为1F ,2F ,12PF F △的面(1)求椭圆C 的方程;(2)设点A ,B 在椭圆C 上,直线PA ,PB 均与圆()222:01O x y r r +=<<相切,记直线PA ,PB 的斜率分别为1k ,2k .(i )证明:121k k =;(ii )证明:直线AB 过定点.若10m k +-=,则直线():111AB y kx k k x =+-=-+,此时AB 过点P ,舍去.若330m k ++=,则直线():3333AB ykx k k x =--=--,此时AB 恒过点()3,3-,所以直线AB 过定点()3,3-.【例2】已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.【例3】已知椭圆22:1(0)C a b a b+=>>的上顶点为P ,右顶点为Q ,其中POQ △的面积为1(O 为原点),椭圆C(1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且0PA PB ⋅=,求证:直线l 过定点.【例4】已知椭圆C :221(0)x y a b a b+=>>过点()2,0A -.右焦点为F ,纵坐标为2的点M 在C 上,且AF ⊥MF .(1)求C 的方程;(2)设过A 与x 轴垂直的直线为l ,纵坐标不为0的点P 为C 上一动点,过F 作直线PA 的垂线交l 于点Q ,证明:直线PQ 过定点.【点睛】求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.【例5】已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,其左、右焦点分别为1F ,2F ,T 为椭圆C 上任意一点,12TF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)已知()0,1A ,过点10,2⎛⎫⎪⎝⎭的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 与x 轴的交点分别为P ,Q ,证明:以PQ 为直径的圆过定点.【题型专练】1.已知椭圆()2222:10x y C a b a b+=>>的短轴长为A 到右焦点F 的距离为3.(1)求椭圆C 的方程(2)设直线l 与椭圆C 交于不同两点M ,N (不同于A ),且直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,求证:l 经过定点.2.已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且过点()3,1A .(1)求椭圆C 的方程;(2)点M ,N 在椭圆C 上,且AM AN ⊥.证明:直线MN 过定点,并求出该定点坐标.3.已知椭圆22:1(0)x y E a b a b+=>>的左,右焦点分别为1F ,2F ,且1F ,2F 与短轴的两个端点恰好为正方形的四个顶点,点2P ⎛ ⎝⎭在E 上.(1)求E 的方程;(2)过点2F 作互相垂直且与x 轴均不重合的两条直线分别交E 于点A ,B 和C ,D ,若M ,N 分别是弦AB ,CD 的中点,证明:直线MN 过定点.4.焦距为2c 的椭圆2222:1x y a bΓ+=(a >b >0),如果满足“2b =a +c ”,则称此椭圆为“等差椭圆”.(1)如果椭圆2222:1x y a b Γ+=(a >b >0)是“等差椭圆”,求b a的值;(2)对于焦距为12的“等差椭圆”,点A 为椭圆短轴的上顶点,P 为椭圆上异于A 点的任一点,Q 为P 关于原点O 的对称点(Q 也异于A ),直线AP 、AQ 分别与x 轴交于M 、N 两点,判断以线段MN 为直径的圆是否过定点?说明理由.题型二:斜率面积等定值问题【例1】动点M 与定点(1,0)A 的距离和M 到定直线4x =的距离之比是常数12.(1)求动点M 的轨迹G 的方程;(2)经过定点(2,1)M -的直线l 交曲线G 于A ,B 两点,设(2,0)P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +恒为定值.【例2】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点()0,1Q x 在椭圆上且位于第一象限,12QF F 121QFQF ⋅=-.(1)求椭圆C 的标准方程;(2)若M ,N 是椭圆C 上异于点Q 的两动点,记QM ,QN 的倾斜角分别为α,β,当αβπ+=时,试问直线MN 的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.【例3】已知点()2,1P -在椭圆2222:1(0)x yC a b a b +=>>上,C的长轴长为:l y kx m =+与C 交于,A B 两点,直线,PA PB 的斜率之积为14.(1)求证:k 为定值;(2)若直线l 与x 轴交于点Q ,求22||QA QB +的值.【例4】已知椭圆()22:10x y C a b a b+=>>的离心率23e =,且椭圆C 的右顶点与抛物线212y x =的焦点重合.(1)求椭圆C 的方程.(2)若椭圆C 的左、右顶点分别为12,A A ,直线():1l y k x =-与椭圆C 交于E ,D 两点,且点E 的纵坐标大于0,直线12,A E A D 与y 轴分别交于()()0,,0,P Q P y Q y 两点,问:P Qy y 的值是否为定值?若是,请求出该定值;若不是,请说明理由.【例5】已知椭圆()22:10x y C a b a b+=>>的左、右顶点分别为,A B ,且AB 4=,离心率为12,O 为坐标原点.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于,A B 的一点,直线,PA PB 与直线4x =分别交于点,M N .证明:以线段MN 为直径作圆被x 轴截得的弦长为定值,并求出这个定值.【例6】已知P 为圆22:4M x y +=上一动点,过点P 作x 轴的垂线段,PD D 为垂足,若点Q 满足DQ =.(1)求点Q 的轨迹方程;(2)设点Q 的轨迹为曲线C ,过点()1,0N -作曲线C 的两条互相垂直的弦,两条弦的中点分别为E F 、,过点N 作直线EF 的垂线,垂足为点H ,是否存在定点G ,使得GH 为定值?若存在,求出点G 的坐标;若不存在,请说明理由..【点睛】方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习,做到胸有成竹.【例7】已知椭圆C :()222210x y a b a b+=>>的右焦点为,F P 在椭圆C 上,PF 的最大值与最小值分别是6和2.(1)求椭圆C 的标准方程.(2)若椭圆C 的左顶点为A ,过点F 的直线l 与椭圆C 交于,B D (异于点A )两点,直线,AB AD 分别与直线8x =交于,M N 两点,试问MFN ∠是否为定值?若是,求出该定值;若不是,请说明理由.【题型专练】1.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.【点睛】方法点睛:探究性问题求解的思路及策略:(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.2.已知椭圆C :()222210x y a b a b+=>>过点()2,1D ,且该椭圆长轴长是短轴长的二倍.(1)求椭圆C 的方程;(2)设点D 关于原点对称的点为A ,过点()4,0B -且斜率存在的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线4x =-于点P ,Q ,求证PBBQ为定值.3.如下图,过抛物线22(0)y px p =>上一定点000(,)(0)P x y y >,作两条直线分别交抛物线于11(,)A x y ,22(,)B x y .(1)求该抛物线上纵坐标为2p的点到其焦点F 的距离;(2)当PA 与PB 的斜率存在且倾斜角互补时,求12+y y y 的值,并证明直线AB 的斜率是非零常数.4.如图,椭圆214x y +=的左右焦点分别为1F ,2F ,点()00,P x y 是第一象限内椭圆上的一点,经过三点P ,1F ,2F 的圆与y 轴正半轴交于点()10,A y ,经过点(3,0)B 且与x 轴垂直的直线l 与直线AP 交于点Q .(1)求证:011y y =.(2)试问:x 轴上是否存在不同于点B 的定点M ,满足当直线MP ,MQ 的斜率存在时,两斜率之积为定值?若存在定点M ,求出点M 的坐标及该定值;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在点4,03M ⎛⎫⎪⎝⎭,可使得直线MP 与MQ 的斜率之积为定值,该定值为920-.【分析】(1)设()00,P x y 、圆的方程222()(0)x y b r r +-=>,代入()3,0-、()00,x y 及()10,A y 可解得101y y =,即可证;(2)设(,0)(3)M m m ≠,由A ,P ,Q 三点共线AP AQ k k =得Q y ,即可表示出MP MQ k k ⋅讨论定值是否存在.【详解】(1)由2214x y +=可得()13,0F -,()23,0F 设()00,P x y ,则220044x y +=,设圆的方程为2220()(0)+-=>x y b r r ,代入()13,0F -及()00,x y ,得()2202220003b rx y b r⎧+=⎪⎨+-=⎪⎩,两式相减,得22220000000003443113222⎛⎫+--+-===- ⎪⎝⎭x y y y b y y y y ,所以圆的方程为022230+--=x y b y 即22001330x y y y y ⎛⎫++--= ⎪⎝⎭,令0x =,得2001330y y y y ⎛⎫+--= ⎪⎝⎭,由10y >,可得101y y =,即011y y =.5.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.6.已知椭圆22Γ:1a b+=()0a b >>的左焦点为()1,0F -,左、右顶点及上顶点分别记为A 、B 、C ,且1CF CB ⋅= .(1)求椭圆Γ的方程;(2)设过F 的直线PQ 交椭圆Γ于P 、Q 两点,若直线PA 、QA 与直线l :40x +=分别交于M 、N 两点,l 与x 轴的交点为K ,则MK KN ⋅是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.7.已知平面上一动点P 到()2,0F 的距离与到直线6x =的距离之比为3.(1)求动点P 的轨迹方程C ;(2)曲线C 上的两点()11,A x y ,()22,B x y ,平面上点()2,0E -,连结PE ,PF 并延长,分别交曲线C 于点A ,B ,若1PE EA λ= ,2PF FB λ=,问,12λλ+是否为定值,若是,请求出该定值,若不是,请说明理由.8.已知椭圆2:14x C y +=,过点0,2M ⎛⎫- ⎪⎝⎭直线1l ,2l 的斜率为1k ,2k ,1l 与椭圆交于()11,A x y ,()22,B x y 两点,2l 与椭圆交于()33,C x y ,()44,D x y 两点,且A ,B ,C ,D 任意两点的连线都不与坐标轴平行,直线12y =-交直线AC ,BD 于P ,Q .(1)求证:1122341234k x x k x x x x x x =++;(2)PM QM的值是否是定值,若是,求出定值;若不是,请说明理由.【答案】(1)证明见解析9.已知椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F 且离心率为12,椭圆C 的长轴长为4.(1)求椭圆C 的标准方程;(2)设,A B 分别为椭圆的左、右顶点,过点B 作x 轴的垂线1l ,D 为1l 上异于点B 的一点,以线段BD 为直径作圆E ,若过点2F 的直线2l (异于x 轴)与圆E 相切于点H ,且2l 与直线AD 相交于点,P 试判断1PF PH +是否为定值,并说明理由.))可知()()()222,0,2,0,1,0A B F F H -=,112212PF PH PF PF F H PF PF +=+-=+()()2,0,E m m ≠则()2,2,D m 圆E 的半径为则直线AD 直线方程为(2)2my x =+,的方程为1,x ty =+10.已知椭圆()22:10x y C a b a b+=>>的左顶点和上顶点分别为A 、B ,直线AB 与圆22:3O x y +=相切,切点为M ,且2AM MB =.(1)求椭圆C 的标准方程;(2)过圆O 上任意一点P 作圆O 的切线,交椭圆C 于E 、F 两点,试判断:PE PF ⋅是否为定值?若是,求出该值,并证明;若不是,请说明理由.11.已知椭圆22:1(0)x y C a b a b+=>>,左、右焦点分别为()11,0F -、()21,0F ,左、右顶点分别为,A B ,若T 为椭圆上一点,12FTF ∠的最大值为π3,点P 在直线4x =上,直线PA 与椭圆C 的另一个交点为M ,直线PB 与椭圆C 的另一个交点为N ,其中,M N 不与左右顶点重合.(1)求椭圆C 的标准方程;(2)从点A 向直线MN 作垂线,垂足为Q ,证明:存在点D ,使得DQ 为定值.题型三:定直线问题【例1】已知如图,长为宽为12的矩形ABCD,以为,A B焦点的椭圆2222:1x yMa b+=恰好过,C D两点,(1)求椭圆M的标准方程;(2)根据(1)所得椭圆M的标准方程,若AB是椭圆M的左右顶点,过点(1,0)的动直线l交椭圆M与CD两点,试探究直线AC与BD的交点是否在一定直线上,若在,请求出该直线方程,若不在,请说明理由.【例2】已知椭圆:C22221x ya b+=(0a b>>)的离心率为23,且⎭为C上一点.(1)求C的标准方程;(2)点A,B分别为C的左、右顶点,M,N为C上异于A,B的两点,直线MN不与坐标轴平行且不过坐标原点O,点M关于原点O的对称点为M',若直线AM'与直线BN相交于点P,直线OP与直线MN相交于点Q,证明:点Q位于定直线上.【例3】已知1F 为椭圆2222:1(0)x y C a b a b+=>>的左焦点,直线y =与C 交于A ,B 两点,且1ABF 的周长为4+ 2.(1)求C 的标准方程;(2)若(2,1)P 关于原点的对称点为Q ,不经过点P 且斜率为12的直线l 与C 交于点D ,E ,直线PD 与QE 交于点M ,证明:点M 在定直线上.【答案】(1)22182x y +=(2)证明见解析【分析】(1)将22y b =代入曲线C 的方程中求得||2AB a =,继而由三角形的面积公式得4ab =.再由椭圆的对称性和椭圆的定义得()22442a +=+,由此可求得C 的标准方程;(2)设()11,D x y ,()22,E x y ,直线l 的方程为12y x m =+,0m ≠,联立直线l 与椭圆C 的方程,并消去y 得222240x mx m ++-=,得出直线PD 的方程,直线QE 的方程,联立直线PD 与直线QE 的方程,求得点M 的坐标,继而求得12M M y x =-,可得证.(1)解:将22y b =代入2222:1(0)x y C a b a b +=>>中,解得22x a =±,则||2AB a =,所以1ABF 的面积为1222222ab a b ⨯⨯==,所以4ab =.①设C 的右焦点为2F ,连接2AF ,由椭圆的对称性可知12BF AF =,所以1ABF 的周长为()1112||||22AB AF BF AB AF AF a ++=++=+,所以()22442a +=+,②由①②解得22a =,2b =,所以C 的标准方程为22182x y +=.(2)解:设()11,D x y ,()22,E x y ,直线l 的方程为12y x m =+,0m ≠,联立直线l 与椭圆C 的方程,并消去y 得222240x mx m ++-=,【题型专练】1.已知椭圆C :()222210x y a b a b +=>>2H ⎛ ⎝⎭是C 上一点.(1)求C 的方程.(2)设A ,B 分别为椭圆C 的左、右顶点,过点()1,0D 作斜率不为0的直线l ,l 与C 交于P ,Q 两点,直线AP 与直线BQ 交于点M ,记AP 的斜率为1k ,BQ 的斜率为2k .证明:①1k k 为定值;②点M 在定直线上.2.已知()()1,0,1,0B C -为ABC 的两个顶点,P 为ABC 的重心,边,AC AB 上的两条中线长度之和为6.(1)求点P 的轨迹T 的方程.(2)已知点()()()3,0,2,0,2,0N E F --,直线PN 与曲线T 的另一个公共点为Q ,直线EP 与FQ 交于点M ,试问:当点P 变化时,点M 是否恒在一条定直线上?若是,请证明;若不是,请说明理由.3.已知椭圆C :()222210x y a b a b +=>>的离心率为2,左顶点为1A ,左焦点为1F ,上顶点为1B ,下顶点为2B ,M 为C 上一动点,11M AF △1.(1)求椭圆C 的方程;(2)过()0,2P 的直线l 交椭圆C 于D ,E 两点(异于点1B ,2B ),直线1B E ,2B D 相交于点Q ,证明:点Q 在一条平行于x 轴的直线上.。

2025高考数学必刷题 第77讲、定点、定值问题 (学生版)

2025高考数学必刷题  第77讲、定点、定值问题 (学生版)

第77讲定点、定值问题知识梳理1、定值问题解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下:(1)变量----选择适当的量为变量.(2)函数----把要证明为定值的量表示成变量的函数.(3)定值----化简得到的函数解析式,消去变量得到定值.2、求定值问题常见的方法有两种:(1)从特殊情况入手,求出定值,再证明该定值与变量无关;(2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值.常用消参方法:①等式带用消参:找到两个参数之间的等式关系(,)0F k m =,用一个参数表示另外一个参数()k f m =,即可带用其他式子,消去参数k .②分式相除消参:两个含参数的式子相除,消掉分子和分母所含参数,从而得到定值.③因式相减消参:两个含参数的因式相减,把两个因式所含参数消掉.④参数无关消参:当与参数相关的因式为0时,此时与参数的取值没什么关系,比如:2()0y kg x -+=,只要因式()0g x =,就和参数k 没什么关系了,或者说参数k 不起作用.3、求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.一般解题步骤:①斜截式设直线方程:y kx m =+,此时引入了两个参数,需要消掉一个.②找关系:找到k 和m 的关系:m =()f k ,等式带入消参,消掉m .③参数无关找定点:找到和k 没有关系的点.必考题型全归纳题型一:面积定值例1.(2024·安徽安庆·安庆一中校考三模)已知椭圆2222:1(0)x y C a b a b +=>>过点()(),0,0,A a B b --O 为坐标原点,且1OAB S = .(1)求椭圆C 的方程;(2)设P 为椭圆C 上第一象限内任意一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.例2.(2024·陕西汉中·高三统考阶段练习)已知双曲线C :()222210,0x y a b a b-=>>的焦距为1.(1)求双曲线C 的标准方程;(2)若动直线l 与双曲线C 恰有1个公共点,且与双曲线C 的两条渐近线分别交于,P Q 两点,O 为坐标原点,证明:OPQ △的面积为定值.例3.(2024·广东广州·高三广州市真光中学校考阶段练习)已知双曲线2222:1(0,0)x y C a b a b -=>>,渐近线方程为02x y ±=,点()2,0A 在C 上;(1)求双曲线C 的方程;(2)过点A 的两条直线AP ,AQ 分别与双曲线C 交于P ,Q 两点(不与A 点重合),且两条直线的斜率1k ,2k 满足121k k +=,直线PQ 与直线2x =,y 轴分别交于M ,N 两点,求证:AMN 的面积为定值.变式1.(2024·四川·成都市锦江区嘉祥外国语高级中学校考三模)设椭圆E :()222210x y a b a b+=>>过点)M ,且左焦点为()1F .(1)求椭圆E 的方程;(2)ABC 内接于椭圆E ,过点()4,1P 和点A 的直线l 与椭圆E 的另一个交点为点D ,与BC 交于点Q ,满足AP QD AQ PD = ,证明:PBC 面积为定值,并求出该定值.变式2.(2024·全国·高二专题练习)已知1l ,2l 既是双曲线1C :2214yx -=的两条渐近线,也是双曲线2C :22221x ya b-=的渐近线,且双曲线2C 的焦距是双曲线1C .(1)任作一条平行于1l 的直线l 依次与直线2l 以及双曲线1C ,2C 交于点L ,M ,N ,求MNNL的值;(2)如图,P 为双曲线2C 上任意一点,过点P 分别作1l ,2l 的平行线交1C 于A ,B 两点,证明:PAB 的面积为定值,并求出该定值.变式3.(2024·四川成都·高二树德中学校考阶段练习)已知椭圆22:14x C y +=,,A B 是椭圆上的两个不同的点,O 为坐标原点,,,A O B 三点不共线,记AOB 的面积为AOB S .(1)若()()1122,,,OA O x y x y B == ,求证:122112AOB S x y x y =- ;(2)记直线,OA OB 的斜率为12,k k ,当1214k k =-时,试探究2AOB S 是否为定值并说明理由.题型二:向量数量积定值例4.(2024·新疆昌吉·高二统考期中)已知椭圆2222:1(0)x y C a b a b+=>>,1F ,2F 是C 的左、右焦点,过1F 的动直线l 与C 交于不同的两点A ,B 两点,且2ABF △的周长为椭圆C 的其中一个焦点在抛物线24y x =准线上,(1)求椭圆C 的方程;(2)已知点5,04M ⎛⎫- ⎪⎝⎭,证明:MA MB ⋅ 为定值.例5.(2024·江西萍乡·高二萍乡市安源中学校考期末)已知()4,M m 是抛物线()2:20C y px p =>上一点,且M 到C 的焦点的距离为5.(1)求抛物线C 的方程及点M 的坐标;(2)如图所示,过点()2,0P 的直线l 与C 交于A ,B 两点,与y 轴交于点Q ,设QA PA λ= ,QB PB μ=,求证:λμ+是定值.例6.(2024·四川南充·高二四川省南充高级中学校考开学考试)已知点P 到(2,0)A -的距离是点P 到()10B ,的距离的2倍.(1)求点P 的轨迹方程;(2)若点P 与点Q 关于点B 对称,过B 的直线与点Q 的轨迹Γ交于E ,F 两点,探索BE BF ⋅是否为定值?若是,求出该定值;若不是,请说明理由.变式4.(2024·全国·高二校联考阶段练习)已知椭圆()2222:10x y E a b a b+=>>的右焦点为()1,0F ,点31,2P ⎛⎫- ⎪⎝⎭在E 上.(1)求椭圆E 的标准方程;(2)过点F 的直线l 与椭圆E 交于A ,B 两点,点Q 为椭圆E 的左顶点,直线QA ,QB 分别交4x =于M ,N 两点,O 为坐标原点,求证:OM ON ⋅为定值.变式5.(2024·上海宝山·高三上海交大附中校考期中)已知椭圆()2222:10x y C a b a b+=>>的离心率为2,椭圆的一个顶点与两个焦点构成的三角形面积为2.(1)求椭圆C 的方程;(2)已知直线()()10y k x k =->与椭圆C 交于A ,B 两点,且与x 轴,y 轴交于M ,N 两点.①若MB AN = ,求k 的值;②若点Q 的坐标为7,04⎛⎫⎪⎝⎭,求证:QA QB ⋅ 为定值.题型三:斜率和定值例7.(2024·四川成都·高三成都七中校考开学考试)已知()221:1044x y C a a a+=<<-,()222:144x y C b b b+=>-.(1)证明:2y x =-总与1C 和2C 相切;(2)在(1)的条件下,若2y x =-与1C 在y 轴右侧相切于A 点,与2C 在y 轴右侧相切于B 点.直线l 与1C 和2C 分别交于P ,Q ,M ,N 四点.是否存在定直线l 使得对任意题干所给a ,b ,总有AP AQ BP BQ k k k k +++为定值?若存在,求出l 的方程;若不存在,请说明理由.例8.(2024·河南洛阳·高三伊川县第一高中校联考开学考试)已知抛物线2111:2(0)C y p x p =>与抛物线2222:2(0)C x p y p =>在第一象限交于点P .(1)已知F 为抛物线1C 的焦点,若PF 的中点坐标为()1,1,求1p ;(2)设O 为坐标原点,直线OP 的斜率为1k .若斜率为2k 的直线l 与抛物线1C 和2C 均相切,证明12k k +为定值,并求出该定值.例9.(2024·河南许昌·高二统考期末)已知PAB 的两个顶点A ,B 的坐标分别是(0,3),(0,3),-且直线PA ,PB 的斜率之积是3-,设点P 的轨迹为曲线H .(1)求曲线H 的方程;(2)经过点(1,3)且斜率为k 的直线与曲线H 交于不同的两点E ,F (均异于A ,B ),证明:直线BE 与BF 的斜率之和为定值.变式6.(2024·河南商丘·高二校考阶段练习)已知12A A B ,,是椭圆()222210x y a b a b+=>>的顶点(如图),直线l 与椭圆交于异于顶点的P Q ,两点,且2//l A B ,且2A B =,(1)求此椭圆的方程;(2)设直线1A P 和直线BQ 的斜率分别为12k k ,,证明12k k +为定值.变式7.(2024·云南昆明·高二云南师范大学实验中学校考阶段练习)过点()1,0M 的直线为,l N 为圆22:(2)4C x y +-=与y 轴正半轴的交点.(1)若直线l 与圆C 相切,求直线l 的方程:(2)证明:若直线l 与圆C 交于,A B 两点,直线,AN BN 的斜率之和为定值.题型四:斜率积定值例10.(2024·河南郑州·高三郑州外国语学校校考阶段练习)已知椭圆()222210+=>>x y C a b a b:的离心率为2,以C 的短轴为直径的圆与直线6y ax =+相切.(1)求C 的方程;(2)直线()():10l y k x k =-≥与C 相交于A ,B 两点,过C 上的点P 作x 轴的平行线交线段AB 于点Q ,且PQ 平分APB ∠,设直线OP 的斜率为k '(O 为坐标原点),判断k k '⋅是否为定值?并说明理由.例11.(2024·内蒙古包头·高三统考开学考试)已知点()()3,0,3,0M N -,动点(),P x y 满足直线PM 与PN 的斜率之积为13-,记点P 的轨迹为曲线C .(1)求曲线C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交曲线C 于A ,B 两点,点A 在第一象限,AD ⊥x 轴,垂足为D ,连接BD 并延长交曲线C 于点H .证明:直线AB 与AH 的斜率之积为定值.例12.(2024·江苏南通·高三统考开学考试)在直角坐标系xOy 中,点P 到点)F 的距离与到直线l :x =P 的轨迹为W .(1)求W 的方程;(2)过W 上两点A ,B 作斜率均为12-的两条直线,与W 的另两个交点分别为C ,D .若直线AB ,CD 的斜率分别为1k ,2k ,证明:12k k 为定值.变式8.(2024·全国·高二随堂练习)已知椭圆()2222:10x y C a b a b +=>>的离心率为2,点(在C 上,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.题型五:斜率比定值例13.(2024·福建厦门·高二厦门一中校考期中)已知双曲线Γ:22221x y a b-=实轴AB 长为4(A 在B 的左侧),双曲线Γ上第一象限内的一点P 到两渐近线的距离之积为45.(1)求双曲线Γ的标准方程;(2)设过()4,0T 的直线与双曲线交于C ,D 两点,记直线AC ,BD 的斜率为1k ,2k ,请从下列的结论中选择一个正确的结论,并予以证明.①12k k +为定值;②12k k ⋅为定值;③12k k 为定值例14.(2024·四川成都·高二校考期中)已知椭C :22221(0)x y a b a b+=>>,12,F F 为其左右焦1F ()(1)求椭圆C 的标准方程;(2)设点P ()0000,(0)x y x y ≠,点P 在椭圆C 上,过点P 作椭圆C 的切线l ,斜率为0k ,1PF ,2PF 的斜率分别为1k ,2k ,则11201k k k k k +是否是定值?若是,求出定值;若不是,请说明理由.例15.(2024·湖北荆州·高三沙市中学校考阶段练习)已知双曲线()2222:1,0,0x y C a b a b-=>>的实轴长为4,左右两个顶点分别为12,A A ,经过点()4,0B 的直线l 交双曲线的右支于,M N两点,且M 在x 轴上方,当l x ⊥轴时,MN =(1)求双曲线方程.(2)求证:直线12,MA NA 的斜率之比为定值.题型六:线段定值例16.(2024·浙江·高二校联考期中)已知圆1C :22x y m +=与圆2C :2240x y x +-=.(1)若圆1C 与圆2C 内切,求实数m 的值;(2)设()3,0A ,在x 轴正半轴上是否存在异于A 的点(),0B b ,使得对于圆2C 上任意一点P ,PAPB为定值?若存在,求b 的值;若不存在,请说明理由.例17.(2024·重庆沙坪坝·高三重庆一中校考阶段练习)已知P 为平面上的动点,记其轨迹为Γ.(1)请从以下三个条件中选择一个,求对应的Γ的方程;①以点P 为圆心的动圆经过点()1,0F -,且内切于圆()22:116K x y -+=;②已知点()1,0T -,直线4l x =-:,动点P 到点T 的距离与到直线l 的距离之比为12;③设E 是圆22:4O x y +=上的动点,过E 作直线EG 垂直于x轴,垂足为G ,且2GP GE = .(2)在(1)的条件下,设曲线Γ的左、右两个顶点分别为A ,B ,若过点()1,0K 的直线m 的斜率存在且不为0,设直线m 交曲线Γ于点M ,N ,直线n 过点()1,0T -且与x 轴垂直,直线AM 交直线n 于点P ,直线BN 交直线n 于点Q ,则线段的比值TP TQ是否为定值?若是,求出该定值;若不是,请说明理由.例18.(2024·江西九江·统考一模)如图,已知椭圆22122:1x y C a b+=(0a b >>)的左右焦点分别为1F ,2F ,点A 为1C 上的一个动点(非左右顶点),连接1AF 并延长交1C 于点B ,且2ABF △的周长为8,12AF F △面积的最大值为2.(1)求椭圆1C 的标准方程;(2)若椭圆2C 的长轴端点为12,F F ,且2C 与1C 的离心率相等,P 为AB 与2C 异于1F 的交点,直线2PF 交1C 于,M N 两点,证明:||||AB MN +为定值.变式9.(2024·湖南·高三临澧县第一中学校联考开学考试)已知抛物线()21:0C y px p =>的焦点为1F ,抛物线22:2C y px =的焦点为2F ,且1212F F =.(1)求p 的值;(2)若直线l 与1C 交于M ,N 两点,与2C 交于P ,Q 两点,M ,P 在第一象限,N ,Q 在第四象限,且2MP NQ =,证明:MN PQ为定值.变式10.(2024·安徽合肥·高三合肥一中校联考开学考试)已知抛物线2:2E x py =(p 为常数,0p >).点()00,M x y 是抛物线E 上不同于原点的任意一点.(1)若直线00:2x l y x y =-与E 只有一个公共点,求p ;(2)设P 为E 的准线上一点,过P 作E 的两条切线,切点为,A B ,且直线PA ,PB 与x 轴分别交于C ,D 两点.①证明:PA PB ⊥②试问PC AB PB CD⋅⋅是否为定值?若是,求出该定值;若不是,请说明理由.变式11.(2024·山东淄博·高二校联考阶段练习)已知圆O :222x y r +=与直线0x y -+=相切.(1)若直线:25l y x =-+与圆O 交于M ,N 两点,求MN ;(2)已知()9,0C -,()1,0D -,设P 为圆O 上任意一点,证明:PDPC为定值.变式12.(2024·福建厦门·厦门一中校考模拟预测)已知A ,B 分别是椭圆C :()222210x y a b a b +=>>的右顶点和上顶点,AB =AB 的斜率为12-.(1)求椭圆的方程;(2)直线//l AB ,与x ,y 轴分别交于点M ,N ,与椭圆相交于点C ,D .(i )求OCM 的面积与ODN △的面积之比;(ⅱ)证明:22CM MD +为定值.变式13.(2024·四川巴中·高二四川省通江中学校考期中)已知圆C 过点()1,2A ,()2,1B ,且圆心C 在直线y x =-上.P 是圆C 外的点,过点P 的直线l 交圆C 于M ,N 两点.(1)求圆C 的方程;(2)若点P 的坐标为()0,3-,求证:无论l 的位置如何变化PM PN ⋅恒为定值;(3)对于(2)中的定值,使PM PN ⋅恒为该定值的点P 是否唯一?若唯一,请给予证明;若不唯一,写出满足条件的点P 的集合.变式14.(2024·云南·校联考模拟预测)已知点M 到定点()3,0F 的距离和它到直线l :253x =的距离的比是常数35.(1)求点M 的轨迹C 的方程;(2)若直线l :y kx m =+与圆2216x y +=相切,切点N 在第四象限,直线l 与曲线C 交于A ,B 两点,求证:FAB 的周长为定值.题型七:直线过定点例19.(2024·全国·高三专题练习)已知12,F F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,过点1(1,0)F -且与x 轴不重合的直线与椭圆C 交于,A B 两点,2ABF 的周长为8.(1)若2ABF 的面积为7,求直线AB 的方程;(2)过,A B 两点分别作直线4x =-的垂线,垂足分别是,E F ,证明:直线EB 与AF 交于定点.例20.(2024·江西南昌·高三校联考阶段练习)已知椭圆()2222:10x y C a b a b+=>>的离心率为2,左、右焦点分别为1F ,2F ,点P 为椭圆C 上任意一点,12PF F △(1)求椭圆C 的方程;(2)过x 轴上一点()1,0F 的直线与椭圆交于,A B 两点,过,A B 分别作直线2:l x a =的垂线,垂足为M ,N 两点,证明:直线AN ,BM 交于一定点,并求出该定点坐标.例21.(2024·江西南昌·高二南昌市外国语学校校考期中)在平面直角坐标系中,椭圆C :22221x y a b +=(a >b >0)过点⎝⎭.(1)求椭圆C 的标准方程;(2)过点K (2,0)作与x 轴不重合的直线与椭圆C 交于A ,B 两点,过A ,B 点作直线l :x=2a c的垂线,其中c 为椭圆C 的半焦距,垂足分别为A 1,B 1,试问直线AB 1与A 1B 的交点是否为定点,若是,求出定点的坐标;若不是,请说明理由.变式15.(2024·甘肃天水·高二统考期末)已知椭圆()2222:10x y E a b a b+=>>的左、右焦点分别为12,F F ,离心率e =2P ⎛ ⎝⎭在E 上.(1)求E 的方程;(2)过点2F 作互相垂直且与x 轴均不重合的两条直线分别交E 于点A ,B 和C ,D ,若M ,N 分别是弦AB ,CD 的中点,证明:直线MN 过定点.变式16.(2024·黑龙江鹤岗·高二鹤岗一中校考期中)在平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>的左,右顶点分别为A 、B ,点F 是椭圆的右焦点,3AF FB= ,3AF FB ⋅=.(1)求椭圆C 的方程;(2)不过点A 的直线l 交椭圆C 于M 、N 两点,记直线l 、AM 、AN 的斜率分别为k 、1k 、2k .若()121k k k +=,证明直线l 过定点,并求出定点的坐标.变式17.(2024·全国·高三专题练习)已知A 、B 分别为椭圆E ∶22221(0)x y a b a b+=>>的右顶点和上顶点、椭圆的离心率为3,F 1、F 2为椭圆的左、右焦点,点P 是线段AB 上任意一点,且12PF PF ⋅的最小值为7110-.(1)求椭圆E 的方程;(2)若直线l 是圆C ∶x 2+y 2=9上的点处的切线,点M 是直线l 上任一点,过点M 作椭圆C 的切线MG ,MH ,切点分别为G ,H ,设切线的斜率都存在.试问∶直线GH 是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.变式18.(2024·全国·高三专题练习)已知椭圆C :()222210x y a b a b+=>>的右顶点是M (2,0),离心率为12.(1)求椭圆C 的标准方程.(2)过点T (4,0)作直线l 与椭圆C 交于不同的两点A ,B ,点B 关于x 轴的对称点为D ,问直线AD 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.题型八:动点在定直线上例22.(2024·江苏南通·高二校考阶段练习)已知()()1,0,1,0B C -为ABC 的两个顶点,P 为ABC 的重心,边,AC AB 上的两条中线长度之和为6.(1)求点P 的轨迹T 的方程.(2)已知点()()()3,0,2,0,2,0N E F --,直线PN 与曲线T 的另一个公共点为Q ,直线EP 与FQ 交于点M ,试问:当点P 变化时,点M 是否恒在一条定直线上?若是,请证明;若不是,请说明理由.例23.(2024·上海·高二专题练习)已知双曲线2212x y -=的两焦点为12,F F ,P 为动点,若124PF PF +=.(1)求动点P 的轨迹E 方程;(2)若12(2,0),(2,0)(1,0)A A M -,设直线l 过点M ,且与轨迹E 交于R Q 、两点,直线1A R 与2A Q 交于S 点.试问:当直线l 在变化时,点S 是否恒在一条定直线上?若是,请写出这条定直线方程,并证明你的结论;若不是,请说明理由.例24.(2024·全国·高二专题练习)已知椭圆C 的离心率2e =,长轴的左、右端点分别为()()122,02,0A A -,(1)求椭圆C 的方程;(2)设直线1x my =+与椭圆C 交于P Q ,两点,直线1A P 与2A Q 交于点S ,试问:当m 变化时,点S 是否恒在一条直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.变式19.(2024·全国·高三专题练习)已知曲线22:163x y E +=,直线:l y x m =+与曲线E 交于y 轴右侧不同的两点,A B .(1)求m 的取值范围;(2)已知点P 的坐标为()2,1,试问:APB △的内心是否恒在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.变式20.(2024·浙江台州·高二校联考期中)已知直线l :1x my =+与圆C :2240x y x +-=交于A 、B 两点.(1)若1m =时,求弦AB 的长度;(2)设圆C 在点A 处的切线为1l ,在点B 处的切线为2l ,1l 与2l 的交点为Q .试探究:当m 变化时,点Q 是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.变式21.(2024·全国·高二专题练习)已知直线:1l x my =-,圆22:40C x y x ++=.(1)证明:直线l 与圆C 相交;(2)设直线l 与C 的两个交点分别为A 、B ,弦AB 的中点为M ,求点M 的轨迹方程;(3)在(2)的条件下,设圆C 在点A 处的切线为1l ,在点B 处的切线为2l ,1l 与2l 的交点为Q .证明:Q ,A ,B ,C 四点共圆,并探究当m 变化时,点Q 是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.变式22.(2024·吉林四平·高二校考阶段练习)已知椭圆()2222:10x y C a b a b +=>>的左、右顶点分别为1M 、2M ,短轴长为C 上的点P 满足直线1PM 、2PM 的斜率之积为34-.(1)求C 的方程;(2)若过点()1,0且不与y 轴垂直的直线l 与C 交于A 、B 两点,记直线1M A 、2M B 交于点Q .探究:点Q 是否在定直线上,若是,求出该定直线的方程;若不是,请说明理由.变式23.(2024·高二课时练习)已知椭圆C :22221x y a b+=(0a b >>)过点(P ,且离心率为2.(1)求椭圆C 的方程;(2)记椭圆C 的上下顶点分别为,A B ,过点()0,4斜率为k 的直线与椭圆C 交于,M N 两点,证明:直线BM 与AN 的交点G 在定直线上,并求出该定直线的方程.题型九:圆过定点例25.(2024·陕西西安·高二西安市铁一中学校考期末)已知椭圆2222=1(>>0)x y C a b a b+:的离心率2=e ,左、右焦点分别为12,F F ,抛物线2y =的焦点F 恰好是该椭圆的一个顶点.(1)求椭圆C 的方程;(2)已知圆M :2223x y +=的切线l (直线l 的斜率存在且不为零)与椭圆相交于,A B 两点,求证:以AB 为直径的圆是否经过坐标原点.例26.(2024·四川宜宾·校考模拟预测)已知椭圆2222:1(0)x y C a b a b +=>>的离心率2e =,左、右焦点分别为1F 、2F ,抛物线2y =的焦点F 恰好是该椭圆的一个顶点.(1)求椭圆C 的方程;(2)已知圆222:3M x y +=的切线l (直线l 的斜率存在且不为零)与椭圆相交于A 、B 两点,那么以AB 为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.例27.(2024·辽宁葫芦岛·统考二模)已知直线l 1:10x y -+=过椭圆C :2221(0)4x y b b +=>的左焦点,且与抛物线M :22(0)y px p =>相切.(1)求椭圆C 及抛物线M 的标准方程;(2)直线l 2过抛物线M 的焦点且与抛物线M 交于A ,B 两点,直线OA ,OB 与椭圆的过右顶点的切线交于M ,N 两点.判断以MN 为直径的圆与椭圆C 是否恒交于定点P ,若存在,求出定点P 的坐标;若不存在,请说明理由.变式24.(2024·全国·高三专题练习)在平面直角坐标系xOy 中,动点M 到直线4x =的距离等于点M 到点(1,0)D 的距离的2倍,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知斜率为12的直线l 与曲线C 交于A 、B 两个不同点,若直线l 不过点31,2P ⎛⎫ ⎪⎝⎭,设直线PA PB 、的斜率分别为PA PB k k 、,求PA PB k k +的值;(3)设点Q 为曲线C 的上顶点,点E 、F 是C 上异于点Q 的任意两点,以EF 为直径的圆恰过Q 点,试判断直线EF 是否经过定点?若经过定点,请求出定点坐标;若不经过定点,请说明理由.变式25.(2024·广西·高三象州县中学校考阶段练习)在直角坐标系xOy 中,动点M 到定点(1,0)F 的距离比到y 轴的距离大1.(1)求动点M 的轨迹方程;(2)当0x ≥时,记动点M 的轨迹为曲线C ,过F 的直线与曲线C 交于P ,Q 两点,直线OP ,OQ 与直线1x =分别交于A ,B 两点,试判断以AB 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.变式26.(2024·江西宜春·高二江西省丰城中学校考期末)已知双曲线C :()222210,0x y a b a b -=>>经过点A ()2,0,且点A 到C 的渐近线的距离为7.(1)求双曲线C 的方程;(2)过点()4,0作斜率不为0的直线l 与双曲线C 交于M ,N 两点,直线4x =分别交直线AM ,AN 于点E ,F .试判断以EF 为直径的圆是否经过定点,若经过定点,请求出定点坐标;反之,请说明理由.题型十:角度定值例28.(2024·全国·高三专题练习)已知椭圆()2222:10x y C a b a b+=>>上的点到它的两个焦点的距离之和为4,以椭圆C 的短轴为直径的圆O 经过这两个焦点,点A ,B 分别是椭圆C 的左、右顶点.(1)求圆O 和椭圆C 的方程;(2)已知P ,Q 分别是椭圆C 和圆O 上的动点(P ,Q 位于y 轴两侧),且直线PQ 与x 轴平行,直线AP ,BP 分别与y 轴交于点M ,N .求证:MQN ∠为定值.例29.(2024·北京·高三北京八中校考期中)已知椭圆2222:1(0)x y C a b a b+=>>上的点到它的两个焦点的距离之和为4,以椭圆C 的短轴为直径的圆O 经过这两个焦点,点A ,B 分别是椭圆C 的左、右顶点.(1)求圆O 和椭圆C 的方程.(2)已知P ,Q 分别是椭圆C 和圆O 上的动点(P ,Q 位于y 轴两侧),且直线PQ 与x 轴平行,直线AP ,BP 分别与y 轴交于点M ,N .求证:MQN ∠为定值.例30.(2024·全国·高三专题练习)已知点()20F -,是椭圆22221(0)x y E a b a b+=>>:的左焦点,过F 且垂直x 轴的直线l 交E 于P ,Q ,且10||=3PQ .(1)求椭圆E 的方程;(2)四边形ABCD (A ,D 在x 轴上方)的四个顶点都在椭圆E 上,对角线AC ,BD 恰好交于点F ,若直线AD ,BC 分别与直线l 交于M ,N ,且O 为坐标原点,求证:MOF NOF ∠=∠.变式27.(2024·重庆渝中·高三重庆巴蜀中学校考阶段练习)如图3所示,点1F ,A 分别为椭圆2222:1(0)x y E a b a b+=>>的左焦点和右顶点,点F 为抛物线2:16C y x =的焦点,且124OF OA OF ==(O 为坐标原点).(1)求椭圆E 的方程;(2)过点1F 作直线l 交椭圆E 于B ,D 两点,连接AB ,AD 并延长交抛物线的准线于点M ,N ,求证:1MF N ∠为定值.变式28.(2024·四川绵阳·高二盐亭中学校考期中)已知圆222:(64F x y -+=,N 为圆上一动点,1(F -,若线段1NF 的垂直平分线交2NF 于点M .(1)求动点M 的轨迹方程E ;(2)如图,点(2,P Q 在曲线E 上,,A B是曲线E 上位于直线PQ 两侧的动点,当,A B 运动时,满足APQ BPQ ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.变式29.(2024·广东阳江·高三统考开学考试)已知()2,0A ,()2,0B -分别是椭圆()2222:10x y C a b a b+=>>长轴的两个端点,C 的焦距为2.()3,0M ,4,03N ⎛⎫ ⎪⎝⎭,P 是椭圆C 上异于A ,B 的动点,直线PM 与C 的另一交点为D ,直线PN 与C 的另一交点为E .(1)求椭圆C 的方程;(2)证明:直线DE 的倾斜角为定值.变式30.(2024·陕西榆林·高二校考阶段练习)已知椭圆E 的中心为坐标原点,对称轴为x轴、y 轴,且过()2,1A -,2B ⎛ ⎝⎭两点.(1)求E 的方程;(2)若直线l 与圆O :2285x y +=相切,且直线l 交E 于M ,N 两点,试判断MON ∠是否为定值?若是,求出该定值;若不是,请说明理由。

高中数学解题方法系列:解析几何中的定点定线定值

高中数学解题方法系列:解析几何中的定点定线定值

高中数学解题方法系列:解析几何中的定点定线定值1.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【标准答案】(I)由题意设椭圆的标准方程为22221(0)x y a b a b +=>>3,1a c a c +=-=,22,1,3a c b ===221.43x y ∴+=(II)设1122(,),(,)A x y B x y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340k m +->.212122284(3),3434mk m x x x x k k -⇒+=-⋅=++22221212121223(4)()()().34m k y y kx m kx m k x x mk x x m k-⋅=+⋅+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ⋅=-,1212122y yx x ∴⋅=---,(最好是用向量点乘来)1212122()40y y x x x x +-++=,2222223(4)4(3)1640343434m k m mkk k k --+++=+++,2271640m mk k ++=,解得1222,7km k m =-=-,且满足22340k m +->.当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0).7综上可知,直线l 过定点,定点坐标为2(,0).72.已知椭圆)0(1:2222>>=+b a by a x C 过点)23,1(,且离心率21=e 。

解析几何定点、定值问题答案

解析几何定点、定值问题答案

解析几何定点、定值问题答案1、解:(Ⅰ)由题意知e=a c =21,所以e 2=22c a =222cb -a =41.即a 2=43b 2. 又因为b=116+=3,所以a 2=4,b 2=3.故椭圆的方程为3422y x +=1.…4分 (Ⅱ)由题意知直线PB 的斜率存在,设直线PB 的方程为y=k(x-4).由⎪⎩⎪⎨⎧=+-=134)4(22y x x k y ,得(4k 2+3)x 2-32k 2x+64k 2-12=0. ①…6分设点B(x 1,y 1),E(x 2,y 2),则A(x 1,-y 1).直线AE 的方程为y-y 2=1221x x y y -+(x-x 2).令y=0,得x=x 2-12122)(y y x x y +-.将y 1=k(x 1-4),y 2=k(x 2-4)代入,整理,得x=8)(42212121-++-x x x x x x . ②…8分由①得x 1+x 2=34k 3222+k ,x 1x 2=3412k 6422+-k …10分 代入②整理,得x=1. 所以直线AE 与x 轴相交于定点Q(1,0).……12分2、(1)解:设),,(),,(2211y x B y x A (1)由条件知直线.2:px y l -=.……1分 由⎪⎩⎪⎨⎧=-=pxy p x y 2,22消去y ,得.04322=+-p px x …………2分 由题意,判别式.044)3(22>⋅--=∆p p (不写,不扣分) 由韦达定理,.4,322121p x x p x x ==+.……………………………3分 由抛物线的定义,.43)2()2(||21p p p px p x AB =+=+++= 从而.42,84==p p 所求抛物的方程为.42x y =.…………………6分 (2)易得.2,21221p y y p y y =+-=.……………………………7分设),(00y x P 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何定点、定值问题1、已知椭圆C :(22221>>0)y x a b a b +=的离心率为21,以原点为圆点,椭圆的短半轴为半径的圆与直线06=+-y x 相切。

(Ⅰ)求椭圆的标准方程;(Ⅱ)设P (4,0),A,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;2、斜率为1的直线l 过抛物线2:2(0)y px p Ω=>的焦点F ,与抛物线交于两点A ,B 。

(1)若|AB|=8,求抛物线Ω的方程;(2)设P 是抛物线Ω上异于A ,B 的任意一点,直线PA ,PB 分别交抛物线的准线于M ,N 两点,证明M ,N 两点的纵坐标之积为定值(仅与p 有关)。

3、在平面直角坐标系中,点(,)P x y 为动点,已知点A,(B ,直线PA 与PB的斜率之积为12-.(I )求动点P 轨迹E 的方程;(II )过点(1,0)F 的直线l 交曲线E 于,M N 两点,设点N 关于x 轴的对称点为Q (Q M 、不重合),求证:直线MQ 过定点.4、如图,曲线C 1是以原点O 为中心,F 1、F 2为焦点的椭圆的一部分,曲线C 2是以原点O为顶点,F 2为焦点的抛物线的一部分,3(2A 是曲线C 1和C 2的交点.(Ⅰ)求曲线C 1和C 2所在的椭圆和抛物线的方程;(Ⅱ)过F 2作一条与x 轴不垂直的直线,分别与曲线C 1、C 2依次交于B 、C 、D 、E 四点,若G 为CD 中点,H 为BE 中点,问22||||||||BE GF CD HF ⋅⋅是否为定值,若是,求出定值;若不是,请说明理由.5、已知抛物线)0(22>-=p px y 的焦点为F ,过F 的直线交y 轴正半轴于P 点,交抛物线于,A B 两点,其中A 在第二象限。

(1)求证:以线段FA 为直径的圆与y 轴相切; (2)若12FA AP,BF FA λλ==,求21λλ-的值.6、已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .⊙M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线,交l 于点A , 交⊙M 于另一点B ,且2AO OB ==.(Ⅰ)求⊙M 和抛物线C 的方程;(Ⅱ)过圆心M 的直线交抛物线C 于P 、Q 两点,求OP OQ ⋅的值。

7、已知椭圆C 的中心在原点,焦点在x ,它的一个顶点恰好是抛物线241x y =的焦点, (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过椭圆C 的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若12,,MA AF MB BF λλ== 12λλ+求证:为定值.8、(2012枣庄一摸)已知椭圆C 1:22221(0)x y a b a b +=>>的离心率为12,椭圆上一点到一个焦点的最大值为3,圆222:870C x y x ++-+=,点A 是椭圆上的顶点,点P 是椭圆C 1上不与椭圆顶点重合的任意一点。

(1)求椭圆C 1的方程;(2)若直线AP 与圆C 2相切,求点P 的坐标; (3)若点M 是椭圆C 1上不与椭圆顶点重合且异于点P 的任意一点,点M 关于x 轴的对称点是点N ,直线MP ,NP 分别交x 轴于点1(,0)E x ,点2(,0)F x ,探究12x x ⋅是否为定值。

若为定值,求出该定值;若不为定值,请说明理由。

(1) 求椭圆C 的方程;(2) 设直线l :=+y kx m 与椭圆C 交于,M N 两点,直线22,F M F N 的倾斜角分别为αβ、,且αβπ+=,求证:直线l 过定点,并求该定点的坐标.10、(2012东营一摸)已知直线:=l y x 22:+=5O x y ,椭圆2222:1(>>0)y x E a b a b+=的离心率=3e ,直线l 被圆O 截得的弦长与椭圆的短轴长相等. (Ⅰ)求椭圆E 的方程;(Ⅱ)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证两切线斜率之积为定值.11、已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F , 点()0,2M 是椭圆的一个顶点,12F MF ∆是等腰直角三角形. (Ⅰ)求椭圆的方程;(Ⅱ)过点M 分别作直线MA ,MB 交椭圆于A ,B 两点,设两直线的斜率分别为1k ,2k ,且128k k +=,证明:直线AB 过定点(2,21--).12、直线l 与椭圆22221(0)y x a b a b+=>>交于11(,)A x y ,22(,)B x y 两点,已知11(,)m ax by =,22(,)n ax by =,若m n ⊥且椭圆的离心率e =,又椭圆经过点,O 为坐标原点. (1)求椭圆的方程;(2)若直线l 过椭圆的焦点(0,)F c (c 为半焦距),求直线l 的斜率k 的值; (3)试问:AOB ∆的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.13、已知抛物线2=4y x 的焦点为F ,直线l 过点(4,0)M .(1)若点F 到直线l ,求直线l 的斜率.(2)设A B 、为抛物线上两点,且AB 不与x 轴垂直,若线段AB 的垂直平分线恰过点M ,求证:线段AB 中点的横坐标为定值.14、已知椭圆E 的长轴的一个端点是抛物线2y = (1)求椭圆E 的方程;(2)过点C (—1,0),斜率为k 的动直线与椭圆E 相交于A 、B 两点,请问x 轴上是否存在点M ,使⋅为常数?若存在,求出点M 的坐标;若不存在,请说明理由。

15、已知点21,F F 分别为椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,点P 为椭圆上任意一点,P 到焦点2F 的距离的最大值为12+,且21F PF ∆的最大面积为1.(I )求椭圆C 的方程。

(II )点M 的坐标为)0,45(,过点2F 且斜率为k 的直线L 与椭圆C 相交于B A ,两点。

对于任意的R k ∙∈,是否为定值?若是求出这个定值;若不是说明理16、已知曲线C 上的动点P 到点)0,2(F 的距离比它到直线1-=x 的距离大1. (I )求曲线C 的方程;(II )过点)0,2(F 且倾斜角为)20(παα<<的直线与曲线C 交于B A ,两点,线段AB 的垂直平分线m 交x 轴于点P ,证明:α2cos ||||⋅-FP FP 为定值,并求出此定值.17、(2012枣庄一摸)已知椭圆C 1:22221(0)x y a b a b +=>>的离心率为12,椭圆上一点到一个焦点的最大值为3,圆222:870C x y x ++-+=,点A 是椭圆上的顶点,点P 是椭圆C 1上不与椭圆顶点重合的任意一点。

(1)求椭圆C 1的方程;(2)若直线AP 与圆C 2相切,求点P 的坐标;(3)若点M 是椭圆C 1上不与椭圆顶点重合且异于点P 的任意一点,点M 关于x 轴的对称点是点N ,直线MP ,NP 分别交x 轴于点1(,0)E x ,点2(,0)F x ,探究12x x ⋅是否为定值。

若为定值,求出该定值;若不为定值,请说明理由。

18、已知椭圆E :)0(12222>>=+b a by a x 的左焦点)0,5(1-F ,若椭圆上存在一点D ,满足以椭圆短轴为直径的圆与线段1DF 相切于线段1DF 的中点F . (Ⅰ)求椭圆E 的方程;(Ⅱ)已知两点)1,0(),0,2(M Q -及椭圆G :192222=+by a x ,过点Q 作斜率为k 的直线l 交椭圆G 于K H ,两点,设线段HK 的中点为N ,连结MN ,试问当k 为何值时,直线MN 过椭圆G 的顶点? (Ⅲ) 过坐标原点O 的直线交椭圆W :14292222=+by a x 于P 、A 两点,其中P 在第一象限,过P 作x轴的垂线,垂足为C ,连结AC 并延长交椭圆W 于B ,求证:PB PA ⊥.19、已知椭圆22221(0)x y a b a b+=>>的一个焦点F 与抛物线24y x =的焦点重合,且截抛物45的直线l 过点F . (Ⅰ)求该椭圆的方程;(Ⅱ)设椭圆的另一个焦点为1F ,问抛物线24y x =上是否存在一点M ,使得M 与1F 关于直线l 对称,若存在,求出点M 的坐标,若不存在,说明理由.20、已知椭圆C 的焦点在x 轴上,中心在原点,离心率e =,直线2l :y x =+与以原点为圆心,椭圆C 的短半轴为半径的圆O 相切。

(I)求椭圆C 的方程;(Ⅱ)设椭圆C 的左、右顶点分别为A 1,A 2,点M 是椭圆上异于A l ,A 2的任意一点,设直线MA 1,MA 2的斜率分别为12MA MA k ,k ,证明12MA MA k k 为定值。

(Ⅲ)设椭圆方程22221x y a b +=,A 1,A 2为长轴两个端点,M 是椭圆上异于A 1,A 2的任意一点,12MA MA k ,k 分别为直线MA l ,MA 2的斜率,利用上面(Ⅱ)的结论,直接写出12MA MA k k 的值(不必写出推理过程)21、(2012德州一摸)设椭圆C :222210x y (a b )a b+=>>的一个顶点与抛物线:2x =的焦点重合,F 1、F 2分别是椭圆的左、右焦点,离心率e =F 2的直线l 与椭圆C 交于M 、N 两点.(I)求椭圆C 的方程;(Ⅱ)是否存在直线l ,使得1OM ON ∙=-,若存在,求出直线l 的方程;若不存在,说明理由;。

相关文档
最新文档