无穷级数整理
无穷级数知识点总结考研
无穷级数知识点总结考研一、无穷级数的概念无穷级数是由无穷多个数的和组成,通常用符号∑表示。
其一般形式为:S = a_1 + a_2 + a_3 + ...... + a_n + ......其中a_n是一个数列,称为级数的通项。
无穷级数是由级数的部分和组成的序列,即S_n = a_1 + a_2 + ...... + a_n,所以求无穷级数的和,就是求该序列的极限,即lim(S_n)。
在实际运用中,我们通常是通过研究级数的部分和的性质,来求级数的和或证明级数的敛散性。
二、无穷级数的敛散性1. 收敛与发散的定义级数的和S = ∑a_n,如果级数的部分和S_n = a_1 + a_2 + ...... + a_n存在极限L,即lim(S_n) = L,那么称级数收敛,其和为L,记作∑a_n = L。
如果级数的部分和S_n的极限不存在,或者极限为无穷大,即lim(S_n) = ±∞,那么称级数发散。
2. 收敛级数的判定(1)正项级数收敛判定对于正项级数∑a_n,即a_n≥0,根据级数的部分和单调递增有界的结论,若存在常数M,使得对一切n始终成立S_n ≤ M,那么级数收敛;如果对于任意的M > 0,总存在n_0,使得对一切n > n_0有S_n > M,那么级数发散。
(2)比较判别法若对于所有的n,总有0 ≤ a_n ≤ b_n,且∑b_n收敛,那么∑a_n也收敛;若对于所有的n,总有a_n ≥ b_n ≥ 0,且∑b_n发散,那么∑a_n也发散;若∑b_n发散,且对于足够大的n,总有a_n>b_n,则∑a_n发散。
(3)比值判别法若存在常数0 < q < 1及整数n_0,使得当n > n_0时,有a_n_+1/a_n ≤ q,那么级数收敛;若a_n_+1/a_n≥1,那么级数发散;若a_n_+1/a_n不满足以上两个条件,那么比值判别法无法判断级数的敛散性。
无穷级数知识点
⽆穷级数知识点⽆穷级数知识点⽆穷级数1. 级数收敛充要条件:部分和存在且极值唯⼀,即:1lim n k n k S u ∞→∞==∑存在,称级数收敛。
2.若任意项级数1n n u ∞=∑收敛,1n n u ∞=∑发散,则称1n n u ∞=∑条件收敛,若1n n u ∞=∑收敛,则称级数1nn u ∞=∑绝对收敛,绝对收敛的级数⼀定条件收敛。
. 2. 任何级数收敛的必要条件是lim 0n n u →∞=3.若有两个级数1n n u ∞=∑和1n n v ∞=∑,11,n n n n u s v σ∞∞====∑∑则①1()n n n u v s σ∞=±=±∑,11n n n n u v s σ∞∞===∑∑。
②1n n u ∞=∑收敛,1n n v ∞=∑发散,则1()n n n u v ∞=+∑发散。
③若⼆者都发散,则1()n n n u v ∞=+∑不确定,如()111, 1k k ∞∞==-∑∑发散,⽽()1110k ∞=-=∑收敛。
4.三个必须记住的常⽤于⽐较判敛的参考级数:a) 等⽐级数:0111n n ar ar r ∞=?-=??≥?∑,收敛,r 发散,b) P 级数: 11p n n ∞=>?=?≤?∑收敛,p 1发散,p 1c) 对数级数: 21ln pn n n ∞=>?=?≤?∑收敛,p 1发散,p 15.三个重要结论①11()n n n a a ∞-=-∑收敛lim n n a →∞存在②正项(不变号)级数n a ∑收2n a ?∑收,反之不成⽴,③2n a ∑和2n b ∑都收敛n n a b ?∑收,n na b n n∑∑或收6.常⽤收敛快慢正整数 ln (0)(1)!n n n n a a n n αα→>→>→→由慢到快连续型 ln (0)(1)x x x x a a x αα→>→>→由慢到快7.正项(不变号)级数敛散性的判据与常⽤技巧1.达朗贝尔⽐值法 11,lim 1,lim 0)1,n n n n n n l u l l u l µµ+→∞→+∞=>≠??=??收发(实际上导致了单独讨论(当为连乘时)2. 柯西根值法 1,1,1,n n n n l u l l n l µ=>??=?收发(当为某次⽅时)单独讨论3. ⽐阶法①代数式 1111n n n n n n n n n n u v v u u v ∞∞∞∞====≤∑∑∑∑收敛收敛,发散发散②极限式 lim nn nu A v →∞=,其中:1n n u ∞=∑和1n n v ∞=∑都是正项级数。
(完整版)无穷级数整理
无穷级数整理一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0.2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变.5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim >=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p -级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim1>=+∞→r u u nn n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n n u 与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在Rx x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n nn x x a在R x x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n nx x ,∑∞=-=+022)1(11n n n x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1]. ⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1]. ⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1].(2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l ]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx nnxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin n nxdx x n nxdx x n nxdx x n n n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e ax ax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.。
无穷级数知识点总结专升本
无穷级数知识点总结专升本一、概念无穷级数是由无限多个项组成的级数,其中每个项都是一个数字或者变量的表达式。
无穷级数通常用符号∑表示,其中∑表示总和,表示对所有项进行求和。
无穷级数可以是收敛的,也可以是发散的。
对于收敛的无穷级数,其和可以用极限来表示;对于发散的无穷级数,其和不存在。
二、级数的性质1.级数的部分和级数的部分和是指级数前n项的和,用Sn表示。
当n趋向无穷大时,级数的部分和就是级数的和。
当级数的部分和的极限存在时,级数收敛;当级数的部分和的极限不存在时,级数发散。
2.级数的收敛与发散级数的收敛指的是级数的部分和的极限存在,也就是级数的和存在;级数的发散指的是级数的部分和的极限不存在,也就是级数的和不存在。
3.级数的敛散性级数敛散性指的是级数的收敛性或发散性。
级数的敛散性可以通过级数的部分和的极限是否存在来判断。
4.级数的比较性级数的比较性是指通过级数的部分和与其他级数的部分和进行比较来判断级数的敛散性。
可以通过比较原则、比值原则、根值原则等方法来比较级数的敛散性。
5.级数的运算性质级数满足加法、数乘、绝对收敛、收敛性与级数重新排列等运算性质。
三、收敛级数1.正项级数对于所有项均为非负数的级数,称为正项级数。
正项级数通常采用单调有界数列的性质来判断是否收敛。
2.幂级数幂级数是形式为∑an*x^n的无穷级数,其中an为常数系数,x为自变量。
幂级数通常需要通过收敛半径来判断其收敛性。
3.级数的收敛判别法级数的收敛判别法是用来判断级数是否收敛的方法,包括比较法、审敛法、根值法、比值法、积分法等。
4.级数收敛性的应用无穷级数的收敛性可以应用于数学和物理等领域,如泰勒级数、傅立叶级数等。
四、发散级数1.发散级数的定义对于发散级数而言,其和不存在,无法通过有限项之和来表示。
发散级数可能是几何级数、调和级数、交错级数等。
2.级数的发散判别法级数的发散判别法是用来判断级数是否发散的方法,例如:项数发散法、数值发散法、微分法等。
(完整版)无穷级数整理
1无穷级数整理一、数项级数(一) 数项级数的基本性质1•收敛的必要条件:收敛级数的一般项必趋于0.2•收敛的充要条件(柯西收敛原理):对任意给定的正数 ,总存在N 使得对于任何两个 N大于的正整数 m 和n 总有S m S n•(即部分和数列收敛)3•收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛) ,而一个收敛级数和一个发散级数的和与差必发散4•对收敛级数的项任意加括号所成级数仍然收敛,且其和不变 5•在一个数项级数内去掉或添上有限项不会影响敛散性 (二) 数项级数的性质及敛散性判断 1•正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛 (2)比较判别法(放缩法):若两个正项级数U nn 1V n 收敛时,级数 U n 亦收敛;若I ,则当级数1n 1n 散时,级数V n 亦发散•n 1V n 之间自某项以后成立着关系:n 1存在常数c0,使 U n CV n (n 1,2,),那么 (i )当级数V n 收敛时,级数1U n 亦收敛;n 1(ii )当级数U n 发散时,级数 n 1V n 亦发散•推论:设两个正项级数U n 和 n 1V n ,且自某项以后有1U n 1 U n4,那么V n(i )当级数n V n 收敛时,级数1U n 亦收敛;n 1(ii )当级数U n 发散时, n 1V n 亦发散•(3)比较判别法的极限形式 (比阶法):给定两个正项级数Un n 1和 V n ,若 lim U nn 1nV n那么这两个级数敛散性相同(注:可以利用无穷小阶的理论和等价无穷小的内容)另外,若I 0,则当级数U n 发常用度量:①等比级数:q n,当q 1时收敛,当q 1时发散;n 01②P-级数:丄,当p 1时收敛,当p 1时发散(p 1时称调和级数);n 1 n p1③广义P-级数:p,当p 1时收敛,当p 1时发散•n 2 n In n④交错p-级数:(1)n12,当p 1时绝对收敛,当Op 1时条件收敛•n 1 n pu(4)达朗贝尔判别法的极限形式(商值法):对于正项级数u n,当lim 口r 1时n U nn 1级数u n收敛;当1血乩r 1时级数u n发散;当r 1或r 1时需进一步判断• n 1 n U n n 1(5)柯西判别法的极限形式(根值法):对于正项级数u n,设r lim n u n,那么r 1nn 1时此级数必为收敛,r 1时发散,而当r 1时需进一步判断•(6 )柯西积分判别法:设u n为正项级数,非负的连续函数 f (x)在区间[a,)上单调n 1下降,且自某项以后成立着关系:f(U n) U n,则级数U n与积分° f(X)dx同敛散.n 12•任意项级数的理论与性质(1 )绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然;②对于级数U n,将它的所有正项保留而将负项换为0,组成一个正项级数V n,其中n 1 n 1 Un| U nV n 一!-------- ;将它的所有负项变号而将正项换为0,也组成一个正项级数W n ,其中2 n 1U n| U nW n 一!------- ,那么若级数U n绝对收敛,则级数V n和W.都收敛;若级数U n 2n 1 n 1 n 1 n 1条件收敛,则级数V n和W n都发散.n 1 n 1③ 绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同④若级数 U n 和 V n 都绝对收敛,它们的和分别为 U 和V ,则它们各项之积按照任何方n 1n 1式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积 U nV n 也绝对收敛,且和也为UV .n 1n 1注:C nU nV n ,这里C nUN n U 2V n 1U n 1V 2 U n V 1n 1n 1n 1且U n 单调减少(即U n U n J,则 (1)"勺山收敛,其和不超过第一项,且余和的符号n 1与第一项符号相同,余和的值不超过余和第一项的绝对值二、函数项级数(一)幕级数1•幕级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幕级数 a n (x x 0)n 在x x oR 内绝对收敛,在 x x 0 Rn 0内发散,其中R 为幕级数的收敛半径•(2)阿贝尔第一定理:若幕级数a n (xx 0)n 在x 处收敛,则它必在x x 0 x 0n 0内绝对收敛;又若a n (x x 0)n 在x处发散,则它必在 x x 0 x 0也发散•n 0推论1:若幕级数a n x n 在x (0)处收敛,则它必在 x 内绝对收敛;又若幕n 0级数a n X n 在x( 0)处发散,则它必在 x 时发散•n 0推论2:若幕级数a n (x X 0)n 在x处条件收敛,则其收敛半径 R I X 。
无穷级数总结
无穷级数总结无穷级数是数学中的重要概念,常出现在分析学、代数学、数论等领域。
它的形式为一列数相加的无穷和。
无穷级数的研究对于了解数学的发展历程和数学的基本思想方法具有重要意义。
本文将对无穷级数的定义、性质、收敛与发散的判定方法以及一些典型的无穷级数进行介绍和总结。
无穷级数的定义意味着\[S_n=a_1+a_2+...+a_n\]\[S=a_1+a_2+a_3+...\]其中,$S_n$表示级数的前n项和,S表示整个级数的和,$a_n$表示级数的第n项。
我们称一个无穷级数收敛或发散取决于它的部分和序列。
具体来说,如果存在一个有限的实数 S,使得对于任意给定的正数 $\varepsilon $,当 n 大于一些自然数 N 时,总有\[ ,S-S_n,< \varepsilon \]那么我们说该级数是收敛的,并把这个实数S叫做级数的和,记做\[ S=\sum_{n=1}^{+ \infty } a_n\]如果上述性质不成立,即对于任意给定的正数S,当n大于一些自然数N时,总存在\[ ,S-S_n, \geq \varepsilon \]那么我们说该级数是发散的。
在判断无穷级数是否收敛时,可以运用收敛的充分条件。
其中,比较判别法、比值判别法、根值判别法是最常用的方法之一1.比较判别法:如果存在一个收敛的级数 $\sum b_n$,使得对于所有的正整数 n,有 $,a_n, \leq b_n$,那么级数 $\sum a_n$ 收敛。
反之,如果级数$\sum a_n$ 发散,那么对于所有的正整数 n,必有 $,a_n, \geqb_n$ 对一些发散的正项级数 $\sum b_n$ 成立。
2.比值判别法:对于正项级数 $\sum a_n$,如果存在一个常数 L,使得当 n 大于一些正整数 N 时,总有 $\frac{a_{n+1}}{a_n} \leq L < 1$,那么级数$\sum a_n$ 收敛。
无穷级数知识点总结
无穷级数知识点总结一、无穷级数的定义无穷级数是指由无限个实数或复数项组成的数列之和。
一般地,我们用数列 {a_n} 来表示无穷级数的各项,那么无穷级数就可以表示为:S = a_1 + a_2 + a_3 + ...其中 S 代表无穷级数的和,而 a_1, a_2, a_3, ... 分别代表无穷级数的各项。
无穷级数通常可以用极限的概念来进行定义,即无穷级数的和就是数列的极限。
如果数列 {S_n} 的部分和数列收敛到某个数 L,那么无穷级数 S 的和便为 L,即:S = lim (n->∞) S_n = L这里的 S_n 代表无穷级数的部分和数列,它可以写成:S_n = a_1 + a_2 + ... + a_n无穷级数的定义是无穷数列极限的推广,它引入了无穷个数的概念,因此无穷级数的性质和收敛性等问题相对于有限级数来说更加复杂和多样。
二、无穷级数的性质无穷级数在数学中有着许多重要的性质,这些性质对于研究无穷级数的收敛性、计算方法以及应用等方面都有着重要的作用。
下面我们将详细介绍无穷级数的一些重要性质。
1. 无穷级数的有限项相加结果相同如果无穷级数的有限项相加的结果相同,那么这个无穷级数的和也相同。
即如果无穷级数S = a_1 + a_2 + a_3 + ... 的前 n 项之和等于 S_n,而无穷级数 T = b_1 + b_2 + b_3 + ... 的前 n 项之和等于 T_n,并且 S_n = T_n,那么这两个无穷级数的和也相等,即 S = T。
2. 无穷级数的倒序相加结果相同如果无穷级数的倒序相加的结果与原来的无穷级数相同,那么这个无穷级数的和同样相同,即如果无穷级数 S = a_1 + a_2 + a_3 + ... 的倒序相加的结果也等于 S,那么这个无穷级数的和就等于 S。
3. 无穷级数的部分和数列的有界性如果无穷级数的部分和数列 {S_n} 是有界的,即存在一个正数 M,使得对于所有的正整数n,都有 |S_n| <= M,那么这个无穷级数是收敛的。
无穷级数知识点汇总
无穷级数知识点汇总无穷级数是由无穷多个数的和组成的数列。
它是数学中的基本概念,具有广泛的应用,涉及到数学分析、物理学、工程学等领域。
无穷级数的收敛与发散是无穷级数研究的核心问题。
收敛意味着无穷级数的和存在,而发散则意味着无穷级数的和不存在。
接下来,我们将介绍几个与无穷级数收敛与发散相关的知识点。
1.部分和的概念:对于给定的无穷级数,在给定的位置截取有限个数进行求和,这个和称为部分和。
部分和序列是由部分和构成的数列。
在研究无穷级数收敛与发散时,通常先分析部分和序列的性质。
2.等比级数:等比级数是指形如a+ar+ar^2+...的级数,其中a是首项,r是公比。
当公比,r,<1时,等比级数收敛,和为a/(1-r)。
当,r,≥1时,等比级数发散。
3.绝对收敛与条件收敛:如果一个无穷级数的各项绝对值组成的级数收敛,那么这个级数是绝对收敛的。
如果一个级数是收敛的但不是绝对收敛的,那么这个级数是条件收敛的。
4. 正项级数:如果一个无穷级数的各项都是非负数,或者说对于所有的n,an≥0,那么这个级数是正项级数。
正项级数的部分和序列是递增的,且如果部分和序列有上界,则该级数收敛。
5.收敛判别法:为了判断一个无穷级数的收敛性,数学家发展了多种不同的方法。
其中一些著名的判别法包括比值判别法、根值判别法、积分判别法等。
这些方法根据级数项之间的关系,通过判断级数的部分和序列是否满足一些特定条件,进而判断级数的收敛性。
6.绝对收敛级数的性质:绝对收敛级数在加法和乘法运算下具有良好的性质。
例如,绝对收敛级数可以无限重排项而不改变其和。
此外,对于绝对收敛级数,我们可以通过将级数分拆成两部分再进行求和,这样的重排不改变级数的和。
除了以上内容,无穷级数还涉及到级数的收敛半径、幂级数、Fourier级数等等一系列的概念和方法。
-收敛半径是幂级数中重要的一个概念,指的是幂级数在哪些点上收敛的临界点。
可以使用柯西-阿达玛公式来计算收敛半径。
无穷级数知识点总结简短
无穷级数知识点总结简短
1. 无穷级数的定义
无穷级数是指由无限个数相加而成的级数,通常表示为:
S = a1 + a2 + a3 + ...
其中,a1, a2, a3...表示级数的每一项。
2. 无穷级数的收敛与发散
无穷级数可能收敛也可能发散。
如果无穷级数的部分和S_n在n趋向无穷时收敛于某一有
限数,即lim(S_n) = S,则称该无穷级数收敛;如果无穷级数的部分和S_n在n趋向无穷
时发散至无穷大或者发散至负无穷大,即lim(S_n) = ±∞,则称该无穷级数发散。
3. 无穷级数的收敛性判别法
无穷级数的收敛性判别法有很多种,包括比较判别法、比值判别法、根值判别法、积分判
别法等。
这些判别法可以用来判断无穷级数的收敛性,并且在实际问题中有很多应用。
4. 无穷级数的性质
无穷级数有许多重要的性质,包括级数的线性性质、级数的绝对收敛性、级数的收敛域等。
这些性质在研究无穷级数的收敛性和计算级数的和时非常重要。
5. 无穷级数的应用
无穷级数在物理、工程、计算机科学等领域都有重要的应用。
例如,在物理学中,泰勒级
数可用于近似计算非线性函数的值;在工程学中,级数可以用来描述振动、波动等现象;
在计算机科学中,级数在算法复杂性分析和数值计算中也有广泛的应用。
总之,无穷级数是数学中一个重要的概念,它涉及到收敛与发散、收敛性判别法、性质和
应用等方面,对于理解和应用级数有着重要的意义。
无穷极数知识点总结
无穷极数知识点总结1. 无穷级数的定义无穷级数是指由无穷多个项组成的级数,通常表示为a1 + a2 + a3 + ... + an + ...,其中每一项an是一个实数或复数。
无穷级数可以是收敛的,即其和是一个有限的值,也可以是发散的,即其和不存在或为无穷大。
2. 无穷级数的收敛无穷级数收敛的概念是指无穷级数的和在某个范围内趋于一个有限的值。
收敛的无穷级数在数学分析和实际应用中有着广泛的应用,例如在泰勒级数展开、微积分中的积分计算等方面。
无穷级数的收敛有多种判别法,如比较判别法、根值判别法、积分判别法等。
3. 无穷级数的发散无穷级数发散的概念是指无穷级数的和无法趋向于一个有限的值,而是趋向于无穷大或者根本无法定义。
无穷级数的发散也有多种判别法,例如奇偶项判别法、柯西收敛准则等。
4. 绝对收敛与条件收敛无穷级数的收敛有两种情况,一种是绝对收敛,即该级数每一项的绝对值级数收敛;另一种是条件收敛,即该级数每一项的绝对值级数发散,但级数本身却收敛。
绝对收敛级数在某种程度上更容易处理和计算,而条件收敛级数的性质相对更为复杂,也更有意思。
5. 级数收敛的充分条件对于实数级数来说,级数部分和序列的收敛性与级数本身的收敛性之间是十分紧密的,因此研究级数部分和序列的收敛性可以得到级数收敛的充分条件。
比如级数收敛的柯西准则、级数收敛的柯西——施瓦茨准则、莱布尼茨级数收敛准则等。
6. 无穷级数的运算无穷级数也可以进行加减乘除等运算,不过进行这些运算时需要满足一定的条件,比如级数收敛、级数部分和序列的收敛性等。
无穷级数的运算规则也有许多特殊的性质,如级数的收敛性与绝对收敛性的性质、级数的乘法运算性质、级数的幂级数展开等。
7. 级数收敛的应用无穷级数的研究在数学中有着广泛的应用,比如在分析学中的泰勒级数展开、微积分中的求和、微分方程的求解、数论中的级数和等方面都有不同程度的应用。
无穷级数也在物理学、工程学、经济学等应用领域中有着很多重要的应用。
无穷级数知识点总结公式
无穷级数知识点总结公式无穷级数的定义:无穷级数的一般形式可以表示为:\[ \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \ldots + a_n + \ldots \]其中,\( a_n \) 是级数的第 n 个项。
级数的和通常记为 \( S \),即\[ S = a_1 + a_2 + a_3 + \ldots + a_n + \ldots \]当级数的和存在有限值时,称级数收敛;当级数的和不存在有限值时,称级数发散。
无穷级数的性质:1. 无穷级数的和与项的次序无关级数的项次序可以进行重新排列,其和仍然相同。
2. 收敛级数的任意项的和都趋于零对于收敛级数,其各项的和对应的部分和序列的极限为级数的和。
3. 收敛级数的每一项都可以表示为部分和序列的差对于收敛级数,其每一项都可以表示为相邻两个部分和之差。
无穷级数的收敛性:在讨论无穷级数时,我们关心的一个重要问题是该级数是否收敛。
无穷级数的收敛性可以通过不同的收敛判别法来进行判断。
1. 正项级数收敛判别法对于正项级数 \(\sum_{n=1}^{\infty} a_n\):- 若 \( \lim_{n \to \infty} a_n = 0 \) 且 \( a_n \) 单调递减(即 \( a_{n+1} \leq a_n \)),则级数收敛;- 若 \( a_n \) 单调递减且有界,则级数收敛;- 若 \( \lim_{n \to \infty} a_n \) 不存在或 \( \lim_{n \to \infty} a_n \neq 0 \) ,则级数发散。
2. 比较判别法设 \( \sum_{n=1}^{\infty} a_n \) 和 \( \sum_{n=1}^{\infty} b_n \) 为两个级数,若存在正常数 \( C \),当 \( n \) 充分大时有 \( 0 \leq a_n \leq Cb_n \),则级数\( \sum_{n=1}^{\infty} b_n \) 收敛时级数 \( \sum_{n=1}^{\infty} a_n \) 收敛,级数\( \sum_{n=1}^{\infty} b_n \) 发散时级数 \( \sum_{n=1}^{\infty} a_n \) 发散。
无穷级数重要知识点总结
无穷级数重要知识点总结一、无穷级数的定义1.1 无穷级数的概念无穷级数是一种特殊的数列求和形式。
它由一个无穷数列的项之和构成,通常表示为a1 + a2 + a3 + ... + an + ...,其中a1, a2, a3, ...是数列的项。
无穷级数的和是用极限的概念来定义的,即当n趋向无穷时,无穷级数的前n项和趋于一个确定的数。
1.2 无穷级数的收敛和发散无穷级数有两种基本的收敛性质:收敛和发散。
当无穷级数的和存在时,我们称这个级数是收敛的;当无穷级数的和不存在时,我们称这个级数是发散的。
1.3 无穷级数的通项无穷级数的通项是指级数中每一项的公式表示。
通项的形式多种多样,可以是一个简单的代数式,也可以是一个复杂的函数表达式。
通项的形式对于判断无穷级数的收敛性有着重要的作用。
二、无穷级数的性质2.1 无穷级数的加法性质如果无穷级数a1 + a2 + a3 + ... + an + ...和无穷级数b1 + b2 + b3 + ... + bn + ...都存在,那么它们的和也存在,并且等于这两个级数的和的和。
即∑(ai + bi) = ∑ai + ∑bi。
2.2 无穷级数的乘法性质如果无穷级数a1 + a2 + a3 + ... + an + ...和无穷级数b1 + b2 + b3 + ... + bn + ...都存在,那么它们的乘积也存在,并且等于这两个级数的乘积的和。
即(∑ai) * (∑bi) = ∑(ai * bi)。
2.3 无穷级数的极限性质当n趋向无穷时,无穷级数的前n项和会趋于一个确定的数。
这个极限的存在性和确定性是无穷级数的一个重要性质。
2.4 无穷级数的收敛性质对于一个给定的无穷级数,我们需要研究它的收敛性质,即它是否收敛、以及收敛到哪个数。
无穷级数的收敛性质对于很多数学问题有着深远的影响。
2.5 无穷级数的发散性质发散是无穷级数的另一个重要性质,它表示无穷级数的和不存在。
无穷级数(全)
无穷级数1、无穷级数:表达式 +++++n u u u u 321 称为无穷级数,简称级数.记作∑∞=1n nu, 其中n u 称为级数的一般项.2、部分和: 级数∑∞=1n nu的前n 项和 ∑==nk kn uS 1称为级数∑∞=1n nu的部分和.3、收敛的定义: 如果级数∑∞=1n nu的部分和数列}{n S 有极限S ,即S S n n =∞→lim ,则称级数∑∞=1n nu收敛.S 称为级数∑∞=1n nu的和, 并写成: ++++=321u u u S ∑∞==1n nu.如果}{n S 没有极限, 则称级数∑∞=1n nu发散.4、常数项级数收敛的必要条件:若级数∑∞=1n nu收敛,则必有0lim =∞→n n u ,反之若0lim ≠∞→n n u ,则级数一定发散5常用级数敛散性判定方法: ①等比级数:∑∞=0n n aq ,当 1q < 收敛,且级数收敛于qa -111q ≥ 发散当然等比级数的敛散性也可以由等比级数的部分和数列来判断:若S 存在则收敛,反之则发散. ②P-级数:∑∞=1n P n 11p >收敛,1p ≤发散(p=1时为调和级数);③常数级数:∑∞=0n C 当0≠C 时级数发散,0=C 时,级数收敛.6、级数收敛的性质 以下假设∑∞=1n nu与∑∞=1n nv收敛于S 与T , 则①∑∑∞=∞==11n n n nu u λλ, (λ为常数). ②∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.③∑∞=1n nu收敛⇔对任意的非负整数m ,有∑∞+=1m n nu收敛.即: 在级数前面去掉或加上有限项不影响级数的敛散性. ④若S un n=∑∞=1,则将级数的项任意加括号后所成的级数S n n=∑∞=1σ. 反之不然.7、正项级数敛散性的判定方法: ①充要条件:部分和数列有界②比较法:对级数的缩放,利用已知的级数来判断未知级数的敛散性;适用于含有P(型)-级数、、多项式和正余弦的级数.其中P(型)-级数、对数、多项式主要是删减低次项和常数项,而正余弦主要是利用其小于1的性质.③比阶法:找到一个已知敛散性的级数,通过其与需求级数作商曲极限,来判断需求级数的敛散性.适用于P(型)-级数,等比级数、多项式等.定义如下:设∑∞=1n n u 与∑∞=1n n v 均为正项级数,若L v u nnn =∞→lim,则(1)当L=0时,若∑∞=1n nv收敛,则∑∞=1n nu也收敛;(2)当L=+∞时,若∑∞=1n nv发散,则∑∞=1n nu也发散.(3)当0<L<+∞时,∑∞=1n nv与∑∞=1n nu有相同敛散性.④比值法:通过对级数通向第n+1项与第n 项作商取极限来判断级数敛散性.不适用含有对数、多项式和正余弦的级数.定义如下:设∑∞=1n n u 为正项级数,若ρ=+∞→nn n u u 1lim,则(1)1<ρ时, 级数∑∞=1n nu收敛;(2) 1>ρ或+∞=ρ时, 级数∑∞=1n nu发散;(3)1=ρ时, 级数∑∞=1n nu可能收敛也可能发散.⑤其他常用方法(1)关于级数中带有多项式的分式方程的:ⅰ分子最高次≥分母最高次则级数一定发散; ⅱ分子最高次<分母最高次,则用比阶法来判断. 设sn n V 1=(s 为分子最高项-分母最高项的差值) (2)关于级数中带有对数的:用比阶法题目中()c n U tn +=ln ,就设tn n V 1=作商取极限,需要用L ,hospital 定理8、交错级数的审敛法:(莱布尼茨定理) 设∑∞=--11)1(n n n u 为交错级数, 若满足(1) n n u u ≤+1, ,2,1=n ; (2) 0lim =∞→n n u , 则 ∑∞=--11)1(n n n u 收敛,9、任意项级数的绝对收敛和条件收敛 ①绝对收敛的级数∑∞=1n nu :∑∞=1||n nu 收敛;②条件收敛的级数∑∞=1n n u:∑∞=1||n nu发散, 但∑∞=1n n u 收敛.③∑∞=1||n nu收敛 ⇒ ∑∞=1n n u 收敛. 反之不然.④此类级数多用比值法来判断绝对值级数是否发散 ⑤若任意项级数∑∞=1n nu条件收敛,则其所有正项或者负项构成的级数均为发散的.10、函数项级数①定义: 设 ),(,),(),(21x u x u x u n 是定义在I 上的函数,则++++=∑∞=)()()()(211x u x u x u x u nn n称为定义在区间I 上的(函数项)无穷级数.②收敛域(1) 收敛点I x ∈0—— ∑∞=10)(n nx u 收敛;(2) 发散点I x ∈0——∑∞=10)(n nx u 发散;(3) 收敛域D —— ∑∞=1)(n nx u 的所有收敛点的全体D ;(4) 发散域G ——∑∞=1)(n n x u 的所有发散点的全体G .(5)解题方法:已知级数∑∞=1)(n nx u,求其收敛域.ⅰ用比值法算出大致收敛域:)(的式子关于x 1Q x lim==+∞→nn n u u ρ,令)(x Q <1,算出x 收敛大范围(a ,b ),收敛半径R=2b-a (()∞++∞∞-∈可以为R R ,,) ⅱ将端点值带入级数∑∞=1)(n nx u中,算出∑∞=1)(n n a u 与∑∞=1)(n n b u 的敛散性,判断端点值是否可以取到,过程可以略过. ⅲ综上所述,写出级数∑∞=1)(n nx u的收敛域③和函数)(x S —— ∑∞==1)()(n nx u x S , D x ∈.解题方法:已知级数∑∞=1)(n nx u,求其和函数.ⅰ求出其收敛域;ⅱ将级数经过求导或者积分,得到一个等比级数 ⅲ用等比级数收敛公式qa -11算出和函数的导数或者原函数的表达式;ⅳ将求出的表达式积分或求导,写成)(x S 的形式,并注明收敛域.【注】已知级数∑∞=1)(n nx u,求∑∞=1n n V 的和ⅰ-ⅳ步骤同上ⅴ将n n V x u 与)(建立起联系,想当x 为何值时n n V x u =)(,然后将x 带入)(x S 中.11、函数项级数的展开式.(1) f (x ) = e x= ∑∞=0!n nn x , x ∈(-∞, +∞);(2) f (x ) = sin x = ∑∞=++-012!)12()1(n n n xn ,x ∈(-∞, + ∞);(3) f (x ) = cos x = ∑∞=-02!)2()1(n nn x n ,x ∈(-∞, + ∞);(4) 11()1n n f x x x ∞===-∑ ,x ∈(-1, 1);(5) 11()()1n n f x x x ∞===-+∑ ,x ∈(-1, 1);(6) f (x ) = ln (1 + x ) = ∑∞=+-11)1(n nn x n , x ∈(-1, 1]。
大一下高数知识点无穷级数
大一下高数知识点无穷级数大一下高数知识点:无穷级数在大一下的高等数学课程中,无穷级数是一个重要的知识点。
无穷级数是由无穷多个数相加(或相减)所得的结果,它在数学和其它科学领域中都有广泛的应用。
本文将着重介绍无穷级数的定义、性质和一些重要的收敛准则。
一、无穷级数的定义无穷级数可以写作以下形式:S = a₁ + a₂ + a₃ + ... + aₙ + ...其中,a₁、a₂、a₃等为级数的各项。
二、常见的无穷级数1. 等差级数等差级数是最常见的一类无穷级数。
它的通项公式一般为:aₙ = a₁ + (n-1)d其中,a₁为首项,d为公差。
例如,等差级数的前5项可以表示为:S₅ = a₁ + (a₁ + d) + (a₁ + 2d) + (a₁ + 3d) + (a₁ + 4d)2. 等比级数等比级数的通项公式一般为:aₙ = a₁ * r^(n-1)其中,a₁为首项,r为公比。
例如,等比级数的前5项可以表示为:S₅ = a₁ + a₁r + a₁r² + a₁r³ + a₁r⁴三、无穷级数的性质1. 部分和在无穷级数中,我们通常用部分和来近似计算级数的和。
部分和Sn定义为:Sₙ = a₁ + a₂ + a₃ + ... + aₙ其中,n为正整数。
2. 收敛和发散对于无穷级数,如果其部分和Sn在n趋向于无穷大时有极限S,则称该级数收敛,否则称该级数发散。
如果收敛,其收敛值S即为无穷级数的和。
3. 收敛性质无穷级数有以下重要的收敛性质:(1)若级数Sn收敛,则其任意子级数也收敛。
(2)若级数Sn发散,则其任意超级数也发散。
(3)若级数Sn和级数Tn都是收敛的,则它们的和级数Sn + Tn也是收敛的。
4. 绝对收敛和条件收敛若级数的所有项的绝对值构成的级数收敛,则称原级数绝对收敛。
否则,若级数本身收敛但其对应的绝对值级数发散,则称原级数条件收敛。
四、无穷级数的收敛准则在判断无穷级数的收敛性时,有一些常用的收敛准则:1. 正项级数判别法如果级数的所有项都是非负数,并且后一项总是比前一项大或相等,则该级数收敛。
无穷级数总结
无穷级数总结一、概念与性质1.定义:对数列U1,U2^|,U^| , U n称为无穷级数,U n 称为一般项;若部分和数列{S n}有极限S,即lim S n S,称级数收敛,否则称为发散•n2•性质①设常数C 0,贝U U n与CU n有相同的敛散性;n 1 n 1②设有两个级数U n与V n,若U n S,V* ,则(U n V n) S ;n 1 n 1 n 1 n 1 n 1若U n收敛,V n发散,则(片V n )发散;n 1 n 1 n 1若U n,V n均发散,则(U n冷)敛散性不确定;n 1 n 1 n 1③添加或去掉有限项不影响一个级数的敛散性;④设级数U n收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.n 1注:①一个级数加括号后所得新级数发散,则原级数发散;②一个级数加括号后收敛,原级数敛散性不确定.⑤级数U n收敛的必要条件:lim U n 0 ;n 1 n注:①级数收敛的必要条件,常用判别级数发散;②若lim U n 0,则U n未必收敛;n n 1③若U n发散,则lim U n 0未必成立. nn 1二、常数项级数审敛法1.正项级数及其审敛法①定义:若U n 0,则U n称为正项级数•n 1②审敛法:(ii ) 比较审敛法:设 U n ①与 V n ②都是正项级数,且U n %(n 1,2,),n 1n 1川则若②收敛则①收敛;若①发散则②发散•A. 若②收敛,且存在自然数N ,使得当n N 时有U n k%(k 0)成立,则①收敛;若②发散,且存在自然数 N ,使得当n N 时有U n kv n (k 0)成立,则 ①发散;1B. 设 U n 为正项级数,若有 p 1使得U n 帀(n 1,2,川),则U n 收敛;若n 11( U n (n nC. 极限形式:U n 与 V n 有相同的敛散性.n 1n 1注:常用的比较级数:①几何级数:n 1 arr 1 1 r ・n 1发散r 1②p 级数:1收敛P 1时n 1n p发散P 1时, ③调和级数:11 1 1发散.n 1 n2n(iii )比值判别法(达郎贝尔判别法)设 a n 是正项级数,若n 11,或iim; a n 1,推不出级数的敛散.例丄与2,虽然nn 1 n n 1 n充要条件:正项级数U n 收敛的充分必要条件是其部分和数列有界),贝U Un 发散.n 11,2, U n ①与 V n ②都是正项级数,若lim 也1(0丨 ),则1 nV n①limna n 1 anr 1,则 a n 收敛;②lim 也 n 1nan r 1,则 a n 发散.n 1注:若limna n 1 anlim a n^ 1, lim n a n 1,但丄发散,而g收敛.n a n n■'n 1 n n 1 n2n ___(iv)根值判别法(柯西判别法)设a n是正项级数,』m ■, a n,若 1 ,n 1 n级数收敛,若1则级数发散.(v)极限审敛法:设u n o,且lim n p u n l,则①lim n p U n l 0且p 1,则级n n数U n发散;②如果p 1,而lim n p U n l(0 l ),则其收n 1 n敛.(书上P317-2- (1))注:凡涉及证明的命题,一般不用比值法与根值法,一般会使用比较判别法•正项级数的比(根)值判别法不能当作收敛与发散的充要条件,是充分非必要条件.2.交错级数及其审敛法①定义:设U n 0(n 1,2J||),则(1)n 1U n称为交错级数.n 1②审敛法:莱布尼兹定理:对交错级数(1)n 1u n,若u n u n 1且lim u n0,n 1 n贝U ( 1)n1u n收敛.n 1注:比较u n与u n 1的大小的方法有三种:①比值法,即考察也是否小于1;u n②差值法,即考察u n u n 1是否大于0;③由u n找出一个连续可导函数f(x),使u n f(n) ,(n 1,2,)考察f (x)是否小于0.3.一般项级数的判别法:①若u n绝对收敛,则u n收敛.n 1 n 1②若用比值法或根值法判定|u n |发散,则u n必发散.n 1 n 1、幕级数1. 定义: a n X n称为幕级数.n 02. 收敛性有X 处绝对收敛.反之,若幕级数 a n X n在X !处发散,则其在满足x X !n 0的所有X 处发散. ②收敛半径(i) 定义:若幕级数在X X 0点收敛,但不是在整个实轴上收敛,则必存在一个正数R ,使得①当X X 0 R 时,幕级数收敛;②当XX 。
(完整版)无穷级数总结.docx
无穷级数总结一、概念与性质1.定义:对数列 u1, u2 ,L,u n L ,u n称为无穷级数, u n称为一般项;若部分和n 1数列 { S n} 有极限S,即lim S n S ,称级数收敛,否则称为发散 .n2.性质①设常数 c0 ,则u n与cu n有相同的敛散性;n 1n 1②设有两个级数u n与v n,若u n s ,v n,则(u n v n ) s;n1n 1n1n 1n 1若u n收敛,v n发散,则(u n v n ) 发散;n 1n 1n 1若u n,v n均发散,则(u n v n ) 敛散性不确定;n 1n 1n 1③添加或去掉有限项不影响一个级数的敛散性;④设级数u n收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.n 1注:①一个级数加括号后所得新级数发散,则原级数发散;②一个级数加括号后收敛,原级数敛散性不确定.⑤级数u n收敛的必要条件: lim u n0 ;nn 1注:①级数收敛的必要条件,常用判别级数发散;②若 lim u n 0 ,则u n未必收敛;n n 1③若u n发散,则n 1二、常数项级数审敛法1.正项级数及其审敛法lim u n0 未必成立.n①定义:若 u n0 ,则u n称为正项级数.n 1② 审敛法:( i)充要条件:正项级数u n收敛的充分必要条件是其部分和数列有界.n 1( ii )比较审敛法:设 u n ①与v n ②都是正项级数, 且 u nv n (n1,2,L ) ,n 1n 1则若②收敛则①收敛;若①发散则②发散 .A. 若②收敛,且存在自然数 N ,使得当 nN 时有 u nkv n (k 0) 成立,则①收敛;若②发散,且存在自然数 N ,使得当 nN 时有 u n kv n (k0) 成立,则①发散;B. 设u n 为正项级数,若有p 1 使得 u1 (n 1,2,L ) ,则u n收敛;若n 1nnpn1u n1u n 发散 .(n 1,2,L ) ,则nn 1C. 极限形式:设u n ①与v n ②都是正项级数,若 limu nl (0 l) ,则n 1n 1nv nu n 与v n 有相同的敛散性 .n 1n 1注:常用的比较级数:ar n 1ar 1 ;①几何级数:1 rn 1发散r11收敛p时② p 级数:1 ;n 1 n p发散 p1时③ 调和级数:1111 发散.1n2nn( iii )比值判别法(达郎贝尔判别法)设a n 是正项级数,若n 1①注:若lima n 1r1,则 a n 收敛;② lima n 1r 1,则a n 发散.na nn 1na nn 1an 1n11lim1,或 lim a n1 ,推不出级数的敛散 .例与,虽然a nn 1n n 1n 2nnliman 11, lim n an 1 ,但1 发散,而 1 收敛 .na nnn 1nn 1n 2( iv )根值判别法(柯西判别法)设na n 是正项级数, lim an,若 1 ,n 1n级数收敛,若1则级数发散.( v)极限审敛法:设u n0 ,且lim n p u n l ,则①lim n p u n l0 且 p 1 ,则级n n数u n发散;②如果 p 1 ,而 lim n p u n l (0l) ,则其收n1n敛.(书上 P317-2-(1))注:凡涉及证明的命题,一般不用比值法与根值法,一般会使用比较判别法.正项级数的比(根)值判别法不能当作收敛与发散的充要条件,是充分非必要条件.2.交错级数及其审敛法①定义:设 u n 0(n 1,2,L ) ,则( 1)n 1u n称为交错级数.n 1②审敛法:莱布尼兹定理:对交错级数( 1)n 1u n,若 u n un 1且 lim u n0 ,n 1n则( 1)n 1 u n收敛.n 1注:比较 u n与 u n 1的大小的方法有三种:①比值法,即考察u n 1是否小于 1;u n②差值法,即考察 u n u n 1是否大于0;③由 u n找出一个连续可导函数 f ( x) ,使 u n f (n), (n 1,2, ) 考察 f ( x) 是否小于0.3.一般项级数的判别法:①若u n绝对收敛,则u n收敛 .n 1n1②若用比值法或根值法判定| u n |发散,则u n必发散.n1n1三、幂级数1.定义:a n x n称为幂级数.n 02.收敛性① 阿贝尔定理:设幂级数a n x n在 x00处收敛,则其在满足 x x0的所n 0有 x 处绝对收敛.反之,若幂级数 a n x n在 x1处发散,则其在满足 xx1n 0的所有 x 处发散.② 收敛半径(i)定义:若幂级数在x x0点收敛,但不是在整个实轴上收敛,则必存在一个正数 R ,使得①当x x0R 时,幂级数收敛;②当x x0R 时,幂级数发散;R称为幂级数的收敛半径.(ii )求法:设幂级数 a n x n的收敛半径为R,其系数满足条件 lim an 1l ,n 0n a n或 lim n a n l,则当 0 l时, R1;当 l 0 时, R,n l当l时,R 0.注:求收敛半径的方法却有很大的差异.前一个可直接用公式,后一个则须分奇、偶项(有时会出现更复杂的情况)分别来求.在分成奇偶项之后,由于通项中出现缺项,由此仍不能用求半径的公式直接求,须用求函数项级数收敛性的方法.(i ii )收敛半径的类型A.R 0 ,此时收敛域仅为一点;B.R,此时收敛域为( , );C. R =某定常数,此时收敛域为一个有限区间.3.幂级数的运算(略)4.幂级数的性质①若幂级数的收敛半径R 0 ,则和函数S( x) a n x nn 0②若幂级数的收敛半径R 0 ,则和函数S( x) a n x nn 0在收敛区间在收敛区间( R, R) 内连续.( R, R) 内可导,且可逐项求导,即 S ( x) (a n x n )(a n x n )na n x n 1,收敛半径不变.n 0n 0n 1③若幂级数的收敛半径 R 0 ,则和函数S( x) a n x n在收敛区间 ( R, R) 内可积,n0x xa n t n )dt x且可逐项积分,即S(t )dt(a n t n dt ( x ( R, R)) ,收敛半径不00n 0n 00变.5.函数展开成幂级数①若 f ( x) 在含有点 x 0 的某个区间 I 内有任意阶导数, f ( x) 在 x 0 点的 n 阶泰勒公式为 f ( x)f ( x 0 ) f (x 0 )( x x 0 )f (x 0 )2 f (n) ( x 0 )2! (x x 0 )( x x 0 )n!f (n1) ()( x x 0 )( n 1),记 R n ( x) f (n1) ()x 0) ( n 1) , 介于 x, x 0 之间,则 f ( x) 在 ( n 1)!(n 1)! ( xI 内能展开成为泰勒级数的充要条件为lim R n ( x) 0,x I .n②初等函数的泰勒级数 ( x 0 0)( i ) e xx n , x (,) ;n 0 n!( ii ) sin x(1) n 1 x 2n 1 , x( ,) ;n 1(2n 1)!( iii ) cos x( 1) nx 2n( ,) ;( 2n)! , xn 0( iv ) ln(1 x)( 1) n x n 1( 1, 1] ;n 1, xn 0( v ) (1 x)1(1) ( n 1) x n , x( 1, 1), (R) ;n 1n!( vi )1xx n , x1 ;1 x( 1) n x n , x 1.1 n 01 n 06.级数求和①幂级数求和函数解题程序( i )求出给定级数的收敛域;( ii )通过逐项积分或微分将给定的幂级数化为常见函数展开式的形式(或易看出其假设和函数 s( x) 与其导数 s ( x) 的关系),从而得到新级数的和函数;注:系数为若干项代数和的幂级数, 求和函数时应先将级数写成各个幂级数的代数和,然后分别求出它们的和函数, 最后对和函数求代数和, 即得所求级数的和函数.②数项级数求和( i )利用级数和的定义求和,即 lim S n s ,则u n s ,其中nn 1ns n u 1 u 2u nu k .根据 s n 的求法又可分为:直接法、拆项法、递k1推法.A. 直接法:适用于u k 为等差或等比数列或通过简单变换易化为这两种数列;k 1B.拆项法:把通项拆成两项差的形式,在求n 项和时,除首尾两项外其余各项对消掉.( ii )阿贝尔法(构造幂级数法)a nlima n x n ,其中幂级数a n x n ,可通n 0x 1 n 0n 0过逐项微分或积分求得和函数 S(x) .因此a nlim s(x) .n 0x 1四、傅里叶级数 1. 定义①定义 1:设 f (x) 是以 2为周期的函数,且在 [ , ] 或 [ 0, 2 ] 上可积,则11a nf ( x) cos nxdx11b nf ( x) sin nxdx2 0, 1, 2 ) ,f (x) cosnxdx, (n 02 1, 2, ) ,f (x) sin nxdx,( n 0称为函数 f (x) 的傅立叶系数.②定义 2:以 f (x) 的傅立叶系数为系数的三角级数1 a 0(a n cos nx b n sin nx) .2n 1称为函数 f ( x) 的傅立叶级数,表示为f ( x)~1a 0(a n cos nx b n sin nx) .2n 1③定义 3:设 f (x) 是以 2l 为周期的函数,且在 [l , l ] 上可积,则以1l f (x) cosn xdx, (n 0, 1, 2 ) ,a nll l1lf (x) sinnxdx, (n 1, 2) 为系数的三角级数 b nll l1a 0( a n cosnx b n sinnx)称为 f ( x) 的傅立叶级数,表示为2n 1llf ( x)~ 1a 0(a n cosnx b n sin nx) .2l ln 12. 收敛定理(狄里赫莱的充分条件)设函数f ( x) 在区间 [ , ] 上满足条件①除有限个第一类间断点外都是连续的;②只有有限个极值点,则 f ( x) 的傅立叶级数在 [ ,] 上收敛,且有f x ), x 是 f x 的连续点 ;( ( )1[ f ( x 0 0) f ( x 0 0)],a 02 .( a n cos nx b n sin nx)2x 是 f x 的第一类间断点 ;n 1( )1[ f (0)f (0)], x23. 函数展开成傅氏级数①周期函数( i )以 2 为周期的函数 f ( x) : f ( x)~ aa n cos nxb n sin nx2n 11f ( x) cos nxdx(n 0, 1, 2, ) , b n 1f ( x) sin nxdx(n1, 2,) ;a n注:①若 f ( x) 为奇函数,则 f ( x)~b n sin nx (正弦级数 ), a n 0 (n0, 1, 2, )n 1b n2f ( x)sin nxdx(n1, 2, ) ;②若 f ( x) 为偶函数,则f x ~a 0a n cos nx (余弦级数 ),( )2n 1a n2f ( x)cos nxdx (n0,1, 2, ) , b n 0(n 1, 2, ) .( ii )以 2l 为周期的函数 f ( x) : f x ~aa nnn x)( )2 cosx + bn sinn 1l l1lnxdx(n0, 1, 2,1l n xdx(n 1, 2, ) ;a nf (x) cos) , b nf (x) sinllllll注:①若 f ( x) 为奇函数,则 f ( x)~b n sinn0 (n0,1, 2, )x (正弦级数 ), a nn 1l2 b nll 0f ( x)sin nxdx(n 1, 2, ) ;l②若 f ( x) 为偶函数,则f x ~aa nn ( )cosx , (余弦级数 )2n 1l2a nllf ( x)cos nxdx (n 0, 1, 2, ) , b n 0(n 1, 2, ) .l②非周期函数( i )奇延拓:f ( x), 0 x,则 F ( x) 除 x 0 外在A. f (x) 为 [0, ] 上的非周期函数,令 F ( x)x),xf ([, ] 上 为 奇 函 数 , f ( x)~ b n sin nx ( 正 弦 级 数 ) , b n2f (x)sin nxdxn 1(n1, 2, ) ;B.f (x), 0 x lf (x) 为 [0, l ] 上的非周期函数,则令 F (x)f ( x), l,则 F (x) 除 x 0 外x 0在 [,] 上为奇函数,~n2f ( x)b n sin x (正弦级数),b nn 1l l (n1, 2,) .lnf ( x)sin xdx l( ii )偶延拓:A. f (x)为[0,] 上的非周期函数,令 F ( x) f ( x),0x,f ( x),x0则 F (x) 除x0 外在[ ,] 上为偶函数, f (x)~a0a n cosnx (余2n 1弦级数 ),a n 20, 1, 2,) .f ( x)cos nxdx (nB. f (x)为[0, l ]上的非周期函数,令 F ( x) f ( x),0x l,则f ( x),l x0f ( x)~a0a n cosnx (余弦级数),a n22n 1l llf ( x)cosnxdx (n 0,1, 2, ).l注:解题步骤:①画出图形、验证狄氏条件.画图易于验证狄氏条件,易看出奇偶性;②求出傅氏系数;③写出傅氏级数,并注明它在何处收敛于 f ( x) .。
无穷级数知识点汇总
无穷级数知识点汇总一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0.2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变.5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim >=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p -级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim1>=+∞→r u u nn n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n n u 与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在Rx x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n nn x x a在R x x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n nx x ,∑∞=-=+022)1(11n n n x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1]. ⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1]. ⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1].(2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l ]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx nnxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin n nxdx x n nxdx x n nxdx x n n n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e ax ax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.。
无穷级数内容小结
1.数项级数:∑∞=1n nu,称∑==ni kn us 1为前n 项部分和。
若存在常数 s,使n n s s ∞→=lim ,则称级数收敛,s 为该级数的和;否则级数发散。
2.数项级数性质:1)∑∞=1n nCu=C∑∞=1n nu;2)若级数∑∞=1n nu,∑∞=1n nv收敛于σ,s ,则级数∑∞=±1n n nv u收敛于σ±s ;3)级数中去掉,增加或改变有限项,敛散性不变;4)收敛级数任意加括号所得的级数仍收敛,且其和不变。
5)若级数∑∞=1n nu收敛,必有0lim =∞→n n u3.两个重要级数:1)几何级数:∑∞=-11n n aq= +++++-12n aqaq aq a (0≠a )若,1<q 级数收敛,其和为qa-1,若,1≥q 级数发散。
2)p 级数:∑∞=11n p n = +++++pp p n 131211(p>0) 若p>1,级数收敛;若1≤p ,级数发散;当p=1时,调和级数∑∞=11n n发散。
4.正项级数审敛法:对一切自然数n,都有0≥n u ,称级数∑∞=1n nu为正项级数方法:1)比较审敛法:设∑∞=1n nu和∑∞=1n nv都是正项级数,且n n v u ≤(n=1,2,…)若级数∑∞=1n nv收敛,则级数∑∞=1n nu收敛;若级数∑∞=1n n u 发散,则∑∞=1n n v 发散。
2)比较审敛法的极限形式:若l v u nnn =∞→lim )0(+∞<<l ,则∑∞=1n n u 和∑∞=1n nv 同时收敛或同时发散。
3)比值审敛法:若ρ=+∞→n n n u u 1lim ,则若p<1,级数收敛;若1>p )lim (1∞=+∞→nn n u u包括,级数发散;当p=1时,级数可能收敛,也可能发散。
4根值审敛法:若ρ=∞→n n n u lim ,则若p<1,级数收敛;若1>p )lim (∞=∞→n n n u 包括,级数发散;当p=1时,级数可能收敛,也可能发散。
(完整版)无穷级数总结
(完整版)⽆穷级数总结⽆穷级数总结⼀、概念与性质1. 定义:对数列12,,,n u u u L L ,1n n u ∞=∑称为⽆穷级数,n u 称为⼀般项;若部分和数列{}n S 有极限S ,即lim n n S S →∞=,称级数收敛,否则称为发散.2. 性质①设常数0≠c ,则∑∞=1n n u 与∑∞=1n n cu 有相同的敛散性;②设有两个级数∑∞=1n n u 与∑∞=1n n v ,若∑∞==1n n s u ,σ=∑∞=1n n v ,则∑∞=±=±1)(n n n s v u σ;若∑∞=1n n u 收敛,∑∞=1n n v 发散,则∑∞=±1)(n n n v u 发散;若∑∞=1n n u ,∑∞=1n n v 均发散,则∑∞=±1)(n n n v u 敛散性不确定;③添加或去掉有限项不影响⼀个级数的敛散性;④设级数∑∞=1n n u 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.注:①⼀个级数加括号后所得新级数发散,则原级数发散;②⼀个级数加括号后收敛,原级数敛散性不确定.⑤级数∑∞=1n n u 收敛的必要条件:0lim =∞→n n u ;注:①级数收敛的必要条件,常⽤判别级数发散;②若0lim =∞→n n u ,则∑∞=1n n u 未必收敛;③若∑∞=1n n u 发散,则0lim =∞→n n u 未必成⽴.⼆、常数项级数审敛法 1. 正项级数及其审敛法①定义:若0n u ≥,则∑∞=1n n u 称为正项级数.②审敛法:(i )充要条件:正项级数∑∞=1n n u 收敛的充分必要条件是其部分和数列有界.(ii )⽐较审敛法:设∑∞=1n n u ①与∑∞=1n n v ②都是正项级数,且(1,2,)n n u v n ≤=L ,则若②收敛则①收敛;若①发散则②发散.A. 若②收敛,且存在⾃然数N ,使得当n N ≥时有(0)n n u kv k ≤>成⽴,则①收敛;若②发散,且存在⾃然数N ,使得当n N ≥时有(0)n n u kv k ≥>成⽴,则①发散;B. 设∑∞=1n n u 为正项级数,若有1p >使得1(1,2,)n p u n n ≤=L ,则∑∞=1n n u 收敛;若1(1,2,)n u n n ≥=L ,则∑∞=1n n u 发散.C. 极限形式:设∑∞=1n n u ①与∑∞n n v ②都是正项级数,若lim(0)nn nu l l v →∞=<<+∞,则 ∑∞=1n nu与∑∞=1n n v 有相同的敛散性.注:常⽤的⽐较级数:①⼏何级数:∑∞=-??≥<-=11111n n r r r aar 发散;②-p 级数:∑∞=≤>1111n p p p n 时发散时收敛;③调和级数:∑∞=++++=112111n nn ΛΛ发散.(iii )⽐值判别法(达郎贝尔判别法)设∑+∞=1n n a 是正项级数,若①1lim1<=++∞→r a a n n n ,则∑+∞=1n n a 收敛;②1lim 1>=++∞→r a a n n n ,则∑+∞n n a 发散.注:若1lim1=++∞→nn n a a,或lim 1n =,推不出级数的敛散.例∑+∞=11n n与∑+∞=121n n,虽然1lim 1=++∞→nn n a a,lim 1n =,但∑+∞=11n n 发散,⽽∑+∞=121n n 收敛. (iv )根值判别法(柯西判别法)设∑+∞=1n n a是正项级数,lim n ρ=,若1<ρ,级数收敛,若1>ρ则级数发散.(v )极限审敛法:设0n u ≥,且lim p n n n u l →∞=,则①0lim >=∞→l u n n p n 且1≤p ,则级数∑+∞=1n n u 发散;②如果1>p ,⽽)0(lim +∞<<=∞→l l u n n p n ,则其收敛.(书上P317-2-(1))注:凡涉及证明的命题,⼀般不⽤⽐值法与根值法,⼀般会使⽤⽐较判别法.正项级数的⽐(根)值判别法不能当作收敛与发散的充要条件,是充分⾮必要条件.2.交错级数及其审敛法①定义:设0(1,2,)n u n ≥=L ,则11(1)n n n u ∞-=-∑称为交错级数.②审敛法:莱布尼兹定理:对交错级数11(1)n n n u ∞-=-∑,若1+≥n n u u 且0lim =∞→n n u ,则11(1)n n n u ∞-=-∑收敛.注:⽐较n u 与1+n u 的⼤⼩的⽅法有三种:①⽐值法,即考察nn u u 1+是否⼩于1;②差值法,即考察1+-n n u u 是否⼤于0;③由n u 找出⼀个连续可导函数)(x f ,使),2,1(),(Λ==n n f u n 考察)(x f '是否⼩于0. 3.⼀般项级数的判别法:①若∑∞=1n n u 绝对收敛,则∑∞=1n n u 收敛.②若⽤⽐值法或根值法判定||1∑∞=n n u 发散,则∑∞=1n n u 必发散.三、幂级数1. 定义:n n n x a ∑∞=0称为幂级数.2. 收敛性①阿贝尔定理:设幂级数∑+∞=0n n n x a 在00≠x 处收敛,则其在满⾜0x x <的所有x 处绝对收敛.反之,若幂级数∑+∞=0n n n x a 在1x 处发散,则其在满⾜1x x >的所有x 处发散.②收敛半径(i )定义:若幂级数在0x x =点收敛,但不是在整个实轴上收敛,则必存在⼀个正数R ,使得①当R x x <-0时,幂级数收敛;②当R x x >-0时,幂级数发散;R 称为幂级数的收敛半径.(ii )求法:设幂级数∑+∞=0n n n x a 的收敛半径为R ,其系数满⾜条件l a a nn n =++∞→1lim,或l a nn n =+∞→lim,则当+∞<R 1=;当0=l 时,+∞=R ,当+∞=l 时,0=R .注:求收敛半径的⽅法却有很⼤的差异.前⼀个可直接⽤公式,后⼀个则须分奇、偶项(有时会出现更复杂的情况)分别来求.在分成奇偶项之后,由于通项中出现缺项,由此仍不能⽤求半径的公式直接求,须⽤求函数项级数收敛性的⽅法.(iii )收敛半径的类型 A.0=R ,此时收敛域仅为⼀点; B.+∞=R ,此时收敛域为),(∞+-∞;C.R =某定常数,此时收敛域为⼀个有限区间. 3.幂级数的运算(略) 4.幂级数的性质①若幂级数的收敛半径0>R ,则和函数∑+∞==0)(n n n x a x S 在收敛区间),(R R -内连续.②若幂级数的收敛半径0>R ,则和函数∑+∞==0)(n n n x a x S 在收敛区间),(R R -内可导,且可逐项求导,即∑∑∑+∞=+∞=-+∞=='='='0110)()()(n n n n nn n nn x na x a x a x S ,收敛半径不变.③若幂级数的收敛半径0>R ,则和函数∑+∞==0)(n n n x a x S 在收敛区间),(R R -内可积,且可逐项积分,即??∑+∞===x xn dt t a dt t S 0)()(∑?+∞=-∈0)),((n xn n R R x dt t a ,收敛半径不变.5.函数展开成幂级数①若)(x f 在含有点0x 的某个区间I 内有任意阶导数,)(x f 在0x 点的n 阶泰勒公式为+-++-''+-'+=)(!)()(!2)())(()()(00)(200000x x n x f x x x f x x x f x f x f n Λ)1(0)1()()!1()(++-+n n x x n f ξ,记)1(0)1()()!1()()(++-+=n n n x x n f x R ξ,ξ介于0,x x 之间,则)(x f 在I 内能展开成为泰勒级数的充要条件为I x x R n n ∈?=+∞→,0)(lim .②初等函数的泰勒级数)0(0=x (i )∑+∞=∞+-∞∈=0),(,!n nxx n x e ;(ii )∑+∞=--∞+-∞∈--=1121),(,)!12()1(sin n n n x n x x ;(iii )∑+∞=∞+-∞∈-=2),(,)!2()1(cos n nn x n x x ;(iv )∑+∞=+-∈+-=+01]1,1(,1)1()1ln(n n n x n x x ;(v )∑=∈-∈+--+=+1)(),1,1(,!)1()1(1)1(n n R x x n n x αααααΛ;(vi )∑+∞=<=-01,11n nx x x ;∑+∞=<-=+01,)1(11n n n x x x . 6. 级数求和①幂级数求和函数解题程序(i )求出给定级数的收敛域;(ii )通过逐项积分或微分将给定的幂级数化为常见函数展开式的形式(或易看出其假设和函数)(x s 与其导数)(x s '的关系),从⽽得到新级数的和函数;注:系数为若⼲项代数和的幂级数,求和函数时应先将级数写成各个幂级数的代数和,然后分别求出它们的和函数,最后对和函数求代数和,即得所求级数的和函数.②数项级数求和(i )利⽤级数和的定义求和,即s S n n =∞→lim ,则∑∞==1n n s u ,其中∑==+++=nk kn n uu u u s 121Λ.根据n s 的求法⼜可分为:直接法、拆项法、递推法.A.直接法:适⽤于∑∞=1k ku为等差或等⽐数列或通过简单变换易化为这两种数列;B.拆项法:把通项拆成两项差的形式,在求n 项和时,除⾸尾两项外其余各项对消掉.(ii )阿贝尔法(构造幂级数法)∑∑∞=-→∞==010lim n nn x n n x a a ,其中幂级数∑∞=0n n n x a ,可通过逐项微分或积分求得和函数)(x S .因此)(lim 10x s a x n n -→∞==∑.四、傅⾥叶级数 1. 定义①定义1:设)(x f 是以π2为周期的函数,且在],[ππ-或]2,0[π上可积,则)2,1,0(,cos )(1cos )(120Λ===-n nxdx x f nxdx x f a n πππππ, ),2,1(,sin )(1sin )(120Λ===-n nxdx x f nxdx x f b n πππππ,称为函数)(x f 的傅⽴叶系数.②定义2:以)(x f 的傅⽴叶系数为系数的三⾓级数∑∞=++10)sin cos (21n n nnx b nx aa .称为函数)(x f 的傅⽴叶级数,表⽰为∑∞=++10)sin cos (21)(n n nnx b nx aa ~x f .③定义3:设)(x f 是以l 2为周期的函数,且在],[l l -上可积,则以 ? -==ll n n xdx ln x f la )2,1,0(,cos )(1Λπ, ?-==lln n xdx ln x f l b )2,1(,sin )(1Λπ为系数的三⾓级数 ∑∞=++10)sin cos(21n n n x l n b x l n a a ππ称为)(x f 的傅⽴叶级数,表⽰为 ∑∞=++10)sin cos(21)(n n n x ln b x l n a a ~x f ππ. 2.收敛定理(狄⾥赫莱的充分条件)设函数)(x f 在区间],[ππ-上满⾜条件①除有限个第⼀类间断点外都是连续的;②只有有限个极值点,则)(x f 的傅⽴叶级数在],[ππ-上收敛,且有∑∞=++10)sin cos (2n n n nx b nx a a±=-++-++-=πππx f f ;x f x x f x f ;x f x x f )],0()0([21)()],0()0([21)(),(000的第⼀类间断点是的连续点是. 3.函数展开成傅⽒级数①周期函数(i )以π2为周期的函数)(x f :∑∞=++10sin cos 2)(n n nnx b nx aa~x f-=πππ)(1x f a n ),2,1,0(cos Λ=n nxdx ,1=),2,1(sin Λ=n nxdx ;注:①若)(x f 为奇函数,则∑∞=1sin )(n n nx b ~x f (正弦级数),0=n a ),2,1,0(Λ=n 2()sin n b f x nxdx ππ=),2,1(Λ=n ;②若)(x f 为偶函数,则∑∞=+10cos 2)(n nnx aa~x f (余弦级数),2()cos n a f x nxdx ππ=),2,1,0(Λ=n ,0=n b ),2,1(Λ=n .(ii )以l 2为周期的函数)(x f :∑∞=+10cos2)(n n x l n a a~x f π+)sin x ll n x f la )(1),2,1,0(cos Λ=n xdx l n π,?-=l l n x f l b )(1),2,1(sin Λ=n xdx ln π;注:①若)(x f 为奇函数,则∑∞=1sin )(n n x l n b ~x f π(正弦级数),0=n a ),2,1,0(Λ=n 02()sin l n n b f x xdx l l π=),2,1(Λ=n ;②若)(x f 为偶函数,则∑∞=+10cos2)(n n x ln a a~x f π,(余弦级数) 02()cos l n n a f x xdx l lπ=),2,1,0(Λ=n ,0=n b ),2,1(Λ=n . ②⾮周期函数(i )奇延拓:A.)(x f 为],0[π上的⾮周期函数,令?<≤---≤≤=0),(0),()(x x f x x f x F ππ,则)(x F 除0=x 外在],[ππ-上为奇函数,∑∞=1()sin n b f x nxdx ππ=),2,1(Λ=n ;B. )(x f 为],0[l 上的⾮周期函数,则令?<≤---≤≤=0),(0),()(x l x f lx x f x F ,则)(x F 除0=x 外在],[ππ-上为奇函数,∑∞=1sin)(n n x l n b ~x f π(正弦级数),02()sinl n n b f x xdx llπ=?),2,1(Λ=n .(ii )偶延拓:A.)(x f 为],0[π上的⾮周期函数,令?<≤--≤≤=0),(0),()(x x f x x f x F ππ,则)(x F 除0=x 外在],[ππ-上为偶函数,∑∞=+10cos 2)(n nnx aa~x f (余弦级数),0()cos n a f x nxdx ππ=),2,1,0(Λ=n .B.)(x f 为],0[l 上的⾮周期函数,令?<≤--≤≤=0),(0),()(x l x f lx x f x F ,则∑∞=+10cos2)(n n x l n a a~x f π(余弦级数),02()cosl n n a f x xdx llπ=?),2,1,0(Λ=n . 注:解题步骤:①画出图形、验证狄⽒条件.画图易于验证狄⽒条件,易看出奇偶性;②求出傅⽒系数;③写出傅⽒级数,并注明它在何处收敛于)(x f .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无穷级数整理一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0.2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变.5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim >=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p -级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim1>=+∞→r u u nn n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n n u 与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在Rx x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n nn x x a在R x x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n nx x ,∑∞=-=+022)1(11n n n x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1]. ⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1]. ⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1].(2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l ]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx nnxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin n nxdx x n nxdx x n nxdx x n n n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e ax ax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.。