聚合物流变学
第四章-聚合物流体的流变性
(4)聚合物链结构中的侧基 当侧基体积较大时,自由体积增
大,流体黏度对压力和温度敏感性增 加. 如PMMA和PS可以提高T或者改 变P来改善流动性
顺丁胶的黏度与相对分子质量的关系 1-直链,2—三支链,3—四支链
2. 相对分子质量的影响
(1)相对分子质量对0 的影响
丙烯腈共聚物在NaSCN-H2O 中浓溶液的零切黏度对分子量的依赖性
0 A exp E RT
ln0 ln A E RT
lg 0
lg
A
E 2.303 RT
当T>Tg+100℃时, 由Arrhenius方程式:
0 A exp E RT
ln0 ln A E RT
lg 0
lg
A
E 2.303 RT
须知
➢ 黏流活化能的大小显著受剪切应力或剪切速率的 影响,因此,测定黏流活化能必须说明具体的实 验条件。
C =45.4%,Mc=1.3103; C = 15%时, Mc=6.03104
(2)分子量对流动曲线的影响(P71)
聚合物流体流动曲线对分 子量的依赖性
M ↑ 流动曲线上移 , 0 ↑
相cr同向低值移下动的a ↑
cr
3.相对分子质量分布的影响
(二) 聚合物溶液浓度对黏度的影响
1.聚合物溶液浓度对0 (或)的影响
不稳定流动
• 凡流体在输送通道中流动 时,其流动状况及影响流 动的各种因素都随时间而 变化,此种流动称为不稳 定流动。如在注射成型的 充模过程中,在模腔内的 流动速率、温度和压力等 各种影响流动的因素均随 时间而变化。
等温流动和非等温流动
等温流动
• 流体各处的温度保持不变 情况下的流动。在等温流 动情况下,流体与外界可 以进行热量传递,但传入 和输出的热量保持相等, 达到平衡。
聚合物流变学
1
a`a b`b c`c 1 a b c 1 V / V (abc abc) / abc abc / abc 1
V / V 3 1 (1 )3 1 3 3 2 3
1
-tyx -txy 在y面施加一个剪切力tyx时,必须在x面作用一个大 小相等的剪应力txy才能使试样保持平衡。
在简单剪切实验中,应力张量为:
0 t t yx 0
t xy 0 0
0 0 0
返回
1.6 接触力(内力)
接触力是物体内的一部分通过假想的分隔 面作用在相邻部分上的力,也即外力向物 体内传递。
y B A C f D x
A
-f z
t yx f / A
txy
dz
tyx
y
x dx dy
-tyx
-txy 顺时针方向总力矩为: 必须有作用力
z
t x 0, t xy ,0
dL t yx dxdydz t xy dxdydz
txy
tyx
总力矩为dL=0,即:
t xy t yx
返回
1.5 简单实验中的应力张量
1.5.1 单向拉伸实验
y c b` f l` b A c` z l x f
t xx f / A
f t x t xx , t xy , t xz ,0,0 A t y t yx , t yy , t yz 0,0,0 t z t zx , t zy , t zz 0,0,0
V / V 3
1.2.2 单向拉伸和压缩
y
c b` f z l`
l ` l b` b c` c
聚合物的粘性流动-聚合物流变学基础课件
9.1.2 聚合物熔体流动特点
(1)粘度大,流动性差: 这是因为高分子链的流动 是通过链段的相继位移来实现分子链的整体迁移, 类似蚯蚓的蠕动。 (2)不符合牛顿流动规律:在流动过程中粘度随 切变速率的增加而下降(剪切变稀)。
(3)熔体流动时伴随高弹形变:因为在外力作用 下,高分子链沿外力方向发生伸展,当外力消失后, 分子链又由伸展变为卷曲,使形变部分恢复,表现 出弹性行为。
M > Mc 0 =KMw3~3.4
logMc logM
23
不同用途对分子量有不同的要求: 合成橡胶一般控制在20万; 塑料居橡胶和与纤维之间, 合成纤维一般控制在1.5万~10万;
不同加工方法对分子量有不同要求: 挤出成型要求分子量较高; 注射成型要求分子量较低; 吹塑成型在挤出和注射两者之间。
When T >Tg+100
a AeE/RT
E - 粘流活化能 viscous flow energy
高分子流动时的运动单元: 链段(的协同运动)
E 由链段的运动能力决定, 与分子链的
柔顺性有关, 而与分子量无关!!
29
a AeE/RT
刚性链 E大 粘度对温度敏感
柔性链
E小
粘度对温度不敏感 对剪切速率敏感
工业上常用MI值作为衡量聚合物分子量大小的一种相对指标,分 子量越大,MI值越小。
15
锥板式旋转粘度计
锥板粘度计是用于测定聚合物熔体粘度的常用仪器。
门尼粘度计
在一定温度下(通常 100C)和一定的转子速 度下,测定未硫化的橡 胶对转子转动的阻力
Mooney Index
100C
M
I100 34
预热3min
熔融指数(Melt index ——简MI ):指在一定的温度下和规定
聚合物流变学(绪论)课件
除了在高分子材料加工和性能研究中的应用外,聚合物流变学还广泛应用于其他领域,如生物医学、食品科学、石油化工等。
05
聚合物流变学的未来发展
1
2
3
流变学与材料科学、物理学、化学等学科的交叉融合将进一步加强,为流变学理论的发展提供更多思路和方法。
跨学科融合
实验和计算模拟的相互补充和验证将成为流变学研究的重要手段,有助于更深入地揭示流体的复杂行为。
实验与计算模拟相结合
人工智能、大数据和云计算等技术在流变学中的应用将逐渐普及,提高流变学研究的效率和精度。
智能化技术的应用
聚合物流变学研究面临实验难度大、理论模型复杂、多尺度效应等问题,需要不断探索和创新。
随着科技的发展,聚合物流变学在材料制备、加工、性能优化等方面具有广阔的应用前景,为相关领域的发展提供有力支持。
机遇
挑战
THANK YOU
聚合物流变学(绪论)课件
目录
contents
聚合物流变学简介聚合物流变学基础知识聚合物流变学研究方法聚合物流变学应用聚合物流变学的未来发展
01
聚合物流变学简介
01
02
它涉及到高分子材料的流变性质、流动行为、结构变化以及与加工工艺之间的关系等多个方面。
聚合物流变学是一门研究高分子材料在流动和变形过程中所表现出来的各种物理和化学行为的科学。
将连续的流体离散为有限个单元,如有限差分法、有限元法等。
离散化方法
根据物理定律和边界条件,建立描述流体运动的偏微分方程或积分方程。
建立模型方程
聚合物流变学(绪论)
❖ 加工流变学:属于宏观流变学,主要研究
与高分子材料加工工程有关的理论与技术 问题。
❖ 比如说,研究加工条件变化与材料流 动性质(主要指粘度、弹性)及产品力学 性质之间的关系,异常的流变现象如挤出 胀大、熔体破裂现象发生的规律、原因及 克服办法;高分子材料典型加工成型操作 单元(如挤出、吹塑、注射等过程的流变 学分析;多相高分子体系的流变性规律, 以及模具与机械设计中遇到的种种与材料 流动性质有关的问题等。)
32
主要内容:
挤出流变学 密炼流变学 塑炼流变学 压延流变学 注模流变学 吹塑流变学 熔体纺丝流变学
33
研究和学习流变学的意义
1)对高分子材料合成而言,流变学与高分子化学结合在一 起,流变性质通过与分子结构参数的联系成为控制合成产 物品质的重要参数。
2)对高分子材料成型加工而言,流变学与高分子物理学和 高分子材料成型工艺原理结合在一起,成为设计和控制材 料配方及加工工艺条件,以获取制品最佳的外观和内在质 量的重要手段。
图 1-8 孔压误差 21
牛顿型流体不存在孔压误差,无论压力传 感器端面安装得与流道壁面是否相平,测得 的压力值相等。高分子液体有孔压误差现象。
22
2 原因:在凹槽附近,流线发生弯曲,但法向应
力差效应有使流线伸直的作用,于是产生背向凹 槽的力,使凹置的压力传感器测得的液体内压力 值小于平置时测得的值。在实施流变测量时,应 当注意这一效应。同样地,当高分子液体流经一 个弯形流道时,液体对流道内侧壁和外侧壁的压 力,也会因法向应力差效应而产生差异。通常内 侧壁所受的压力较大。
10
11
二、Weussebberg效应
12
三、Barus效应
13
四、不稳定流动与熔体破裂
聚合物流变学研究意义
聚合物流变学研究意义聚合物流变学是研究聚合物在外力作用下的流变特性的学科。
聚合物是一类大分子化合物,具有高分子量、高分子链的柔韧性和长期的耐久性等特点。
聚合物在外力作用下会产生不同的变形和流动行为,而聚合物流变学正是研究这些变形和流动行为的学科。
聚合物流变学的研究意义主要体现在以下几个方面:1. 工程应用:聚合物流变学的研究可以为聚合物工程应用提供重要的理论基础。
比如,聚合物在塑料加工中的流动行为和变形特性对于塑料工程的设计和制造至关重要。
另外,在航空、汽车、电子等领域,聚合物的流变特性也对产品的性能和可靠性有着重要的影响。
2. 医学应用:聚合物在生物医学领域中有着广泛的应用,比如注射用聚合物、生物材料、组织工程等。
聚合物流变学的研究可以为这些应用提供重要的理论支持和技术指导。
3. 环境保护:聚合物在环境领域中也有着重要的应用,比如塑料袋、塑料瓶等。
聚合物流变学的研究可以为这些应用提供技术支持,使其更加环保和可持续。
聚合物流变学的研究主要涉及到以下几个方面:1. 本构关系:聚合物的流变特性与其分子结构有关,通过研究聚合物的分子结构和流变行为,可以建立聚合物的本构模型,从而预测其力学性能。
2. 流变行为:聚合物的流变行为包括弹性、塑性、粘弹性等,通过研究聚合物的流变行为,可以了解其在复杂工况下的行为规律,从而为工程应用提供理论指导。
3. 流变测试:聚合物的流变测试是研究聚合物流变行为的重要手段,包括剪切测试、拉伸测试、压缩测试等。
通过流变测试,可以获得聚合物的粘度、弹性模量、屈服点等流变参数,为聚合物工程应用提供重要的数据支持。
聚合物流变学的研究对于聚合物工程应用、生物医学、环境保护等领域都具有重要的意义。
在未来,随着聚合物材料的广泛应用,聚合物流变学的研究也将变得越来越重要。
聚合物的流变学性质
为何具有“剪切增稠”特性?
多分散体系; 高含量,高硬度微粒为分散相,分散介质在其间起润滑作用。
增大 ,粒子相互碰撞,导致润滑不足,流动阻力增加,粘度上升。
2
1
特征:τ较小不流动,呈现凝胶状态,只发生弹性变形;
该液体在静止时内部存有凝胶结构,当外加应力大于 τy时,凝胶崩溃,流动行为与牛顿流体相似。
05
提高熔体的流动性。
1.3 聚合物的流变学性质
温度及压力对聚合物熔体粘度的影响
——聚合物大分子的热运动有赖于温度。
与分子热运动有关的熔体流动必然与温度有关。
——在聚合物注射成型过程中,温度对熔体粘
度的影响与剪切速率同等重要。
温度升高——
大分子间的自由空间随之增大,分子间作用力
减小,分子运动变得容易,从而有利于大分子的
01
这时,大分子链段的运动相对减少,分子间的
02
相互作用力(范德华力)逐渐减弱,熔体内的自由
03
空间增加,从而导致相对运动加大,宏观上体现
04
为表观粘度相对降低。
05
——注射成型中,多数聚合物的表观粘度对熔
06
体内部的剪切速率具有敏感性,可以通过调整剪
07
切速率来控制聚合物的熔体粘度。
08
在注射成型中,聚合物熔体发生剪切稀化效应
率区域时,流体变形和流动所需的切应力随剪切
速率而变化,并呈指数规律增大;
流体的表观粘度也随剪切速率而变化,呈指数
规律减小。
假塑性液体的“剪切稀化”的原因:
聚合物具有大分子结构,当熔体进行假塑性流
动时,剪切速率的增大,使熔体所受的切应力加
大,从而导致聚合物大分子结构伸长、解缠和滑
聚合物流体的流变性
聚合物流体的流变性引言聚合物流体是由聚合物分子组成的流体,其独特的流变性质使其在许多工业和科学领域中得到广泛应用。
本文将介绍聚合物流体的流变学性质,包括流变学基本概念、聚合物流体流变学模型、流变学测试方法和聚合物流体的应用领域。
流变学基本概念流变学是研究流体在外力作用下的变形和流动规律的科学。
聚合物流体的流变学行为与传统液体有所不同,其主要特点是非牛顿性。
非牛顿流体指的是流体的粘度随应力变化而变化的流体。
聚合物流体的非牛顿性主要由聚合物链的长而柔软的特性所决定。
根据应力与应变速率之间的关系,可以将聚合物流体分为剪切稀化和剪切增稠流体。
聚合物流体流变学模型为了描述聚合物流体的流变学行为,研究人员发展了许多流变学模型。
其中最经典的模型之一是Maxwell模型,它将聚合物流体看作是由弹簧和阻尼器组成的串联结构。
除此之外,还有Oldroyd-B模型、Giesekus模型和白金布卢米斯模型等。
这些模型可以有效地描述聚合物流体的应力-应变关系,并能预测流体的流变学行为。
流变学测试方法为了研究聚合物流体的流变学特性,需要进行一系列的流变学测试。
常见的流变学测试包括剪切应力-剪切应变测试、动态剪切测试、扩展流动测试和振动测试等。
这些测试方法可以提供流体的粘度、弹性模量、流动极限等参数,从而深入了解聚合物流体的流变学性质。
聚合物流体的应用领域聚合物流体的流变学性质使其在许多应用领域中得到广泛应用。
在食品工业中,聚合物流体用作稳定剂、增稠剂和乳化剂等。
在化妆品工业中,聚合物流体则用于调整产品的黏度和流动性。
此外,聚合物流体还在油田开发、药物传输和生物医学工程中起着重要作用。
结论聚合物流体的流变学性质对其在各种应用领域中的表现起着至关重要的作用。
在了解聚合物流体的流变学行为之后,我们能够更好地设计和控制这些流体,以满足不同领域的需求。
未来,随着对聚合物流体流变学性质研究的不断深入,我们可以预见聚合物流体在更多领域中发挥更重要的作用。
聚合物流变学
• 高分子的流动:不是简单的整条分子链的跃迁,而是通过
链段的相继跃迁来实现,即通过链段的逐步位移完成整条 大分子链的位移。形象地说,这种流动类似于蚯蚓的蠕动 • 这模型并不需在高聚物熔体中产生整个分子链那样大小的 孔穴,而只要如链段大小的孔穴就可以了。这里的链段也称 流动单元,尺寸大小约含几十个主链原子 • (2)高分子流动不符合牛顿流体的流动定律 • 一般不符合牛顿流体定律,即不是牛顿流体,而是非牛顿 流体,常是假塑性流体,这是由于分子链的解缠结或流动 时链段沿流动方向取向,使黏度降低。
影响粘流温度的因素
• 化学结构
• (1)链柔性好,则Tƒ 低;刚性大,
Tƒ 高。
• 原因:柔性分子的链段小,流动所需的孔较小,流动活化
能也小,Tƒ低。柔性差,因为链段大,流动所需的孔较大, 流动活化能也大,所以在较高的温度下才可流动, Tƒ高 。 • (2)分子间作用力大,则Tƒ 高;分子间作用力小,则Tƒ低 • 原因:若分子间的相互作用力很大,则必须在较高的温度 下才能克服分子间的相互作用而产生相对位移,因此高分 子的极性越大, Tƒ越高
• 流体在平直管内受剪切应力而发生流动的形式有层流和湍
流两种。 • 层流时,液体主体的流动是按许多彼此平行的流层进行的, 同一流层之间的各点速度彼此相同,但各层之间的速度却 不一定相等,而且各层之间也无可见的扰动。 • 如果流动速度增大且超过临界值时,则流动转变为湍流。 湍流时,液体各点速度的大小和方向都随时间而变化,此 时流体内会出现扰动
• (3)高分子流动伴有高弹形变 • 有粘性形变(不可逆形变): 整条大分子链质心移动产生的。
除去外力不能回复。还有高弹形变:由链段运动产生的(可 逆形变) • 不是简单的整个分子的迁移,而是各个链段分段运动的总 结果,在外力作用下,高分子链不可避免的要顺外力的方 向有所伸展,即同时伴随着一定量的高弹形变,外力消失 后高分子链又要蜷曲,形变要恢复一部分。
聚合物流变学
聚合物流变学的学习与心得体会通过一学期的聚合物流变学的学习,使我对其有了初步的了解。
现在针对平时学习笔记和课后浏览相关书籍所获知识进行总结。
一、聚合物流变学学习内容1. 流变学中的基本概念流变学是研究材料的流动和变形规律的科学,是一门介于力学、化学、物理与工程科学之间的新兴交叉学科。
聚合物随其分子结构、分子量的不同,以及所处温度的不同,可以是流体或固体,它们的流动和变形规律各不相同,也即有不同的流变性能。
聚合物流变学是研究聚合物及其熔体的变形和流动特性。
1.1 粘弹性流体特性及材料流变学分类粘性流体的流动是:变形的时间依赖性;变形不可恢复(外力作的功转化为热能);变形大,力与变形速率成正比,符合Newton's流动定律。
根据经典流体力学理论,不可压缩理想流体的流动为纯粘性流动,在很小的剪切应力作用下流动立即发生,外力释去后,流动立即停止,但粘性形变不可恢复。
切变速率不大时,切应力与切边速率呈线性关系,遵循牛顿粘性定律,且应力与应变本身无关。
流体→流动→粘性→耗散能量→产生永久变形→无记忆效应根据经典固体力学理论,在极限应力范围内,各向同性的理想弹性固体的形变为瞬时间发生的可逆形变。
应力与应变呈线性关系,服从胡克弹性定律,且应力与应变速率无关。
固体→变形→弹性→储存能量→变形可以恢复聚合物流动时所表现的粘弹性,即有粘性流动又有弹性变形,与通常所说的理想固体的弹性和理想液体的粘性大不相同,也不是二者的简单组合。
材料流变学分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧==⎩⎨⎧⋅=⋅=⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧==∞=⎩⎨⎧⋅=⋅=)),,(()),,((.3.2())((.1)),,(.30,(.2))((.1t f t f t f G G G G E γγσγγσγησγγησγγσγγγσγσ 非线性线性粘弹性流体无粘性牛顿流体)线性非线性粘性流体流体非线性线性(粘弹性固体)刚体非线性)为常数、线性(弹性固体固体 其中非牛顿流体⎩⎨⎧粘弹性流体广义牛顿流体非牛顿流体 基本变形方式:拉伸(压缩)、剪切、膨胀。
完整课件-聚合物加工流变学
2 聚合物熔体的基本流变性能
(2)稳定流动和不稳定流动 凡在输送通道中流动时,流体在任何部位的流
动状态保持恒定,不随时间而变化,一切影响流 体流动的因素都不随时间而改变,此种流动称为 稳定流动。
凡流体在输送通道中流动时,流动状态都随时 间而变化。影响流动的各种因素,有随时间而变 动的情况,此种流动称为不稳定流动。
• 16世纪至18世纪,流变学的发展较快。 • 19世纪,建立的泊肃叶方程,在流变学的
发展史上是一个很重要的标志。
1.2 流变学的发展历史
1.2 流变学的发展历史
• 1678年 胡克弹性定律 1687年 牛顿粘性定律 1928年 流变学概念的提出 1929年 流变学协会的成立 流变学杂志 1948年 第一届国际流变学会议 1950年以后 流变学领域研究迅速发展
课程内容
第1章:绪论 第2章 :聚合物熔体的基本流变性能
第3章:聚合物流动方程 第4章:流变学基础方程的初步应用 第5章:挤出机头设计
绪论
• 1.1 流变学的定义 • 1.2 流变学的发展历史 • 1.3 高聚物流变学的研究内容 • 1.4 高聚物流变学的研究意义 • 1.5 高聚物流变学在塑料加工中的应用
2 聚合物熔体的基本流变性能
(5)拉伸流动和剪切流动 • 按照流体内质点速度分布与流动方向关系,
可将高聚物加工时的熔体流动分为拉伸流 动和剪切流动两类。 • 剪切流动:质点速度仅沿着与流动方向垂 直的方向发生变化。如图2-1(a)。 • 拉伸流动:指点速度仅沿流动方向发生变 化,如图2-1(b)。
2 聚合物熔体的基本流变性能
(3)等温流动和非等温流动 • 等温流动是指流体各处温度保持不变情况下的
聚合物流变学知识点总结
聚合物流变学知识点总结一、聚合物的结构1. 聚合物的结构聚合物是由大量重复单体组成的高分子化合物,它的结构可以分为线性聚合物、支化聚合物和交联聚合物三种类型。
线性聚合物是由单一的链状分子组成,支化聚合物是具有分支结构的聚合物,而交联聚合物则是由互相交联的聚合物链构成的。
2. 聚合物的结构对流变性质的影响聚合物的分子结构对其流变性质有着重要的影响。
例如,线性聚合物的流变行为往往比较简单,而支化聚合物和交联聚合物因为其分子结构的复杂性而表现出更加复杂的流变行为。
3. 聚合物的分子量聚合物的分子量也是影响其流变性质的重要因素。
分子量越高,聚合物越倾向于呈现出固态的性质,例如高分子量的聚合物会表现出较高的粘度和内聚力。
4. 聚合物的形状聚合物的形状对其流变性质也有一定的影响。
例如,球形分子的聚合物在流动状态下会表现出不同于线性分子的流变行为。
二、聚合物的流变性质1. 聚合物的黏度聚合物的黏度是其在流动状态下对外部应变的抵抗力,是衡量聚合物流变性质的重要指标。
由于聚合物的复杂分子结构和内聚力,其黏度通常会随着应变速率的增加而增加,呈现出剪切稀化的特性。
2. 聚合物的弹性聚合物的弹性是指其在受力后能够恢复原状的能力。
在流变学中,弹性通常用弹性模量来描述,高分子链的可延展性和排列状态会影响聚合物的弹性模量。
3. 聚合物的流变型态聚合物在流变过程中可能会呈现出多种类型的流变行为,包括牛顿型流体、剪切稀化型流体、剪切增稠型流体等。
4. 聚合物的剪切稀化和剪切增稠在流变过程中,聚合物通常会表现出剪切稀化和剪切增稠的特性。
剪切稀化是指在剪切应力作用下,聚合物的黏度随着应变速率的增加而减小;而剪切增稠则是指聚合物的黏度随着应变速率的增加而增加。
三、流变学测试方法1. 平行板流变仪平行板流变仪是用于测定聚合物流变性质的常用实验仪器,它通过施加不同频率和幅值的应力来测量聚合物的黏度和弹性等性质。
2. 旋转流变仪旋转流变仪是另一种常用的流变学测试设备,它通过旋转圆盘或圆柱的方式来施加剪切应力,测量聚合物的流变性质。
聚合物流变学
1 导言1.1 流变学的定义术语“流变学”(英文为RHEOLOGY)是由美国物理学家宾汉(E. C. Bingham)于1929年创造出来的,其定义为“流变学是研究物质形变和流动的科学”。
尽管流变学一词作为一门学科出现,只有半个世纪的历史,但流变学思想的起源却可追溯到17世纪的Newton(牛顿流体)和Hooke(胡克定律)。
经过众多科学家和学者的不懈努力,时至今日,流变学已发展成为一门与物理、化学、生物、材料、工程以及食品等多学科交叉的重要学科。
1.2 流变学的研究对象和内容狭义流变学研究的对象主要是非牛顿流体,即复杂流体(USA)或称软物质(Euro)。
研究的内容是复杂流体的形变和流动。
1.3 流变学的分类从研究方法上流变学可分为两种。
一种是将材料当作连续介质处理,用连续介质力学的数学方法进行研究,称为连续介质流变学。
由于这种研究方法不考虑物质内部结构,因此又称为宏观流变学或唯象流变学。
另一种是从物质结构的观点出发,研究材料流变性与物质结构(包括化学结构、物理结构和形态结构)的关系,称为结构流变学,还可称为分子流变学或微观流变学。
按研究对象又可分为聚合物流变学、食品流变学、化妆品流变学、血液流变学、石油流变学、矿山流变学等。
1.4 聚合物流变学研究对象:聚合物溶液、聚合物熔体和聚合物基复合体系。
流变学是聚合物加工成型的基础,流变学测试是聚合物表征的一种重要手段。
1.5 本课程的主要内容流变学的数学基础(张量分析初步)和唯象流变学的理论基础(连续介质力学引论)流变测量学(流变学参数、流变仪、测试模式和数据处理)本构方程(描述应力与应变关系的经验方程和力学模型)聚合物共混体系的流变学(相容、部分相容和不相容共混体系的粘弹性)聚合物复合体系的流变学流变学在聚合物研究中的应用(分子量、接枝率、相容性、相图、相形态、相反转、相分离动力学)聚合物结构流变模型(Rouse Model、Doi-Edwards Model、Reptation Model)1.6 几个重要期刊Journal of Rheology /journals/doc/JORHD2-home/Rheologica Acta /openurl.asp?genre=journal&issn=0035-4511 Applied Rheology http://www.ar.ethz.ch/Korea-Australia Rheology Journal http://www.rheology.or.kr/karj/karj.htmMacromolecules /journals/mamobx/index.htmlPolymer /science/journal/003238611.7 参考书目John D. Ferry, Viscoelastic Properties of Polymers (3rd), John Wiley & Sons Inc. 1980Leszek A. Utracki, Polymer alloys and Blends: Thermodynamics and Rheology, Hanser Pub., 1989Leszek A. Utracki, Polymer Blends Handbook (V ol. 1, Chap. 7), Kluwer Academic Pub., 2002江体乾,化工流变学,华东理工大学出版社,2004周持兴,聚合物流变学实验与应用,上海交通大学出版社,2003许元泽,高分子结构流变学,四川教育出版社,1988江体乾,工业流变学,化学工业出版社,1995周持兴,聚合物加工理论,科学出版社,2004。
《聚合物的流变性》课件
指聚合物与溶剂混合形成的流体体系。
2 聚合物高分子溶液的流变行为
聚合物高分子溶液在剪切作用下表现出复杂的流变性质。
八、聚合物的流变行为与化学结构的相关性
1 聚合物化学结构对流变行为的影响
聚合物的分子结构直接影响其流变行为和性 质。
2 聚合物流变行为的调控
通过调整聚合物的化学结构可以改变其流变 性质,实现特定的应用需求。
剪切测试
通过施加剪切力来测量聚合物的 流变性。
动态测试
通过施加动态加载来测量聚合物 的流变性。
六、非牛顿流体的流变学
1 什么是非牛顿流体?
非牛顿流体的黏度随剪切速率或剪切应力的变化而变化。
2 聚合物的非牛顿流变性
聚合物在不同条件下表现出非线性、时间依赖等多种复杂的流变行为。
七、聚合物高分子溶液的流变学
《聚合物的流变性》PPT 课件
通过学习《聚合物的流变性》PPT课件,了解聚合物的流变性质以及其在不同 领域中的应用,为您提供全方位的知识与见解。让我们一起探索这个引人入 胜的主题吧!
一、聚合物概述
1 什么是聚合物?
聚合物是由大量重复单元结合而成的高分子 化合物,具有多样的结构和性质。
2 聚合物的种类
聚合物种类繁多,包括塑料、橡胶、纤维等, 广泛应用于各个领域。
二、聚合物的流变性定义及原理
1 什么是聚合物的流变性?
聚合物的流变性是指其在受力下发生形变和流动的能力。
2 聚合物流变性的原理
聚合物流变性的原理涉及分子间相互作用、链段的运动和排列等因素。
三、聚合物流变学的分类
剪切流变学
研究聚合物在不同剪切速率下的变形和流动行为。
2 药物输送的控制
聚合物流变学名词解释
聚合物流变学名词解释
聚合物流变学是研究聚合物材料在外力作用下的流变行为的学科。
在聚合物流变学中,有一些常见的名词需要解释,如下:
1. 聚合物,聚合物是由重复单元组成的大分子化合物,它们可以通过化学反应或物理方法合成。
聚合物具有高分子量、可塑性和可变形性。
2. 流变行为,流变行为是指物质在外力作用下的变形和流动特性。
对于聚合物材料,其流变行为可以分为弹性变形、塑性变形和流动变形等。
3. 弹性变形,弹性变形是指物质在受到外力作用后能够恢复到原始形状的能力。
聚合物在低应力下一般表现出弹性行为,即受力后能够迅速恢复原状。
4. 塑性变形,塑性变形是指物质在受到外力作用后无法完全恢复到原始形状的能力。
聚合物在高应力下会发生塑性变形,导致永久性的形变。
5. 流动变形,流动变形是指物质在外力作用下发生持续的形变和流动。
聚合物在高温或高应力条件下会发生流动变形,使其形状发生改变。
6. 剪切应力,剪切应力是指作用在物质表面上的力与单位面积的比值。
在聚合物流变学中,剪切应力是导致聚合物发生流变行为的主要力量。
7. 剪切应变,剪切应变是指物质在受到剪切应力作用下的形变程度。
聚合物的剪切应变与剪切应力呈线性关系,称为线性剪切应变。
8. 流变曲线,流变曲线是描述聚合物材料在外力作用下剪切应力和剪切应变之间关系的曲线图。
根据流变曲线的形状,可以判断聚合物的流变行为类型。
以上是关于聚合物流变学常见名词的解释。
聚合物流变学的研究对于聚合物材料的设计、加工和应用具有重要意义,可以帮助理解和控制聚合物材料的流变性能。
第4章聚合物流体的流变性
0
31
四.聚合物流体的特性及其表征
聚合物流体兼具黏性和弹性,导致其流体具有3个重要特性: (1)非牛顿剪切黏性 (2)拉伸黏性 (3)弹性
可以导出表征聚合物流体流变性的四个材料常数,用它们表征聚合 物流体的三个特性:
拉伸流动: 流体质点的运动速度仅沿着与流
动方向一致的方向发生变化。
剪切流动: 流体质点的运动速度仅沿着与流
②
↑至
cr时,流体呈切力变稀现象,
(第一牛顿区)
↓ (a)
③
(非牛顿区)
继续↑流体又表现为牛顿流动, 不变(∞)
(第二牛顿区)
由流动曲线可得到一些流变学量:
① 非牛顿流动指数n :表征流体偏离牛顿流动的程度
② 结构黏度指数△ :(对某些流体)表征流体结构化的
程度
d lga d1/ 2
102
③ 最大松弛时间 max: cr的倒数(量纲为时间,有时用它度
第三节 聚合物流体的弹性
一、聚合物流体弹性的表征
1. 聚合物流体弹性的表现 (1)液流的弹性回缩
(2)流体的蠕变松弛 同轴旋转圆筒黏度计中的可回复形变与流动 (3)孔口胀大效应[巴拉斯(Barus)效应]
孔口胀大效应
(4)威森堡效应(爬杆效应) (5)剩余压力现象 (6)孔道的虚构长度 (7)反循环效应
Lmax、纤维强伸度乘积 1/△η
△η ↓ , 可纺性↑ 成品质量↑
切力变稀流体的流动曲线
(四)有利于确定加工工艺条件
例:UHMW-PAN溶液
△
1.1
1.0
0.9
0.8
0.7
加工温度应超过100℃
0.6
0.5
0.4
20
高分子物理第3讲聚合物的粘性流动
5.3.5 影响聚合物熔体粘度的因素
加工条件 结构因素
温度 剪切速率 剪切应力 压力
分子量 分子量分布
支化
(1) 加工条件的影响
Arrhenius Equation 阿累尼乌斯方程
When T >Tg+100 a AeE / RT
E - 粘流活化能 viscous flow energy
E
Ae RT
E称为粘流活化能
(2) 高分子流动不符合牛顿流体的流动规律
对于牛顿流体,粘度不随剪切速率和剪切应力的 大小而改变。
切应变
d
dt
切应力 d 称为剪切速率,为流体的粘度
dt
1N s / m2 1Pa s, 1泊(poise) 1dyn s / cm2 1g / cm s 0.1Pa s
我们可用一个恒定的应力 加在非晶 态固体聚合物上,在恒温下观察应 变随时间的变化即蠕变:
图5-28是观察到的蠕变曲线。
粘流态中高分子链的蛇行和管道模型
5.3.2 影响粘流温度的因素
分子结构的影响
分子链越柔顺,粘流温度越低; 分子链的极性越大,粘流温度越高。
分子量的影响
分子量越大,分子运动时受到的内摩擦阻力越大; 分子量越大,分子间的缠结越厉害,各个链段难以向
各种流体的性质
BD
N
c
P
B D
N
P
t
N: 牛顿流体 D: 膨胀性流体
P: 假塑性流体 B: 宾汉流体
(3) 高分子流动时伴有弹性形变
高分子的流动并不是高分子链之间简单滑移 的结果, 而是各个链段协同运动的总结果.
在外力作用下, 高分子链(链段)不可避免地要 在外力作用的方向有所伸展(取向), 当外力撤除后, 高分子链又会卷曲(解取向), 因而整个形变要回复 一部分, 表现出高弹形变的特性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究聚合物流动和变形的科学,是介于力学、化学和工程科学之间的边缘科学,是现代流变学的重要分支。
研究聚合物流变学对聚合物的合成、加工、加工机械和模具的设计等均具有重要意义。
聚合物流变学是随高分子材料的合成、加工和应用的需要,于50年代发展起来的。
在聚合物的聚合阶段,流变学与化学结合在一起;而在以后的阶段,主要是与聚合物加工相结合。
聚合物流变学70年代发展较快,在1984年第九届国际流变学会议上总结了最近的研究成果,B.米纳等主编了《流变学进展》一书。
主要有宏观与微观两种:宏观法即经典的唯象研究方法,是将聚合物看作由连续质点组成,材料性能是位置的连续函数,研究材料的性能是从建立粘弹模型出发,进行应力-应变或应变速率分析。
微观法即分子流变学方法,是从分子运动的角度出发,对材料的力学行为和分子运动过程进行相互关联,提出材料结构与宏观流变行为的联系。
两种方法结合起来的研究,常取得较好效果。
但它们都离不开实验室流变性能的测定。
常用的仪器主要有:挤出式流变仪(毛细管流变仪、熔体指数仪)、转动式流变仪(同轴圆筒粘度计、门尼粘度计、锥板式流变仪)、压缩式塑性计、振荡式流变仪、转矩流变仪以及拉伸流变仪等。