初中数学常见8种最值问题(供参考)

合集下载

初中数学——最全最值问题汇总

初中数学——最全最值问题汇总

初中数学——最全最值问题汇总多学习多思考
专题1 将军饮马模型与最值问题
专题2 胡不归中的双线段模型与最值问题
专题3 阿⽒圆中的双线段模型与最值问题
专题4 费马点中三线段模型与最值问题
专题5 费马点中的对称模型与最值问题
专题6 ⽠⾖原理中动点轨迹直线型最值问题
专题7 ⽠⾖原理中动点轨迹圆或圆弧型最值问题
专题8 ⽠⾖原理中动点轨迹不确定型最值问题
专题9 ⼀元⼆次⽅程在实际应⽤中的最值问题
专题10 ⼀次函数在实际应⽤中的最值问题
专题11 ⼆次函数在实际应⽤中的最值问题。

中考数学最值问题

中考数学最值问题
分析:∵∠ABC=90°,∴∠ABP+∠PBC=90°, ∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°, ∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小, 在RT△BCO中,∵∠OBC=90°,BC=4,OB=3, ∴OC= =5,∴PC=OC=OP=5﹣3=2. ∴PC最小值为2.
在中考的解答题中,还常常结合其他知识,把最值问题与 其他问题综合在一起,增加了难度。
【例】(2016·温州)有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各 种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.
甲种糖果
乙种糖果
丙种糖果
单价(元/千克)
15
25
30
千克数
40
40
20
【点∴评A】E最本小题值经可过求推得导为,最6 5后5 变,为∴求M连N接的点最A小与值线为段B6 5D10 上.各点的线段中的最短线段 的问题(即垂线段最短问题)。
【例】(2016•安徽)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC 内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为
【例5】(2016·湖南湘西)如图,长方形OABC的OA边在x轴的正半轴上,OC 在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.
(1)求抛物线的解析式;
(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;
(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最 小,并求△BDM周长的最小值及此时点M的坐标;
(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使 得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐 标;若不存在,请说明理由.

(完整)初中数学“最值问题”_集锦.doc

(完整)初中数学“最值问题”_集锦.doc

“最”集●平面几何中的最⋯⋯⋯⋯⋯⋯⋯01●几何的定与最⋯⋯⋯⋯⋯⋯⋯⋯⋯07●最短路⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14● 称⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯18●巧作“ 称点”妙解最⋯⋯⋯⋯⋯22●数学最的常用解法⋯⋯⋯⋯⋯⋯⋯26●求最⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯29●有理数的一多解⋯⋯⋯⋯⋯⋯⋯⋯⋯34●4 道典⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯37●平面几何中的最在平面几何中,我常常遇到各种求最大和最小的,有它和不等式系在一起,称最.如果把最和生活中的系起来,可以达到最、最和最高效率.下面介几个例.在平面几何中,当某几何元素在定条件,求某几何量(如段的度、形的面、角的度数)的最大或最小,称最。

最的解决方法通常有两种:(1)用几何性:① 三角形的三关系:两之和大于第三,两之差小于第三;② 两点段最短;③ 直外一点和直上各点的所有段中,垂段最短;④ 定中的所有弦中,直径最。

⑵运用代数法:① 运用配方法求二次三式的最;② 运用一元二次方程根的判式。

例 1、A、B 两点在直 l 的同,在直L 上取一点 P,使 PA+PB最小。

分析:在直 L 上任取一点 P’, A P’, BP’,在△ ABP’中 AP’+BP’> AB,如果 AP’+BP’= AB,则 P’必在线段 AB上,而线段AB 与直线 L 无交点,所以这种思路错误。

取点 A 关于直线 L 的对称点 A’,则 AP’= AP,在△ A’BP 中 A’P’+B’P’> A’B, 当 P’移到 A’B与直线 L 的交点处 P 点时A’P’+B’P’= A’B,所以这时 PA+PB最小。

1 已知 AB是半圆的直径,如果这个半圆是一块铁皮, ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形 ABDC的周长最大 ( 图 3- 91) ?分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于 AB∥ CD,必有AC=BD.若设 CD=2y,AC=x,那么只须求梯形 ABDC的半周长 u=x+y+R的最大值即可.解作 DE⊥AB于 E,则2 2 2x =BD=AB·BE=2R· (R-y) =2R -2Ry,所以2 2所以求 u 的最大值,只须求 -x +2Rx+2R最大值即可.2222 2-x +2Rx+2R=3R-(x-R)≤ 3R,上式只有当 x=R时取等号,这时有所以2y=R=x.所以把半圆三等分,便可得到梯形两个顶点 C, D,这时,梯形的底角恰为 60°和 120°.2 . 如图 3-92 是半圆与矩形结合而成的窗户,如果窗户的周长为8 米(m) ,怎样才能得出最大面积,使得窗户透光最好?分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+π x=8,若窗户的最大面积为S,则把①代入②有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.3.已知 P 点是半圆上一个动点,试问 P在什么位置时, PA+PB最大 ( 图 3-93) ?分析与解因为 P 点是半圆上的动点,当 P 近于 A 或 B 时,显然 PA+PB渐小,在极限状况 (P 与 A 重合时 ) 等于 AB.因此,猜想 P 在半圆弧中点时, PA+PB取最大值.设P 为半圆弧中点,连 PB,PA,延长 AP到 C,使 PC=PA,连 CB,则 CB是切线.为了证 PA+PB最大,我们在半圆弧上另取一点 P′,连 P′A,P′B,延长 AP′到C′,使P′C′=BP′,连 C′B,CC′,则∠ P′ C′ B=∠P′BC=∠ PCB=45°,所以 A,B,C′, C 四点共圆,所以∠ CC′A=∠CBA=90°,所以在△ ACC′中, AC>AC′,即 PA+PB>P′A+P′B.4如图 3- 94,在直角△ ABC中,AD是斜边上的高, M,N 分别是△ ABD,△ ACD的内心,直证连结 AM, BM,DM,AN, DN,CN.因为在△ ABC中,∠ A=90°, AD⊥BC于 D,所以∠ ABD=∠ DAC,∠ ADB=∠ADC=90°.因为 M,N分别是△ ABD和△ ACD的内心,所以∠1=∠ 2=45°,∠ 3=∠4,所以△ ADN∽△ BDM,又因为∠ MDN=90° =∠ADB,所以△ MDN∽△ BDA,所以∠BAD=∠MND.由于∠ BAD=∠ LCD,所以∠MND=∠LCD,所以 D, C, L, N四点共圆,所以∠ALK=∠NDC=45°.同理,∠ AKL=∠1=45°,所以 AK=AL.因为△AKM≌△ ADM,所以AK=AD=AL.而而从而所以 S △ABC≥S△AKL.5.如图 3-95.已知在正三角形 ABC内( 包括边上 ) 有两点 P,Q.求证: PQ≤ AB.证设过 P,Q的直线与 AB,AC分别交于 P1,Q1,连结 P1C,显然, PQ≤P1Q1.因为∠ AQ1P1+∠ P1 Q1 C=180°,所以∠ AQ1P1和∠ P1Q1 C中至少有一个直角或钝角.若∠ AQ1P1≥90°,则PQ ≤ P1Q1≤AP1≤AB;若∠ P1Q1C≥90°,则PQ ≤ P1Q1≤P1C.同理,∠ AP1C 和∠ BP1C 中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则P 1C≤BC=AB.对于 P,Q两点的其他位置也可作类似的讨论,因此,PQ≤ AB.6.设△ ABC是边长为 6 的正三角形,过顶点 A 引直线 l ,顶点 B,C到 l 的距离设为 d 1,d2,求 d1+d2的最大值 (1992 年上海初中赛题 ) .解如图 3-96,延长 BA到 B′,使 AB′=AB,连 B′C,则过顶点 A 的直线 l 或者与BC相交,或者与 B′C相交.以下分两种情况讨论.(1)若 l 与 BC相交于 D,则所以只有当 l ⊥BC时,取等号.(2)若 l ′与 B′C相交于 D′,则所以上式只有 l ′⊥ B′C 时,等号成立.7.如图 3-97.已知直角△ AOB中,直角顶点 O在单位圆心上,斜边与单位圆相切,延长AO, BO分别与单位圆交于 C,D.试求四边形 ABCD面积的最小值.解设⊙ O与 AB相切于 E,有 OE=1,从而即AB≥ 2.当 AO=BO时, AB有最小值 2.从而所以,当 AO=OB时,四边形 ABCD面积的最小值为●几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、 极端位置,直接计算等方法, 先探求出定值, 再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 ( 如线段长度、角度大小、图形面积 ) 等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法; 2.几何定理 ( 公理 ) 法; 3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性 ( 目标不明确 ) ,解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法. 【例题就解】【例 1】 如图,已知 AB=10,P 是线段 AB 上任意一点,在 AB 的同侧分别以 AP 和 PB 为边作等边△ APC 和等边△ BPD ,则 CD 长度的最小值为 .思路点拨 如图,作 CC ′⊥ AB 于 C ,DD ′⊥ AB 于 D ′,2221DQ ⊥CC ′, CD=DQ+CQ , DQ= AB 一常数,当 CQ 越小, CD 越小,2本例也可设 AP=x ,则 PB=10 x ,从代数角度探求 CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1) 中点处、垂直位置关系等;(2) 端点处、临界位置等.【例 2】 如图,圆的半径等于正三角形 ABC 的高,此圆在沿底边 AB 滚动,切点为T ,⌒MTN 为的度数()圆交 AC 、BC 于 M 、N ,则对于所有可能的圆的位置而言, A .从 30°到 60°变动 B .从 60°到 90°变动C .保持 30°不变D .保持 60°不变思路点拨 先考虑当圆心在正三角形的顶点 C 时, 其弧的度数,再证明一般情形,从而作出判断. 注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变 化的元素运动到特定的位置,使图形变化为特殊图形时, 研究的量取得定值与最值.【例 3】 如图,已知平行四边形 ABCD ,AB= ,BC=b ( a > b ) ,P 为 AB 边上的一动点,a直线 DP 交 CB 的延长线于 Q ,求 AP+BQ 的最小值.思路点拨xx的代数式表示, 运用不等式 a 2b 22ab( 当设 AP= ,把 AP 、BQ 分别用且仅当 a b 时取等号 ) 来求最小值.7AC 与 BM 相交于 K ,直线 CB 与 AM 相交于点 N ,证明:线段 AK 和 BN 的乘积与 M 点的选择无关.思路点拨 即要证 AK · BN 是一个定值,在图形中△ ABC 的边长是一个定值,说明 AK ·BN 与 AB 有关,从图知 AB 为2△ ABM 与△ ANB 的公共边,作一个大胆的猜想, AK ·BN=AB ,从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例 5】 已知△ XYZ 是直角边长为 1 的等腰直角三角形 ( ∠Z=90°) ,它的三个顶点分别在等腰 Rt △ABC(∠C=90° ) 的三边上,求△ ABC 直角边长的最大可能值.思路点拨 顶点 Z 在斜边上或直角边 CA(或 CB)上,当顶点 Z 在斜边 AB 上时,取 xy 的中点,通过几何不等关系求出直角边的最大值, 当顶点 Z 在(AC 或 CB)上时,设 CX=x ,CZ=y ,建立 x , y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题, 即适当地选取变量, 建立几何元素间的函数、 方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1) 利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2) 构造二次函数求几何最值.学力训练1.如图,正方形 ABCD 的边长为 1,点 P 为边 BC 上任意一点(可与 B 点或 C 点重合),分别过 B 、 C 、 D 作射线 AP 的垂线,垂足分别是 B ′、 C ′、 D ′,则 BB ′+CC ′ +DD ′的最大值为 ,最小值为 .2.如图,∠ AOB=45°,角内有一点 P , PO=10,在角的两边上有两点 Q , R(均不同于 点 O),则△ PQR 的周长的最小值为 .3.如图,两点 A 、 B 在直线 MN 外的同侧, A 到 MN 的距离 AC=8, B 到 MN 的距离 BD=5, CD=4,P 在直线 MN 上运动,则 PA PB 的最大值等于 .4.如图,A 点是半圆上一个三等分点, B 点是弧 AN 的中点, P 点是直径 MN 上一动点,⊙ O 的半径为 1,则 AP+BP 的最小值为 ( )A .1B.2C . 2D. 3 125.如图,圆柱的轴截面 ABCD 是边长为 4 的正方形,动点 P 从 A 点出发,沿看圆柱的 侧面移动到 BC 的中点 S 的最短距离是 ( )A . 2 1 2B . 2 1 4 2C . 4 1 2D . 2 4 26.如图、已知矩形 ABCD ,R ,P 户分别是 DC 、BC 上的点, E ,F 分别是 AP 、RP 的中点,当 P 在 BC上从 B 向 C 移动而 R不动时,那么下列结论成立的是( )A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段 EF的长不改变D.线段EF的长不能确定7.如图,点 C 是线段 AB上的任意一点 (C 点不与 A、B 点重合 ) ,分别以 AC、BC为边在直线 AB的同侧作等边三角形 ACD和等边三角形 BCE, AE与 CD相交于点 M,BD与 CE 相交于点 N.(1)求证: MN∥ AB;(2) 若 AB的长为 l0cm,当点 C 在线段 AB上移动时,是否存在这样的一点 C,使线段MN的长度最长 ?若存在,请确定 C 点的位置并求出 MN的长;若不存在,请说明理由.(2002 年云南省中考题 )8.如图,定长的弦 ST在一个以 AB为直径的半圆上滑动, M是 ST 的中点, P 是 S 对AB作垂线的垂足,求证:不管 ST 滑到什么位置,∠ SPM是一定角.9.已知△ ABC是⊙ O的内接三角形, BT为⊙ O的切线, B 为切点, P 为直线 AB上一点,过点 P 作 BC的平行线交直线 BT 于点 E,交直线 AC于点 F.(1)当点 P 在线段 AB上时 ( 如图 ) ,求证: PA·PB=PE·PF;(2)当点 P 为线段 BA延长线上一点时,第 (1) 题的结论还成立吗 ?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为 4 的正方形截去一角成为五边形 ABCDE,其中 AF=2,BF=l,在AB上的一点 P,使矩形 PNDM有最大面积,则矩形 PNDM的面积最大值是 ( ) A.8 B.12C.25D.14211.如图,AB是半圆的直径,线段 CA上 AB于点 A,线段 DB上 AB于点 B,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形 ACPDB的最大面积是 ( )A.22B.12C.32D.3 212.如图,在△ ABC中, BC=5,AC=12, AB=13,在边 AB、 AC上分别取点 D、E,使线段 DE将△ ABC分成面积相等的两部分,试求这样线段的最小长度.13.如图, ABCD是一个边长为 1 的正方形, U、V 分别是 AB、CD上的点, AV与 DU 相交于点 P, BV与 CU相交于点 Q.求四边形 PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0 米的圆,问如何设计 ( 求出两喷水器之间的距离和矩形的长、宽 ) ,才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场( 平面图如图所示 ) .其中,正方形 MNPQ与四个相同矩形 ( 图中阴影部分 ) 的面积的和为800 平方米.的代数式表示y 为.(1) 设矩形的边 AB= ( 米) ,AM=y ( 米) ,用含xx(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为 2100 元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为 105 元;在四个三角形区域上铺设草坪,平均每平方米造价为 40 元.①设该工程的总造价为 S( 元) ,求 S 关于工的函数关系式.②若该工程的银行贷款为 235000 元,仅靠银行贷款能否完成该工程的建设任务 ?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金 73000 元,问能否完成该工程的建设任务 ?若能,请列出所有可能的设计方案;若不能,请说明理由.( 镇江市中考题 )16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积( 精确到21m) .参考答案●最短路线问题通常最短路线问题是以“平面内连结两点的线中,直线段最短” 为原则引申出来的.人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题.在本讲所举的例中,如果研究问题的限制条件允许已知的两点在同一平面内,那么所求的最短路线是线段;如果它们位于凸多面体的不同平面上,而允许走的路程限于凸多面体表面,那么所求的最短路线是折线段;如果它们位于圆柱和圆锥面上,那么所求的最短路线是曲线段;但允许上述哪种情况,它们都有一个共同点:当研究曲面仅限于可展开为平面的曲面时,例如圆柱面、圆锥面和棱柱面等,将它们展开在一个平面上,两点间的最短路线则是连结两点的直线段.这里还想指出的是,我们常遇到的球面是不能展成一个平面的.例如,在地球(近似看成圆球)上 A、B二点之间的最短路线如何求呢?我们用过A、B 两点及地球球心O的平面截地球,在地球表面留下的截痕为圆周(称大圆),在这个大圆周上 A、 B两点之间不超过半个圆周的弧线就是所求的 A、 B 两点间的最短路线,航海上叫短程线.关于这个问题本讲不做研究,以后中学会详讲.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法.例1 如下图,侦察员骑马从 A 地出发,去 B 地取情报.在去 B 地之前需要先饮一次马,如果途中没有重要障碍物,那么侦察员选择怎样的路线最节省时间,请你在图中标出来.解:要选择最节省时间的路线就是要选择最短路线.作点 A 关于河岸的对称点 A ′,即作 AA′垂直于河岸,与河岸交于点 C,且使 AC=A′C,连接 A′B 交河岸于一点 P,这时 P 点就是饮马的最好位置,连接 PA,此时 PA+PB就是侦察员应选择的最短路线.证明:设河岸上还有异于P 点的另一点 P′,连接 P′A,P′B, P ′ A′.∵P′A+P′B=P′A′+P′B> A′B=PA′ +PB=PA+PB,而这里不等式 P ′ A′+ P′ B> A′ B 成立的理由是连接两点的折线段大于直线段,所以 PA+PB是最短路线.此例利用对称性把折线 APB化成了易求的另一条最短路线即直线段 A′ B,所以这种方法也叫做化直法,其他还有旋转法、翻折法等.看下面例题.例2 如图一只壁虎要从一面墙壁α上 A 点,爬到邻近的另一面墙壁β上的 B 点捕蛾,它解:我们假想把含B 点的墙β顺时针旋转90°(如下页右图),使它和含A 点的墙α处在同一平面上,此时β转过来的位置记为β′,B 点的位置记为B′,则A、B′之间最短路线应该是线段 AB′,设这条线段与墙棱线交于一点 P,那么,折线 4PB就是从 A 点沿着两扇墙面走到 B 点的最短路线.证明:在墙棱上任取异于 P 点的 P′点,若沿折线 AP′ B走,也就是沿在墙转 90°后的路线 AP′ B′走都比直线段 APB′长,所以折线 APB是壁虎捕蛾的最短路线.由此例可以推广到一般性的结论:想求相邻两个平面上的两点之间的最短路线时,可以把不同平面转成同一平面,此时,把处在同一平面上的两点连起来,所得到的线段还原到原始的两相邻平面上,这条线段所构成的折线,就是所求的最短路线.例3 长方体 ABCD— A′B′C′D′中, AB=4,A′ A=2′,AD=1,有一只小虫从顶点D′出发,沿长方体表面爬到 B 点,问这只小虫怎样爬距离最短?(见图( 1))解:因为小虫是在长方体的表面上爬行的,所以必需把含D′、 B 两点的两个相邻的面“展开”在同一平面上,在这个“展开”后的平面上 D ′ B 间的最短路线就是连结这两点的直线段,这样,从 D′点出发,到 B 点共有六条路线供选择.①从 D′点出发,经过上底面然后进入前侧面到达 B 点,将这两个面摊开在一个平面上(上页图( 2)),这时在这个平面上 D′、 B 间的最短路线距离就是连接 D′、 B 两点的直线段,它是直角三角形 ABD′的斜边,根据勾股定理,D′ B2 =D′A2+AB2=( 1+2)2+42 =25,∴ D′ B=5.②容易知道,从D′出发经过后侧面再进入下底面到达 B 点的最短距离也是5.③从 D′点出发,经过左侧面,然后进入前侧面到达 B 点.将这两个面摊开在同一平面上,同理求得在这个平面上 D′、 B 两点间的最短路线(上页图( 3)),有:D′ B2=22+(1+4)2 =29.④容易知道,从 D′出发经过后侧面再进入右侧面到达 B 点的最短距离的平方也是29.⑤从 D′点出发,经过左侧面,然后进入下底面到达 B 点,将这两个平面摊开在同一平D′ B2 =( 2+4)2+12=37.⑥容易知道,从 D′出发经过上侧面再进入右侧面到达 B 点的最短距离的平方也是37.比较六条路线,显然情形①、②中的路线最短,所以小虫从D′点出发,经过上底面然后进入前侧面到达 B 点(上页图( 2)),或者经过后侧面然后进入下底面到达 B 点的路线是最短路线,它的长度是 5 个单位长度.利用例 2、例 3 中求相邻两个平面上两点间最短距离的旋转、翻折的方法,可以解决一些类似的问题,例如求六棱柱两个不相邻的侧面上 A 和 B 两点之间的最短路线问题(下左图),同样可以把 A、 B 两点所在平面及与这两个平面都相邻的平面展开成同一个平面(下右图),连接 A、B 成线段 AP1P2B,P1、P2 是线段 AB与两条侧棱线的交点,则折线AP1P2B就是 AB间的最短路线.圆柱表面的最短路线是一条曲线,“展开”后也是直线,这条曲线称为螺旋线.因为它具有最短的性质,所以在生产和生活中有着很广泛的应用.如:螺钉上的螺纹,螺旋输粉机的螺旋道,旋风除尘器的导灰槽,枪膛里的螺纹等都是螺旋线,看下面例题.例4 景泰蓝厂的工人师傅要给一个圆柱型的制品嵌金线,如下左图,如果将金线的起点固定在 A 点,绕一周之后终点为 B点,问沿什么线路嵌金线才能使金线的用量最少?解:将上左图中圆柱面沿母线 AB剪开,展开成平面图形如上页右图(把图中的长方形卷成上页左图中的圆柱面时, A′、 B′分别与 A、B 重合),连接 AB′,再将上页右图还原成上页左图的形状,则 AB′在圆柱面上形成的曲线就是连接 AB且绕一周的最短线路.圆锥表面的最短路线也是一条曲线,展开后也是直线.请看下面例题.例5 有一圆锥如下图, A、 B 在同一母线上, B 为 AO的中点,试求以 A 为起点,以 B 为终点且绕圆锥侧面一周的最短路线.解:将圆锥面沿母线AO剪开,展开如上右图(把右图中的扇形卷成上图中的圆锥面时, A′、 B′分别与 A、 B 重合),在扇形中连 AB′,则将扇形还原成圆锥之后, AB′所成的曲线为所求.例6 如下图,在圆柱形的桶外,有一只蚂蚁要从桶外的 A 点爬到桶内的 B 点去寻找食物,已知A 点沿母线到桶口C 点的距离是12 厘米,B 点沿母线到桶口D 点的距离是8 厘米,而 C、D两点之间的(桶口)弧长是 15 厘米.如果蚂蚁爬行的是最短路线,应该怎么走?路程总长是多少?分析我们首先想到将桶的圆柱面展开成矩形平面图(下图),由于 B 点在里面,不便于作图,设想将 BD延长到 F,使 DF=BD,即以直线 CD为对称轴,作出点 B 的对称点 F,用 F 代替 B,即可找出最短路线了.解:将圆柱面展成平面图形(上图),延长 BD到 F,使 DF=BD,即作点 B 关于直线 CD 的对称点 F,连结 AF,交桶口沿线 CD于 O.因为桶口沿线 CD是 B 、F 的对称轴,所以 OB=OF,而 A、F 之间的最短线路是直线段AF,又AF=AO+OF,那么A、B 之间的最短距离就是AO+OB,故蚂蚁应该在桶外爬到O 点后,转向桶内 B 点爬去.延长 AC到 E,使 CE=DF,易知△ AEF是直角三角形, AF 是斜边, EF=CD,根据勾股定理,AF2=(AC+CE)2+EF2=( 12+8)2+ 152= 625=252,解得 AF=25.即蚂蚁爬行的最短路程是25 厘米.例7 A 、B 两个村子,中间隔了一条小河(如下图),现在要在小河上架一座小木桥,使它垂直于河岸.请你在河的两岸选择合适的架桥地点,使 A、 B 两个村子之间路程最短.分析因为桥垂直于河岸,所以最短路线必然是条折线,直接找出这条折线很困难,于是想到要把折线化为直线.由于桥的长度相当于河宽,而河宽是定值,所以桥长是定值.因此,从 A 点作河岸的垂线,并在垂线上取 AC等于河宽,就相当于把河宽预先扣除,找出 B、C 两点之间的最短路线,问题就可以解决.解:如上图,过 A 点作河岸的垂线,在垂线上截取 AC的长为河宽,连结 BC交河岸于 D 点,作 DE垂直于河岸,交对岸于 E 点, D、E 两点就是使两村行程最短的架桥地点.即两村的最短路程是 AE+ED+ DB.例8 在河中有 A、 B 两岛(如下图),六年级一班组织一次划船比赛,规则要求船从 A 岛出发,必须先划到甲岸,又到乙岸,再到 B 岛,最后回到 A 岛,试问应选择怎样的路线才能使路程最短?解:如上图,分别作 A、B 关于甲岸线、乙岸线的对称点 A′和 B′,连结 A′、B′分别交甲岸线、乙岸线于 E、F 两点,则 A→ E→ F→ B→ A 是最短路线,即最短路程为: AE+EF+FB+BA.证明:由对称性可知路线 A→ E→F→B 的长度恰等于线段 A′ B′的长度.而从 A 岛到甲岸,又到乙岸,再到 B 岛的任意的另一条路线,利用对称方法都可以化成一条连接 A′、B′之间的折线,它们的长度都大于线段 A ′B′,例如上图中用“·—·—·”表示的路线A→E′→ F′→ B 的长度等于折线 AE′F′ B 的长度,它大于 A′B′的长度,所以 A→E → F→ B→ A 是最短路线.●对称问题教学目的:进一步理解从实际问题转化为数学问题的方法,对于轴对称问题、中心对称问题有一个比较深入的认识,可以通过对称的性质及三角形两边之和与第三边的关系找到证明的方法。

初中数学常见8种最值问题

初中数学常见8种最值问题

的方程 3 B.初中数学常见8种最值问题最值问题,也就是最大值和最小值问题.它是初中数学竞赛中的常见问题. 这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度.本文以例介绍一些常见的求解方法,供读者参考.一. 配方法例 1. (2005 年全国初中数学联赛武汉 CASIO 杯选拔赛)可取得的最小值为.解:原式 由此可知,当时,有最小值 .二. 设参数法例 2. (《中等数学》奥林匹克训练题)已知实数满足 .则 的最大值为.解:设 ,易知,由,得从而,.由此可知,是关于 t 的两个实根.于是,有,解得.故的最大值为 2.例 3. (2004 年全国初中联赛武汉选拔赛)若,则可取得的最小值为( )A. C.D. 6取得最小值 .故选(B ).解:设 ,则从而可知,当时,解:由 得解得由是非负实数,得 , 解得又 ,故, 三. 选主元法例 4. (2004 年全国初中数学竞赛) 实数满足.则 z 的最大值是.解:由 得.代入 消去 y 并整理成以为主元的二次方程,由 x 为实数,则判别式 . 即 ,整理得 解得 .所以,z 的最大值是 .四. 夹逼法例 5. (2003 年北京市初二数学竞赛复赛)是非负实数,并且满足.设,记 为 m 的最小值,y 为 m 的最大值.则.五. 构造方程法例 6. (2000 年山东省初中数学竞赛).于是,因此.已知矩形 A 的边长为 a 和 b ,如果总有另一矩形 B 使得矩形 B 与矩形 A 的周长之比与面积之比都等于 k ,试求 k 的最小值.解:设矩形 B 的边长为 x 和 y ,由题设可得 .从而x 和y 可以看作是关于t 的一元二次方程 的两个实数 根,则 ,因为 ,所以 ,解得,所以 k 的最小值是.六. 由某字母所取的最值确定代数式的最值例 7. (2006 年全国初中数学竞赛)已知为整数,且.若,则的最大值为.解:由得,代入得.而由和可知的整数.所以,当时,取得最大值,为.七. 借助几何图形法例 8. (2004 年四川省初中数学联赛)函数的最小值是.解:显然,若,则.因而,当取最小值时,必然有. 如图1,作线段AB=4,,且AC=1,BD=2.对于AB 上的任一点O,令OA=x,则.那么,问题转化为在 AB 上求一点 O,使 OC+OD 最小.图 1设点 C 关于 AB 的对称点为 E,则 DE 与 AB 的交点即为点 O,此时,.作 EF//AB 与DB 的延长线交于 F.在中,易知,所以,.因此,函数的最小值为5.八. 比较法例 9. (2002 年全国初中数学竞赛)某项工程,如果有甲、乙两队承包天完成,需付180000 元;由乙、丙两队承包天完成,需付150000 元;由甲、丙两队承包天完成,需付160000 元. 现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?解:设甲、乙、丙单独承包各需天完成,则解得又设甲、乙、丙单独工作一天,各需付元,则解得于是,由甲队单独承包,费用是(元);由乙队单独承包,费用是(元);而丙队不能在一周内完成,经过比较得知,乙队承包费用最少.。

初中最值问题汇总

初中最值问题汇总

初中最值问题汇总
在代数运算中,经常会碰到求最值的情况。

比如说,二次函数的最值问题就很常见啦。

对于形如y = ax^2 + bx + c(a≠0)的二次函数,如果a>0,函数图像开口向上,有最小值,就在顶点处取得;要是a<0,图像开口向下,就有最大值,同样在顶点处找到。

另外,利用均值不等式也能求最值。

像对于正实数a和b,有a + b ≥
2\sqrt{ab},当且仅当a = b时,等号成立,就能求出最值哟。

几何中的最值问题
几何里的最值可有意思啦。

比如在平面几何中,两点之间线段最短,三角形两边之和大于第三边,这些定理都能帮咱们找到最值。

还有,圆中的最值问题也不少。

比如从圆外一点向圆引切线和割线,切线长是这点到割线与圆交点的两条线段长中最短的。

实际应用中的最值问题
在实际生活里,最值问题更是无处不在。

像是在生产中,要考虑怎样安排生产能让成本最低、利润最大;在行程问题里,要找到最短时间或者最短路径的方案。

比如一个仓库要把货物运到几个不同地点,怎么规划路线能让运输成本最小,这就得好好琢磨琢磨啦。

初中的最值问题虽然有时候会让人有点头疼,但只要咱们掌握了方法,多做练习,就一定能轻松应对,取得好成绩!。

巧求最值问题八种方法

巧求最值问题八种方法

巧求最值问题八种方法如何求“最值"问题求最大值与最小值是中学数学常见的一种题型,在数学竞赛中作为一个靓点大量存在,解这类题有一定的难度和技巧,所以不少同学为之感叹,这里向大家介绍一些求最值问题的方法与技巧。

一、利用配方求最值例1 :若X,y是实数,则x2 xy y2 3x 3y 1999的最小值是____________ 。

分析:由于是二次多项式,难以直接用完全平方公式,所以用配方法来解更为简捷。

原^式=1(x22xy y2) 1(x26x 9) 1 (y26y 9) 1990=2(x y)21(x 3)21(y 3)21990显然有(x-y) 2> 0, (x-3) 2> 0, (y-3) 2> 0,所以当x-y=0,x-3=0,y-3=0 时,得x=y=3 时, 代数式的值最小,最小是1990;例2,设x为实数,求y=x2x丄3的最小值。

x分析:由于此函数只有一个未知数,容易想到配方法,但要注意只有一个完全平方式完不成,因此要考虑用两个平方完全平方式,并使两个完个平方式中的 x 取值相同。

由于y=x 22x i x - 2 i=(x i )2(依斗)2i ,要求 y 的最小x J x '值,必须有X-仁0,且眉士 0,解得x=1,Vx于是当x=1时,y=x 2x - 3的最小值是-1。

x二、利用重要不等式求最值例3 :若xy=1,那么代数式 丄 二的最小值 x 4y分析:已知两数积为定值,求两数平方和的最 小值,可考虑用不等式的性质来解此题,所以:4角的最小值是1x 4y三、构造方程求最值例 4:已知实数 a 、b 、c 满足:a+b+c=2, abc=4. 求a 、b 、c 中的最大者的最小值.分析:此例字母较多,由已知可联想到用根与 系数的关系,构造方程来解。

解:设c 为最大者,由已知可知,c>0,得:a+b=2-c, ab=4,则 a 、b 可以看作 x 2(2 c )x 40 的两c c1 (xy )2=11 ~4 x1 4y 4(27)2根,因为 a 、b 是实数,所以(2 c )24^ 0,即 c 7c 3 4c 2 4c 16 0, (c 2)( c 2)(c 4) 0,得 c 2 或 c 4,因为 C 是 最大者,所以c的最小值是4.四、构造图形求最值例5:使x 24 (8—x )2—16取最小值的实数X 的值 为______ 」分析:用一般方法很难求出代数式的最值 ,由于 X 24(8一XL16=心―0厂(0一2)28厂(0一4)2,于是可构造图形,转化 为:在x 轴上求一点c (x,0),使它到 『 两点A (0,2)和B (8, 4)的距离 * 和CA+CB 最小,利用对称可求出 C 点坐标,这样,通过构造图形使问 题迎刃而解。

中考数学最值问题总结

中考数学最值问题总结

中考数学最值问题总结中考数学中最值问题是一个重要的考点,通常涉及到二次函数、一次函数、不等式等问题。

以下是一些常见的最值问题及解决方法:1. 二次函数最值问题二次函数的最值问题是最常见的最值问题之一。

解决这类问题的一般步骤是:首先确定自变量的取值范围,然后利用二次函数的顶点式或开口方向来求最值。

如果二次函数的开口向上,那么在顶点处取得最小值(当x<0时),在x轴上取得最大值(当x>0时)。

如果二次函数的开口向下,那么在顶点处取得最大值(当x<0时),在x轴上取得最小值(当x>0时)。

2. 一次函数最值问题一次函数的最值问题通常涉及到一次函数的单调性和自变量的取值范围。

如果一次函数是递增的,那么在自变量取值范围内的最大值是当x取最大值时的函数值,最小值是当x取最小值时的函数值。

如果一次函数是递减的,那么在自变量取值范围内的最大值是当x取最小值时的函数值,最小值是当x取最大值时的函数值。

3. 不等式最值问题不等式的最值问题通常涉及到不等式的性质和不等式的取值范围。

解决这类问题的一般步骤是:首先确定不等式的取值范围,然后利用不等式的性质来求最值。

如果是不等式左边是一个定值,右边是一个变量的形式,那么当变量取最大或最小值时,不等式取得最值。

如果是不等式两边都是变量,那么需要利用不等式的性质来求解。

4. 代数式的最值问题代数式的最值问题通常涉及到代数式的化简和代数式中字母的取值范围。

解决这类问题的一般步骤是:首先将代数式进行化简,然后根据代数式中字母的取值范围来确定最值。

如果代数式中包含有二次项,那么可以利用配方法将其化简为顶点式或开口方向式来求解最值。

如果代数式中包含有绝对值,那么需要先去掉绝对值符号再化简求解最值。

解决中考数学最值问题需要掌握各种知识点和方法,包括二次函数、一次函数、不等式、代数式等,同时需要注意自变量的取值范围和函数的单调性等问题。

最经典的最值问题

最经典的最值问题

最值问题“最大最小、最多最少、最长最短问题”,我们称之为“最值问题”.让我们翻开记忆,按照“最值问题”在课本中出现的顺序搜索一下: 1、两点之间线段最短; 2、垂线段最短;3、不等式的最大(小)值;4、二次整式最值;5、线段和最小差最大;6、勾股对称最短路径;7、一次函数最优方案;8、圆中最长弦是直径;9、圆的最近(远)距离; 10、二次函数的最值; 11、平方和最小问题.以上所列,有的是同一问题,有的具有包含关系(如“二次函数最值”包含了“二次整式最值”),有的很少出现,为了简捷实用,我进行了整理,就以下几个问题展开: 一、两点之间,线段最短 说明:“两点之间,线段最短”应用非常广泛,它常与三角形、轴对称、图形表面展开图等相结合,题目类型很多.(一)线段和最小说明:此乃“两点之间,线段最短”与轴对称的结合题. 通法:求“直线上一点到这条直线同侧两点的距离和最小”:作其中一点关于这条直线的对称点,连结这个对称点与另一点的线段与这条直线的交点即为所求,此线段长即为该最小距离. 例6-1-1 几何模型(1)如图6-1-1①,点A 、B 位于直线m 异侧,在直线m 上找一点P ,使AP+BP 的值最小.图6-1-1① 图6-1-1②你作图的根据是: .(2)如 图6-1-1②,点A 、B 位于直线m 同侧,在直线m 上找一点P ,使AP+BP 的值最小. 你作图的根据是: .模型应用:(3)如图6-1-1③,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .(4)如图6-1-1④,菱形ABCD 中,AB=2,∠A=120°,点E 是线段CD 的中点,K 为线段BD 上的任意一点,则CK+EK 的最小值为 .(5)如图6-1-1⑤,抛物线c x ax y +=4-2与坐标轴交于点A (-1,0)和点B (0,-5).点P 在它的对称轴上,使△ABP 周长最小的点P 坐标为 .图6-1-1③ 图6-1-1④ 图6-1-1⑤体验与感悟 6-1-1 1、(1)如图6-1-2①,在等边△ABC 中,AB=6,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使PB+PE 的最小,最小值为 . (2)如图6-1-2②,圆O 的半径为2,点A 、B 、C 在圆O 上,OA ⊥OB ,∠A=60°,P 是OB 上一动点,则PA+PC 的最小值是 .(3)如图6-1-2③,点D 、E 分别是△ABC 的AC 、AB 边的中点,BC=6,BC 边上的高为4,P 在BC 边上,则△PDE 周长的最小值 .图6-1-2① 图6-1-2② 图6-1-2③2、(1)如图6-1-3①,菱形ABCD 中,AB=2,∠A=120°,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任意一点,则PK+QK 的最小值为 .(2)如图图6-1-3②,∠AOB=45°,P 是∠AOB 内一点,PO=10,Q 、R 分别是OA 、OB 上的动点,则△PQR 周长的最小值是 .(3)如图图6-1-3③,锐角△ABC 中,24=AB ,∠BAC=45°,AD 平分∠BAC ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 .图6-1-3① 图6-1-3② 图6-1-3③ 以下为补充习题:3、如图6-1-3④,°=90∠MON ,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O的最大距离为.图6-1-3④4、如图6-1-3⑤,已知边长为a的正三角形ABC,两顶点A、B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连结OC,则OC长的最大值是 .图6-1-3⑤图6-1-3⑥5、如图6-1-3⑥,在△ABC中,∠ABC=90°,AB=4,BC=2,点A、B分别在x轴、y轴上,当点A在x 轴的正半轴上运动时,点B随之在y轴上运动.在运动过程中,点C到原点O的最大距离为.6、如图6-1-3⑦,正方形ABCD的边长为2,当点A在x轴上运动时,点D随之在y轴上运动.在运动过程中,点B到原点O的最大距离与最小距离的积为 .图6-1-3⑦(二)线段差最大说明:此乃“三角形三边关系之两边之差小于第三边”的应用.通法:求“直线上一点到这条直线异侧两点的距离差最大”:作其中一点关于这条直线的对称点,连接这个对称点与另一点的线段所在直线与这条直线的交点即为所求.例6-1-2 几何模型AP-的值最大.(1)如图6-1-4①,点A、B位于直线m的同侧,在直线m上找一点P,使BP图6-1-4①你的作图根据是: .(2)如图6-1-4② ,点A 、B 位于直线m 异侧,在直线m 上找一点P ,使BP AP -的值最大.图6-1-4②你的作图根据是: .模型应用:如图6-1-4③,一次函数b kx y +=的图象与y x 、轴分别交于点A (2,0)、B (0,4),D 为AB 的中点,C 、A 关于原点对称.P 为OB 上一动点,请直接写出PD PC -的范围: .图6-1-4③ 体验与感悟 6-1-21、在圆O 所在的平面上有一点A ,它到圆O 的最近距离为3,最远距离为7,则圆O 的半径为 .2、点A 、B 均在由面积为1的小正方形组成的网格的格点上,建立平面直角坐标系如图6-1-5.若P 是x 轴上使得PB PA -的值最大的点,OP= .3、如图6-1-6,抛物线a bx ax y 4-2+=经过A (-1,0)、C (0,4)两点,与x 轴交于另一点B. (1)抛物线及对称轴分别为 . (2)点D 在所求抛物线的对称轴上,求DC DB -的最大值.图6-1-5 图6-1-6(三)“小虫爬爬”问题说明:求小虫在柱体、物体表面爬的最短距离,题目在多数情况下是用勾股定理求物体表面展开图上两点间距离.通法:见“小虫爬爬问题”,作展开图构造直角三角形,再用勾股定理求之.AA4cm,一直蚂蚁沿长方体例6-1-3(1)如图6-1-7①,已知长方体的长为AC=2cm,宽BC=1cm,高='的表面从A点爬到'B点的最短路程是多少?规律:“小小相加凑一边时路径最短.”(2)如图6-1-7②,圆柱形杯高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁达到蜂蜜的最短距离为多少?图6-1-7②规律:“一内点一外点要用轴对称.”体验与感悟 6-1-31、(1)如图6-1-8①,长方体的长、宽、高分别为15、10、20,点B 与点C 的距离为5,一只蚂蚁沿着长方体的表面从点A 爬到点B 的最短距离是( )A 、5B 、25C 、15D 、35图6-1-8① 图6-1-8② 图6-1-8③ 图6-1-8④(2)如图6-1-8②,底面半径为3cm 的圆锥的主视图是一个正三角形,C 是母线OB 的中点,则在圆锥表面从A 到C 的最短距离等于 cm.(3)如图6-1-8③,圆柱高是8cm ,底面半径为2cm ,一只蚂蚁从点A 爬到点B 处吃食物,爬行的最短路程是( )cm.(π取3)A 、20B 、10C 、14D 、无法确定(4)如图6-1-8④,ABCDEFGH 是一个无上底的长方体容器.M 在容器内侧,位于侧棱BF 上.已知AB=5,BF=9,FM=3,则从外部的点A 到内部的点M 的最短距离等于 .2、如图6-1-9,是一个三级台阶,它的每一级的长、宽、高分别为20dm ,3dm ,2dm ,A 和B 是这个台阶上两个相对的点.A 点处有一只昆虫想到B 点去吃食物,则昆虫沿着台阶爬到B 的最短路程是多少?3、在一个长为2米,宽为1米的矩形草地上,如图6-1-10堆放着一根长方体的木块,它的棱长和场地宽AD 平行且大于AD ,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A 处,到达C 处需要走的最短路程是 米.(精确到0.01米)图6-1-10(四)两“二次根式和的最小值”问题 说明:形如“求2222)-(b x m a x +++的最小值,其中m b a ,,为常数”的题目,转化为几何问题再用勾股定理来解决.(两点距离公式)例6-1-4(2012湖北十堰改编)求代数式)(4≤≤04)-4(122x x x +++的最小值.规律:先转化为直角三角形,再根据两点之间、线段最短,借助勾股定理求最小值.感悟与体验 6-1-4求函数)12≤≤0(9)-12(422x x x y +++=的最小值.二、垂线段最短 说明:“垂线段最短”用的多,但人们意识到用它的少.只要涉及点到线、线到线距离,用的都是“垂线段最短”,如高、与圆有关的位置关系等.例6-2-1 某市正在进行商业街改造,商业街起点在古民居P 的南偏西60°方向上的A 处,如图6-2-1,现已改造至古民居P 南偏西30°方向上的B 处,A 与B 相距150m ,且B 在A 的正东方向.为不破坏古民居的风貌,按照有关规定,在古民居周围100m 以内不得修建现代化商业街.若工程队继续向正东方向修建200m 商业街到C 处,则对于从B 到C 的商业街改造是否违反有关规定?图6-2-1例6-2-2 如图6-2-2,在△ABC 中,AD 是高,E 、F 分别是AC 和AB 边上不与A 、C 、B 重合的点,AG 、BH 分别垂直直线EF 与G 、H.求证:AD BH AG >+.(只考虑图示情况)图6-2-2体验与感悟 6-21、如图6-2-3①和图6-2-3②,在△ABC 中,AB=13,BC=14,135∠cos =ABC . 探究:如图6-2-3①,AH ⊥BC 于点H ,则AH= ,AC= ,△ABC 的面积=ABC S △ .拓展:如图图6-2-3②,点D 在AC 上(可与点A 、C 重合),分别过点A 、C 作直线BD 的垂线,垂足为E 、F.设BD=x ,AE=m ,CF=n ,(当点D 与A 重合时,我们认为0=ABD S △) (1)用含x ,m ,n 的代数式表示ABD S △及CBD S △;(2)求(m+n )与x 的函数关系式,并求(m+n )的最大值和最小值;(3)对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的求值范围.发现:请你确定一条直线,使得A 、B 、C 三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.三、圆中最长弦是直径说明:因四点共圆不在课标规定范围内,所以此题型不多.例6-3 如图6-3,以边长为4的正方形的中心O 为端点,引两条相互垂直的射线,分别与正方形的边交于A 、B 两点,则线段AB 的最小值是 .图6-3规律:共圆四点中,如果相对两定点是直角顶点,则两动点连线的最小值就是连接两直角顶点的线段长.四、平方和的最小值说明:“平方和最小”即:ab b a 222≥+. 它源自0≥b -a 2)(,是初中的完全平方公式与非负数的结合,中考题中常有涉及.特别地ab b a 222≥+和其变形ab b a 2≥+(),(0≥0≥b a 还是高中最重要的不等式之一.例6-4-1 阅读理解:对任意正实数b a 、,因为0≥-2)(b a ,所以0≥2-b ab a +,所以ab b a 2≥+,只有当b a =时,等号成立.根据上述内容,回答下列问题: (1)若0>m ,则m = 时,mm 1+有最小值 .(2)若0>n ,则n = 时,nn 2+有最小值 . (3)若0>x ,则x = 时,2228x x +有最小值 . 例6-4-2 如图6-4-1,AB 为半圆O 的直径,C 为半圆上与点A 、B 不重合的任意一点,过点C 作CD ⊥AB ,垂足为D ,AD=a ,DB=b.请用本题图验证:ab b a 2≥+,并指出等号成立时的条件.提示:用相似证:BD AD CD •=2;直径为最长弦. 体验与感悟 6-41、公式:对任意正数a 、b ,总有:ab b a 2≥+,并且只有当b a =时,等号成立. 直接应用与变形应用:(1)已知:)0(1>=x x y ,)0(12>=x xy ,则当=x 时,21y y +取得最小值 . (2)已知函数)0,0(>>+=x a xax y ,当=x 时,该函数有最小值 . (3)已知函数11+=x y 与函数4122++=)(x y ,当1->x 时,求21y y 的最小值,并指出相应的x 的值. 实际应用已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃油费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x 千米,求当x 为多少时,该汽车平均每千米的运输成本最低?最低是多少元?五、不等式、一次函数最优方案 见第18单元:一次函数综合应用. 六、二次函数最值说明:“二次整式c bx ax ++2最值”完全可以借助二次函数c bx ax y ++=2最值解决,解决方案有三:一用配方法,二用顶点公式,三图象法.(注:a,b,c 为常数,且0≠a ) 例6-6-1 (1)62-2+x x 的最小值是 ; (2)二次函数x x y 6-2+=的最大值是 .例6-6-2 如图6-6-1,在矩形ABCD 中,AB=2,AD=3,P 是BC 上的任意一点(P 不与B 、C 重合),过点P 作AP ⊥PE 交CD 于点E.设BP 为x ,CE 为y ,当x 取何值时,y 的值最大?最大值是多少?评述:线段最值可由相似建立二次函数模型求解.例6-6-3 如图6-6-2,已知抛物线42++=bx ax y 经过点B (1,0)、C (5,0),交y 轴于点A ,对称轴l 与x 轴相交于点M.(1)请直接写出抛物线的解析式、对称轴及点A 的坐标 ;(2)连接AC ,探索:在直线AC 下方的抛物线上是否存在一点N ,使△NAC 的面积最大?若存在,请你求出点N 的坐标;若不存在,请说明理由.图6-6-2体验与感悟 6-6问题情境:已知矩形的面积为a (a 为常数,0>a ),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型:设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为:)0)((2>+=x xa x y .探究应用:(1)我们可以借鉴以前研究函数的经验,先探索函数)0(1>+=x xx y 的图象和性质. ①在图6-6-3中填写下表,并画出函数的图象:x ...41 31 21 123 ... y......②观察图象,写出该该函数两条不同类型的性质:③在求二次函数)0(2≠++=a c bx ax y 的最值时,除了通过观察图象,还可以通过配方得到.请你用配方法求函数)0(1>+=x xx y 的最小值.解决问题:(2)用上述方法解决“问题情境”中的问题,直接写出答案.提示:对任意非负数m ,可设2t m =,其中2)(m t =. 提醒:回顾一下求二次函数最值有几种方法.七、几何探究最值类例6-7-1 请阅读下列材料:问题:如图6-7-1①,圆柱的高AB 和它的底面半径均为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到点C 的最短路程.小明设计了两条路线:路线1:走圆柱表面最短路线(即图6-7-1②侧面展开图中的线段AC ).图6-7-1① 图6-7-1② 路线2:走圆柱高线与底面直径(即6-7-1①中AB+BC 的长). 设路线1的长度为1l ,设路线2的长度为2l ,则+==2221AB AC l BDC ︵ ² 222)(BC AB l +=将AB=5,BC=10,半圆弧BDC ︵长5π代入上面的式子得(请你帮小明完成下面的计算):==221AC l ;222)(BC AB l +== ; 2221-l l = ;∴2221l l > ∴21l l > ∴选择路线2较短.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1dm ,高AB 为5dm ”继续按前面的路线进行计算(请你帮小明完成下面的计算):路线1:==221AC l ;路线2:222)(BC AB l +== ;∵21l 22l ∴1l 2l (填<>或)所以选择路线 (填1或2)较短.(2)请你帮小明继续研究:在一般情况下,当圆柱体的底面半径为r ,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短.体验与感悟 6-7-11、在一平直河岸l 同侧有A B ,两个村庄,A B ,到l 的距离分别是3km 和2km ,km AB a =(1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图6-7-2①是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图6-7-2②是方案二的示意图,设该方案中管道长度为2d ,且2(km)d PA PB =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).观察计算(1)在方案一中,1d = km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图6-7-2③所示的辅助线,请你按小宇同学的思路计算,图6-7-2① 图6-7-2②图6-7-2③2d = km (用含a 的式子表示).探索归纳(1)①当4a =时,比较大小:1d 2d (填“>”、“=”或“<”); ②当6a =时,比较大小:1d 2d (填“>”、“=”或“<”);(2)请你就a (当1>a 时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?例6-7-2 动手操作(1)如图6-7-3①把矩形B B AA ''卷成以AB 为高的圆柱形,则点A 与 重合,点B 与 重合.图6-7-3① 图6-7-3② 图6-7-3③探究与发现(2)如图6-7-3②所示,若圆柱的底面周长是30cm ,高是40cm ,从圆柱底部A 处沿侧面绕一圈丝带到顶部B 处做装饰,则这条丝带的最小长度是 cm ;(丝带的粗细忽略不计)(3)若用丝带从图6-7-3②圆柱底部A 处沿侧面缠绕4圈直到顶部B 处(如图6-7-3③所示),则至少需要多长丝带?创新与应用(4)如图6-7-3④,现有一圆柱形的玻璃杯,准备在杯子的外侧缠绕一层装饰带,为使带子全部包住杯子且不重叠,需要将带子的两端沿AE 、CF 方向进行裁剪,如图6-7-3⑤,若带子宽度为1.5厘米,杯子的半径为6厘米,裁剪角为α,则sin α= .图6-7-3④图6-7-3⑤ 提示:(1)、(2)略;(3)可看作把圆柱切成四段,求出一段的长再乘以4;(4)动手操作试试,看看AE 、BE 哪个等于底面周长.评述:本题融绕线、绕带问题于一题,是一道考察学生空间想象能力、分析能力的好题. 体验与感悟 6-7-21、如图6-7-4①是一个三棱柱包装盒,它的底面是边长为10cm 的正三角形,三个侧面都是矩形.现将宽为15cm 的彩色矩形纸带AMCN 裁剪成一个平行四边形ABCD (如图6-7-4②),然后用这条平行四边形纸带按如图6-7-4③的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.图6-7-4① 图6-7-4②(1)请在如图6-7-4②中,计算裁剪的角度∠BAD ;(2)计算按图6-7-4③方式包贴这个三棱柱包装盒所需的矩形纸带的长度.图6-7-4③2、如图6-7-5,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM . (1)求证:△AMB≌△ENB;(2)①当M 点在何处时,AM+CM 的值最小;②当M 点在何处时,AM+BM+CM 的值最小,并说明理由;(3)当AM+BM+CM 的最小值为13+时,求正方形的边长.图6-7-5CN D B例6-7-3 一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km的正方形城区示意图,供解题时选用)体验与感悟 6-7-31、三个牧童A、B、C在一块正方形的牧场上看守一群牛,为保证公平合理,他们商量将牧场划分为三块分别看守,划分的原则是:①每个人看守的牧场面积相等;②在每个区域内,各选定一个看守点,并保证在有情况时他们所需走的最大距离(看守点到本区域内最远处的距离)相等.按照这一原则,他们先设计了一种如图1的划分方案:把正方形牧场分成三块相等的矩形,大家分头守在这三个矩形的中心(对角线交点),看守自己的一块牧场.过了一段时间,牧童B和牧童C又分别提出了新的划分方案.牧童B的划分方案如图2:三块矩形的面积相等,牧童的位置在三个小矩形的中心.牧童C的划分方案如图3:把正方形的牧场分成三块矩形,牧童的位置在三个小矩形的中心,并保证在有情况时三个人所需走的最大距离相等.请回答:(1)牧童B的划分方案中,牧童(填A、B或C)在有情况时所需走的最大距离较远;(2)牧童C的划分方案是否符合他们商量的划分原则,为什么?(提示:在计算时可取正方形边长为2)。

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案一、轴对称求最小值1.如图,四边形ABCD是边长为6的正方形,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的值最小,求这个最小值.2.四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数.3.如图,∠AOB =45°,OC为∠AOB内部一条射线,点D为射线OC上一点,OD=√2,点E、F分别为射线0A、OB上的动点,求△DEF周长的最小值.二、垂线段最短求最值4.如图,矩形ABCD中,AD=3,AB=4,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,求PQ 的最小值.5.如图,边长为6的等边三角形ABC中,E是对称轴AD上一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动的过程中,求DF的最小值.6.如图所示,在RtΔABC中,∠C=90°,AC=4,BC=3,P为AB上一动点(不与A、 B重合),作PE ⊥AC于点E,PF⊥BC于点F,连接EF,求EF的最小值.7.如图,在ΔABC中,∠BAC=90,AB=6,BC=10,BD平分∠ABC,若P,Q分别是BD,AB上的动点,求PA+PQ的最小值.8.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE,P,N分别为AC,BE上的动点,连接AN, PN,若DF=5,AC=9,求AN+PN的最小值.二、两点之间,线段最短求最值9.如图,等边△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A´B´C´公关于直线l对称,D为线段BC´上一动点,求AD+CD的最小值是( )10.如图,在长方形ABCD中,AB=3,AD=4,动点P满足S△PCD=14S长方形ABCD´,求点P到A,B两点的距离之和PA+PB的最小值.三、三角形三边的关系求最值问题11.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、 C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A´,求则A´C的最小值.参考答案1.析:连接BP.因为点B 与点D 关于直线AC 对称,所以PB=PD .所以PD+PE =PB+PE≥BE,所以PD+PE 的最小值即为BE 的长.BE =AB =6,则PD+PE 的值最小为6.2.析:如图,延长AB 到A ´使得BA ´=AB,延长AD 到A ´使得DA"=AD,连接A ´A"与BC 、CD 分别交于点M 、N.∵∠ABC=∠ADC=90° ∴ A 、A ´关于BC 对称,A 、A"关于CD 对称,此时ΔAMN 的周长最小∵BA=BA ´,MB ⊥ AB ∴MA =MA ´同理:NA=NA" ∴∠A ´=∠MAB,∠A"=∠NAD∵∠AMN =∠A ´+∠MAB =2∠A ´,∠ANM =∠A"+∠NAD =2∠A"∴∠AMN +∠ANM = 2(∠A ´+∠A")∵∠BAD=122° ∴ ∠A ´+LA"=180°-∠BAD=58° ∴∠AMN +∠ANM=2x58°=116∴∠MAN =180-116°=64°3.析:作点D 作关于OA 的对称点P,点D 关于OB 的对称点Q,连接PQ,与OA 的交点为点E,与OB 的交点为点F.△DEF 的最小周长为DE +EF +QF =PE+EF+QF =PQ连接OP 、OQ,则OP=0Q=√2 ∵∠POQ =2∠AOB=90°∴ΔOPQ 是等腰直角三角形∴PQ =√2OD=2∴ΔDEF 的周长的最小值是2.4.析:如图,连接CM∵MP ⊥CD 于点P,MQ ⊥BC 于点Q ∴∠CPM =∠CQM=90°∴四边形ABCD 是矩形∴BC=AD=3,CD=AB=4,∠BCD=90°∴四边形PCQM 是矩形,PQ =CM∴BD =√32+42=5当CM ⊥BD 时,CM 最小,则PQ 最小,此时,S △BCD =1 2BD ·CM=12BC ·CD ∴PQ 的最小值为125.5.析:取线段AC 的中点G,连接EG∵ΔABC 为等边三角形,AD 为△ABC 的对称轴∴CD=CG=1 2AB=3,∠ACD =60° ∵ ∠ECF =60°∴∠FCD =∠ECG在ΔFCD 和ΔECG 中,FC =EC,∠FCD=∠ECG,DC=GC∴ΔFCD ≌AECG ∴DF =GE当EG ⊥AD 时,EG 最短,即DF 最短∵点G 为AC 的中点,EG=DF=1 2CD=32 6.析: 连接CP.∵∠C=90,AC=3,BC =4 ∴AB =√32+42=5∵PE ⊥AC,PF ⊥BC,∠C=90°∴四边形CFPE 是矩形∴EF =CP由垂线段最短可得CP ⊥AB 时,线段EF 的值最小S △ABC=1 2BC ·AC=12AB ·CP ∴1 2×4×3=12×5·CP ∴CP =2.4 7.如图,作点Q 关于直线BD 的对称点Q ´∵BD 平分∠ABC ∴点Q 在BC 上连接PQ ´,则PA+PQ 的最小值即为PA+PQ ´的最小值∴当A 、P 、Q ´三点共线且AQ ´⊥BC 时,PA+PQ 的值最小过点A 作AM ⊥BC 于点M,则PA+PQ 的最小值即为AM 的长∵AB=6,BC=10 ∴AC ²=10²-6²=64 ∴AC=8∵ S △ABC =1 2AM ·BC=1 2AB ·AC ∴AM=AB·AC BC =48 10=4.88.析:连接AD ,与BE 交于点O∵四边形ABDE 是正方形 ∴BE ⊥AD,OD =OA ,点A 与点D 关于直线BE 对称 求PN + AN 的最小值,只需D ,N ,P 在同一条直线上,由于P ,N 分别是AC 和BE 上的动点,过点D 作DP ⊥AC 于P 交BE 于点 N ,此时PN + AN =PN+ND=PD ,由△ABC ≌ △BDF 可知,BF= AC = 9,BC=DF=5,易知四边形DFCP 是矩形,CF=PD=BF+BC=9+5=149.析:如图,连接AD∵△ABC 是边长为4的等边三角形 ∴AB =BC=4,∠ABC=60° ∵△ABC 与△ A ´B ´C ´关于直线l 对称∴A ´B=BC,∠AB ´C ´=60°∴∠CBC ´=60°=∠A ´BD∴△BCD ≌△BA ´D(SAS)∴A ´D=CD ∴CD +AD =AD +A ´D当A 、D 、A ´三点共线时,AD+A ´D 最小,此时CD+AD 最小,最小为4+4=8.10.析:如图,设APC 的CD 边上的高是h.∵S △PCD =1 2S 长形ABCD ,AD=4 ∴1 2·CD ·h =1 4CD ·AD ∴h=12AD=2 ∵动点P 在与CD 平行且与CD 的距离是2的直线l 上连接AC 交直线l 于点P ´∵l//CD,AD=4,四边形ABCD 是长方形 ∴l ⊥AD,l ⊥BC∴直线l 是BC 边的垂直平分线 ∴BP ´=CP ´∴AP ´+BP ´=AP ´+CP ´ ∴ AC 的长是最短距离∴AC=√32+4=5,PA +PB 的最小值为5.11.析:连接BA ´∵AB=√5,BC =4若点A 关于BP 的对称点为A ´ ∴BA ´=BA=√5在△BA ´C 中,A ´C ≥BC-BA ´,即AC ´≥4-√5∴AC ´的最小值为4-√5。

初中数学最值问题10个经典题

初中数学最值问题10个经典题

初中数学最值问题10大经典题解决几何最值问题的通常思路:两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键。

通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段。

一、几何最值问题中的基本模型举例【分析】作P 关于OA ,OB 的对称点C,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长.根据对称的性质可以证得:△COD 是等腰直角三角形,据此即可求解.【解答】解:作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长. ∵PC 关于OA 对称, ∴∠COP =2∠AOP ,OC =OP 同理,∠DOP =2∠BOP ,OP =OD∴∠COD =∠COP +∠DOP =2(∠AOP +∠BOP )=2∠AOB =90°,OC =OD . ∴△COD 是等腰直角三角形. 则CD OC =6.则△PMN 的周长的最小值为.1.如图:点P 是∠AOB 内一定点,点M、N 分别在边OA、OB 上运动,若∠AOB=45°,OP=二、典型题型【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键.2.如图,当四边形PABN的周长最小时,a= .@初中生家长【分析】因为AB,PN的长度都是固定的,所以求出PA+NB的长度就行了.问题就是PA+NB什么时候最短.把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确定N点位置,此时PA+NB最短.设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值.【解答】解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1),作B′关于x轴的对称点B″,根据作法知点B″(2,1),设直线AB″的解析式为y=kx+b,则123k bk b=+⎧⎨-=+⎩,解得k=4,b=﹣7.∴y=4x﹣7.当y=0时,x=74,即P(74,0),a=74.故答案填:7 4.【题后思考】考查关于X轴的对称点,两点之间线段最短等知识.3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P为直线上的动点,|PA﹣PB|的最大值为 .【分析】作点B于直线l的对称点B′,则PB=PB′因而|PA﹣PB|=|PA﹣PB′|,则当A,B′、P在一条直线上时,|PA﹣PB|的值最大.根据平行线分线段定理即可求得PN和PM的值然后根据勾股定理求得PA、PB′的值,进而求得|PA﹣PB|的最大值.@初中生家长【解答】解:作点B于直线l的对称点B′,连AB′并延长交直线l于P.∴B′N=BN=1,过D点作B′D⊥AM,利用勾股定理求出AB′=5∴|PA﹣PB|的最大值=5.【题后思考】本题考查了作图﹣轴对称变换,勾股定理等,熟知“两点之间线段最短”是解答此题的关键.4.动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为.【分析】本题关键在于找到两个极端,即BA′取最大或最小值时,点P 或Q 的位置.经实验不难发现,分别求出点P 与B 重合时,BA′取最大值3和当点Q 与D 重合时,BA′的最小值1.所以可求点A′在BC 边上移动的最大距离为2. @初中生家长【解答】解:当点P 与B 重合时,BA′取最大值是3,当点Q 与D 重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC 边上移动的最大距离为3﹣1=2.故答案为:2【题后思考】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.于.△AEF 沿EF 翻折,点A 的落点记为P.当P 落在直角梯形ABCD 内部时,PD 的最小值等5.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F 分别在线段AB、AD 上,将【分析】如图,经分析、探究,只有当直径EF最大,且点A落在BD上时,PD最小;根据勾股定理求出BD的长度,问题即可解决.【解答】解:如图,∵当点P落在梯形的内部时,∠P=∠A=90°,∴四边形PFAE是以EF为直径的圆内接四边形,∴只有当直径EF最大,且点A落在BD上时,PD最小,此时E与点B重合;由题意得:PE=AB=8,由勾股定理得:BD2=82+62=80,∴BD=.∴PD=8【题后思考】该命题以直角梯形为载体,以翻折变换为方法,以考查全等三角形的判定及其性质的应用为核心构造而成;解题的关键是抓住图形在运动过程中的某一瞬间,动中求静,以静制动.6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为 .【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD过点E时最大.@初中生家长【解答】解:如图,取AB的中点E,连接OD、OE、DE,∵∠MON=90°,AB=2∴OE=AE=12AB=1,∵BC=1,四边形ABCD是矩形,∴AD=BC=1,∴DE,根据三角形的三边关系,OD<OE+DE,∴当OD过点E+1.+1.【题后思考】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,勾股定理,确定出OD过AB的中点时值最大是解题的关键.7.如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD和等腰直角△BCE,那么DE长的最小值是 .@初中生家长【分析】设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD x,CD(4﹣x),根据勾股定理然后用配方法即可求解.【解答】解:设AC=x,BC=4﹣x,∵△ABC,△BCD′均为等腰直角三角形,∴CD x,CD(4﹣x),∵∠ACD=45°,∠BCD′=45°,∴∠DCE=90°,∴DE2=CD2+CE2=12x2+12(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:4.故答案为:2.【题后思考】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.8.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为 .【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.@初中生家长【解答】解:如图,∵AB=2,∠A=120°,∴点P ′到CD 的距离为, ∴PK +QK.【题后思考】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.【分析】首先连接AC ,DP .由正方形ABCD 的边长为1,即可得:S △ADP =12S 正方形ABCD =12,S △ABP +S △ACP =S △ABC =12S 正方形ABCD =12,继而可得12AP •(BB ′+CC ′+DD ′)=1,又由1≤AP,即可求得答案.【解答】解:连接AC ,DP .∵四边形ABCD 是正方形,正方形ABCD 的边长为1, ∴AB =CD ,S 正方形ABCD =1, ∵S △ADP =12S 正方形ABCD =12,S △ABP +S △ACP =S △ABC =12S 正方形ABCD =12, ∴S △ADP +S △ABP +S △ACP =1,是.过B、C、D 作射线AP 的垂线,垂足分别为B′、C′、D′,则BB′+CC′+DD′的取值范围9.如图所示,正方形ABCD 的边长为1,点P 为边BC 上的任意一点(可与B、C 重合),分别∴12AP•BB′+12AP•CC′+12AP•DD′=12AP•(BB′+CC′+DD′)=1,则BB′+CC′+DD′=2AP,∵1≤AP,∴当P与B重合时,有最大值2;当P与C.≤BB′+CC′+DD′≤2.≤BB′+CC′+DD′≤2.【题后思考】此题考查了正方形的性质、面积及等积变换问题.此题难度较大,解题的关键是连接AC,DP,根据题意得到S△ADP+S△ABP+S△ACP=1,继而得到BB′+CC′+DD′=2AP.10.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是 .@初中生家长【分析】利用菱形的性质以及相切两圆的性质得出P与D重合时PE+PF的最小值,进而求出即可.【解答】解:由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PE+PF最小,连接BD,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2和1,∴PE=1,DF=2,∴PE+PF的最小值是3.故答案为:3.【题后思考】此题主要考查了菱形的性质以及相切两圆的性质等知识,根据题意得出P点位置是解题关键。

初中几何最值问题归纳

初中几何最值问题归纳

初中几何中的最值问题主要涉及到求解图形的最大值或最小值,以下是一些常见的几何最值问题的归纳:
1.矩形最大面积:给定一定的周长,求解能够构成的矩形中面积最大的情况。

这个
问题可以通过对矩形的边长关系进行分析和求导来解决。

2.三角形最大面积:给定一条固定的边长和该边对应的高,求解能够构成的三角形
中面积最大的情况。

通常使用面积公式和高度相关的关系进行求解。

3.圆内接多边形最大面积:给定一个圆,求解能够内接于该圆的正多边形中面积最
大的情况。

通过分析正多边形的边长和面积的关系,可以求解最值。

4.直线与曲线的最短距离:给定一条直线和一条曲线,求解离直线最近的曲线上的
点。

这个问题可以通过计算点到直线的距离并求最小值来解决。

5.圆与线段的最大面积:给定一条线段,求解能够与该线段构成的圆中面积最大的
情况。

这个问题可以通过计算圆的面积与半径的关系进行求解。

这些是初中几何中常见的最值问题的归纳,每个问题都有不同的解题方法和技巧。

在解决这些问题时,需要灵活运用几何知识和数学推理,结合具体的题目条件进行分析和求解。

初中数学最值问题典型例题(含答案分析)

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

(2、代数计算最值问题 3、二次函数中最值问题) 问题原型:饮马问题 造桥选址问题 (完全平方公式 配方求多项式取值 二次函数顶点) 出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A 、B 是直线l 同旁的两个定点. 问题:在直线l 上确定一点P ,使PA PB +的值最小. 方法:作点A 关于直线l 的对称点A ',连结A B '交l 于 点P ,则PA PB A B '+=的值最小例1、如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .(1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM+CM 的值最小;②当M 点在何处时,AM+BM+CM 的值最小,并说明理由;(3)当AM+BM+CM 的最小值为 时,求正方形的边长。

AB A '′Pl例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.例3、如图1,四边形AEFG与ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果可用a,b表示)(1)求S△DBF;(2) 把正方形AEFG绕点A逆时针方向旋转450得图2,求图2中的S△DBF;(3) 把正方形AEFG绕点A旋转任意角度,在旋转过程中,S△DBF是否存在最大值,最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由。

归纳初中数学所有的最值问题

归纳初中数学所有的最值问题

归纳初中数学所有的最值问题初中数学中的最值问题是指在给定条件下确定一个函数的最大值或最小值的数学问题。

这类问题常出现在代数、几何和概率统计等各个领域中。

最值问题涉及的知识点包括函数的最值、二次函数、三角函数、不等式、平方根函数、图像和方程,是数学学习中的重要内容之一。

在初中数学中,最值问题通常涉及以下几个方面:1.函数的最值在求一个函数的最大值或最小值时,需要先求出函数的导数,然后将导数等于零解方程,再将解代入原函数,找出极值点,最后用极值点和边界点比较确定最值。

这是求一元函数最值的一般方法。

2.二次函数的最值对于二次函数,其最值很容易通过求顶点来确定。

若二次函数是抛物线开口朝上的,则顶点为最小值点;若二次函数是抛物线开口朝下的,则顶点为最大值点。

3.三角函数的最值常见的三角函数包括正弦函数、余弦函数、正切函数等,它们在特定区间内有最大值和最小值。

通过观察周期性和对称性,结合函数图像,可以很容易确定三角函数的最值点。

4.不等式求最值在不等式中,也经常需要求出不等式的最大值或最小值。

这种情况下,可以通过化简不等式、取对数、使用平方差公式等方法来求解。

同时,在不等式的求解方法中,对绝对值不等式的处理也是不可或缺的内容。

5.平方根函数的最值平方根函数是一个中心在(0,0)的奇函数,其图像是以原点对称的。

通过观察平方根函数的图像和性质,可以确定其最值点。

6.图像和方程利用图像和方程求解最值问题,通常是在几何解题和函数求值中应用频繁的方法。

通过观察函数的图像和方程的关系,可以找出函数在给定区间内的最大值和最小值。

最值问题在初中数学中占有重要的地位。

它不仅涉及到数学知识的运用,还有助于培养学生的逻辑思维、分析问题和解决问题的能力。

而且最值问题也为中学数学学习打下了坚实的基础,为学生将来更深入的数学学习奠定了稳固的基础。

在教学中,师生可以通过具体的案例和实际生活中的问题来讲解最值问题,使学生能够更好地理解和掌握这一知识点。

初二数学:最值问题汇总

初二数学:最值问题汇总

最值问题之将军饮马课前热身1、如图所示,四边形OABC 为正方形,边长为6,点A ,C 分别在x 轴,y 轴的正半轴上,点D 在OA 上,且D 的坐标为(2,0),P 是OB 上的一动点,试求PD +PA 和的最小值是( )2、如图:在ABC ∆中,2==BC AC ,︒=∠90ACB ,D 是BC 边的中点,E 是AB 边上一个动点,则ED EC +的最小值是3、在锐角三角形ABC 中,BC =5√2,∠ABC =45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM +MN 的最小值是_____________.将军饮马模型总结1、如图,直线l 和l 的同侧两点A、B,在直线l 上求作一点P,使PA+PB 最小。

2、如图,点P 是∠MON 内的一点,分别在OM,ON 上作点A,B。

使△PAB 的周长最小.3、如图,点P,Q 为∠MON 内的两点,分别在OM,ON 上作点A,B。

使四边形PAQB 的周长最小。

4、如图,点 A 是∠MON 内的一点,在射线 OM 上作点 P ,使 PA 与点 P 到射线 ON 的距离之和最小5、如图,在l 上找一点P ,使PA PB -最大。

6、如图,在l 上找一点P ,使PA PB -最大。

lA BlAB7、如图,在l上找一点P,使PA PB最小。

若A(x1,y1),B(x2,y2)①AB中点坐标为(x1+x22,y1+y22); ②AB=√(x1−x2)2+(y1−y2)2lAB8、坐标计算问题(1)和最短。

已知点A(2,3),B(3,1),在x轴上找一点P使得△APB周长最短。

则点P坐标为______________,最短周长为_______________.(2)差最大。

已知点A(2,3),B(3,1),在x轴上找一点P使得|AP−BP|最大。

则点P坐标为______________,最大值为_______________.例题例1、如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.例2、如图,在直角坐标系中,点A. B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A. B. C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是__________.例3、如图,在五边形ABCDE中,已知∠BAE=120°,∠B=∠E=90°,AB=BC=2,AE=DE=4,在BC、DE上分别找一点M、N,若要使△AMN的周长最小时,则△AMN的最小周长为,此时∠AMN+∠ANM= 。

初中数学最值问题汇总

初中数学最值问题汇总

初中数学最值问题汇总
初中数学中的最值问题主要涉及以下几种类型:
1、最大值和最小值:在给定条件下,求某个变量的最大值或最小值。

2、最佳选择问题:在多种选择中,通过比较各种情况的成本或收益,选择最优的方案。

3、图形中的最值问题:在图形中求某一点或某一段的最值,如圆、抛物线、三角形等。

以下是一些常见的最值问题及解决方法:
1、配方法:对于二次函数,通过配方将函数转化为顶点式,从而容易求出最大值或最小值。

2、轴对称:对于线段和直线的问题,常常通过轴对称找到最短路径或最小值。

3、均值不等式:在求几个数的和的最小值时,常常使用均值不等式。

4、函数的单调性:利用函数的单调性来求解最值问题。

此外,还有如利用导数求解最值、概率统计中的最值问题等。

在解决最值问题时,需要灵活运用各种数学知识和方法。

中考考点突破—求几何最值问题的八类题型解析

中考考点突破—求几何最值问题的八类题型解析

中考考点突破—求几何最值问题的八类题型解析一. 考点回顾最值连续多年广泛出现于中考试题中,由冷点变为热点,求相关线段、线段之和差、面积等最大与最小值。

此类问题涉及的知识要点有以下方面:1.两点之间间线段最短;2.垂线段最短;3.三角形的三边关系;4. 定圆中的所有弦中,直径最长;5.圆外一点与圆的最近点、最远点;6.借助转化为代数思想:一次函数反比例函数增减性、二次函数的最值问题。

命题特点侧重于在动态环境下对多个知识点的综合考查。

二.例题分析由于这类问题目标不明确,具有很强的探索性,解题时需要运用动态思维、数形结合、模型思想、特殊与一般相结合、转化思想和化归思想、分类讨论思想、函数和方程思想、从变化中寻找不变性的数学思想方法、逻辑推理与合情猜想相结合等思想方法。

解这类试题关键是要结合题意,借助相关的概念、图形的性质,将最值问题化归与转化为相应的数学模型进行分析与突破。

题型一:添加常用辅助线,把问题转化为两点之间线段最短解决1.(2019春•仪征市期中)如图,正方形ABCD边长为3,点E、F是对角线AC上的两个动点(点E在点F的左侧),且EF=1,则DE+BF的最小值是_____ .题型二:利用轴对称求最短路线问题此类利用轴对称求最短路线问题一般都以轴对称图形为题设背景,如圆、正方形、菱形、等腰梯形、平面直角坐标系等.首先根据题意画出草图,利用轴对称性找出对应线段之间的相等关系,从而把所求线段进行转化,画出取最小值时特殊位置,两条动线段的和的最小值问题,常见的是典型的是将军饮马模型问题。

2.(2019春•温州期中)如图,在▱ABCD中,∠DAB=45°,AB=17,BC=7,对角线AC、BD相交于点O,点E、F分别是边BC、DC上的点,连结OE、OF、EF.则△OEF周长的最小值是 ______.解题策略:1.画图建模,画出取最小值时动点的位置,建立相关模型;2.学会转化,利用轴对称把线段之和转化在同一条直线上.题型三:利用垂线段最短求线段最小值问题3-1.(2019春•陆川县期中)如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.2.4 B.3.6 C.4.8 D.5【解答】连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=8,BC=6,∴AB=10,∴PC的最小值为:AC·BC/AB=4.8.∴线段EF长的最小值为4.8.故选:C.3-2. (2019•临颍县一模)如图,菱形ABCD中,对角线AC、BD交于点O,E为AD边上的一个动点,∠BAD=120°,菱形ABCD的周长为24,则OE的最小值等于()【解题策略】1.观察发现,分析总结运动变化过程中的不变元素及内在联系,2.画图转化,根据内在联系转化相关线段,应用"垂线段最短" 求出相关线段的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最值问题,也就是最大值和最小值问题。

它是初中数学竞赛中的常见问题。

这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度。

本文以例介绍一些常见的求解方法,供读者参考。

一. 配方法
例1. (2005年全国初中数学联赛武汉CASIO杯选拔赛)
可取得的最小值为_________。

解:原式
由此可知,当时,有最小值。

二. 设参数法
例2. (《中等数学》奥林匹克训练题)已知实数满足。


的最大值为________。

解:设,易知
由,得
从而,
由此可知,是关于t的方程的两个实根。

于是,有
解得。

故的最大值为2。

例3. (2004年全国初中联赛武汉选拔赛)若,则
可取得的最小值为()
A. 3
B.
C.
D. 6
解:设,则
从而可知,当时,取得最小值。

故选(B)。

三. 选主元法
例4. (2004年全国初中数学竞赛)实数满足。

则z的最大值是________。

解:由得。

代入消去y并整理成以为主元的二次方程
,由x为实数,则判别式。

即,
整理得
解得。

所以,z的最大值是。

四. 夹逼法
例5. (2003年北京市初二数学竞赛复赛)是非负实数,并且满足。

设,记为m的最小值,y为m的最大值。

则__________。

解:由得
解得
由是非负实数,得
从而,解得。

又,

于是,
因此,
五. 构造方程法
例6. (2000年山东省初中数学竞赛)已知矩形A的边长为a和b,如果总有另一矩形B使得矩形B与矩形A的周长之比与面积之比都等于k,试求k的最小值。

解:设矩形B的边长为x和y,由题设可得。

从而x和y可以看作是关于t的一元二次方程的两个实数根,则
因为,
所以,
解得
所以k的最小值是
四. 由某字母所取的最值确定代数式的最值
例7. (2006年全国初中数学竞赛)已知为整数,且。

若,则的最大值为_________。

解:由得,代入得。

而由和可知的整数。

所以,当时,取得最大值,为。

七. 借助几何图形法
例8. (2004年四川省初中数学联赛)函数的最小值是________。

解:显然,若,则。

因而,当取最小值时,必然有。

如图1,作线段AB=4,,且AC=1,BD=2。

对于AB上的任一点O,令OA=x,则。

那么,问题转化为在AB上求一点O,使OC+OD最小。

图1
设点C关于AB的对称点为E,则DE与AB的交点即为点O,此时,。

作EF//AB与DB的延长线交于F。

在中,
易知,
所以,。

因此,函数的最小值为5。

八. 比较法
例9. (2002年全国初中数学竞赛)某项工程,如果有甲、乙两队承包天完成,需付180000元;由乙、丙两队承包天完成,需付150000元;由甲、丙两队承包天完成,需付160000元。

现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?
解:设甲、乙、丙单独承包各需天完成,则
解得
又设甲、乙、丙单独工作一天,各需付元,则
解得
于是,由甲队单独承包,费用是(元);由乙队单独承包,费用是(元);而丙队不能在一周内完成,经过比较得知,乙队承包费用最少。

相关文档
最新文档