液压马达 ppt课件
合集下载
完整液压系统ppt课件
元件的检查与保养
总结词
元件的检查与保养是液压系统维护的基础工作,能够及时发现并解决潜在问题,防止故 障扩大。
详细描述
在日常检查中,应重点关注油泵、油缸、阀件等关键元件的工作状态,检查其是否有异 常声响、泄漏、卡滞等现象。对于出现问题的元件,应及时进行维修或更换。同时,为
了保持元件的性能和寿命,还需要定期对元件进行保养,如清洗、润滑、除锈等。
排除技巧
先易后难、逐一排查、利用系统本身 进行控制等。
实践经验
定期维护保养、保持油液清洁、合理 设计液压系统等。
THANKS
感谢观看
速度控制回路
速度控制回路主要用于调节和控 制系统中的执行元件的运动速度
。
速度控制回路通常由节流阀、调 速阀等组成,通过调节这些阀门 的参数,可以实现对执行元件运
动速度的精确控制。
速度控制回路在液压系统中具有 重要的作用,能够提高系统的生
产效率和精度。
方向控制回路
方向控制回路主要用于控制液压 系统中执行元件的运动方向。
06
液压系统故障诊断与 排除
故障分类与原因分析
故障分类
泄漏故障、噪声故障、振动故障 、性能故障、液压冲击等。
原因分析
密封件损坏、元件磨损、油液污 染、液压系统设计不合理等。
故障诊断方法与流程
诊断方法
感官诊断、仪表测量、逻辑分析等。
诊断流程
初步检查、元件检查、系统测试、综 合分析等。
故障排除技巧与实践
负载分析
负载分类
固定负载、变位负载、加 速负载、减速负载
负载特点
随工作条件、工况和工艺 要求而变化
负载计算
根据工作需求,计算各执 行元件所承受的负载,为 后续元件选择提供依据
液压与气动技术(第二版)—按章节课件02 第二节 液压马达
3.柱塞式液压马达 柱塞式液压马达有轴向式和径向式两种,径向式由于结构尺 寸较大。 (1)径向柱塞式液压马达 图3-24所示为多作用内曲线径向柱塞式液压马达。当压力油 经固定的配流轴6的窗口进入缸体内柱塞的底部时,柱塞向外伸 出,紧紧顶住定子的内壁,由于定子的内壁为曲面,所以在柱塞 与定子接触处,定子对柱塞的反作用力为F。F力可分解为径向 力Fr 和切向力Ft 两个分力。其中Ft力对缸体产生一转矩,使缸体 旋转。缸体再通过端面连接的传动轴向外输出转矩和转速。
第三章 液压执行元件
第二节 液压马达
主要内容:
液压马达的类型和性能参数 液压马达的工作原理与结构 液压马达的选用 液压马达的常见故障及排除
液压马达是将液体的压力能转换成旋转运动机械能的转换元 件,它能起到与电动机相类似的作用,因而在液压设备中被广泛 应用。 一、液压马达的类型与性能参数
1. 液压马达的类型
所以,齿轮式液压马达一般用于低精度、低负载的工程机 械、农业机械以及对转矩均匀性要求不高的机械设备上。
2. 叶片式液压马达 如图3-22(a)所示为叶片式液压马达的实物图,图3-22(b) 所示为其工作原理图。当压力油进入压油腔后,在叶片1、3上 一面作用有压力油,另一面为低压回油。由于叶片3伸出的面 积大于叶片1伸出的面积,所以液体作用于叶片3上的作用力大 于作用于叶片1上的作用力,从而由于作用力不等而使叶片带 动转子作逆时针方向旋转。
液压马达的图形符号如图3-20所示。
2.液压马达的特点
(1)液压马达的排油口压力稍大于大气压力,进、出油口直径 相同。 (2)液压马达往往需要正、反转,所以在内部结构上应具有对 称性。 (3)在确定液压马达的轴承形式时,应保证在很宽的速度范围 内都能正常工作。 (4)液压马达在启动时必须保证较好的密封性。 (5)液压马达一般需要外泄油口。 (6)为改善液压马达的起动和工作性能,要求扭矩脉动小,内 部摩擦小。
液压泵和液压马达原理和使用(PPT课件)
第二章 液压泵和液压马达 3-1 液压泵和马达的分类及工作原理 3-2 齿轮泵和齿轮马达 3-3 柱塞泵和柱塞式液压马达
3-4 低速大转矩液压马达
附:液压泵的工作特点
§3-1液压泵和液压马达的基本工作原理 一、液压泵的基本工作原理 二、液压泵的主要性能参数 三、液压马达的主要性能参数
四、液压泵和液压马达的类型
返回
三、液压马达的主要性能参数
1、流量、排量和转速
设定马达的排量为q,转速为n,泄露量ΔQ 则流量Q为: Q=nq+ΔQ
容积效率 mv=理论流量/实际流量
=nq/Q=nq/(nq+ΔQ) 或 n=(Q/q)· mv 可见,q和是mv决定液压马达转速的主要参数。
2、扭矩
理论输出扭矩 MT=pq/2π
实际输出扭矩 MM=MT-ΔM
因机械效率 Mm=MM/MT=1-ΔM/MT 故 MM=MT.Mm=(pq/2π).Mm 可见液压马达的排量q是决定其输出扭矩的主要 参数。 有时采用液压马达得每弧度排量DM=q/2π来代 替其每转排量q作为主要参数,这样有: =2πn=Q.mv/DM 及 MM=pDMMm
3、总功率
液压马达总功率:
ηM=2πMMn/pQ=mvMm
可见,容积效率和机械效率是液压泵 和马达的重要性能指标。因总功率为它们 二者的乘积,故液压传提高泵和马达的效率有其重要 意义。
返回
四、液压泵和液压马达的类型
按结构分:柱塞式、叶片式和齿轮式 按排量分:定量和变量 按调节方式分:手动式和自动式,自动
式又分限压式、恒功率式、恒压式和恒
流式等。 按自吸能力分:自吸式合非自吸式
液压泵和液压马达的图形符号
定量泵
变量泵
定量马达 变量马达 双向变量泵 双向变量马达
3-4 低速大转矩液压马达
附:液压泵的工作特点
§3-1液压泵和液压马达的基本工作原理 一、液压泵的基本工作原理 二、液压泵的主要性能参数 三、液压马达的主要性能参数
四、液压泵和液压马达的类型
返回
三、液压马达的主要性能参数
1、流量、排量和转速
设定马达的排量为q,转速为n,泄露量ΔQ 则流量Q为: Q=nq+ΔQ
容积效率 mv=理论流量/实际流量
=nq/Q=nq/(nq+ΔQ) 或 n=(Q/q)· mv 可见,q和是mv决定液压马达转速的主要参数。
2、扭矩
理论输出扭矩 MT=pq/2π
实际输出扭矩 MM=MT-ΔM
因机械效率 Mm=MM/MT=1-ΔM/MT 故 MM=MT.Mm=(pq/2π).Mm 可见液压马达的排量q是决定其输出扭矩的主要 参数。 有时采用液压马达得每弧度排量DM=q/2π来代 替其每转排量q作为主要参数,这样有: =2πn=Q.mv/DM 及 MM=pDMMm
3、总功率
液压马达总功率:
ηM=2πMMn/pQ=mvMm
可见,容积效率和机械效率是液压泵 和马达的重要性能指标。因总功率为它们 二者的乘积,故液压传提高泵和马达的效率有其重要 意义。
返回
四、液压泵和液压马达的类型
按结构分:柱塞式、叶片式和齿轮式 按排量分:定量和变量 按调节方式分:手动式和自动式,自动
式又分限压式、恒功率式、恒压式和恒
流式等。 按自吸能力分:自吸式合非自吸式
液压泵和液压马达的图形符号
定量泵
变量泵
定量马达 变量马达 双向变量泵 双向变量马达
液压马达修理理论课件_图文
入油缸体内孔,油液从出口打出。在柱塞再次达到最深插入点之前,油
缸体内孔被关断阀再次堵住直到旋转到关断阀开槽处。
22
第一章 功能介绍和工作原理
油液在一圈的前半周通过进口进入马达的油缸体,在另半周油液通
过柱塞的往复运动从油缸体出来。油液通过进口的肾形盘进油口,由于
马达旋转,柱塞在马达油缸体柱塞孔内收进时将油液吸入油缸体,当柱
1.2.2 PTU工作原理 PTU是一个双向运转件,由一个定量组件和一个变量组件组成,变
量组件与一个液压系统相连(如A320的黄系统),定量组件与另一个液压 系统相连(如A320的绿系统),变量组件为了保持运转和启动的系统间压 差而改变流量,由系统压力差值控制。图1-4为B757PTU,图1-5为 A320PTU外形图。
第一章 功能介绍和工作原理
19
第一章 功能介绍和工作原理
20
第一章 功能介绍和工作原理
B757 PTU结构图见图1-6,由曲轴液压马达驱动离心增压泵和柱塞 泵,所有旋转零件与马达和泵部分之间的带轴密封的共用驱动轴连接, 马达进口装有液压保险和流量调节器。离心增压泵(Boost Pump)输出直 接供压给柱塞泵,柱塞泵高压油(Discharge)通过单向阀到泵出口,在 关断状态时单向阀防止反向驱动组件。轴承磨损指示器安装在马达一侧 ,若主泵轴承磨损超过限制,红色的按钮会顶出从而给出警告。见图13所示。
液压马达转一圈的排量就是驱动输出轴一圈所需的油液体积。对于 旋转的柱塞马达,排量由柱塞的尺寸、数量以及行程长度决定。柱塞行 程长度由输出轴和油缸体的夹角决定。
第一章 功能介绍和工作原理
马达内除了正常油液流量外,内部还有低压油路为内部运动零件提 供润滑和冷却油液。油液的一小部分会通过柱塞和油缸体孔之间必需的 工作间隙漏出。一些油液也通过固定的关断阀和旋转的油缸体漏出。这 些从高压油路的油液通过马达壳体并润滑内部所有运动零件。
常用液压元件图形符号PPT课件
绘制系统图时,油路一般应连接在换向阀的常态位上。
.
例:
①三位四通O型机能电磁换向阀
②三位四通M型机能手动换向阀 ③二位二通常闭式电磁换向阀
.
五、压力控制阀
1.溢流阀
2.型 外控顺序阀 先导型内控
内控顺序阀
顺序阀
.
4.压力继电器
.
六、流量控制阀
❖ 1.节流阀
2.单向节流阀
常用液压元件
图形符号
.
一、液压泵
单向定量泵 单向变量泵
双向定量泵 双向变量泵
.
❖二、液压缸
❖ 1.单作用式活塞液压缸:
❖
.
❖ 2.单杆活塞式液压缸 ❖ 3.双杆活塞式液压缸
.
❖ 4.柱塞式液压缸 ❖ 5. 伸缩式液压缸(多级液压缸)
.
三、液压马达
单向定量马达 单向变量马达 双向定量马达 双向变量马达
❖ 3.调速阀
.
七、液压辅助元件
❖ 1.蓄能器
.
2.过滤器
粗过滤器
精过滤器
.
3.油箱
油管在油面以下
油管在油面以上
.
4.冷却器 5.加热器
.
系统回油路连通的回油口用T(有时用O)表示;而阀与执行 元件连接的油口用A、B等表示。有时在图形符号上用L表 示泄漏油口,用K表示控制油口。 ⑥换向阀的工作位置,其中有一个为常态位,即阀芯未受到 操纵力时所处的位置。在图形符号中,三位阀的中位是常 态位。利用弹簧复位的二位阀则以靠近弹簧的方框内的通 路状态为其常态位。
.
四、方向控制阀
❖ 1.单向阀(普通单向阀)
❖ 2.液控单向阀
.
❖ 3.双向液压锁
.
4.换向阀的图形符号
.
例:
①三位四通O型机能电磁换向阀
②三位四通M型机能手动换向阀 ③二位二通常闭式电磁换向阀
.
五、压力控制阀
1.溢流阀
2.型 外控顺序阀 先导型内控
内控顺序阀
顺序阀
.
4.压力继电器
.
六、流量控制阀
❖ 1.节流阀
2.单向节流阀
常用液压元件
图形符号
.
一、液压泵
单向定量泵 单向变量泵
双向定量泵 双向变量泵
.
❖二、液压缸
❖ 1.单作用式活塞液压缸:
❖
.
❖ 2.单杆活塞式液压缸 ❖ 3.双杆活塞式液压缸
.
❖ 4.柱塞式液压缸 ❖ 5. 伸缩式液压缸(多级液压缸)
.
三、液压马达
单向定量马达 单向变量马达 双向定量马达 双向变量马达
❖ 3.调速阀
.
七、液压辅助元件
❖ 1.蓄能器
.
2.过滤器
粗过滤器
精过滤器
.
3.油箱
油管在油面以下
油管在油面以上
.
4.冷却器 5.加热器
.
系统回油路连通的回油口用T(有时用O)表示;而阀与执行 元件连接的油口用A、B等表示。有时在图形符号上用L表 示泄漏油口,用K表示控制油口。 ⑥换向阀的工作位置,其中有一个为常态位,即阀芯未受到 操纵力时所处的位置。在图形符号中,三位阀的中位是常 态位。利用弹簧复位的二位阀则以靠近弹簧的方框内的通 路状态为其常态位。
.
四、方向控制阀
❖ 1.单向阀(普通单向阀)
❖ 2.液控单向阀
.
❖ 3.双向液压锁
.
4.换向阀的图形符号
液压马达ppt课件
6. 效率
(1)容积效率 液压马达理论流量与实际流量的比值。
(2)机械效率 液压马达的实际扭矩与理论扭矩之比值。
(3)总效率 液压马达的输出功率与输入功率之比。
液压马达
• 液压马达是执行元件。液压马达和液压泵一 样,都是依靠密封工作容积的变化实现能量 的转换,都属容积式,同样具有配流机构。 液压马达与液压缸的不同在于:液压马达是 实现旋转运动,输出机械能的形式是转矩和 转速;液压缸是实现往复直线运动(或往复 摆动),输出机械能的形式是力和速度(或 扭矩和角速度)。
4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力 使叶片始终贴紧定子的内表面,起封油作用,形成工 作容积。若将其当马达用,必须在液压马达的叶片根 部装上弹簧,以保证叶片始终贴紧定子内表面,以便 马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就 没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩, 就是马达由静止状态起动时,马达轴上所能输出的扭 矩,该扭矩通常大于在同一工作压差时处于运行状态 下的扭矩,所以,为了使起动扭矩尽可能接近工作状 态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很 多类型的液压马达和液压泵不能互逆使用。
液压马达
• 液压马达的主要参数
• 从液压马达的功用来看,其主要参数为转矩T和转速n。 • 液压马达实际输出转矩与转速分别为
T
1
2
pVm
n=qηv/V
• 式中Δp——马达进出口压差;
•
q——马达输入流量;
•
V——马达排量;
•
ηm——马达容积效率;
•
ηv——马达机械效率。
一 、齿轮马达
有关液压ppt课件
液压油箱
液压油箱是液压系统的辅助元件 ,其作用是储存和提供液压系统
所需的油液。
液压油箱的容量、结构和布局需 要根据实际应用需求进行设计。
液压油箱的性能参数包括容量、 吸油口和排油口的位置和大小等 ,设计合理的液压油箱能够提高 整个液压系统的效率和稳定性。
03
液压基本回路
压力控制回路
压力控制回路主要是用来控制和调节液压系统中的压力,以满足工作需 求。
液压元件的清洁与保养
元件清洗
定期清洗液压元件,清除残留物和污 垢,保持元件内部通道畅通。
元件保养
对易损元件进行定期检查,及时更换 磨损件,防止元件损坏导致系统故障 。
液压系统的故障诊断与排除
故障诊断
通过观察、听诊、触觉和测量等方法,确定故障部位和原因。
排除故障
根据诊断结果,采取相应措施排除故障,如更换损坏元件、调整系统参数等。
选择合适的元件
根据负载特性和大小,选择合 适的液压元件,如油缸、马达
、阀等。
液压元件的选型与计算
选择合适的液压油
根据系统要求和元件特性,选 择合适的液压油,如矿物油、
合成油等。
选择合适的液压泵
根据系统流量和压力要求,选 择合适的液压泵,如齿轮泵、 叶片泵、柱塞泵等。
选择合适的液压阀
根据系统控制要求,选择合适 的液压阀,如溢流阀、减压阀 、换向阀等。
06
液压技术的发展趋势 与展望
高效节能技术
高效节能技术是液压技术未来发展的 重要方向之一。随着环保意识的提高 和能源成本的增加,液压系统的高效 节能设计越来越受到重视。
通过优化液压元件的设计和匹配,采 用新型的液压传动介质,以及先进的 控制策略和算法,可以实现液压系统 的节能减排,降低运行成本。
液压马达 PPT
(4)由于内部泄漏不可避免,因此将马达的排油口关闭而进行制动时,仍会有 缓慢的滑转,所以,需要长 时间精确制动时,应另行设置防止滑转的制动器。
(5)某些形式的液压马达必须在回油口具有足够的背压才能保证正常工作,并 且转速越高所需背压也越 大,背压的增高意味着油源的压力利用率低,系统 的损失大。
结束
理论排量最大值可达6.140L/r。下图是曲柄连杆式液压马达的工作 原理。
连杆式液压马达原理演示
第三节 液压马达
二、 低速大扭矩液压马达的构造和工作原理
1. 曲柄连杆低速大扭矩液压马达
➢ 根据曲柄连杆机构运 动原理,受油压作用 的柱塞就通过连杆对 偏心圆中心O1作用一 个力N,推动曲轴绕旋 转中心O转动,对外输 出转速和扭矩,其余 的活塞油缸则与排油 窗口接通;如果进、 排油口对换,液压马 达也就反向旋转。
➢ 低速大扭矩液压马达的基本形式有三种:它们分别是曲柄 连杆马达、静力平衡马达和多作用内曲线马达。
下面分别予以介绍。
第三节 液压马达
二、 低速大扭矩液压马达的构造和工作原理
1. 曲柄连杆低速大扭矩液压马达 ➢ 曲柄连杆式低速大扭矩液压马达应用较早,国外称为斯达发液压马
达。 ➢ 我国的同类型号为JMZ型,其额定压力16MPa,最高压力21MPa,
第三节 液压马达
一、 工作性能 二、 低速大扭矩液压马达的构造和工作原理
1)连杆式 2)五星轮式 3)内曲线式 4)叶片式
第三节 液压马达
液压马达简介
➢ 液压马达是将液压能转换为机械能的装置,可以实现连续 的旋转运动,其结构与液压泵相似,并且也是靠密封容积 的变化进行工作的。
➢ 常见的液压马达也有齿轮式、叶片式和柱塞式等几种主要 形式;从转速、转矩范围分,有高速马达和低速大扭矩马 达。
(5)某些形式的液压马达必须在回油口具有足够的背压才能保证正常工作,并 且转速越高所需背压也越 大,背压的增高意味着油源的压力利用率低,系统 的损失大。
结束
理论排量最大值可达6.140L/r。下图是曲柄连杆式液压马达的工作 原理。
连杆式液压马达原理演示
第三节 液压马达
二、 低速大扭矩液压马达的构造和工作原理
1. 曲柄连杆低速大扭矩液压马达
➢ 根据曲柄连杆机构运 动原理,受油压作用 的柱塞就通过连杆对 偏心圆中心O1作用一 个力N,推动曲轴绕旋 转中心O转动,对外输 出转速和扭矩,其余 的活塞油缸则与排油 窗口接通;如果进、 排油口对换,液压马 达也就反向旋转。
➢ 低速大扭矩液压马达的基本形式有三种:它们分别是曲柄 连杆马达、静力平衡马达和多作用内曲线马达。
下面分别予以介绍。
第三节 液压马达
二、 低速大扭矩液压马达的构造和工作原理
1. 曲柄连杆低速大扭矩液压马达 ➢ 曲柄连杆式低速大扭矩液压马达应用较早,国外称为斯达发液压马
达。 ➢ 我国的同类型号为JMZ型,其额定压力16MPa,最高压力21MPa,
第三节 液压马达
一、 工作性能 二、 低速大扭矩液压马达的构造和工作原理
1)连杆式 2)五星轮式 3)内曲线式 4)叶片式
第三节 液压马达
液压马达简介
➢ 液压马达是将液压能转换为机械能的装置,可以实现连续 的旋转运动,其结构与液压泵相似,并且也是靠密封容积 的变化进行工作的。
➢ 常见的液压马达也有齿轮式、叶片式和柱塞式等几种主要 形式;从转速、转矩范围分,有高速马达和低速大扭矩马 达。
《液压马达》课件
专业维修
对于复杂的故障或需要专业知识的维修,建 议寻求专业维修人员的帮助。
资料备份
保留液压马达的相关资料和图纸,以便在需 要时进行查阅和参考。
THANKS
感谢观看
考虑液压马达的维护成本,包括密封件、 润滑油等配件的更换周期和价格。
油品质量
性能稳定性
选择能够提供高质量液压油的供应商,以 保证液压马达的正常运行和延长使用寿命 。
选择性能稳定、对压力波动不敏感的液压 马达品牌和型号,以保证设备的可靠性和 稳定性。
05
液压马达的维护与保养
使用注意事项
启动前检查
确保液压马达在启动前 已经彻底检查,包括油 位、密封件和连接件等
旋转不灵活
检查液压马达的润滑情况,清理污垢,更换 损坏的密封件。
性能下降
检查液压马达的油液是否清洁,更换油液, 清理吸油、压油口的滤网。
保养与维修建议
定期检查
按照制造商推荐的保养周期进行定期检查, 包括油位、密封件、连接件等。
维修记录
建立液压马达的维修记录,记录每次维修和 更换的部件,方便跟踪和管理。
。
避免超载
避免液压马达在超出设 计负载的情况下运行,
以防损坏。
保持清洁
保持液压系统内部和外 部的清洁,防止杂物和
污垢进入。
定期更换油液
按照制造商推荐的油液 更换周期进行更换,以 保证油液质量和性能。
常见故障及排除方法
噪音过大
检查液压马达的轴承、齿轮等是否正常,必 要时进行更换。
泄漏
检查液压马达的密封件是否完好,更换损坏 的密封件,紧固连接件。
对油品要求高
液压马达对使用的油品质量要求较高 ,如果使用低质量的液压油可能导致 磨损和故障。
第三章液压执行元件-PPT
二、液压马达得工作原理
1、叶片式液压马达
叶片式液压马达工作原理
大家学习辛苦了,还是要坚持
❖继续保持安 静
• 原理——由于压力油作用,受力不平衡使转子 产生转矩。
• 输出转矩T——与液压马达得排量VM和液压马
达进出油口之间得压力差有关,
• 转速n——输入液压马达得流量qM大小来决定。
❖ 转动特性——能正反转(压、回油互换) ❖ 结构特点: ❖ 叶片要径向放置---适应正反转
❖ 双杆活塞缸在工作时,一个活塞杆是受拉得,而另一 个活塞杆不受力,(活塞杆始终不受压力)因此这种液 压缸得活塞杆可以做得细些。
连杆式径向 柱塞马达
❖ 曲线定子 式
定子有多段曲线,转子每转一转柱塞来回往复多次, 排量大,所以转矩大。 定子内表面采用正弦曲线,(或等加速曲线、阿基米德曲
线),保证在低转速下也能稳定工作。 为增大转矩,也有做成多排转子,各排错开可减小脉动。
❖ 多作用指定子得内曲面可以多达十几段(多次行程)。转子每转 一转,每个柱塞经过每一段时都要吸排油各一次,柱塞要进行多 次进退,对输出轴产生多次渐增转矩,并通过输出轴带动负载旋 转,因此称为多作用马达。
❖ 原因——液压n马M 达内Vq部MM 有M泄v 漏,
❖ 式中,nM —液压马达得实际转速
❖
qM —液压马达得输入流量;
❖
VM —液压马达得理论排量
❖
ηMV —液压马达得容积效率
❖ 转速过低时得爬行现象——当液压马达工作 转速过低时,往往保持不了均匀得速度,进入 时动时停得不稳定状态。
❖ 为防止“爬行” :高速液压马达工作转速不应
七、液压马达常见故障及其排除
一、转速低输出转矩小
1、由于滤油器阻塞,油液粘度过大,泵间隙过大, 泵效率低,使供油不足。清洗滤油器,更换粘度适 合得液油,保证供油量。
液压马达PPT课件
2021/4/8
(3)转速 n
nqMtVqMMvV
16
合作讨论,学生展示
例1、某液压马达排量为250 mL/r,入口压力为10MPa,出口压力为 0.5 MPa,容积效率和机械效率均为0.9,若输入流量为100 L/min, 试求 (1) 液压马达的实际输出转矩;
(2) 液压马达的实际输出转速。
解: (1)液压马达实际输出转矩 TM
2021/4/8
23
感谢您的阅读收藏,谢谢!
2021/4/8
24
液压泵:
液压泵是将原动机输入的机械能转换液体压力能的转 换装置,在液压传动系统属于动力元件。
液压泵
能量转换装置
液压系统中另一个能量转换装置?
2021/4/8
概念
液压马达
4
导入新课,展示目标
知识与能力目标
1、掌握液压马达的概念及工作原理; 。 2、液压马达的主要性能参数及计算; 。 3、液压马达的结构特点以及图形符号。
2.按其结构类型可以分为:
齿轮式
叶片式
柱塞式和其他形式。
2021/4/8
8
设疑激探,自主学习 液压马达图形符号
液压马达与液压泵
功用上----相反
结构上----类似
原理上----互逆
2021/4/8
9
2021/4和液压 马达是否可以互换?
从工作原理上讲,是可以的。但是, 一般情况下未经改进的液压泵不宜 用作液压马达。
换算关系 1mL/r= cm3/r = 1 ×10-6 m3/rad
分为理论排量和实际排量。
2
2021/4/8
13
合作讨论,学生展示
输入马达的实际流量 qM=qMt+Δq 其中 qMt为理论流量,马达在没有泄漏时, 达到要求转速所需进 口流量。
(3)转速 n
nqMtVqMMvV
16
合作讨论,学生展示
例1、某液压马达排量为250 mL/r,入口压力为10MPa,出口压力为 0.5 MPa,容积效率和机械效率均为0.9,若输入流量为100 L/min, 试求 (1) 液压马达的实际输出转矩;
(2) 液压马达的实际输出转速。
解: (1)液压马达实际输出转矩 TM
2021/4/8
23
感谢您的阅读收藏,谢谢!
2021/4/8
24
液压泵:
液压泵是将原动机输入的机械能转换液体压力能的转 换装置,在液压传动系统属于动力元件。
液压泵
能量转换装置
液压系统中另一个能量转换装置?
2021/4/8
概念
液压马达
4
导入新课,展示目标
知识与能力目标
1、掌握液压马达的概念及工作原理; 。 2、液压马达的主要性能参数及计算; 。 3、液压马达的结构特点以及图形符号。
2.按其结构类型可以分为:
齿轮式
叶片式
柱塞式和其他形式。
2021/4/8
8
设疑激探,自主学习 液压马达图形符号
液压马达与液压泵
功用上----相反
结构上----类似
原理上----互逆
2021/4/8
9
2021/4和液压 马达是否可以互换?
从工作原理上讲,是可以的。但是, 一般情况下未经改进的液压泵不宜 用作液压马达。
换算关系 1mL/r= cm3/r = 1 ×10-6 m3/rad
分为理论排量和实际排量。
2
2021/4/8
13
合作讨论,学生展示
输入马达的实际流量 qM=qMt+Δq 其中 qMt为理论流量,马达在没有泄漏时, 达到要求转速所需进 口流量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n th 6Q 0 /q r/min
显然,在不考虑液压马达中所有能量损失的情况下,液压马达的理论输出功率就等于其 输入功率。 因此,可求得液压马达的理论扭矩
M thp/q 2 Nm
然而,任何实际的液压马达,运转时总存在着各种损失,包括密封缝隙的漏泄损失, 油流流动时的压力损失以及各运动接触部件之间的摩擦损失等。
高压起点
低压起点
第三节 液压马达
二、 低速大扭矩液压马达的构造和工作原理
1. 曲柄连杆低速大扭矩液压马达
➢ 总之,由于配流轴过渡密 封间隔的方位与曲轴的偏 心方向一致,并且同时旋 转,所以配流轴颈的进油 窗口始终对着偏心线OO1一 边的二只或三只油缸,吸 油窗口对着偏心线OO1另一 边的其余油缸,总的输出 扭矩是叠加所有柱塞对曲 轴中心所产生的扭矩,该 扭矩使得旋转运动得以持 续下去。
第三节 液压马达
一、 工作性能 二、 低速大扭矩液压马达的构造和工作原理
1)连杆式 2)五星轮式 3)内曲线式 4)叶片式船来自辅机教研室船舶辅机教研室
船舶辅机教研室
船舶辅机教研室
第三节 液压马达
液压马达简介
➢ 液压马达是将液压能转换为机械能的装置,可以实现连续 的旋转运动,其结构与液压泵相似,并且也是靠密封容积 的变化进行工作的。
➢ 而其理论输出功率则可表达为:
p 2 th M t hth 2 n tM hth /60 W
式中;Mth——液压马达的理论扭矩,Nm; ωth——液压马达的理论角速度,rad/s; nth——液压马达的理论转速,r/min。
船舶辅机教研室
第三节 液压马达
一、工作性能 ➢ 现假设液压马达按几何尺寸确定的每转排量为q(ms/r),则液压马达的理论转速为
船舶辅机教研室
船舶辅机教研室
第三节 液压马达
二、 低速大扭矩液压马达的构造和工作原理 1. 曲柄连杆低速大扭矩液压马达
➢ 随着驱动轴、配 流轴转动,配油 状态交替变化。 在曲轴旋转过程 中,位于高压侧 的油缸容积逐渐 增大,而位于低 压侧的油缸容积 逐渐缩小,因此, 在工作时高压油 不断进入液压马 达,然后由低压 腔不断排出。
失,液压马达的实际输出扭矩M也就比理论扭矩要小,而实际扭矩与理论扭矩之比,称之为液压马
M/M 达的机械效率ηm,即: m
th
因此,实际扭矩: M M thmpm q /2
实际的输出功率: P 2 2M /6 n 0 pm Q v pQ
式中:η是考虑液压马达中所有能量损失的总效率。
船舶辅机教研室
➢ 常见的液压马达也有齿轮式、叶片式和柱塞式等几种主要 形式;从转速、转矩范围分,有高速马达和低速大扭矩马 达。
➢ 马达和泵在工作原理上是互逆的,当向泵内输入压力油时, 其轴就输出转速和转矩成为马达。但由于二者的任务和要 求有所不同,故在实际中只有少数泵能作马达使用。
船舶辅机教研室
第三节 液压马达
第三节 液压马达
一、工作性能
讨论: ➢ 液压马达的实际转速n,主要取决于供入液压马达的流量Q、液压马达的工作容积(即每转 排量)q和容积效率ηv。因此,要改变液压马达的转速,可采用的方法有容积调速——采用变量 油泵,改变其流量,或采用变量油马达,改变其排量,也可以采用节流调速——通过流量控 制阀来改变供入油马达的流量; ➢ 液压马达的扭矩M,主要取决于工作油的压力p和液压马达的每转排量q。提高工作油压p, 不仅可增大液压马达的输出扭矩M,而且还可在功率不变的前提下,使液压元件和和管路的尺 寸相应减小,但是也受到强度与密封等的条件限制,并给管理工作带来不利的影响; ➢ 增大液压马达的容积,亦即提高液压马达的每转排量q,则可在工作油压不变的情况下增 大扭矩,而转速则相应较低,从而构成低速大扭矩液压马达。一般认为额定转速低于500r/ min即属于低速马达,高于500的属于高速马达。后者用于船舶甲板机械往往需要增加机械减 速机构。
船舶辅机教研室
第三节 液压马达
一、工作性能 低速大扭矩液压马达
➢ 低速大扭矩液压马达是相对于高速马达而言的,通常这类 马达在结构形式上多为径向柱塞式,其特点是:最低转速 低,大约在5~10r/min,输出扭矩大,可达几万N·m;径向 尺寸大,转动惯量大。
➢ 由于上述特点,它可以直接与工作机构联接,不需要减速 装置,使传动结构大为简化。低速大扭矩液压马达广泛用 于起重、运输、建筑、矿山和船舶等机械上。
➢ 容积损失可用容积效率来度量,即
Qe/Q
式中:Qe—扣除漏泄损失后供入马达的有效流量,m3/s。
船舶辅机教研室
第三节 液压马达
一、工作性能
因此,液压马达的实际转速:
n 6Q e 0 /q 6Q 0 /q r/m in
➢ 在液压马达中,常把压力损失和摩擦损失合并在一起,称之为机械损失,由于存在着机械损
理论排量最大值可达6.140L/r。下图是曲柄连杆式液压马达的工作 原理。
连杆式液压马达原理演示
船舶辅机教研室
第三节 液压马达
二、 低速大扭矩液压马达的构造和工作原理
1. 曲柄连杆低速大扭矩液压马达
➢ 根据曲柄连杆机构运 动原理,受油压作用 的柱塞就通过连杆对 偏心圆中心O1作用一 个力N,推动曲轴绕旋 转中心O转动,对外输 出转速和扭矩,其余 的活塞油缸则与排油 窗口接通;如果进、 排油口对换,液压马 达也就反向旋转。
➢ 低速大扭矩液压马达的基本形式有三种:它们分别是曲柄 连杆马达、静力平衡马达和多作用内曲线马达。 下面分别予以介绍。
船舶辅机教研室
第三节 液压马达
二、 低速大扭矩液压马达的构造和工作原理
1. 曲柄连杆低速大扭矩液压马达 ➢ 曲柄连杆式低速大扭矩液压马达应用较早,国外称为斯达发液压马
达。 ➢ 我国的同类型号为JMZ型,其额定压力16MPa,最高压力21MPa,
一、工作性能
➢ 液压马达输入的液压能,可用工作油的压力P和流量Q来表示,而其输出的机械能, 则以输出轴的扭矩M和转速n来度量。
➢ 为了说明液压马达的工作性能,我们可先假设液压马达不存在任何能量损失的理 想情况进行了讨论,这时液压马达的输入功率,就可用下式来表示:
P1thPQ W
式中:P—液压马达的进排油压差,Pa; Q—供入液压马达的油流量,m3/s。
显然,在不考虑液压马达中所有能量损失的情况下,液压马达的理论输出功率就等于其 输入功率。 因此,可求得液压马达的理论扭矩
M thp/q 2 Nm
然而,任何实际的液压马达,运转时总存在着各种损失,包括密封缝隙的漏泄损失, 油流流动时的压力损失以及各运动接触部件之间的摩擦损失等。
高压起点
低压起点
第三节 液压马达
二、 低速大扭矩液压马达的构造和工作原理
1. 曲柄连杆低速大扭矩液压马达
➢ 总之,由于配流轴过渡密 封间隔的方位与曲轴的偏 心方向一致,并且同时旋 转,所以配流轴颈的进油 窗口始终对着偏心线OO1一 边的二只或三只油缸,吸 油窗口对着偏心线OO1另一 边的其余油缸,总的输出 扭矩是叠加所有柱塞对曲 轴中心所产生的扭矩,该 扭矩使得旋转运动得以持 续下去。
第三节 液压马达
一、 工作性能 二、 低速大扭矩液压马达的构造和工作原理
1)连杆式 2)五星轮式 3)内曲线式 4)叶片式船来自辅机教研室船舶辅机教研室
船舶辅机教研室
船舶辅机教研室
第三节 液压马达
液压马达简介
➢ 液压马达是将液压能转换为机械能的装置,可以实现连续 的旋转运动,其结构与液压泵相似,并且也是靠密封容积 的变化进行工作的。
➢ 而其理论输出功率则可表达为:
p 2 th M t hth 2 n tM hth /60 W
式中;Mth——液压马达的理论扭矩,Nm; ωth——液压马达的理论角速度,rad/s; nth——液压马达的理论转速,r/min。
船舶辅机教研室
第三节 液压马达
一、工作性能 ➢ 现假设液压马达按几何尺寸确定的每转排量为q(ms/r),则液压马达的理论转速为
船舶辅机教研室
船舶辅机教研室
第三节 液压马达
二、 低速大扭矩液压马达的构造和工作原理 1. 曲柄连杆低速大扭矩液压马达
➢ 随着驱动轴、配 流轴转动,配油 状态交替变化。 在曲轴旋转过程 中,位于高压侧 的油缸容积逐渐 增大,而位于低 压侧的油缸容积 逐渐缩小,因此, 在工作时高压油 不断进入液压马 达,然后由低压 腔不断排出。
失,液压马达的实际输出扭矩M也就比理论扭矩要小,而实际扭矩与理论扭矩之比,称之为液压马
M/M 达的机械效率ηm,即: m
th
因此,实际扭矩: M M thmpm q /2
实际的输出功率: P 2 2M /6 n 0 pm Q v pQ
式中:η是考虑液压马达中所有能量损失的总效率。
船舶辅机教研室
➢ 常见的液压马达也有齿轮式、叶片式和柱塞式等几种主要 形式;从转速、转矩范围分,有高速马达和低速大扭矩马 达。
➢ 马达和泵在工作原理上是互逆的,当向泵内输入压力油时, 其轴就输出转速和转矩成为马达。但由于二者的任务和要 求有所不同,故在实际中只有少数泵能作马达使用。
船舶辅机教研室
第三节 液压马达
第三节 液压马达
一、工作性能
讨论: ➢ 液压马达的实际转速n,主要取决于供入液压马达的流量Q、液压马达的工作容积(即每转 排量)q和容积效率ηv。因此,要改变液压马达的转速,可采用的方法有容积调速——采用变量 油泵,改变其流量,或采用变量油马达,改变其排量,也可以采用节流调速——通过流量控 制阀来改变供入油马达的流量; ➢ 液压马达的扭矩M,主要取决于工作油的压力p和液压马达的每转排量q。提高工作油压p, 不仅可增大液压马达的输出扭矩M,而且还可在功率不变的前提下,使液压元件和和管路的尺 寸相应减小,但是也受到强度与密封等的条件限制,并给管理工作带来不利的影响; ➢ 增大液压马达的容积,亦即提高液压马达的每转排量q,则可在工作油压不变的情况下增 大扭矩,而转速则相应较低,从而构成低速大扭矩液压马达。一般认为额定转速低于500r/ min即属于低速马达,高于500的属于高速马达。后者用于船舶甲板机械往往需要增加机械减 速机构。
船舶辅机教研室
第三节 液压马达
一、工作性能 低速大扭矩液压马达
➢ 低速大扭矩液压马达是相对于高速马达而言的,通常这类 马达在结构形式上多为径向柱塞式,其特点是:最低转速 低,大约在5~10r/min,输出扭矩大,可达几万N·m;径向 尺寸大,转动惯量大。
➢ 由于上述特点,它可以直接与工作机构联接,不需要减速 装置,使传动结构大为简化。低速大扭矩液压马达广泛用 于起重、运输、建筑、矿山和船舶等机械上。
➢ 容积损失可用容积效率来度量,即
Qe/Q
式中:Qe—扣除漏泄损失后供入马达的有效流量,m3/s。
船舶辅机教研室
第三节 液压马达
一、工作性能
因此,液压马达的实际转速:
n 6Q e 0 /q 6Q 0 /q r/m in
➢ 在液压马达中,常把压力损失和摩擦损失合并在一起,称之为机械损失,由于存在着机械损
理论排量最大值可达6.140L/r。下图是曲柄连杆式液压马达的工作 原理。
连杆式液压马达原理演示
船舶辅机教研室
第三节 液压马达
二、 低速大扭矩液压马达的构造和工作原理
1. 曲柄连杆低速大扭矩液压马达
➢ 根据曲柄连杆机构运 动原理,受油压作用 的柱塞就通过连杆对 偏心圆中心O1作用一 个力N,推动曲轴绕旋 转中心O转动,对外输 出转速和扭矩,其余 的活塞油缸则与排油 窗口接通;如果进、 排油口对换,液压马 达也就反向旋转。
➢ 低速大扭矩液压马达的基本形式有三种:它们分别是曲柄 连杆马达、静力平衡马达和多作用内曲线马达。 下面分别予以介绍。
船舶辅机教研室
第三节 液压马达
二、 低速大扭矩液压马达的构造和工作原理
1. 曲柄连杆低速大扭矩液压马达 ➢ 曲柄连杆式低速大扭矩液压马达应用较早,国外称为斯达发液压马
达。 ➢ 我国的同类型号为JMZ型,其额定压力16MPa,最高压力21MPa,
一、工作性能
➢ 液压马达输入的液压能,可用工作油的压力P和流量Q来表示,而其输出的机械能, 则以输出轴的扭矩M和转速n来度量。
➢ 为了说明液压马达的工作性能,我们可先假设液压马达不存在任何能量损失的理 想情况进行了讨论,这时液压马达的输入功率,就可用下式来表示:
P1thPQ W
式中:P—液压马达的进排油压差,Pa; Q—供入液压马达的油流量,m3/s。