连续刚构桥常见病害及对策
高墩大跨连续刚构桥的病害及其对策措施
高墩大跨连续刚构桥的病害及其对策措施摘要:本文将针对这些出现的常见问题进行阐述分析,并对造成的桥体危害提出相应的对策措施。
关键词:连续刚构桥;危害;对策措施Abstract: This article described these common problem and point out some countermeasures for bridge and caused harm.Key words: continuous rigid frame bridge; hazards; countermeasures中图分类号:U448.23 文献标识码:A文章编号:连续刚构桥的常见问题产生的原因及其病害目前,国内连续刚构桥的发展迅速,相关技术也比较成熟。
在桥梁工程领域广泛应用预应力计算体系,使得桥梁在性能、造价成本、安全系数等各方面都相对优于其他桥梁体系。
但在实际使用中仍出现诸多显著的病害。
(一)桥体跨中下挠。
1.对混凝土的收缩认识不到位。
很多桥梁在施工完成后,主梁的混凝土收缩造成桥体跨中下挠。
但现役的连续刚构桥出现,正常下挠后,再出现严重的下挠。
在桥梁建设前期,没有充分认识到混凝土的徐变性具有极大的随机性,造成混凝土预应力的损失使得桥梁的刚度下降。
从而桥梁出现桥体下挠的病害。
在连续刚构桥的设计之初,设计者一般为了减轻主桥梁的自重,都会在桥梁施工时使用高强度的薄板作为主梁。
而其实,在实际的数据中可以知道,加载的时间限制对桥梁混凝土的徐变度也有非常大的影响,桥梁的主梁一般在3天后就开始桥体预应力的加载,形成桥梁的整体。
于是由于浇筑凝固期时间缩短的缘故,使得混凝土的徐变的量增大,桥体的主梁下挠严重。
2.桥梁在前期设计中,计算的模型不够完善。
对桥梁在不同部位温差的考虑也是影响预应力的损失的因素。
目前国内在温差模型上采用三角模型,而该模型在理论值和实际测量值存在较大差距。
经一些国外桥梁专家分析:桥梁的温度分布呈现出非线性的分布,箱梁出现顶板的温度高于底板的温度现象。
预应力连续刚构桥病害特征及防治对策研究
预应力连续刚构桥病害特征及防治对策研究预应力连续刚构桥是一种常见的桥梁结构形式,广泛应用于公路、高速公路和铁路等交通工程中。
由于预应力连续刚构桥长期承受载荷和环境因素的影响,可能出现各种病害。
本文将重点研究预应力连续刚构桥的病害特征及防治对策。
首先,预应力连续刚构桥的常见病害特征主要有以下几种:1.桥面板裂缝:由于桥面板长期承受交通载荷和温度变化的作用,容易发生裂缝。
裂缝的形成会增加桥梁的挠度和变形,降低桥梁的承载能力。
2.桥梁支座损坏:预应力连续刚构桥的支座主要用于传递桥梁荷载和提供桥墩的稳定性。
长期承受荷载和环境因素的影响,支座易受损坏。
支座损坏后,会引起桥梁的位移和变形,严重时会导致桥梁坍塌。
3.桥墩腐蚀:由于桥墩长期暴露在外界环境中,容易受到水、酸雨或化学物质的腐蚀。
腐蚀会导致桥墩的抗剪承载能力下降,影响桥梁的整体稳定性。
4.预应力束断裂:预应力连续刚构桥中的预应力束是用于给桥梁施加预应力的关键部件。
如果预应力束出现断裂,会导致桥梁的整体受力分布不均匀,影响承载能力并可能引发进一步破坏。
其次,针对上述病害特征,可采取以下防治对策:1.健全监测体系:建立完善的桥梁监测体系,包括定期巡检和实时监测技术的应用。
及时发现和处理桥面板裂缝、支座损坏等问题,预防病害的进一步发展。
2.加强维护管理:加强桥梁的养护管理,定期进行检修和维护工作,包括对桥面板裂缝进行填补和修复,对支座进行维修和更换,防止病害的继续扩展。
3.防腐措施:采取防腐措施,如在桥墩表面施工防水层、防腐涂层等,减少水、酸雨及化学物质的侵蚀,延长桥梁的使用寿命。
4.加强预应力束管理:加强对预应力束的检测和维护,定期进行张拉力监测,及时发现和更换预应力束断裂的情况,保持桥梁的整体受力平衡。
综上所述,预应力连续刚构桥的病害特征包括桥面板裂缝、桥梁支座损坏、桥墩腐蚀和预应力束断裂。
为有效预防和控制这些病害,需要加强桥梁的监测、维护和管理工作,采取相应的防治对策。
大跨径连续刚构桥梁的常见病害及控制措施
大跨径连续刚构桥梁的常见病害及控制措施通过调查,我国已成的大跨径连续刚构桥梁中,出现的病害主要有以下几种情况:(1) 跨中挠度过大;(2) 箱梁腹板、底板产生裂缝;(3) 墩顶0 # 梁段开裂;(4) 桥墩墩身裂缝。
1跨中挠度(1)适当增加梁高,提高结构的承载能力(2)设置足够的施工预拱度(3)应力松弛的影响,增加底板预应力束,并采用分批张拉,部分底板预应力束可滞后1 年左右的时间,待混凝土完成一定的收缩、徐变后再张拉。
(4) 在中跨底板适当设置体外备用钢束,待需要时进行张拉。
(5)延长混凝土的加载龄期,减少徐变对结构的影响(6)利用高墩的柔度来适应结构由预应力混凝土收缩、徐变和温度变化所引起的位移,减少饶度。
竖向接缝存在,可以采用把接缝作成斜接缝,阶梯接缝,销槽式接缝等.增加截面的配筋率减小徐变对结构的影响。
我国施工质量水平总体不高, 管理不完善,.采用预抛高的方法,即在建造期间通过设置预拱度来抵消桥梁长期下挠变形。
是对高标号混凝土的收缩、徐变的考虑不足,且在施工中预拱度的设置存在偏差.顶板悬臂施工束有效性降低对主梁下挠有较大的影响2混凝土开裂,如箱梁竖向开裂、箱梁底板纵向开裂、箱梁腹板出现斜裂缝等;箱梁裂缝主要表现为纵向裂缝、弯曲裂缝、弯曲剪应力裂缝和主拉应力裂缝,(1)选择合适的箱梁下缘曲线。
大跨径连续刚构桥多采用变截面箱梁,底板下缘曲线常采用半立方抛物线和二次抛物线(2)预应力筋过于集中及预应力吨位过大导致混凝土开裂。
设计合适可靠的竖向预应力。
箱梁施加竖向预应力的主要目的是克服腹板主拉应力过大(3) 在中跨跨中及悬臂中部设置横隔板,提高箱梁畸变刚度,(4)增设腹板纵向预应力下弯束(5)适当增加边跨现浇段的底板和腹板厚度,并设置足够的防崩钢筋(6)合拢段的混凝土标号提高半级或一级(7)合理布置桥梁跨径。
箱梁腹板截面几何尺寸偏小,为了减少结构自重,对于宽箱梁,多数桥梁腹板仅仅是由构造决定其厚度,这导致截面抗剪能力储备不足.主梁梁体非预应力钢筋配置不足,也会导致砼的开裂. 墩柱的约束过大,导致主梁开裂应尽可能使其具有较大的抗弯刚度和较小的抗推刚度, 国内外连续刚构墩身形式多为双墙式薄壁柔性墩。
探讨钢结构桥梁的常见病害及防护措施
探讨钢结构桥梁的常见病害及防护措施钢结构桥梁是公路、铁路等交通基础设施的重要组成部分,它的安全性和可靠性直接关系到人民生命财产安全和国家经济发展。
由于长期风吹雨打和车辆的频繁行驶,钢结构桥梁常常会受到各种不同的病害影响。
对钢结构桥梁的常见病害及防护措施进行探讨是非常重要的。
一、常见病害1. 腐蚀病害腐蚀是钢结构桥梁最为常见的病害之一。
这是由于大气中的氧气、二氧化碳、水蒸气和酸性物质的存在,以及桥梁所处环境中的盐雾、化工废气等因素引起的。
当钢结构桥梁表面的保护层破损或受损时,这些有害物质会侵蚀钢材表面,造成钢材的腐蚀。
腐蚀病害会降低桥梁的承载能力,严重时可能导致桥梁的破坏甚至倒塌。
2. 疲劳病害疲劳病害是由于钢结构桥梁长期以来承受频繁的荷载交替作用,导致桥梁材料发生疲劳变形和开裂。
疲劳损伤通常发生在桥梁梁体和焊接接头等部位,而且通常不易察觉。
如果不及时修复,疲劳病害会导致桥梁的安全隐患,甚至可能引发严重事故。
3. 锈蚀病害钢结构桥梁常常会受到锈蚀的影响,特别是在潮湿的环境中更为明显。
当桥梁表面的涂层受损时,空气中的水分和氧气会与铁发生化学反应,形成氧化铁,即锈蚀。
长期的锈蚀会使桥梁的表面变得不平整,严重时甚至可能穿透钢材,导致桥梁结构的损坏。
4. 变形病害由于受力不均、温度变化和材料老化等原因,钢结构桥梁在使用过程中会出现变形。
这种变形不仅会影响桥梁的外观和舒适性,还会影响桥梁的使用性能和安全性。
及时发现并处理桥梁的变形病害是非常重要的。
二、防护措施1. 表面涂层为了防止钢结构桥梁受到腐蚀、锈蚀等病害的影响,可以在桥梁表面进行防护涂层处理。
这种处理方法不仅可以防止外界有害物质的侵蚀,还可以延长桥梁的使用寿命。
在选择涂层材料时,应该考虑桥梁所处的环境和其功能要求,并严格按照涂层施工规范进行操作,以确保涂层的质量和效果。
2. 定期检测为了及时发现和处理钢结构桥梁的各种病害,应该建立定期检测机制。
定期检测可以通过目视检查、无损检测等多种手段进行,对桥梁的表面、连接部位、焊接接头等进行全面和精细的检查,及时发现和修复病害点,确保桥梁的安全可靠性。
探讨钢结构桥梁的常见病害及防护措施
探讨钢结构桥梁的常见病害及防护措施钢结构桥梁作为重要的交通基础设施,承载着重要的交通运输任务。
由于长期使用和外部环境的影响,钢结构桥梁也会出现一些常见的病害。
本文将讨论一些常见的病害,并介绍相应的防护措施。
1. 腐蚀:钢结构桥梁暴露在大气中,容易受到氧气、水蒸气和酸雨等的侵蚀,从而发生腐蚀。
腐蚀不仅会导致钢结构在强度和刚度上的下降,还会导致桥梁的安全性降低。
针对腐蚀问题,可以采取以下防护措施:1.1. 表面涂装:通过将钢结构表面进行涂装,形成一层抵抗氧气、水蒸气和酸雨的保护层,延缓腐蚀的发生。
1.2. 防腐涂层:在表面涂装的基础上,加强涂层的耐腐蚀性能,延长钢结构的使用寿命。
1.3. 防腐漆:使用具有较高防腐性能的防腐漆进行表面涂装,提高防腐效果。
1.4. 外包装:对特殊环境下的桥梁,可以进行外包装,隔绝空气和水分侵蚀。
2. 疲劳:长期使用和受力会导致钢结构桥梁的疲劳损伤。
疲劳常常表现为钢结构表面的裂纹和变形。
为了防止疲劳损伤,可以采取以下防护措施:2.1. 加强监测:定期对钢结构进行监测,及时发现并修复裂纹,防止疲劳损伤的进一步扩展。
2.2. 增加结构强度:通过增加梁的截面面积或加强连接部位,提高钢结构的强度和刚度,降低受力引起的疲劳损伤风险。
2.3. 减少振动:通过采取减震装置等措施,降低桥梁受到外界振动的影响,减少疲劳损伤的发生。
3. 锈蚀引起的断裂:当桥梁发生腐蚀时,锈蚀会侵蚀钢材的表面,从而导致钢材的断裂。
为了防止锈蚀引起的断裂,可以采取以下防护措施:3.1. 定期维修:定期检查和修复出现锈蚀的部位,及时更换受损的钢材。
3.2. 增加防护层:在钢材的表面涂覆防腐涂层,增加抵抗锈蚀的能力。
3.3. 加强连接:加强桥梁的连接部位,降低断裂的风险。
4. 桥梁振动:桥梁在使用过程中会受到风、车辆通行等因素的作用,可能引起振动。
当振动幅度过大时,可能导致桥梁的破坏。
针对振动问题,可以采取以下防护措施:4.1. 加固措施:通过增加桥墩和墩柱的高度、增加桥梁横向支撑等加固措施,降低桥梁的振动风险。
浅析大跨径预应力混凝土连续刚构桥的常见病害及控制措施
浅析大跨径预应力混凝土连续刚构桥的常见病害及控制措施摘要:本文对大跨径预应力混凝土连续刚构桥的常见病害及成因进行了分析,针对各病害提出了可行的控制方法。
或可为该类桥梁的设计施工提供参考。
关键词:预应力混凝土,连续刚构,病害,控制措施。
1常见病害通过调查,我国已建成的大跨径连续刚构桥梁中,常见的病害主要有以下几种:(1) 跨中挠度过大;(2) 箱梁梁体产生裂缝;(3) 墩顶0#块开裂;(4)桥墩(或塔墩)靠承台区段的竖向裂缝。
2跨中挠度过大的成因分析及控制措施跨中挠度过大,通常是由于梁体本身刚度不足所致,而梁体由混凝土、普通钢筋和预应力钢筋组合而成,故梁高过小、腹板厚度不足、混凝土标号不足、普通钢筋配置不足、预应力不足都会导致梁体刚度不足,进而导致跨中挠度过大。
其中,预应力配置不足可以由设计中预应力配置不足或者预应力筋应力松弛过大、混凝土收缩徐变导致预应力损失过大引起。
此外,如设置的预拱度不足,也会导致桥梁合龙后跨中挠度过大。
可通过以下方法降低跨中挠度:(1) 适当增加梁高,提高结构的承载能力(2) 设置足够的施工预拱度(3) 应力松弛的影响,增加底板预应力束,并采用分批张拉,部分底板预应力束可滞后1 年左右的时间,待混凝土完成一定的收缩、徐变后再张拉。
(4) 在中跨底板适当设置体外备用钢束,待需要时进行张拉。
(5) 延长混凝土的加载龄期,减少徐变对结构的影响(6)利用高墩的柔度来适应结构由预应力混凝土收缩、徐变和温度变化所引起的位移,减少挠度。
3箱梁梁体裂缝的成因分析及控制措施3.1箱梁节段间施工接缝处腹板竖向裂缝箱梁节段间施工接缝处腹板竖向裂缝处于两施工节段之间,严重的缝宽1-2mm甚至更宽。
开裂原因:(1)悬臂浇注移动支架的整体刚度不够,浇注过程中变形大;(2)混凝土浇注程序不对:先浇注后端(紧靠前一浇注节段),然后逐步向前端浇注,前端的荷载引起悬臂支架变形,导致后端混凝土裂开。
控制措施:(1)支架的刚度和强度必须满足施工要求,必须采用相当于实际荷载的荷载预压,除强度满足需要外,其最大挠度应小于或等于2.0cm。
连续刚构桥梁常见通病(介绍1精品PPT课件
二、常见病害
1、混凝土表面蜂窝、麻面、空洞 2、混凝土保护层厚度不足,露筋,钢筋锈蚀 3、混凝土破损、不密实、露筋 4、张拉后未及时进行封锚 5、箱梁底板、腹板节段处错台 6、箱梁顶板内侧、底板内外侧纵向裂缝
1、混凝土表面蜂窝、麻面、空洞
2、混凝土保护层厚度不足,露筋,钢筋锈蚀。
2、混凝土离析、不密实,露筋。
4、张拉后未封锚,钢绞线、锚具外露、锈蚀 。
5、箱梁线形不平顺,箱梁底板、腹板节段处 错台。
5、箱梁顶板内侧、底板内外侧纵向裂缝 箱外
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
连续刚构桥常见病害
一、介绍 二、常见病害 三、特殊病害 四、预防与控制
一、介绍
随着近年来设计、施工工艺的成熟,连续刚构 大桥已成为一种普通桥型结构,但在对连续刚构大 桥的验收检查中,一些问题及病害仍然频繁出现。 下面,我们把在检查过程中发现的典型病害做个简 单介绍,以便参建各方在施工过程中加强管理,避 免类似病害的发生。
Yoபைடு நூலகம் Know, The More Powerful You Will Be
结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
探讨钢结构桥梁的常见病害及防护措施
探讨钢结构桥梁的常见病害及防护措施
钢结构桥梁是现代交通建设中常见的桥梁类型。
由于长期受到外界环境和运输荷载的
影响,钢结构桥梁容易出现各种病害。
本文将探讨钢结构桥梁的常见病害及防护措施。
1. 锈蚀:钢结构桥梁常受到大气、水分和化学物质的腐蚀,导致钢材表面生锈。
长
期下去,会损害桥梁的结构强度和稳定性。
应采取以下防护措施:定期进行表面清洗和除锈,涂刷防腐漆或涂层,增加防腐蚀涂层厚度,使用耐腐蚀材料等。
2. 疲劳:钢结构桥梁经常受到运输荷载的作用,受力循环次数较多,易于出现疲劳
破坏。
应采取以下防护措施:提高桥梁的疲劳强度设计,使用高强度材料,进行定期的疲
劳监测和评估,及时进行疲劳裂缝的修复和加固。
5. 热胀冷缩:钢结构桥梁在温度变化时,容易发生热胀冷缩现象。
应采取以下防护
措施:加强热胀冷缩计算和分析,使用伸缩缝或伸缩支座,合理设计桥面铺装结构,增加
桥梁的变形能力。
6. 风荷载:钢结构桥梁在受到风荷载作用时,容易发生结构振动,并可能导致破坏。
应采取以下防护措施:加强风荷载设计和风振分析,采用风阻抗装置和风振减振措施,提
高桥梁的抗风能力。
钢结构桥梁的常见病害主要有锈蚀、疲劳、腐蚀疲劳、塑性变形、热胀冷缩和风荷载。
为了防止和减轻这些病害的影响,需要加强钢结构桥梁的设计、监测和维护,并根据具体
情况采取相应的防护措施。
探讨钢结构桥梁的常见病害及防护措施
探讨钢结构桥梁的常见病害及防护措施钢结构桥梁是现代交通建设中经常使用的一种桥梁类型,它具有结构强度高、施工周期短、维护成本低等优点。
钢结构桥梁在使用过程中也会出现一些常见的病害问题,这些问题可能会对桥梁的安全性和使用寿命造成影响。
对钢结构桥梁的常见病害及防护措施进行深入探讨,对于提高桥梁的使用寿命和安全性具有重要意义。
一、常见病害(一)锈蚀钢结构桥梁锈蚀是其最为常见的病害之一。
在桥梁的使用过程中,受到氧气、水汽等外部介质的影响,钢结构桥梁的表面易受到氧化作用,产生锈蚀。
当锈蚀严重时,会减小钢材的截面积,导致桥梁承载能力下降,甚至出现断裂的情况。
(二)疲劳裂缝疲劳裂缝是由于桥梁长期受到交通荷载等外部作用,导致材料表面出现微小裂纹,并逐渐扩展形成的。
疲劳裂缝一旦形成,会对桥梁的结构强度和安全性造成较大威胁,如果得不到及时修复和加固,就会引发严重的事故。
(三)变形钢结构桥梁在使用过程中,受到温度变化、交通荷载等因素的影响,易发生变形。
桥梁的变形不仅会对行车安全造成隐患,还会加速桥梁的疲劳破坏,降低桥梁的使用寿命。
(四)腐蚀钢结构桥梁在潮湿的环境中易受到腐蚀。
水汽中的盐分等物质会对桥梁的表面产生腐蚀,导致钢材表面产生坑洼和破损,严重影响桥梁的整体美观和结构强度。
二、防护措施钢结构桥梁在施工完成后,可以对其进行防锈处理,常用的方法有喷涂防锈漆、热浸镀锌等。
这些方法可以有效地阻止氧化作用的发生,延缓桥梁的锈蚀速度,提高其使用寿命。
(二)定期检测钢结构桥梁的使用寿命是与其使用环境、荷载情况等因素密切相关的,为了及时发现和监测桥梁的病害情况,可以定期对桥梁进行检测。
常见的检测方法有超声波检测、磁粉检测等,这些方法可以有效地发现桥梁的内部和表面病害,为后续的维修提供参考依据。
(三)加固修复一旦发现桥梁存在疲劳裂缝、变形等情况,就需要及时进行加固修复。
加固方法有增加剪力墙、加装钢筋混凝土等,这些方法可以提高桥梁的整体结构强度,延长其使用寿命。
大跨径连续刚构桥常见病害及维修加固技术
国家 中国 挪威 挪威 巴拉圭 中国 中国 澳大利亚 挪威 中国 中国 奥地利 葡萄牙 英国 加拿大 中国 中国 中国 日本 中国 中国
建成 年代 2006 1998 1998 1979 1997 2003 1985 1994 2003 2001 1989 1991 1995 1997 1999 2002 1995 1976 1997 1997
(4)火灾、地震等灾害。
2.4
材料性能的退化
(1)混凝土碳化导致其强度降低; (2)氯离子对混凝土的侵蚀; (3)钢筋的锈蚀; (4)预应力损失过多。
2.5
桥梁养护水平低
(1)未对桥梁进行日常检查,未及时发现各种病害; (2)桥梁未得到及时有效的维护,长期带“病”工作; (3)各种病害发展及加剧,导致桥梁承载力大幅下降。
检测资料不完整:
对原箱梁的保护要求高:
施工安全管理要求高:
五、连续刚构桥加固工程案例
5.1 三门峡黄河公路大桥
5.2 广州华南大桥
5.3 江津长江公路大桥 5.4 广州丫髻沙辅航道刚构桥 5.5 广州东圃大桥 5.6 柳州洛维大桥
5.1 三门峡黄河公路大桥
跨 中 下 挠
主跨结构型式 带钢挂梁 T 构 连续刚构 连续刚构 三跨带铰 T 构 连续刚构 连续刚构 连续刚构 连续梁 连续刚构 连续刚构 连续刚构 连续刚构 连续刚构 带挂梁 T 构 连续刚构 连续刚构 连续刚构 有铰 T 构 连续刚构 连续刚构
1.2 大跨径连续刚构桥常见病害
两大类病害
病害的特征
二、连续刚构桥病害产生的主要原因
跨径(m) 330(含 103m 钢梁) 94+301+72 86+202+298+125 270 150+270+150 58+182+265+194+70 145+260+145 260 145+2× 260+145 145+252+54.8 250 250 250 165+43× 250+165 137+3× 250+137 146+3× 250+146 162.5+3× 245+162.5 55+140+240+140+55 140+240+140 140+240+140
大跨度连续梁连续刚构桥常见病害
3.1 设计理念
预应力度
– 全预应力 – 变形用预拱度抵消 – 问题
徐变次内力难以估计 预应力损失难以估计
3.1 设计理念
预应力完全抵消外荷载弯矩
– 好处:梁处于轴心受压状态,只有纵向变 形
– 弱点:费材料
小跨径 大跨径?截面上无法布置
3.1 设计理念
后果
– 长期挠度大 – 梁体裂缝
ht (t)
图 塔高(h)和索力(S)优化
悬臂施工实现吻合索
4.2 针对运营阶段的长期问题
施加体外预应力
– 对于新桥
预留体外预应力转向块及张拉位置 成桥时压重,以后慢慢取出
– 对于旧桥
植筋设转向块后,增加体外预应力 效果不好
– 体内预应力的效应无法判断 – 植筋进一步造成混凝土开裂
总重量
– 增加总体下挠 – 薄弱截面经常出现临时裂缝,横向裂缝
轴重
– 桥面板局部开裂,纵缝
4 处治对策
针对施工阶段的问题
– 提高预应力施加的可靠性 – 合理配筋 – 科学施工、提高施工精度
针对运营阶段的长期问题
– 提高预应力度、改变徐变次内力 – 施加体外预应力 – 限制荷载 – 减轻桥梁重量 – 组合结构桥梁 – 改变结构体系
潭洲大桥(125m)挠度、裂缝相关分析
几座桥梁建成后中跨下沉
2.1 施工过程中的病害
裂缝
– 顶板横向、纵向 – 腹板接缝处竖向 – 底板纵向 – 预应力锚头附近 – 底板分层劈裂(事故)
下挠
– 纵向 – 横向
某大桥裂缝和破损
预应力滑丝和飞锚
穿束工艺不当
上下联结钢筋
4.2 针对运营阶段的长期问题
连续梁桥的主要病害及体外预应力加固方法的论述
连续梁桥的主要病害及体外预应力加固方法的论述连续梁桥是指由多个支座支撑的梁段构成的桥梁结构。
由于其结构特点,连续梁桥在使用过程中可能会出现一些病害,如裂缝、挠度过大等现象。
为了解决这些问题,可以采用体外预应力加固方法。
本文将针对连续梁桥的主要病害以及体外预应力加固方法进行详细的论述。
一、连续梁桥的主要病害1. 裂缝裂缝是连续梁桥常见的病害之一。
裂缝产生的原因有很多,可以是设计上的问题,也可以是施工质量不良导致的。
裂缝的存在会降低桥梁的承载能力,严重的话甚至会影响桥梁的使用安全。
2. 挠度过大连续梁桥由于梁段之间的连续性,梁段之间的变形会通过传递作用对整个桥梁产生影响,连续梁桥常常会出现挠度过大的情况。
挠度过大会对驾驶员的行车视线产生影响,同时也会减小桥梁的承载能力。
3. 碰撞破坏由于连续梁桥大多位于交通密集的地区,碰撞破坏是一种较常见的病害。
当车辆在驾驶过程中发生失控、超载等情况时,就有可能发生碰撞破坏。
4. 锈蚀由于连续梁桥大多位于水泥混凝土材料中,当梁桥出现裂缝时,潮湿的空气中的氧气和水会渗入裂缝中,导致钢筋锈蚀。
锈蚀会使钢筋断裂,进而导致梁桥的破坏。
二、体外预应力加固方法为了解决连续梁桥的病害问题,可以采取体外预应力加固方法。
所谓体外预应力,是指在梁体的外部附加预应力来抵消荷载产生的变形和应力,以提高梁体的整体性能。
下面将对体外预应力加固方法进行详细的论述。
1. 预应力锚具在连续梁桥的加固过程中,预应力锚具是十分重要的。
预应力锚具是指通过机械装置将预应力锚固在梁体上的装置。
预应力锚具通过传导预应力,使连续梁桥增加了抗剪强度和抗弯强度,从而提高了整个桥梁的承载能力。
2. 预应力束预应力束是指通过扭杆将预应力传递到梁体中的一种装置。
预应力束由多根扭杆组成,通过扭杆与锚具相连,使预应力得以传导到梁体中。
预应力束的使用可以使连续梁桥的承载能力得到提高,并解决挠度过大的问题。
3. 预制板法预制板法是一种常用的体外预应力加固方法。
探讨钢结构桥梁的常见病害及防护措施
探讨钢结构桥梁的常见病害及防护措施钢结构桥梁是现代交通建设中常见的一种桥梁类型,具有承载能力强、建设周期短、经济高效等优点。
长期使用和自然环境的影响会导致钢结构桥梁出现一些常见的病害。
下面将探讨一些常见的病害及相应的防护措施。
1. 腐蚀:钢结构桥梁的主要病害之一是腐蚀。
腐蚀主要是由于大气中的氧气、水和腐蚀性物质侵入钢结构,导致钢材表面发生氧化反应。
腐蚀会降低钢材的强度和使用寿命,严重的情况下甚至会导致桥梁的倒塌。
防护措施:- 使用耐腐蚀性能好的钢材,如不锈钢等。
- 进行定期的防腐保护,如涂覆防腐涂层。
- 控制大气中的腐蚀性物质,如减少尾气排放、避免污染物直接接触桥梁表面。
- 注意桥梁的排水系统,及时清理积水。
2. 疲劳损伤:疲劳是钢材在交替荷载作用下发生的应力集中和应力腐蚀破坏,是桥梁长期使用后常见的病害之一。
疲劳损伤会导致钢材出现裂纹、变形和断裂等现象,影响桥梁的使用安全。
防护措施:- 进行结构合理设计,避免应力集中。
- 加强桥梁的检测和监测,及时发现潜在的裂纹。
- 加强桥梁的维护保养,及时修复或更换损坏部件。
- 减少车辆荷载,合理控制交通荷载。
3. 钢材锈蚀:长期使用后,钢材表面容易出现锈蚀现象。
钢材锈蚀会导致其机械性能降低、断裂风险增加,从而影响桥梁的安全性能。
防护措施:- 定期清洗桥梁表面,及时清除局部锈蚀。
- 进行表面处理,如喷涂防锈漆。
- 定期检测和修复钢材的锈蚀部位,防止腐蚀继续蔓延。
4. 桥面板腐蚀:钢结构桥梁的桥面板容易受到雨水、化学物质等的影响而发生腐蚀。
桥面板腐蚀会导致桥面安全性能下降、荷载能力降低。
防护措施:- 定期清洁桥面,及时清除污垢和化学物质沉积。
- 进行防腐涂层保护。
- 注意桥梁的排水系统,保证桥面水分排除。
钢结构桥梁常见病害有腐蚀、疲劳损伤、钢材锈蚀和桥面板腐蚀等,为了保证钢结构桥梁的长期安全使用,需要采取相应的防护措施。
这些防护措施包括使用耐腐蚀钢材、进行定期的防腐保护、进行结构合理设计、加强桥梁的检测和监测、减少车辆荷载、加强维护保养、定期清洗桥梁表面等。
连续刚构桥病害原因分析及对策
连续刚构桥病害原因分析及对策摘要随着城市建城区规模的急剧扩张以及美观的要求,许多经济、美观的桥梁形式被不断研究、引进和开发。
高墩大跨径预应力刚构桥梁由于自身得天独厚的优点,在城市环线上得到广泛的应用。
结合实际工程,针对以前修建的几座连续刚构桥存在的一些病害情况,对这些病害作了详细分析,拟通过采取一系列措施,改善结构受力,减少开裂。
关键词连续刚构桥病害;原因;对策1高墩大跨连续刚构桥具有的特点梁墩固结,结构整体性好,抗震性能优,抗扭潜力大,结构受力合理。
上下部结构共同承受荷载,减小墩顶负弯矩。
墩较柔,能够承受较大变形。
结构为多次超静定,收缩徐变、温度变化、预应力、不均匀沉降引起的次内力对结构影响较大。
但也存在对地基要求高,墩梁连接处受力复杂,高墩弯矩随墩高的骤然降低而急剧变化,合龙段结构体系转换引起内力重分布等问题。
近年来修建的大跨连续刚构桥中,有一些出现了病害,主要表现为:腹板出现斜裂缝,边跨端部上缘出现横向裂缝,中跨跨中下挠过大等。
2已建成连续刚构桥梁产生病害的不同原因采取了不同的对策1)保证足够的截面尺寸。
高跨比是影响主梁受力状态的主要参数,适当增加梁高,可增加主梁刚度,改善主梁应力状态。
本次设计七古寺大桥和柳园大桥采用了根部1/15、跨中1/40的高跨比。
2)改善预应力筋的布置。
大跨径连续刚构在对称纵向荷载作用下,截面将产生纵向翘曲位移,并且顶底板横向不同位置产生纵向位移差。
由于上下翼缘的剪切变形导致对称荷载弯曲引起的法向应力呈非均匀分布状态,即剪力滞后现象。
因此,在设置预应力筋时应该考虑法向应力的不均匀性,否则可能造成在应力分布最大处预加力不够,导致混凝土开裂。
以前的连续刚构桥均采用了直束的布置方式,即纵向预应力钢束基本上锚固于箱梁顶部而没有下弯,通过适当调整箱梁正应力及竖向应力控制主拉应力的产生。
该布束形式成立的前提是竖向预应力必须可靠,然而因设计及施工等诸多原因,竖向预应力往往不能达到设计预期的工作性能。
连续刚构桥梁常见通病(介绍1)
5、箱梁线形不平顺,箱梁底板、腹板节段处 错台。
5、箱梁顶板内侧、底板内外侧纵向裂缝
箱外
箱内
二、常见病害
1、混凝土表面蜂窝、麻面、空洞 2、混凝土保护层厚度不足,露筋,钢筋锈蚀
3、混凝土破损、不密实、露筋
4、张拉后未及时进行封锚
5、箱梁底板、腹板节段处错台
6、箱梁顶板内侧、底板内外侧纵向裂缝
1、混凝土表面蜂窝、麻面、空洞
2、混凝土保护层厚度不足,露筋,钢筋锈蚀。
2、混凝土离析、不密实,露筋。
连续刚构桥常见病害
一、介绍
二、常见病害
三、特殊病害 四、预防与控制
一、介绍
随着近年来设计、施工工艺的成熟,连续刚构 大桥已成为一种普通桥型结构,但在对连续刚构大 桥的验收检查中,一些问题及病害仍然频繁出现。 下面,我们把在检查过程中发现的典型病害做个简 单介绍,以便参建各方在施工过程中加强管理,避 免类似病害的发生。
连续刚构桥梁主要病害原因分析及控制措施
连续刚构桥梁主要病害原因分析及控制措施摘要:我国已建成的大跨径连续刚构桥梁中,常出现的主要病害为跨中挠度过大、箱梁梁体混凝土开裂。
本文通过对连续刚构桥梁跨中下挠及箱梁开裂的研究,分析了病害产生的原因,从设计和施工方面提出了控制措施。
关键词:连续刚构;桥梁;病害;原因分析;控制措施Abstract: This article analyzes the continuous rigid frame bridge midspan sag and the box girders’cracking, analyzes the reasons of disease, and from the aspects of design and construction puts forward some control measures.Key words: continuous rigid frame bridge;; disease; reason analysis; control measures连续刚构桥是一种介于连续梁桥和T型刚构桥之间的桥型,这种桥型的桥梁又称为墩梁固结的连续梁桥。
目前连续刚构桥大多用于大跨度的薄壁高墩上,即把高墩看作一种摆动支承体系,从而降低墩的内力。
由于其具有跨越能力大、整体性能好、抗震性能优、施工相对简单的特点,近年来得到了广泛的应用。
通过调查,我国已建成的大跨径连续刚构桥梁中,常出现的主要病害为跨中挠度过大、箱梁梁体混凝土开裂。
本文通过对连续刚构桥梁跨中下挠及箱梁开裂的研究,分析了病害产生的原因,从设计和施工方面提出了控制措施。
1跨中挠度过大的原因分析及控制措施1.1跨中挠度过大的原因分析跨中挠度过大是连续刚构桥梁常见的也是最主要的病害,即影响行车安全,又影响结构安全,主要由预应力损失、预拱度设置偏小、施工线性控制不准所引起。
预应力损失的主要原因有预应力筋与管道壁间的摩擦引起的应力损失;锚具变形、预应力筋回缩、接缝压缩引起的应力损失;弹性压缩引起的应力损失;预应力筋松弛引起的应力损失;混凝土收缩徐变引起的应力损失;预应力灌浆不饱满导致预应力筋锈蚀引起的应力损失。
大跨径连续刚构桥梁的常见病害及控制措施
大跨径连续刚构桥梁的常见病害及控制措施通过调查,我国已成的大跨径连续刚构桥梁中,出现的病害主要有以下几种情况:(1) 跨中挠度过大;(2) 箱梁腹板、底板产生裂缝;(3) 墩顶0 # 梁段开裂;(4) 桥墩墩身裂缝。
1跨中挠度(1) 适当增加梁高,提高结构的承载能力(2) 设置足够的施工预拱度(3) 应力松弛的影响,增加底板预应力束,并采用分批张拉,部分底板预应力束可滞后1 年左右的时间,待混凝土完成一定的收缩、徐变后再张拉。
(4) 在中跨底板适当设置体外备用钢束,待需要时进行张拉。
(5) 延长混凝土的加载龄期,减少徐变对结构的影响(6)利用高墩的柔度来适应结构由预应力混凝土收缩、徐变和温度变化所引起的位移,减少饶度。
.竖向接缝存在,可以采用把接缝作成斜接缝,阶梯接缝,销槽式接缝等.增加截面的配筋率减小徐变对结构的影响. 我国施工质量水平总体不高, 管理不完善,.采用预抛高的方法, 即在建造期间通过设置预拱度来抵消桥梁长期下挠变形.是对高标号混凝土的收缩、徐变的考虑不足, 且在施工中预拱度的设置存在偏差.顶板悬臂施工束有效性降低对主梁下挠有较大的影响2混凝土开裂, 如箱梁竖向开裂、箱梁底板纵向开裂、箱梁腹板出现斜裂缝等;箱梁裂缝主要表现为纵向裂缝、弯曲裂缝、弯曲剪应力裂缝和主拉应力裂缝,(1) 选择合适的箱梁下缘曲线。
大跨径连续刚构桥多采用变截面箱梁,底板下缘曲线常采用半立方抛物线和二次抛物线(2)预应力筋过于集中及预应力吨位过大导致混凝土开裂。
设计合适可靠的竖向预应力。
箱梁施加竖向预应力的主要目的是克服腹板主拉应力过大(3) 在中跨跨中及悬臂中部设置横隔板,提高箱梁畸变刚度,(4) 增设腹板纵向预应力下弯束(5) 适当增加边跨现浇段的底板和腹板厚度,并设置足够的防崩钢筋(6) 合拢段的混凝土标号提高半级或一级(7)合理布置桥梁跨径.箱梁腹板截面几何尺寸偏小,为了减少结构自重,对于宽箱梁,多数桥梁腹板仅仅是由构造决定其厚度,这导致截面抗剪能力储备不足.主梁梁体非预应力钢筋配置不足, 也会导致砼的开裂. 墩柱的约束过大, 导致主梁开裂应尽可能使其具有较大的抗弯刚度和较小的抗推刚度, 国内外连续刚构墩身形式多为双墙式薄壁柔性墩。
探讨钢结构桥梁的常见病害及防护措施
探讨钢结构桥梁的常见病害及防护措施钢结构桥梁是现代道路交通建设中常用的桥梁类型,具有结构轻、施工便捷、寿命长等优点。
长期使用和自然环境的影响可能导致钢结构桥梁出现各种病害,严重影响其安全性和使用寿命。
本文将探讨钢结构桥梁的常见病害及相应的防护措施。
1. 腐蚀:由于钢材在大气中容易发生腐蚀,钢结构桥梁的腐蚀问题是最常见和严重的问题之一。
腐蚀主要来源于大气中的氧气和湿度,以及工业排放物、化学污染物等。
腐蚀会导致钢材表面的涂层破损和钢材本身的腐蚀,从而减少钢材的强度和承载能力。
2. 疲劳:钢结构桥梁长期受到动态荷载的作用,易产生疲劳破坏。
疲劳是由荷载的变化引起的,导致桥梁结构的应力集中和破坏。
疲劳破坏一般集中在焊接点、应力集中区域和连接部位。
疲劳破坏的特点是渐进性增长,容易导致严重事故。
3. 应力腐蚀开裂:应力腐蚀开裂是由于材料在同时存在应力和腐蚀介质的情况下发生的腐蚀裂纹。
桥梁中的应力腐蚀开裂主要出现在焊缝和吊挂装置等应力集中区域,可能导致结构的破坏。
4. 锈蚀和锈胀:钢材在使用过程中经常暴露在湿润的环境中,可能导致钢结构表面发生锈蚀。
当钢表面产生锈蚀时,锈层容易发生锈胀并使钢材表面脱落,从而降低钢结构的强度和承载能力。
5. 桥面板腐蚀:桥面板是钢结构桥梁上承载车辆荷载的主要部位,经常受到车辆碾压、水分渗入等作用。
长期使用和缺乏维护可能导致桥面板的腐蚀和磨损,从而影响桥梁的使用寿命。
1. 腐蚀防护:针对钢结构的腐蚀问题,可以采用涂层和防腐措施来加以防护。
在施工过程中,应使用耐腐蚀性能好的钢材,并添加防腐涂料或镀锌等防腐措施。
在使用过程中,定期检查和维护涂层,对受损涂层进行修复或更换。
2. 疲劳防护:针对桥梁的疲劳问题,可以采取增加结构刚度、完善结构连接、减小应力集中等措施来提高桥梁的抗疲劳能力。
还可以加强桥梁的定期检测和强度评估,及时发现和修复疲劳破坏。
3. 应力腐蚀开裂防护:为了防止钢结构发生应力腐蚀开裂,可以在设计过程中采用抗腐蚀材料和适当的连接方式,减小应力集中区域。
连续梁桥的主要病害及体外预应力加固方法的论述
连续梁桥的主要病害及体外预应力加固方法的论述
连续梁桥是一种常见的桥梁形式,由若干个简支梁或连续刚构梁组成的桥梁结构。
由于其连续性和大跨度特点,连续梁桥在施工和使用过程中容易受到各种因素的影响而出现病害。
本文将主要论述连续梁桥的主要病害及体外预应力加固方法。
连续梁桥的主要病害可分为以下几种:
1. 梁体开裂:梁体开裂是连续梁桥常见的病害之一,主要原因是材料力学性能不均匀、施工过程中存在缺陷或负荷超载等。
梁体开裂严重影响桥梁的承载能力和使用安全。
2. 荷载超限:连续梁桥在使用过程中,由于道路交通负荷增加或维修保养不当等因素,可能导致桥梁超过设计荷载,从而引发结构病害。
3. 锈蚀:连续梁桥常常位于湿润环境中,长期暴露在潮湿的空气中容易引起金属材料锈蚀。
锈蚀严重影响钢结构的强度和耐久性。
4. 混凝土结构病害:由于混凝土材料的收缩、开裂和腐蚀等原因,梁体表面往往会出现起砂、脱壳、鼓包等病害,严重影响梁体的结构安全性。
为了解决上述病害,常采用体外预应力加固方法,即通过在梁体外施加预应力,增加桥梁的承载能力和使用寿命。
体外预应力加固方法常用的有以下几种:
1. 预应力碳纤维片:预应力碳纤维片是将碳纤维布进行预置张拉,并通过环氧树脂等粘合剂粘贴在梁体表面,形成预应力的加固材料。
碳纤维片具有质量轻、耐腐蚀、高强度等特点,在一定程度上能够增加梁体的承载能力。
2. 钢束包裹加固:钢束包裹加固是将预应力钢束绕制在梁体外,通过张拉钢束形成预应力,增加桥梁的承载能力。
钢束包裹加固具有施工方便、预应力调整范围大等优点,但对梁体施加了较大的附加荷载。
探讨钢结构桥梁的常见病害及防护措施
探讨钢结构桥梁的常见病害及防护措施钢结构桥梁作为现代交通建设的重要组成部分,承担着连接城市交通的重要角色。
长期以来,由于环境腐蚀、结构疲劳等原因,钢结构桥梁普遍存在着各种病害问题。
这些病害不仅影响桥梁的使用寿命和安全性,还影响到整个城市的交通运输。
对钢结构桥梁的病害及防护措施进行深入探讨,对于维护和延长桥梁的使用寿命具有重要意义。
一、常见钢结构桥梁病害1. 腐蚀病害由于钢结构桥梁长期受到大气、水和土壤的腐蚀作用,容易出现腐蚀病害。
主要表现为表面铁锈、凹坑、脱层等现象,严重影响桥梁的承载能力和使用寿命。
2. 疲劳破坏钢结构桥梁在长期受到交通荷载、温度变化等作用下,易发生疲劳破坏。
疲劳病害主要表现为裂纹、变形等现象,严重影响桥梁的结构安全性。
钢结构桥梁在高湿度环境下易发生锈蚀,导致桥梁表面失去保护层,加速结构损坏,严重影响桥梁的使用寿命。
4. 螺栓松动由于环境变化和车辆荷载作用,桥梁结构中的螺栓易出现松动现象,严重影响桥梁的稳定性和安全性。
5. 面板开裂钢结构桥梁的面板在长期使用过程中易出现开裂现象,严重影响桥梁的承载能力和使用寿命。
1. 防腐涂层对钢结构桥梁进行表面防腐涂层处理,可以有效阻止氧化和腐蚀,延长桥梁的使用寿命。
常见的防腐涂层包括喷涂涂料、浸热镀锌等。
2. 加固修复对已经出现病害的钢结构桥梁进行加固修复工程,包括补强、补救、更换损坏部件等措施,以恢复桥梁的结构完整性和稳定性。
3. 定期检测对钢结构桥梁进行定期检测,包括表面腐蚀、裂纹、变形等病害的检测,及时发现并处理桥梁的问题,确保桥梁的安全可靠性。
4. 加强维护对钢结构桥梁进行加强维护,包括清洁、涂漆、保养等工作,建立桥梁维护档案,做好桥梁的长期管理和维护工作。
5. 采用新技术随着科技的发展,新型材料和技术的应用对钢结构桥梁的病害防护起到了重要作用。
采用高性能混凝土、碳纤维等材料,以及应用先进的防腐技术和检测手段,都可以有效延长钢结构桥梁的使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 )对 混 凝土 的 收缩 徐 变认 识 不 足 设 计 的 收缩 徐
变挠 度远 小于 实际 导致 结构 下挠 大
腹 板斜 裂缝 问题 及对 策 腹 板 出 现 斜 裂 缝是 大 跨 径 连 续 刚 构 桥 较 常 出 现
2 )对 各 � 施工 阶 段主 梁 挠度 值 的 控 制认 识 不 足 导 的病 害 从 受 力 方面 来 说 主要 原 因 是计 算 主 拉应 力
关键词 � 连续刚构 下挠 斜裂缝 底板裂缝 中图分类号 � � � 44 5. 71 文献标志码 � B 文章编号 �1 009 -77 67 201 0 02-005 8-03
� � � � � � �
� L L J
连续 刚 构桥 多 为预 � 应 力混 凝 土 结 构 主 梁 为薄 壁 些 病害 本 文 分 析 其 可 能 存 在 的 成 因 并 结 合 一 些 处 � 箱梁 该种 桥 型以 其结 构 刚度 大 行车 平顺 舒 适 伸缩 理经 验 和措 施 从 设 计角 度 提出 了 需 要注 意 和 加强 的 缝 少和 养 护 简 便 等 一 系 列 优 点 备受 业主 设 计 单 位 要点 以便 通 过对 设 计指 标 的 控制 以 及必 要 的 构造 措
致成 � 桥 后存 在 初 始挠 度 以 至结 构 在 长期 荷 载 作用 下 时考 虑 因素 不 全 面 导致 计 算主 拉 应 力值 比 实 际值 偏 徐变 挠度 不断 增加 � 小 另 外 由于 竖 向预 应 力 的有 效 应力 较 低 使 实际 的
3 )预 应 � 力度 的 大小 ( 预应 力 度 � � 是 由 预 加 应力 产 主拉 应 力 值比 计 算的 要 大 结 合这 两 方 面原 因 就会
桥梁工程
连续刚构桥常见病害及对策
栗 勇 李照 明 姜 鹏
� � 北京市市政工程设计研究总院 北京 1 00082
� 摘 要 � 连续刚构桥是我国桥梁工程中最常用的结构形式之一 � � 但已建桥梁中已普遍出现了跨中下挠过大 腹板斜裂缝 底板裂缝等病害 从设计角度出发 � 分析了设计中为避免上述病害发生而应当注意的问题
� 要有 跨中 下 挠过 大 腹板� 斜裂 缝 底 板裂 缝等 针 对这 下挠 在 设计 施工 技术 上的 确存 在缺 陷 表1
桥名 黄石长江公路大桥 广东虎门大桥辅航道桥 江津长江大桥 三门峡黄河大桥 广东南海金沙大桥 广东丫髻沙大桥副桥 台湾圆山大桥 挪 英 K 美 加G F � 桥 -B 桥 桥 桥 桥 帕劳 K
构桥 � 已经 成为 主要 桥型 之一 由表 1 可见 大跨 径 预应 力 混 凝 土连 续 刚 构桥 的 � 然而 � 随 着 预应 力 混凝 土 连 续 刚构 桥 在 我 国各 地 跨 中 下挠 过 大 是 国 内 外 桥 梁 建 设 中 普 遍 存 在 的 问 的广泛 应用 有关 该种 桥型 的病 害报 告也 越来 越多 主 题 从 另一 侧 面也 说 明大 跨 径预 应 力 混凝 土 箱 梁跨 中
典型 大跨 径预 应力混 凝 土连续 箱 梁桥跨 中下 挠情 况
折合跨径 1 /73 1 1/ 1 03 8 1 /75 7 1 /727 1 /54 5 1 /69 6 1 /23 8 1/ 1 1 00 1 /201 1 /47 8 1 /307 1 /605 62.5+3 � 245 +62.5 1 50+270+1 5 0 1 40+240+1 4 0 1 05+4� 1 60+1 05 66+1 20+66 86+1 60+86 75 +1 50+2� 1 4 2.5+1 1 8+4 3 1 00+220+1 00 72+24 1 +72 62+1 4 3.3+62. 5 9 9 +1 9 5+9 9 1 81 . 4 33 . 5 26. 0 31 . 7 22. 0 22. 0 23 . 0 63 . 0 20. 0 1 20. 0 30. 0 63 . 5 30. 0
生 的等 效 荷 载 与外荷 � 载产生的弯矩 ( 公桥规 使得 实际 的主 拉应 力值 比计 算值 大得 多 � 定义 � 为作 用效 应组 合下 的弯矩 值 )的比 值) 2-2004 公 路 钢筋 混 凝 土 及预 应 力 混 凝土 � � 构开裂 而开裂又加大下挠 二 桥涵 设计 规范 中主 应力 计算 公式 为 4) 下 挠会 导 致 结 者互 相影 响 形 成恶 性循 环
� � 跨径 / 结构类型 跨中下挠 / 连续刚构 连续刚构 连续刚构 连续刚构 连续刚构 连续刚构 带铰刚构 连续刚构 带铰刚构 带铰刚构 带铰刚构 带铰刚构
大跨 � 径 预应 力 混凝 � 土 箱梁 跨 中 下 挠 不 仅 导致 桥 梁 养护 费 用 大 幅 增 加 破 坏 桥 梁 美 观 更 重 要 的 是 造
5 8
2 0 10 N . 2 ( M
) .
. 28
桥梁工程
� � � � � � � � � � � � � � � � �
� 成桥 梁交 通运 营和 结构 安全度 的降 低� 因此 有必 要对 同时 跨中底 板 的钢束 用 量直接 影响 到弹 性挠 度 引起 � 下 挠的 问 题从 设 计 计算 施 工 和处 � 治 等 各 环节 进 从而 影响徐 变挠 度 因此 设计 时应 考虑有 效预 应力 适 行详 细 的理 论 与 � 试验 分 析 力求 对 � 这一 现 象 进 行有 效 当增 加主梁 跨中 底板 钢束 用量 以提 高 预应力 度 减少 � 的控 制 � 主梁 下挠 值 甚 至使 主梁 上挠 跨中持 续下 挠问 � 题十 分复 杂 影 响因 素较 多 国内 为应 付 将来 可 能出 现 跨 中下 挠 也 可 以 额 外配 置 � 工程 界 已做 过 大量 � 的 分 析研 究 工作 归 纳 起 来 大致 有 体外 预应力 当出 现主梁 下挠 时 可 对体外 预应 力进行 以下 一些 � 因素 张拉 以消 除跨 中下 挠
和施工 单位 的欢迎 从 20 � 世纪 70 年 代起 预应力 混凝 施的 采取 来降 低和 消除 可能 出现 的病 害 土连 续 刚构 桥 在我 国 得 到了 迅 速发 展 和广 泛 应用 目 前在 40�1 50 的跨 径范 围内 预 应力 混凝 问 题及 对策 问题 成因