南京理工大学《信号与系统》课件第1章
合集下载
《信号与系统》上课PPT1-1
f (t )
t t
T
t
第一章第1讲
7
信号分类 能量信号与功率信号
能量信号和功率信号的定义
信号可看作是随时间变化的电压或电流,信号 f (t) 在1欧姆的电阻上的瞬时功率为| f (t)|²,在时间区 间所消耗的总能量和平均功率分别定义为:
总能量 E lim
T
T T
f (t ) dt
2
b
第一章第1讲
11
例1.3 求下列周期信号的功率。
周期锯齿波的功率:T= b + b =10s,一个周期的能量为:
E 1 3 A b
2
1 3
1 3
( A) b
2
1 3
AT
2
信号的功率为
P
E T
A
2
1 3
W
12
第一章第1讲
例1.3 求下列周期信号的功率。
全波整流波形的功率:T=b=5s,一个周期的能量为:
1
(t t0 )
0
t0
t
用阶跃函数可以表示方波或分段常量波形:
u
K
u
K 这就是一个门函数 (方波)的表达式。 t1 用这种门函数可表示 t0 0 其它一些函数 K
第一章第1讲 20
0
t0
t1
t
t
u K (t t0 ) K (t t1 ) K [ (t t0 ) (t t1 )]
f (t )
无限信号或 无时限信号
t
f (t )
f (t )
右边信号或 因果信号
t
f (t )
t t
信号与系统PPT
(2)反转:f(-2t)中以-t代替t,可求得f(2t),表明f(-2t)的波形 以t=0的纵轴为中心线对褶,注意 (t ) 是偶数,故
2 ( t
பைடு நூலகம்
1 2
) 2 (t
1 2
)
2 (t
1 2
)
f(2t) 由f(-2t) 反褶 f(2t)
1 2
0
1
t
(3)比例:以
1 2
f (k )
f (k )
e t
3 2 1
k
0
1
2
3
0
1
2
3
k
f ( t ) sin t
f(t)
0
t
0
t
t<0时,f(t)=0的函数称为有始函数
连续时间函数可包含不连续点
f (t k )
f(n)
(2) (1) (1)
0
12 345
t
0
1 2 3 4 数字信号
t
离散时间信号
3.周期信号与非周期信号 周期信号是指经过一定时间重复出现的信号;而非周 期信号在时间上不具有周而复始的特性。
或 若
e (t ) r (t )
则
ke ( t ) kr ( t )
叠加性是指若有n个输入同时作用于系统时,系统的输出等于各个输入单独 作用于系统所产生的输出之和
T e1 ( t ) e 2 ( t ) T e1 ( t ) T e 2 ( t )
或
,
若 则
( t )dt a
1
a ( t )dt
1
2 (
1 2
《信号与系统》第一章
学习目标
1
掌握信号与系统的基本概念、性质和分类,理解 信号与系统在信息传输、处理和应用中的重要地 位和作用。
2
掌握信号的描述和分析方法,包括时域和频域分 析,理括线性时不变系 统和线性时变系统,理解系统的基本特性、分析 和设计方法。
02
系统的基本概念和分类
阐述了系统的基本概念,系统分类(如线性时不变系统、非线性系统 、离散系统等),以及系统的描述方法。
信号与系统在通信工程中的应用
讨论了信号与系统在通信工程中的重要性,如调制解调、频分复用等 。
信号与系统在控制工程中的应用
探讨了信号与系统在控制工程中的应用,如PID控制器、控制系统稳 定性分析等。
下章预告
傅里叶变换
介绍傅里叶变换的定义、性质 及其在信号处理中的应用。
系统的状态变量分析
通过状态变量法对线性时不变系统 进行分析,包括状态方程的建立、 解法以及系统的稳定性分析。
拉普拉斯变换与Z变换
介绍拉普拉斯变换和Z变换的定 义、性质及其在连续系统和离 散系统分析中的应用。
系统的能控性和能观性
介绍能控性和能观性的概念、 判据以及其在控制系统设计中 的应用。
02
在实际应用中,需要根据具体需求和场景,选择合适的系统和信号处理方法, 以达到最佳的处理效果。
03
深入研究和理解信号与系统之间的相互作用关系,有助于更好地应用信号处理 技术,推动相关领域的发展和创新。
05
CATALOGUE
总结与展望
本章总结
信号的基本概念和分类
介绍了信号的基本概念、信号的分类(如连续信号、离散信号、周期 信号、非周期信号等)以及信号的表示方法。
CATALOGUE
信号的基本概念
信号与系统课件--第1章 信号与系统的基本概念
例 1.1-1 试判断下列信号是否为周期信号。若是,确定其 周期。
(1) f1(t)=sin 2t+cos 3t
(2) f2(t)=cos 2t+sinπt
解 我们知道,如果两个周期信号x(t)和y(t)的周期具有公
倍数,则它们的和信号
f(t)=x(t)+y(t)
仍然是一个周期信号, 其周期是x(t)和y(t)周期的最小公倍数。
可以直接列出序列值或者写成序列值的集合。例如,图1.1-3(a)
所示的正弦序列可表示为
2013-8-7
f1 (k ) A sin k 4 信号与系统
第 1 章 信号与系统的基本概念
f1 (k ) A „ -8 -6 -4 -2 01 2 3 4 -A (a) f2 (k) 2 1 -3 -1 01 -1 (b) 23 4 k -3 -1 01 2 3 4 5 6 k A f3 (k) 5 6 7 8 „ k
这样,图1.1-2中的信号f2(t)和f3(t)也可表示为
2013-8-7
信号与系统
第 1 章 信号与系统的基本概念
仅在离散时刻点上有定义的信号称为离散时间信号,简 称离散信号。这里“离散”一词表示自变量只取离散的数值, 相邻离散时刻点的间隔可以是相等的,也可以是不相等的。 在这些离散时刻点以外,信号无定义。信号的值域可以是连 续的, 也可以是不连续的。 定义在等间隔离散时刻点上的离散信号也称为序列, 通 常记为f(k),其中k称为序号。与序号m相应的序列值f(m)称为 信号的第m个样值。序列f(k)的数学表示式可以写成闭式,也
2
T1 s
2013-8-7 信号与系统
T2 2 s
第 1 章 信号与系统的基本概念 4. 能量信号与功率信号
(1) f1(t)=sin 2t+cos 3t
(2) f2(t)=cos 2t+sinπt
解 我们知道,如果两个周期信号x(t)和y(t)的周期具有公
倍数,则它们的和信号
f(t)=x(t)+y(t)
仍然是一个周期信号, 其周期是x(t)和y(t)周期的最小公倍数。
可以直接列出序列值或者写成序列值的集合。例如,图1.1-3(a)
所示的正弦序列可表示为
2013-8-7
f1 (k ) A sin k 4 信号与系统
第 1 章 信号与系统的基本概念
f1 (k ) A „ -8 -6 -4 -2 01 2 3 4 -A (a) f2 (k) 2 1 -3 -1 01 -1 (b) 23 4 k -3 -1 01 2 3 4 5 6 k A f3 (k) 5 6 7 8 „ k
这样,图1.1-2中的信号f2(t)和f3(t)也可表示为
2013-8-7
信号与系统
第 1 章 信号与系统的基本概念
仅在离散时刻点上有定义的信号称为离散时间信号,简 称离散信号。这里“离散”一词表示自变量只取离散的数值, 相邻离散时刻点的间隔可以是相等的,也可以是不相等的。 在这些离散时刻点以外,信号无定义。信号的值域可以是连 续的, 也可以是不连续的。 定义在等间隔离散时刻点上的离散信号也称为序列, 通 常记为f(k),其中k称为序号。与序号m相应的序列值f(m)称为 信号的第m个样值。序列f(k)的数学表示式可以写成闭式,也
2
T1 s
2013-8-7 信号与系统
T2 2 s
第 1 章 信号与系统的基本概念 4. 能量信号与功率信号
精品课件-信号与系统-第1章
“系统”是由若干相互作用和相互依赖的事物组合而成 的具有特定功能的整体。 在信息科学与技术领域中, 常常利 用通信系统、 控制系统和计算机系统进行信号的传输、 交换 与处理。 实际上, 往往需要将多种系统共同组成一个综合性 的复杂整体, 例如宇宙航行系统。
第 章 信号与系统的基本概念
信号与系统之间有着十分密切的联系。 离开了信号, 系统 将失去意义。 信号作为待传输消息的表现形式, 可以看做运载 消息的工具, 而系统则是为传送信号或对信号进行加工处理而 构成的某种组合。 研究系统所关心的问题是, 对于给定信号形 式与传输、 处理的要求, 系统能否与其相匹配, 它应具有怎 样的功能和特性。
第 章 信号与系统的基本概念
图1.1 电路中电容两端的电压变化
第 章 信号与系统的基本概念
如果我们只能得到某些采样点的值, 则信号便不是连续曲 线了, 自变量也不是在时间上连续的, 而是一个个离散的点, 通常用x[n]表示, n=…-3, -2, -1, 0, 1, 2, 3, …。 x[n]可以表示自变量本来就是离散的现象, 例如有关人口统 计学中的一些数据、 股票市场的指数等。 图1.2给出了近94年 的道琼斯工业平均(Doe Jones Industrial Average)指数值。 也有一些离散信号是由本来连续的时间信号经过采样而得到的, 这时离散信号x[n]则代表了一个自变量是连续变化的连续时间 信号在一系列离散时刻点上的样本值。
第 章 信号与系统的基本概念
随着信号传输、 信号交换理论与应用的发展, 出现了所 谓“信号处理”的新课题。 信号处理可以理解为对信号进行 某种加工或变换。 信号处理的应用已遍及许多科学技术领域, 例如, 从月球探测器发来的信号可能被淹没在噪声之中, 但 是, 利用信号处理技术进行增强, 就可以在地球上得到清晰 的月球图像。 石油勘探、 地震测量以及核试验监测仪所得数 据的分析都依赖于信号处理技术的应用。 此外, 在心电图、 脑电图分析, 语音识别与合成, 图像数据压缩以及经济形势 预测(如股票市场分析)等各种领域中都广泛采用了信号处理技 术。
第 章 信号与系统的基本概念
信号与系统之间有着十分密切的联系。 离开了信号, 系统 将失去意义。 信号作为待传输消息的表现形式, 可以看做运载 消息的工具, 而系统则是为传送信号或对信号进行加工处理而 构成的某种组合。 研究系统所关心的问题是, 对于给定信号形 式与传输、 处理的要求, 系统能否与其相匹配, 它应具有怎 样的功能和特性。
第 章 信号与系统的基本概念
图1.1 电路中电容两端的电压变化
第 章 信号与系统的基本概念
如果我们只能得到某些采样点的值, 则信号便不是连续曲 线了, 自变量也不是在时间上连续的, 而是一个个离散的点, 通常用x[n]表示, n=…-3, -2, -1, 0, 1, 2, 3, …。 x[n]可以表示自变量本来就是离散的现象, 例如有关人口统 计学中的一些数据、 股票市场的指数等。 图1.2给出了近94年 的道琼斯工业平均(Doe Jones Industrial Average)指数值。 也有一些离散信号是由本来连续的时间信号经过采样而得到的, 这时离散信号x[n]则代表了一个自变量是连续变化的连续时间 信号在一系列离散时刻点上的样本值。
第 章 信号与系统的基本概念
随着信号传输、 信号交换理论与应用的发展, 出现了所 谓“信号处理”的新课题。 信号处理可以理解为对信号进行 某种加工或变换。 信号处理的应用已遍及许多科学技术领域, 例如, 从月球探测器发来的信号可能被淹没在噪声之中, 但 是, 利用信号处理技术进行增强, 就可以在地球上得到清晰 的月球图像。 石油勘探、 地震测量以及核试验监测仪所得数 据的分析都依赖于信号处理技术的应用。 此外, 在心电图、 脑电图分析, 语音识别与合成, 图像数据压缩以及经济形势 预测(如股票市场分析)等各种领域中都广泛采用了信号处理技 术。
信号与系统PPT全套课件
T T
T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T
T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。
信号与系统第一章课件
系统的传递函数
传递函数是描述线性时不变系统的复数域数学模型 ,它包含了系统的频率响应信息。
复数域分析的优势与应用
复数域分析方法可以方便地处理具有非线性 特性的系统和信号,广泛应用于控制工程、 电路分析等领域。
04 线性时不变系统
线性时不变系统的定义与性质
线性
系统的输出与输入成正比 关系,比例系数为常数。
系统的频率响应
系统的频率响应是描述系统对不同频率信号的响 应特性,通过频率响应曲线可以了解系统的性能。
3
频域分析的优势与应用
频域分析方法可以方便地处理复杂信号和系统, 广泛应用于信号处理、通信、雷达等领域。
系统的复数域分析
拉普拉斯变换与复频域分 析
拉普拉斯变换将信号从时域转换到复频域, 通过复频域分析可以了解系统的动态特性和 稳定性。
系统的定义与分类
定义
系统是指一组相互关联的元素或组成部分,它们共同完成某为线性系统和非线性系统;根据系统的动态行为,可 以分为时不变系统和时变系统。
信号与系统的重要性及应用领域
重要性
信号与系统是通信工程、电子工程、 自动控制工程等领域的核心基础,是 实现信息传输、处理、控制和应用的 关键。
要点三
信号与系统的重要意 义
信号与系统作为现代工程和科学研究 的重要基础,其发展对于推动科技进 步和产业升级具有重要意义。未来, 信号与系统的理论和技术将继续发挥 重要作用,为人类社会的进步和发展 做出贡献。
THANKS FOR WATCHING
感谢您的观看
因果性
系统的输出只与过去的输入 有关,与未来的输入无关。
时不变
系统的特性不随时间变化。
稳定性
系统在受到外部激励时, 其输出不会无限增长。
信号与系统精品课件1.1
•系统:系统的描述方式、组合规律、以及系统特性等。
•与:信号进入输入或激励系统后,系统的输出或响应。
我们将按照“信号→系统→与”的思路来讨论本书的基础性 知识。
静态元素:“信号”和“系统” 动态过程:“与”
本章结构
信号
• 表示方式 • 分类 • 运算 • 若干基本信号 • 信号之间关系
系统
与
• 表示方式
电信号:具体表现形式为电压、电流、磁通量等。 电系统:构成电系统的基本元件为电阻、电容、电感等。 本课程重点不在于具体电路元件的特定的信号值,而是从 系统的角度上关注其相应的功能。
vin t
R C
vout t
图1.1.1 积分电路
信号与系统
•信号:信号的描述方式、运算规则、相互关系、以及信号的 分解等。
• 输入输出法
→
• 分类 • 特性
பைடு நூலகம்
→ • 状态变量法
• 系统特性判断
重点和难点
• 信号的运算 • 冲激信号 • 系统特性的判断
信息(Information)
信息的载体,不同信号所包含的信息不同,因此从具体的内 容或应用来看,信息的定义显然是不同的。
信号总是和系统联系在一起的,从系统(也就是信号的接 收者)的角度来看,信息的功能就是使得接收者消除对特 定对象状态的不确定性。
抽象意义上来说信息就是某种不确定性。
电信号、电系统
信号与系统
§1.1 引 言
信号(Signal)
信号
系统
信号(Signal)
信号: 从一般意义上来讲就是信息的载体。通常通过某种客观变量, 包括物理变量、化学变量或者是生物变量等等的变化得以体 现。 信息: 1000多种定义!?
•与:信号进入输入或激励系统后,系统的输出或响应。
我们将按照“信号→系统→与”的思路来讨论本书的基础性 知识。
静态元素:“信号”和“系统” 动态过程:“与”
本章结构
信号
• 表示方式 • 分类 • 运算 • 若干基本信号 • 信号之间关系
系统
与
• 表示方式
电信号:具体表现形式为电压、电流、磁通量等。 电系统:构成电系统的基本元件为电阻、电容、电感等。 本课程重点不在于具体电路元件的特定的信号值,而是从 系统的角度上关注其相应的功能。
vin t
R C
vout t
图1.1.1 积分电路
信号与系统
•信号:信号的描述方式、运算规则、相互关系、以及信号的 分解等。
• 输入输出法
→
• 分类 • 特性
பைடு நூலகம்
→ • 状态变量法
• 系统特性判断
重点和难点
• 信号的运算 • 冲激信号 • 系统特性的判断
信息(Information)
信息的载体,不同信号所包含的信息不同,因此从具体的内 容或应用来看,信息的定义显然是不同的。
信号总是和系统联系在一起的,从系统(也就是信号的接 收者)的角度来看,信息的功能就是使得接收者消除对特 定对象状态的不确定性。
抽象意义上来说信息就是某种不确定性。
电信号、电系统
信号与系统
§1.1 引 言
信号(Signal)
信号
系统
信号(Signal)
信号: 从一般意义上来讲就是信息的载体。通常通过某种客观变量, 包括物理变量、化学变量或者是生物变量等等的变化得以体 现。 信息: 1000多种定义!?
信号与系统 第一章课件
3)信号的处理与传输
• 通信系统中信号的传输
• 信号处理 本课程的参考书: • Oppeheim…… • Simon Haykin: Signal and System, 电子工业出版社
学习本课程的基本要求
• 课堂 • 作业 • 实验
思考题:
1、信号、信息与系统的定义;
2、理解为什么要信号分解?
6)单位冲激信号
冲激信号的定义:
(t )dt 1 (t ) 0
t 0 t0
冲激信号的性质:
(t ) f (t )dt (t ) f (0)dt f (0)
冲激信号为偶函数
阶跃信号与冲激信号的关系: 冲激函数的积分等于阶跃函数
4)正交函数分量 典型应用:傅立叶的级数展开
问题:为什么可以进行傅立叶的级 数展开?还有其它的展开形式吗?
数学理论表示: f (t) 可以用完备的正交函数系的线性组合来表示。
正交函数:
mr 0 t1 g m ( t ) g r ( t )dt Km m r ( m , r 1 ,2 ,3 , )
t2
完备的正交函数系:
不存在 x (t)
g m ( t )
t2
t1
x ( t ) g m ( t )dt 0 ( m 1 ,2 ,3 , )
三角函数系 {cos m1t, sin m1t} m n时:
T 2 T 2 T 2 T 2 T 2 T 2
cos m 1 t cos n 1 t dt 0 sin m 1 t sin n 1 t dt 0 sin m 1 t cos n 1 t dt 0
南理工信号与系统课件SSCha
模块化设计
将复杂系统分解为更小、更易于管理的 模块,每个模块执行特定的功能。
单一职责原则
每个模块只应承担一个职责,以保持 其职责的单一性。
开闭原则
软件实体应该对扩展开放,对修改封 闭。这意味着模块的行为可以被扩展, 而不需要修改现有的代码。
里氏替换原则
任何使用基类的地方都可以使用其子 类,而不会产生任何意外的行为或错 误。
傅里叶分析
将信号分解为不同频率 的正弦波的叠加,通过 分析各个频率分量的幅 度和相位来描述信号的 特性。
系统函数
通过系统的频率响应来 描述系统的特性,系统 函数在频率域中表示为 复数函数。
滤波器设计
根据所需的频率特性设 计滤波器,用于信号处 理和控制系统。
系统的复数域分析方法
拉普拉斯变换
将时域中的函数变换到复数域中,通过求 解复数域中的代数方程来分析系统的稳定
应用领域
信号与系统理论在通信、雷达、声呐、医学成像、图像处理、语音识别等领域有着广泛的应用,如信号的调制解 调、滤波、频谱分析、系统建模与仿真等。
02
信号的数学表示方法
信号的时域表示方法
定义
信号的时域表示方法是指将信号的幅度或强度随时间变化的关系 表示成数学函数的形式。
常见时域信号
正弦波、方波、脉冲信号等。
性、极点和零点等特性。
A 定义
复数域分析方法是在复数域中对系 统进行分析的方法。
BCBiblioteka D系统函数在复数域中,系统函数表示为传递函数, 用于描述系统的动态行为和频率响应特性。
z变换
将离散时间信号变换到复数域中,通过求 解代数方程来分析离散时间系统的特性。
04
信号通过线性时不变系统的响应
将复杂系统分解为更小、更易于管理的 模块,每个模块执行特定的功能。
单一职责原则
每个模块只应承担一个职责,以保持 其职责的单一性。
开闭原则
软件实体应该对扩展开放,对修改封 闭。这意味着模块的行为可以被扩展, 而不需要修改现有的代码。
里氏替换原则
任何使用基类的地方都可以使用其子 类,而不会产生任何意外的行为或错 误。
傅里叶分析
将信号分解为不同频率 的正弦波的叠加,通过 分析各个频率分量的幅 度和相位来描述信号的 特性。
系统函数
通过系统的频率响应来 描述系统的特性,系统 函数在频率域中表示为 复数函数。
滤波器设计
根据所需的频率特性设 计滤波器,用于信号处 理和控制系统。
系统的复数域分析方法
拉普拉斯变换
将时域中的函数变换到复数域中,通过求 解复数域中的代数方程来分析系统的稳定
应用领域
信号与系统理论在通信、雷达、声呐、医学成像、图像处理、语音识别等领域有着广泛的应用,如信号的调制解 调、滤波、频谱分析、系统建模与仿真等。
02
信号的数学表示方法
信号的时域表示方法
定义
信号的时域表示方法是指将信号的幅度或强度随时间变化的关系 表示成数学函数的形式。
常见时域信号
正弦波、方波、脉冲信号等。
性、极点和零点等特性。
A 定义
复数域分析方法是在复数域中对系 统进行分析的方法。
BCBiblioteka D系统函数在复数域中,系统函数表示为传递函数, 用于描述系统的动态行为和频率响应特性。
z变换
将离散时间信号变换到复数域中,通过求 解代数方程来分析离散时间系统的特性。
04
信号通过线性时不变系统的响应
信号与系统_第一章(重点PPT)
5
5
解 (1) costδ(t)=δ(t), 因为cos0=1。 (2) (t-1)δ(t)=-δ(t), 因为(t-1)|t=0=-1。
(3) ∫ (t 2 + 2t + 1)δ (t )dt = 1因为(t 2 + 2t + 1) |t =0 = 1
5 5
5
(4) ∫ (t 2 + 2t + 1)δ (t 6)dt = 0因为δ (t 6) 不在积分区间内。
序列x(n)
第1章 信号与系统 章
信号分类
1. 确定性信号与随机信号
信号可以用确定的时间函数来表示的, 是确定性信号, 也称规则信 号。 如正弦信号、 单脉冲信号、 直流信号等。
信号不能用确定的时间函数来表示, 只知其统计特性, 如在某时刻 取某值的概率的,则是随机信号。
第1章 信号与系统 章
2. 周期信号与非周期信号
ke at sin ωt f (t ) = 0
t>0 t<0
k f (t)
0
t
-k
第1章 信号与系统 章
3. 复指数信号
f(t)=kest
s=σ+jω为复数, σ为实部系数, ω为虚部系数。 借用欧拉公式: kest=ke(σ+jω)t=keσt e jωt=keσt cosωt+jkeσt sinωt
1 -2
τ
- 2
τ2
0
τ2
τ
2
τ1
2
t
第1章 信号与系统 章
单位冲激函数一般定义为
∞ t = 0 δ (t ) = 0 t ≠ 0 ∞ ∫∞ δ (t )dt = 1
0
δ (t)
5
解 (1) costδ(t)=δ(t), 因为cos0=1。 (2) (t-1)δ(t)=-δ(t), 因为(t-1)|t=0=-1。
(3) ∫ (t 2 + 2t + 1)δ (t )dt = 1因为(t 2 + 2t + 1) |t =0 = 1
5 5
5
(4) ∫ (t 2 + 2t + 1)δ (t 6)dt = 0因为δ (t 6) 不在积分区间内。
序列x(n)
第1章 信号与系统 章
信号分类
1. 确定性信号与随机信号
信号可以用确定的时间函数来表示的, 是确定性信号, 也称规则信 号。 如正弦信号、 单脉冲信号、 直流信号等。
信号不能用确定的时间函数来表示, 只知其统计特性, 如在某时刻 取某值的概率的,则是随机信号。
第1章 信号与系统 章
2. 周期信号与非周期信号
ke at sin ωt f (t ) = 0
t>0 t<0
k f (t)
0
t
-k
第1章 信号与系统 章
3. 复指数信号
f(t)=kest
s=σ+jω为复数, σ为实部系数, ω为虚部系数。 借用欧拉公式: kest=ke(σ+jω)t=keσt e jωt=keσt cosωt+jkeσt sinωt
1 -2
τ
- 2
τ2
0
τ2
τ
2
τ1
2
t
第1章 信号与系统 章
单位冲激函数一般定义为
∞ t = 0 δ (t ) = 0 t ≠ 0 ∞ ∫∞ δ (t )dt = 1
0
δ (t)
《信号与系统》课件
1
2
0 , k其他
■
k 0
k 1
k 2
k其他
第1-18页
1.3 信号的基本运
算
二、信号的时间变换运算
1. 反转
演示
将 f (t) → f (–t) , f (k) → f (–k) 称为对信号f (·
)
的反转或反折。从图形上看是将f (·
)以纵坐标为轴反
转180o。如
f (t)
反转 t → - t
■
第1-11页
1.2 信号的描述和分
类
例1 判断下列信号是否为周期信号,若是,确定其周期。
(1)f1(t) = sin2t + cos3t
(2)f2(t) = cos2t + sinπt
解:两个周期信号x(t),y(t)的周期分别为T1和T2,若其
周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周
《信号与系统》
第一章 信号与系统
1.1 绪言
● 思考问题:什么是信号?什么是系统?为什么把这两个概念联系在一起?
●一、信号的概念
1. 消息(message):
● 人们常常把来自外界的各种报道统称为消息。消息:反映知识状态的改变。
2. 信息(information): 它是信息论中的一个术语。
● 通常把消息中有意义的内容称为信息。信息量=[ 收到消息前对某事件的无知程度
(2)信号的图形表示--波
形
第1-6页
“信号”与“函数”两词常相互通用。
■
二、信号的分类
1.2 信号的描述和分
类
1. 确定信号和随机信号
可以用确定时间函数表示的信号,称为确定信号
2
0 , k其他
■
k 0
k 1
k 2
k其他
第1-18页
1.3 信号的基本运
算
二、信号的时间变换运算
1. 反转
演示
将 f (t) → f (–t) , f (k) → f (–k) 称为对信号f (·
)
的反转或反折。从图形上看是将f (·
)以纵坐标为轴反
转180o。如
f (t)
反转 t → - t
■
第1-11页
1.2 信号的描述和分
类
例1 判断下列信号是否为周期信号,若是,确定其周期。
(1)f1(t) = sin2t + cos3t
(2)f2(t) = cos2t + sinπt
解:两个周期信号x(t),y(t)的周期分别为T1和T2,若其
周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周
《信号与系统》
第一章 信号与系统
1.1 绪言
● 思考问题:什么是信号?什么是系统?为什么把这两个概念联系在一起?
●一、信号的概念
1. 消息(message):
● 人们常常把来自外界的各种报道统称为消息。消息:反映知识状态的改变。
2. 信息(information): 它是信息论中的一个术语。
● 通常把消息中有意义的内容称为信息。信息量=[ 收到消息前对某事件的无知程度
(2)信号的图形表示--波
形
第1-6页
“信号”与“函数”两词常相互通用。
■
二、信号的分类
1.2 信号的描述和分
类
1. 确定信号和随机信号
可以用确定时间函数表示的信号,称为确定信号
信号系统第一章信号与系统PPT课件
系统具有输入、输出、 转换、反馈等基本特 性。
系统的分类
01
根据系统的特性,可以 将系统分为线性系统和 非线性系统。
02
03
04
根据系统的动态特性, 可以将系统分为时不变 系统和时变系统。
根据系统的参数是否随时 间变化,可以将系统分为 连续系统和离散系统。
根据系统的功能和用途,可 以将系统分为控制系统、信 号处理系统、电路系统等。
控制系统中的信号处理
01
02
03
信号采集与转换
将物理量转换为电信号, 以便进行后续处理和控制。
信号处理算法
如PID控制、模糊控制等, 对采集到的信号进行计算 和分析,以实现系统的自 动控制。
信号反馈与调节
将系统的输出信号反馈给 控制器,通过调节输入信 号来控制系统的运行状态。
图像处理中的信号处理
变化规律是确定的,例如正弦波;随机 续变化的信号,例如声音的波形;数字
信号则是指信号的变化规律是不确定的, 信号则是指幅度离散变化的信号,例如
例如噪声。
计算机中的进制数。
02
系统的定义与分类
系统的基本概念
系统是由相互关联、 相互作用的若干组成 部分构成的有机整体。
系统可以用于描述自 然界、工程领域、社 会现象等各种领域中 的事物。
冲激响应与阶跃响应
冲激响应
系统对单位冲激信号的响应,反 映了系统对单位冲激信号的传递 特性。
阶跃响应
系统对单位阶跃信号的响应,反 映了系统对单位阶跃信号的传递 特性。
卷积积分与卷积和
卷积积分
描述信号与系统的相互作用,通过将 输入信号与系统的冲激响应进行卷积 积分来计算输出信号。
卷积和
将卷积积分简化为离散时间系统的卷 积和运算,用于计算离散时间系统的 输出序列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
第1章 引言
消息:待传送的一种以收发双方事先约定的方式组成的符号,
如语言、文字、图像、数据等。
信息: 所接收到的未知内容的消息,即传输的信号是带有
信息的。
信号: 一种物理量(电、光、声)的变化。
与上述消息(语言、文字、图像、数据)相对应 电信号:
的变化的电流或电压,或电容上的电
例如:一般通信系统的组成可用如下框图来表示:
又如:由一个电阻器和一个电容器可以组成微分电路(高 通滤波器)或积分电路(低通滤波器)。 微分器: C
vi(t)
积分器:
R C vo ( t )
R
vo ( t )
vi(t)
6
第1章 引言
对于一般系统可用下图所示的方框图表示。
输出y(t)与输入x(t)可表示成:
4
第1章 引言
系统:一组相互有联系的事物并具有特定功能的整体。
系统可分为物理系统和非物理系统。如:电路系统、 通信系统、自动控制系统、机械系统、光学系统等属于 物理系统;而生物系统、政治体制系统、经济结构系统、 交通系统、气象系统等属于非物理系统 。 每个系统都有各自的数学模型。两个不同的系统可 能有相同的数学模型,甚至物理系统与非物理系统也可 能有相同的数学模型。将数学模型相同的系统称为相似 系统。
y(t) = T[x(t)]
7
2
参考教材
1、信号与系统(第二版)上、下册 郑君里 应启珩 杨为理 高等教育出版社 2、Signals & Systems (Second edition) Alanv.Oppenheim Alans.Willsky 清华大学出版社
3、信号与系统重点、难点解析及习题、模拟题精解
徐天成编 哈尔滨工程大学出版社
教材:徐天成,谷亚林,钱玲 信号与系统(第4版)
电子工业出版社
Show
《信号与系统》课程简介
1、课程地位 《信号与系统》课程是各高等院校电子信息工程及通 信工程等专业的一门重要的基础课程和主干课程。该课程 也是通信与信息系统以及信号与信息处理等专业研究生入 学考试的必考课程。 2、主要研究的内容及课时安排 该课程主要讨论确定性信号和线性时不变系统的基本 概念与基本理论、信号的频谱分析,以及研究确定性信号 经线性时不变系统传输与处理的基本分析方法。从连续到 离散、从时域到变换域、从输入输出分析到状态变量分析, 共 九章。 课时分配:72学时(64学时理论课+8学时实验)