中考数学中的最值问题解法

合集下载

2020年中考数学(线段路径)最值问题解法分类(10种)及试题精练(PDF版带答案)

2020年中考数学(线段路径)最值问题解法分类(10种)及试题精练(PDF版带答案)

中考数学专题:线段/路径最值问题线段最值问题解法分类一、定点到定点⇒连线段点P在直线l上,AP+BP何时最小?二、定点到定线⇒作垂线点P在直线l上,AP何时最小?三、定点到定圆⇒连心线点P在圆O上,AP何时最小?线段最值问题一般转化为上述三个问题.例题赏析:1.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN 的周长最小值为.思路:把点P分别沿OA、OB翻折得P1、P2,周长即为P1M+MN+P2N,转化为求P1、P2两点之间最小值,得△PMN最小值为P1P2=OP=6.2.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.思路:点N沿AD翻折至AC上,BM+MN=BM+MN',转化为求点B到直线AC的连线最小值,即BN'⊥AC时,最小值为2√2.3.如图,矩形ABCD中,AB=2,BC=3,以A为圆心、1为半径画圆,E是⊙A上一动点,F是BC 上的一动点,则FE+FD的最小值是.思路:点D沿BC翻折至D',DF+EF=D'F+EF,转化为求点D'到圆A上各点的最小距离,易求D'E=4.4.抛物线y=3/5x2-18/5x+3与直线y=3/5x+3相交于A、B两点,点M是线段AB上的动点,直线PM∥y轴,交抛物线于点N.在点M运动过程中,求出MN的最大值.思路:设M(m,3/5m2-18/5m+3),N(m,3/5m+3),用函数关系式表示MN=(3/5m+3)-(3/5m2-18/5m+3)=21/5m-3/5m2,求得最大值即可.5.在菱形ABCD中,对角线AC=8,BD=6,点E、F分别是边 AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是思路:点E沿AC翻折,转化为点到点的距离.(将军饮马问题实质就是通过翻折转化为定点到定点的问题)6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为 .思路:取AB中点E,连接DE、OE,由两点间线段最短,得OD≤OE+DE,最大为1+√2.7.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP 沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是简解:B'点运动路径为以C为圆心,BC为半径的圆弧,转化为点到圆的最短距离AC-B'C=1.8.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个六边形的边长最大时,AE的最小值为 .思路:正六边形最大半径为1/2,与正方形中心重合,E点运动路径为圆,转化为求点到圆的最短距离,如下图.9.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是 .思路:D是定点,C是直线AC上的动点,转化为求点到线的最短距离.10.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上的动点,在△A'B'C绕点C顺时针旋转过程中,点F的对应点是F',求线段EF'长度的最大值与最小值的差.思路:先确定线段A'B'的运动轨迹是圆环,外圆半径为BC,内圆半径为AB边上的高,F'是A'B'上任意一点,因此F'的运动轨迹是圆环内的任意一点,由此转化为点E到圆环的最短和最长距离.E到圆环的最短距离为EF2=CF2-CE=4.8-3=1.8,E到圆环的最长距离为EF1=EC+CF1=3+6=9,其差为7.2.问:何时需要作辅助线翻折其中的定点(定线或定圆)?答:当动点所在直线不在定点(定线或定圆)之间时,需把定点(定线或定圆)沿动点所在直线翻折以使定点(定线或定圆)处于动点所在直线的两侧,从而便于连接相关线段或作垂线与动点所在直线找到交点.如上述例3,动点F所在直线不在定圆A和定点D之间,因而需把D点沿BC翻折至D',即可转化为定点D'到定圆A的最短距离,另外亦可把圆A沿BC翻折至另一侧,同样可以转化为定点D到定圆A'的最短距离,如下图.关键方法:动中求定,动点化定线;以定制动,定点翻两边.(1)动中求定,动点化定线:如例7、例8、例10,动点所在路径未画出时需先画出动点所在轨迹,一般动点所在轨迹为线或圆.(2)以定制动,定点翻两边:如例1、例2、例3、例5,定点(线或圆)在动点所在直线同侧时需翻折至两侧,转化为上述三种关系.练1、如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

中考数学最值问题总结(含强化训练)

中考数学最值问题总结(含强化训练)

中考数学最值问题总结(含强化训练)在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。

一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。

二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。

y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。

y ac b a max =-442。

2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。

3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。

4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。

5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。

6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。

7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。

中考数学最值问题解题技巧

中考数学最值问题解题技巧

中考数学最值问题解题技巧
在中考数学中,最值问题是一个常见的难点,通常涉及到几何、代数等多个知识点。

以下是一些常见的解题技巧:
1.特殊位置与极端位置法:考虑特殊位置或极端位置,确定相应
位置时的数值,再进行一般情形下的推证。

2.几何定理法:应用几何中的不等量性质、定理,比如“三边关
系”或“将军饮马”问题。

3.数形结合法:揭示问题中变动元素的代数关系,建立方程或函
数来进行处理。

4.轨迹法:探寻动点轨迹而求最值,往往又会涉及到几何定理法
和数形结合法的运用。

5.找临界的特殊情况:确定最大值和最小值。

6.利用轴对称转化为两点之间的直线段。

7.利用三角形两边之和大于第三边,两边之差小于第三边。

8.利用一点到直线的距离:垂线段最短——将点到直线的折线段
转化为点到直线的垂线段。

9.利用特殊角度(30°,45°,60°)将成倍数的线段转化为首
尾相连的折线段,在转化为两点之间的直线段最短。

初中数学中求极值的几种常见的方法

初中数学中求极值的几种常见的方法

初中数学中求最值的几种常见方法仪陇县实验学校 李洪泉在生活实践中,人们经常面对求最值的问题:如在一定方案中,往往会讨论什么情况下花费最低、消耗最少、产值最高、获利最大等;在解数学题时也常常求某个变量的最大值或最小值。

同时,探求最值也是中考或一些高中学校自主招生考试中的一个热点内容,是初高中知识衔接的重要内容。

这类问题涉及变量多,综合性强,技巧性强,要求学生要有较强的数学转化思想和创新意识。

下面从不同的角度讨论如何求一些问题的最值。

一 、根据绝对值的几何意义求最值 实数的绝对值具有非负性,0a ≥,即a 的最小值为0,但根据绝对值的代数意义求一些复杂问题的最值就要采用分类讨论法,比较麻烦。

若根据绝对值的几何意义求最值就能够把一些复杂的问题简单化。

例1:已知13M x x =-++,则M 的最小值是 。

【思路点拨】用分类讨论法求出13x x -++的最小值是4,此时31x -≤≤。

如果我们从绝对值的几何意义来看此题,就是在数轴上求一点,使它到点1和点3-的距离之和为最短。

显然,若3x <-,距离之和为[1(3)]2(3)4x --+-->;若31x -≤≤,距离之和为1(3)4--=;若1x >,距离之和为[1(3)]2(1)4x --+->。

所以, 当31x -≤≤时,距离之和最短,最小值为4。

故M 的最小值为4。

二、利用配方法求最值完全平方式具有非负性,即2()0a b +≥。

一个代数式若能配方成2()m a b k ++的形式,则这个代数式的最小值就为k 。

例2:设,a b 为实数,求222a ab b a b ++--的最小值。

【思路点拨】一是将原式直接配方成与,a b 的完全平方式有关的式子可以求出最小值。

二是引入参数设222a ab b a b t ++--=,将等式整理成关于a 的二次方程,运用配方法利用判别式求最值。

解:(方法一) 配方得:当10,10,2b a b -+=-=即0,1a b ==时,上式中不等号的等式成立,故所求的最小值222222222(1)21331()242413()(1)1124a ab b a b a b a b b b a b b b a b ++--=+-+--=++---=++--≥-为1-。

中考数学复习 探求最大值的七种方法

中考数学复习  探求最大值的七种方法

探求最大值的七种方法求最值是近年中考的热点考题之一,有的是几何图形面积的最值,有的是线段长度的最值,有的是函数的最值,下面就结合考题介绍求解这些问题最大值的求解方法,供学习时借鉴. 方法1:定圆中,利用直径是最大的弦,确定三角形面积的最大值例1)如图 1,已知直线334y x=-与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA,PB.则△PAB面积的最大值是()A. 8B. 12 C . 212D.172分析:要想使得三角形的面积最大,在底边不变的前提下,确保底上的高最大,根据圆中最大的弦是直径,只要确保高是经过圆心的一条直径,问题就得解.解:如图1,要使得三角形PAB的面积最大,需要三角形的高最大,根据圆的性质,直径最大,所以三角形的高一定要经过定圆的圆心,所以过点C作CD⊥AB,垂足为D,因为已知直线y=34x-3与x轴、y轴分别交于A、B两点,所以点A的坐标为(4,0),点B的坐标为(0,-3),所以OA=4,OB=3,因为点C(0,1),所以BC=4.在直角三角形AOB中,根据勾股定理,得AB=5.因为∠CBD=∠ABO,∠CDB=∠AOB=90°,所以△CBD∽△ABO,所以BC CD AB AO ,所以454CD,所以CD=165,所以PD=PC+CD=1+165=215,所以三角形PAB的面积为:12×5×215=212.所以选C.方法2:直角三角形中,利用斜边最长,确定线段长度的最大值例2如图2,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.分析:连接AN就构造出三角形中位线定理的使用条件,由于点D是个定点,所以点N运动到点B位置时,DN达到最大长度,因为直角三角形中斜边最长,只要利用条件求出DB的长度,就可以求得EF的最大长度了.解:如图2,连接DN,DB,因为∠A=90°,AB=3,AD=3,所以DB=6,因为点E,F分别为DM,MN的中点,所以EF=12DN,且DN≤DB,所以当DN=DB时,EF取的最大值,此时EF=3.方法3:一次函数中,利用函数的增减性,确定利润最大的方案例3 我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A、B、C三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的重量不超过装运的A、C两种水果重量之和.(1)设用x辆汽车装运A种水果,用y辆汽车装运B种水果,根据下表提供的信息,求y与x之间的函数关系式并写出自变量的取值范围.水果品种 A B C每辆汽车运装量(吨) 2.2 2.1 2每吨水果获利(百元) 6 8 5(2)设此次外销活动的利润为Q(万元),求Q与x之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.分析:装运C种水果的汽车辆数为:30-x-y,这是解决第一问的关键要素,其次,要明确总利润=A种水果吨获利×A种水果吨数+B种水果吨获利×B种水果吨数+C种水果吨获利×C种水果吨数.要注意单位的换算,这个细节,不要在这个环节上失分.解:(1)因为用x辆汽车装运A种水果,用y辆汽车装运B种水果,所以装运C种水果的汽车辆数为:30-x-y,由题得到:2.2×x+2.1×y+2×(30-x-y)=64 ,整理得: y = -2x+40,因为装运每种水果的汽车不少于4辆;所以x≥4,y≥4,30-x-y≥4,整理,得到:14≤x≤18;(2)因为A 种水果每吨获利6百元, B 种水果每吨获利8百元,C 种水果每吨获利5百元, 所以共获利为:Q=6x+8y+5(30-x -y )=-5x+170,因为k=-50,所以Q 随着x 的增大而减小,又因为14≤x ≤18,所以当x=14时,Q 取得最大值,即Q= -5x+170=100(百元)=1万元. 因此当x=14时,y = -2x+40=12, 30-x -y=4,所以应这样安排:A 种水果用14辆车,B 种水果用12辆车,C 种水果用4辆车利润最大.方法4:坐标系中,利用三角形三边关系定理,确定三点共线时线段的最大值例4 如图3,A,B 分别在y 轴和x 轴上,AB=4,AC=2,∠BAC=90°,点B 动,点A 就随着动,求线段OC 最大值.分析:由于AB 是定长,取斜边AB 的中点D ,所以不论如何运动,斜边上的中线OD 是定长,这样点O,C,D 构成一个三角形,根据三角形的三边关系定理,知道OC <OD+DC ,只有点O,D,C 三点共线时OC 最长,这样问题就获得求解.解:取AB 中点D,连接OD,CD ,在三角形OAB 中,∠AOB=90°,AD=DB,有OD=12AB=2. 在三角形ACD 中, ∠BAC=90°,AC=2,AD=12AB=2,所以2在三角形CDO 中, 根据三角形的三边关系定理可知,OD+CD >OC(当O 、C 、D 在一条直线上时等号成立) 所以,OC ≤2即OC 的最大值是2方法5:几何图形中,构造二次函数法,确定图形侧面积的最大值例5如图4,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )32cm 3322cm 9322cm 27322cm 分析:如图4,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK ,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK ,四边形ODEP 、四边形PFGQ 、四边形QHKO 为矩形,且全等.连结AO 证明△AOD ≌△AOK 就可以得出∠OAD=∠OAK=30°,设OD=x ,则AO=2x ,由勾股定理就可以求出AD=3x ,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解:因为△ABC 为等边三角形,所以∠A=∠B=∠C=60°,AB=BC=AC .因为筝形ADOK ≌筝形BEPF ≌筝形AGQH ,所以AD=BE=BF=CG=CH=AK .因为折叠后是一个三棱柱,所以DO=PE=PF=QG=QH=OK ,四边形ODEP 、四边形PFGQ 、四边形QHKO 都为矩形.所以∠ADO=∠AKO=90°.连结AO ,在Rt △AOD 和Rt △AOK 中,AO AO DO KO ,所以Rt △AOD ≌Rt △AOK (HL ).所以∠OAD=∠OAK=30°.设OD=x ,则AO=2x ,由勾股定理就可以求出3x ,所以DE=6﹣23x ,所以纸盒侧面积=3x (6﹣23x )=﹣632x +18x=﹣63232()x +932,所以当x=32时,纸盒侧面积最大为. 所以选C .方法6:抛物线上根据直线与定直线平行,且与抛物线只有1交点时距离最大,求三角形最大面积时点的坐标例6 如图5, 在平面直角坐标系中,二次函数y=a 2x +bx+2的图象与x 轴交于A (-3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的解析式; (2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由.。

中考数学最值—胡不归问题(解析+例题)

中考数学最值—胡不归问题(解析+例题)

中考数学最值——胡不归问题(点在直线上运动)(PA+k·PB型最值)【历史典故】从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。

由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A→B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。

邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?…”。

这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”。

【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。

②两点之间线段最短。

③连接直线外一点和直线上各点的所有线段中,垂线段最短。

【模型分析】①条件:已知A、B为定点,P为射线AC上一动点。

②问题:P在何处时,BP+nm AP最短(nm<1)。

③方法:第一步在AC的一侧,PB的异侧构造∠CAE=α,使得sinα=nm 第二步做BH⊥AE,交AC于P,点P就是所求位置,BH就是其最小值。

【模型分析】【问题提出】如图①,已知海岛A到海岸公路BD的距离为AB的长度,C为公路BD上的酒店,从海岛A到酒店C,先乘船到登陆点D,船速为a,再乘汽车,车速为船速的n倍,点D 选在何处时,所用时间最短?个运动过程中用时最少,请求出最少时间和此时点F的坐标。

【巩固训练】练习1:如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,M为对角线BD(不含B点)上BM的最小值为_____。

任意一点,则AM+12练习2:如图,等腰ΔABC中,AB=AC=3,BC=2,BC边上的高为A0,点D为射线A0上一点,一动点P从点A出发,沿AD-DC运动,动点P在AD上运动速度3个单位每秒,动点P在CD上运动的速度为1个单位每秒,则当 AD= 时,运动时间最短为秒。

中考数学动点最值问题归纳及解法

中考数学动点最值问题归纳及解法

中考数学动点最值问题归纳及解法最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。

利用一次函数和二次函数的性质求最值。

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

“坐标几何题”(动点问题)分析动点个数两个一个两个问题背景特殊菱形两边上移动特殊直角梯形三边上移动抛物线中特殊直角梯形底边上移动考查难点探究相似三角形探究三角形面积函数关系式探究等腰三角形考点①菱形性质②特殊角三角函数③求直线、抛物线解析式④相似三角形⑤不等式①求直线解析式②四边形面积的表示③动三角形面积函数④矩形性质①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性特点①菱形是含60°的特殊菱形;△AOB是底角为30°的等腰三角形。

②一个动点速度是参数字母。

③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。

④通过相似三角形过度,转化相似比得出方程。

⑤利用a、t范围,运用不等式求出a、t的值。

①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性①直角梯形是特殊的(一底角是45°)②点动带动线动③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)④通过相似三角形过度,转化相似比得出方程。

⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)近几年共同点:①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。

中考数学中的最值问题解法

中考数学中的最值问题解法

中考数学几何最值问题解法在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

下面通过近年全国各地中考的实例探讨其解法。

应用两点间线段最短的公理(含应用三角形的三边关系)求最值典型例题:例1. 如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【】A.21+B.5C.14555 D.52例2.在锐角三角形ABC中,BC=24,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是▲。

例3.如图,圆柱底面半径为2cm,高为9cmπ,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为▲cm。

练习题:1. 如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为【】A.13cmB.12cmC.10cmD.8cm2.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=23 BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是【】A、6(4)π+㎝B、5cm C、35㎝D、7cm3.如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是_ ▲.二、应用垂线段最短的性质求最值:典型例题:例1. (2012XX莱芜4分)在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是▲.例2.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK 的最小值为【】A.1 B.3C.2 D.3+1例3.已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ,DC的长能否相等,为什么?问题2:如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题3:若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题4:如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作平行四边形PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.上运动,当线段AB最短例4.如图,点A的坐标为(-1,0),点B在直线y x时,点B的坐标为【】A.(0,0)B.(21-,21-)C.(22,22-)D.(22-,22-) 例5.如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①△DFE 是等腰直角三角形;②四边形CEDF 不可能为正方形;③四边形CEDF 的面积随点E 位置的改变而发生变化;④点C 到线段EF 的最大距离为.其中正确结论的个数是【 】A .1个B .2个C .3个D .4个例6.如图,长方形纸片ABCD 中,AB=8cm ,AD=6cm ,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC(余下部分不再使用); 第二步:如图②,沿三角形EBC 的中位线GH 将纸片剪成两部分,并在线段GH 上任意取一点M ,线段BC 上任意取一点N ,沿MN 将梯形纸片GBCH 剪成两部分;第三步:如图③,将MN 左侧纸片绕G 点按顺时针方向旋转180°,使线段GB 与GE 重合,将MN 右侧纸片绕H 点按逆时针方向旋转180°,使线段HC 与HE 重合,拼成一个与三角形纸片EBC 面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为▲cm,最大值为▲cm.例8. 如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=22,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为▲.例9. 如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD 上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.例10.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.例11. 如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)练习题:1. 如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为【】A、1B、2C、3D、42如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F 时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为【】A.13B.5C.3 D.24.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为▲.5.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值X围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.三、应用轴对称的性质求最值:典型例题:例1. 如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为▲cm.例2. 如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN 周长最小时,则∠AMN+∠ANM的度数为【】A.130°B.120°C.110°D.100°例3. 点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角的值最大的点,Q是y轴上使得QA十QB的值最小的点,坐标系如图所示.若P是x轴上使得PA PB⋅=▲.则OP OQ例4. 如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为▲.例5.如图,MN为⊙O的直径,A、B是O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN于点D,P 为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB的最小值是▲。

中考数学中的最值问题求法

中考数学中的最值问题求法

中考数学中的最值问题求法考点一:利用对称求最值问题1.基本知识点:①两点之间线段最短;②点到直线的距离最短。

2.求最值问题的类型ABCD的边长为6,点E在BC上,CE=2.点M是对角线BD上的一个动点,则EM+CM的最小值是()A.62B.35C.213D.413【分析】要求ME+MC的最小值,ME、MC不能直接求,可考虑通过作辅助线转化ME,MC的值,从而找出其最小值求解.【解答】解:如图,连接AE交BD于M点,∵A、C关于BD对称,∴AE就是ME+MC的最小值,∵正方形ABCD中,点E是BC上的一定点,且BE=BC﹣CE=6﹣2=4,∵AB=,∴AE==2,∴ME+MC的最小值是2.故选:C.2.(2022•资阳)如图,正方形ABCD的对角线交于点O,点E是直线BC上一动点.若AB =4,则AE+OE的最小值是()A.42B.25+2C.213D.210【分析】本题为典型的将军饮马模型问题,需要通过轴对称,作点A关于直线BC的对称点A',再连接A'O,运用两点之间线段最短得到A'O为所求最小值,再运用勾股定理求线段A'O的长度即可.【解答】解:如图所示,作点A关于直线BC的对称点A',连接A'O,其与BC的交点即为点E,再作OF⊥AB交AB于点F,∵A与A'关于BC对称,∴AE=A'E,AE+OE=A'E+OE,当且仅当A',O,E在同一条线上的时候和最小,如图所示,此时AE+OE=A'E+OE=A'O,∵正方形ABCD,点O为对角线的交点,∴,∵A与A'关于BC对称,∴AB=BA'=4,∴F A'=FB+BA'=2+4=6,在Rt△OF A'中,,故选:D.3.(2022•菏泽)如图,在菱形ABCD中,AB=2,∠ABC=60°,M是对角线BD上的一个动点,CF=BF,则MA+MF的最小值为()A.1B.2C.3D.2【分析】当MA+MF的值最小时,A、M、F三点共线,即求AF的长度,根据题意判断△ABC为等边三角形,且F点为BC的中点,根据直角三角形的性质,求出AF的长度即可.【解答】解:当A、M、F三点共线时,即当M点位于M′时,MA+MF的值最小,由菱形的性质可知,AB=BC,又∵∠ABC=60°,∴△ABC为等边三角形,∵F点为BC的中点,AB=2,∴AF⊥BC,CF=FB=1,∴在Rt△ABF中,AF==.故选:C.4.(2022•广安)如图,菱形ABCD的边长为2,点P是对角线AC上的一个动点,点E、F 分别为边AD、DC的中点,则PE+PF的最小值是()A.2B.3C.1.5D.5【分析】如图,取AB的中点T,连接PT,FT.首先证明四边形ADFT是平行四边形,推出AD=FT=2,再证明PE+PF=PT+PF,由PF+PT≥FT=2,可得结论.【解答】解:如图,取AB的中点T,连接PT,FT.∵四边形ABCD是菱形,∴CD∥AB,CD=AB,∵DF=CF,AT=TB,∴DF=AT,DF∥AT,∴四边形ADFT是平行四边形,∴AD=FT=2,∵四边形ABCD是菱形,AE=DE,AT=TB,∴E,T关于AC对称,∴PE=PT,∴PE+PF=PT+PF,∵PF+PT≥FT=2,∴PE+PF≥2,∴PE+PF的最小值为2.故选:A.5.(2022•赤峰)如图,菱形ABCD,点A、B、C、D均在坐标轴上.∠ABC=120°,点A (﹣3,0),点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()3 A.3B.5C.22D.32【分析】根据题意得,E点关于x轴的对称点是BC的中点E',连接DE'交AC与点P,此时PD+PE有最小值,求出此时的最小值即可.【解答】解:根据题意得,E点关于x轴的对称点是BC的中点E',连接DE'交AC与点P,此时PD+PE有最小值为DE',∵四边形ABCD是菱形,∠ABC=120°,点A(﹣3,0),∴OA=OC=3,∠DBC=60°,∴△BCD是等边三角形,∴DE'=OC=3,即PD+PE的最小值是3,故选:A .6.(2022•安顺)已知正方形ABCD 的边长为4,E 为CD 上一点,连接AE 并延长交BC 的延长线于点F ,过点D 作DG ⊥AF ,交AF 于点H ,交BF 于点G ,N 为EF 的中点,M为BD 上一动点,分别连接MC ,MN .若91=∆∆FCEDCG S S ,则MC +MN 的最小值为 .【分析】由正方形的性质,可得A 点与C 点关于BD 对称,则有MN +CM =MN +AM ≥AN ,所以当A 、M 、N 三点共线时,MN +CM 的值最小为AN ,先证明△DCG ∽△FCE ,再由=,可知=,分别求出DE =1,CE =3,CF =12,即可求出AN .【解答】解:如图,连接AM ,∵四边形ABCD 是正方形, ∴A 点与C 点关于BD 对称, ∴CM =AM ,∴MN +CM =MN +AM ≥AN ,∴当A 、M 、N 三点共线时,MN +CM 的值最小, ∵AD ∥CF , ∴∠DAE =∠F ,∵∠DAE +∠DEH =90°, ∵DG ⊥AF ,∴∠CDG +∠DEH =90°, ∴∠DAE =∠CDG , ∴∠CDG =∠F , ∴△DCG ∽△FCE , ∵=,∴=,∵正方形边长为4,∴CF=12,∵AD∥CF,∴==,∴DE=1,CE=3,在Rt△CEF中,EF2=CE2+CF2,∴EF==3,∵N是EF的中点,∴EN=,在Rt△ADE中,EA2=AD2+DE2,∴AE==,∴AN=,∴MN+MC的最小值为,故答案为:,7.(2022•内江)如图,矩形ABCD中,AB=6,AD=4,点E、F分别是AB、DC上的动点,EF∥BC,则AF+CE的最小值是.【分析】延长BC到G,使CG=EF,连接FG,则四边形EFGC是平行四边形,得CE =FG,则AF+CE=AF+FG,可知当点A、F、G三点共线时,AF+CE的值最小为AG,利用勾股定理求出AG的长即可.【解答】解:延长BC到G,使CG=EF,连接FG,∵EF∥CG,EF=CG,∴四边形EFGC是平行四边形,∴CE=FG,∴AF+CE=AF+FG,∴当点A、F、G三点共线时,AF+CE的值最小为AG,由勾股定理得,AG===10,∴AF+CE的最小值为10,故答案为:10.8.(2022•贺州)如图,在矩形ABCD中,AB=8,BC=6,E,F分别是AD,AB的中点,∠ADC的平分线交AB于点G,点P是线段DG上的一个动点,则△PEF的周长最小值为.【分析】如图,在DC上截取DT,使得DT=DE,连接FT,过点T作TH⊥AB于点H.利用勾股定理求出FT=,EF=5,证明PE+PF=PF+PT≥FT,可得结论.【解答】解:如图,在DC上截取DT,使得DT=DE,连接FT,过点T作TH⊥AB于点H.∵四边形ABCD是矩形,∴∠A=∠ADT=90°,∵∠AHT=90°,∴四边形AHTD是矩形,∵AE=DE=AD=3.AF=FB=AB=4,∴AH=DT=3,HF=AF﹣AH=4﹣3=1,HT=AD=6,∴FT===,∵DG平分∠ADC,DE=DT,∴E、T关于DG对称,∴PE=PT,∴PE+PF=PF+PT≥FT=,∵EF===5,∴△EFP的周长的最小值为5+,故答案为:5+.9.(2022•娄底)菱形ABCD的边长为2,∠ABC=45°,点P、Q分别是BC、BD上的动点,CQ+PQ的最小值为.【分析】连接AQ,作AH⊥BC于H,利用SAS证明△ABQ≌△CBQ,得AQ=CQ,当点A、Q、P共线,AQ+PQ的最小值为AH的长,再求出AH的长即可.【解答】解:连接AQ,作AH⊥BC于H,∵四边形ABCD是菱形,∴AB=CB,∠ABQ=∠CBQ,∵BQ=BQ,∴△ABQ≌△CBQ(SAS),∴AQ=CQ,∴当点A、Q、P共线,AQ+PQ的最小值为AH的长,∵AB=2,∠ABC=45°,∴AH=,∴CQ+PQ的最小值为,故答案为:.10.(2022•眉山)如图,点P为矩形ABCD的对角线AC上一动点,点E为BC的中点,连接PE,PB,若AB=4,BC=43,则PE+PB的最小值为.【分析】作点B关于AC的对称点B',交AC于点F,连接B′E交AC于点P,则PE+PB 的最小值为B′E的长度;然后求出B′B和BE的长度,再利用勾股定理即可求出答案.【解答】解:如图,作点B关于AC的对称点B',交AC于点F,连接B′E交AC于点P,则PE+PB的最小值为B′E的长度,∵四边形ABCD为矩形,∴AB=CD=4,∠ABC=90°,在Rt△ABC中,AB=4,BC=4,∴tan∠ACB==,∴∠ACB=30°,由对称的性质可知,B'B=2BF,B'B⊥AC,∴BF=BC=2,∠CBF=60°,∴B′B=2BF=4,∵BE=BF,∠CBF=60°,∴△BEF是等边三角形,∴BE=BF=B'F,∴△BEB'是直角三角形,∴B′E===6,∴PE+PB的最小值为6,故答案为:6.11.(2022•滨州)如图,在矩形ABCD中,AB=5,AD=10.若点E是边AD上的一个动点,过点E作EF⊥AC且分别交对角线AC、直线BC于点O、F,则在点E移动的过程中,AF+FE+EC的最小值为.【分析】如图,过点E作EH⊥BC于点H.利用相似三角形的性质求出FH,EF,设BF=x,则DE=10﹣x﹣=﹣x,因为EF是定值,所以AF+CE的值最小时,AF+EF+CE 的值最小,由AF+CE=+,可知欲求AF+CE的最小值相当于在x轴上找一点P(x,0),使得P到A(0,5),B(,5)的距离和最小,如图1中,作点A关于x轴的对称点A′,连接BA′交x轴于点P,连接AP,此时P A+PB的值最小,最小值为线段A′B的长,由此即可解决问题.【解答】解:如图,过点E作EH⊥BC于点H.∵四边形ABCD是矩形,∴∠B=∠BAD=∠BHE=90°,∴四边形ABHE是矩形,∴EH=AB=5,∵BC=AD=10,∴AC===5,∵EF⊥AC,∴∠COF=90°,∴∠EFH+∠ACB=90°,∵∠BAC+∠ACB=90°,∴∠EFH=∠BAC,∴△EHF∽△CBA,∴==,∴==,∴FH=,EF=,设BF=x,则DE=10﹣x﹣=﹣x,∵EF是定值,∴AF+CE的值最小时,AF+EF+CE的值最小,∵AF+CE=+,∴欲求AF+CE的最小值相当于在x轴上找一点P(x,0),使得P到A(0,5),B(,5)的距离和最小,如图1中,作点A关于x轴的对称点A′,连接BA′交xz轴于点P,连接AP,此时P A+PB的值最小,最小值为线段A′B的长,∵A′(0,﹣5),B(,5),∴A′B==,∴AF+CE的最小值为,∴AF+EF+CE的最小值为+.解法二:过点C作CC′∥EF,使得CC′=EF,连接C′F.∵EF=CC′,EF∥CC′,∴四边形EFC′C是平行四边形,∴EC=FC′,∵EF⊥AC,∴AC⊥CC′,∴∠ACC=90°,∵AC′===,∴AF+EC=AF+FC′≥AC′=,∴AF+EF+CE的最小值为+.故答案为:+.12.(2022•自贡)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,则GE+CF的最小值为.【分析】解法一:利用已知可以得出GC,EF长度不变,求出GE+CF最小时即可得出四边形CGEF周长的最小值,利用轴对称得出E,F位置,即可求出.解法二:设AE=x,则BF=3﹣x,根据勾股定理可得:EG+CF=+,由勾股定理构建另一矩形EFGH,根据线段的性质:两点之间线段最短可得结论.【解答】解:解法一:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,∵CH=EF=1,CH∥EF,∴四边形EFCH是平行四边形,∴EH=CF,∴G'H=EG'+EH=EG+CF,∵AB=4,BC=AD=2,G为边AD的中点,∴DG'=AD+AG'=2+1=3,DH=4﹣1=3,由勾股定理得:HG'==3,即GE+CF的最小值为3.解法二:∵AG=AD=1,设AE=x,则BF=AB﹣EF﹣AE=4﹣x﹣1=3﹣x,由勾股定理得:EG+CF=+,如图,矩形EFGH中,EH=3,GH=2,GQ=1,P为FG上一动点,设PG=x,则FP=3﹣x,∴EP+PQ=+,当E,P,Q三点共线时,EP+PQ最小,最小值是3,即EG+CF的最小值是3.故答案为:3.13.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为()A.2B.2C.22D.4【分析】连接AE,那么,AE=CG,所以这三个d的和就是AE+EF+FC,所以大于等于AC,故当AEFC四点共线有最小值,最后求解,即可求出答案.【解答】解:如图,连接AE ,∵四边形DEFG 是正方形,∴∠EDG =90°,EF =DE =DG ,∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,∴∠ADE =∠CDG ,∴△ADE ≌△CDG (SAS ),∴AE =CG ,∴d 1+d 2+d 3=EF +CF +AE ,∴点A ,E ,F ,C 在同一条线上时,EF +CF +AE 最小,即d 1+d 2+d 3最小,连接AC ,∴d 1+d 2+d 3最小值为AC ,在Rt △ABC 中,AC =AB =2,∴d 1+d 2+d 3最小=AC =2, 故选:C .14.(2022•安徽)已知点O 是边长为6的等边△ABC 的中心,点P 在△ABC 外,△ABC ,△P AB ,△PBC ,△PCA 的面积分别记为S 0,S 1,S 2,S 3.若S 1+S 2+S 3=2S 0,则线段OP 长的最小值是( )A .233B .235C .33D .237【分析】如图,不妨假设点P 在AB 的左侧,证明△P AB 的面积是定值,过点P 作AB 的平行线PM ,连接CO 延长CO 交AB 于点R ,交PM 于点T .因为△P AB 的面积是定值,推出点P 的运动轨迹是直线PM ,求出OT 的值,可得结论.【解答】解:如图,不妨假设点P 在AB 的左侧,∵S △P AB +S △ABC =S △PBC +S △P AC ,∴S 1+S 0=S 2+S 3,∵S 1+S 2+S 3=2S 0,∴S 1+S 1+S 0=2,∴S1=S0,∵△ABC是等边三角形,边长为6,∴S0=×62=9,∴S1=,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.∵△P AB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,当点P在②区域时,同法可得OP的最小值为,如图,当点P在①③⑤区域时,OP的最小值为,当点P在②④⑥区域时,最小值为,∵<,故选:B.考点二:利用确定圆心的位置求最短路径通过确定圆心的位置,利用定点到圆心的距离加或减半径解题。

2024年中考数学重难点《几何最值问题》题型及答案解析

2024年中考数学重难点《几何最值问题》题型及答案解析

重难点几何最值问题中考数学中《几何最值问题》部分主要考向分为五类:一、将军饮马类最值二、动点辅助圆类最值三、四点共圆类最值四、瓜豆原理类最值五、胡不归类最值几何最值问题虽然在中考数学中经常考察的是将军饮马类和辅助圆类,剩余几种虽然不经常考察,但是考到的时候难度都比较大,所以也需要理解并掌握不同类型的几何最值问题的处理办法,这样到考到的时候才能有捷径应对。

考向一:将军饮马类最值一动”“两定异侧普通一动”“两定同侧普通动”两定“一动”两定“两两动”“两定同侧两动”“两定异侧满分技巧将军饮马:。

1.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C 顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是3+3.【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF =30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°﹣∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=∠ABC=30°,CD=AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG 交于点I,连接CI,FH,则∠ACG=60°,CG=GH=AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=3,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=3,∴△CDF的周长的最小值为3+3.故答案为:3+3.2.(2023•德州)如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=3,BC=4,点E在AB上,且AE=1.F,G为边AD上的两个动点,且FG=1.当四边形CGFE的周长最小时,CG的长为.【分析】先确定FG和EC的长为确定的值,得到四边形CGFE的周长最小时,即为CG+EF最小时,平移CG到C'F,作点E关于AD对称点E',连接E'C'交AD于点G',得到CG+EF最小时,点G与G'重合,再利用平行线分线段成比例求出C'G'长即可.【解答】解:∵∠A=90°,AD∥BC,∴∠B=90°,∵AB=3,BC=4,AE=1,∴BE=AB﹣AE=3﹣1=2,在Rt△EBC中,由勾股定理,得EC===,∵FG=1,∴四边形CGFE的周长=CG+FG+EF+EC=CG+EF+1+,∴四边形CGFE的周长最小时,只要CG+EF最小即可.过点F作FC'∥GC交BC于点C',延长BA到E',使AE'=AE=1,连接E'F,E'C',E'C'交AD于点G',可得AD垂直平分E'E,∴E'F=EF,∵AD∥BC,∴C'F=CG,CC'=FG=1,∴CG+EF=C'F+E'F≥E'C',即CG+EF最小时,CG=C'G',∵E'B=AB+AE'=3+1=4,BC'=BC﹣CC'=4﹣1=3,由勾股定理,得E'C'===5,∵AG'∥BC',∴=,即=,解得C'G'=,即四边形CGFE的周长最小时,CG的长为.故答案为:.考向二:动点辅助圆类最值满分技巧动点运动轨迹为辅助圆的三种类型:一.定义法——若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)二.定边对直角模型原理:直径所对的圆周角是直角思路构造:若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)三.定边对定角模型原理:在同圆或等圆中,同弧所对的圆周角相等思路构造:若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)1.(2023•徐州)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为.【分析】由折叠性质可知AC=AC'=3,然后根据三角形的三边不等关系可进行求解.【解答】解:∵∠C=90°,CA=CB=3,∴,由折叠的性质可知AC=AC'=3,∵BC'≥AB﹣AC',∴当A、C′、B三点在同一条直线时,BC'取最小值,最小值即为,故答案为.2.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是4+.【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB=2BC=4,CE=AE=AB=2,AC=AB•cos30°=2,∴∠ECA=∠BAC=30°,过点A作AG⊥CE交CE的延长线于点G,∴AG=AC=,∵点F在以A为圆心,AB长为半径的圆上,∴AF=AB=4,∴点F到CE的距离最大值为4+,∴,故答案为:.3.(2023•大庆模拟)如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.【分析】如图,连接OD,OC,首先证明点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D在CK的延长线上时,CD的值最大,利用勾股定理求出CK即可解决问题.【解答】解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.考向三:四点共圆类最值满分技巧对角互补的四边形必有四点共圆,即辅助圆产生模型原理:圆内接四边形对角互补∴FD=,在四边形ACBF中,∠ACB=∠AFB=90°,∴A、C、B、F四点共圆,∴∠ACF=∠ABF=45°,∠CAB=∠CFB,∵∠PCD=45°∴∠ACP=∠FCD,又∵△ABE∽△FBD,∴∠BAE=∠BFD,∴∠CAP=∠CFD,∴△CAP∽△CFD,∴,在四边形ACBF中,由对角互补模型得AC+CB=,∴CF=∴,∴AP=1,∴PE=2,故答案为:2考向四:瓜豆原理类最值满分技巧瓜豆原理的特征和结论:∴AB=CD=6,∠B=∠BCD=90°,∵∠BET=∠FEG=45°,∴∠BEF=∠TEG,∵EB=ET,EF=EG,∴△EBF≌△ETG(SAS),∴∠B=∠ETG=90°,∴点G在射线TG上运动,∴当CG⊥TG时,CG的值最小,∵BC=,BE=,CD=6,∴CE=CD=6,∴∠CED=∠BET=45°,∴∠TEJ=90°=∠ETG=∠JGT=90°,∴四边形ETGJ是矩形,∴DE∥GT,GJ=TE=BE=,∴CJ⊥DE,∴JE=JD,∴CJ=DE=3,∴CG=CJ+GJ=+3,∴CG的最小值为+3,故答案为:+3.2.(2023•宿城区二模)如图,矩形ABCD中,AD=6,DC=8,点E为对角线AC上一动点,BE⊥BF,,BG⊥EF于点G,连接CG,当CG最小时,CE的长为.【分析】过点B作BP⊥AC于点P,连接PG,则可得△ABE∽△PBG,进而可知∠BPG为定值,因此CG⊥PG时,CG最小,通过设元利用三角函数和相似比可表示出PG、CP,即可求出结果.【解答】解:如图,过点B作BP⊥AC于点P,连接PG,∵,∠ABC=∠EBF,∴△ABC∽△EBF,∴∠CAB=∠FEB,∵∠APB=∠EGB=90°,∴△ABP∽△EBG,∴=,∠ABP=∠EBG,∴∠ABE=∠PBG,∴△ABE∽△PBG,∴∠BPG=∠BAE,即在点E的运动过程中,∠BPG的大小不变且等于∠BAC,∴当CG⊥PG时,CG最小,设此时AE=x,∵,∴PG=,∵CG⊥PG,∴∠PCG=∠BPG=∠BAC,∴,代入PG=,解得CP=x,∵CP=BC•sin∠CBP=BC•sin∠BAC=,∴x=,∴AE=∴CE=,故答案为:.考向五:胡不归类最值满分技巧胡不归模型解决步骤:模型具体化:如图,已知两定点A、B,在定直线BC上找一点P,使从B走道P,再从P走到A的总时间最小解决步骤:由系数k·PB确定分割线为PBPA在分割线一侧,在分割线PB另一侧依定点B构α角,使sinα=k,α角另一边为BD过点P作PQ⊥BD,转化kPB=PQ过定点A作AH⊥BD,转化(PA+k·PB)min=AH,再依“勾股法”求AH的长即可。

中考数学之阿氏圆、胡不归模型求最值

中考数学之阿氏圆、胡不归模型求最值

“PA+k·PB”型的最值问题【问题类型】对于“PA+k·PB”型最值问题,根据k的取值可分两种情况:①当 k=1 时,即求“PA+PB”的最值,可用“将军饮马”模型来解决,主题思想是做轴对称;②当 k 取任意不为 1 的正数时,不能再用常规的轴对称思想来解决,必须转换思路。

此类问题的处理通常以动点P 所在图像的不同来分类,一般分为2类研究:①点 P 在直线上运动,即“胡不归”模型;②点P 在圆周上运动,即“阿氏圆”模型。

【知识储备】线段最值问题常用原理:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边。

②两点间线段最短。

③连结直线外一点和直线上各点的所有线段中,垂线段最短。

点P在直线上运动——“胡不归”问题一、背景故事从前,有一个小伙在在外地求学,得知父亲病危的消息后便日夜赶路回家。

然而,当他气喘吁吁地来到父亲的面前时,老人刚刚咽气了。

人们告诉他,在弥留之际,老人在不断喃喃地叨念:“胡不归?胡不归?”早期的科学家曾为这则古老的传说中的小伙子设想了一条路线:如下图(1),A是出发地,B是目的地;直线l是一条驿道,而驿道靠目的地的一侧是沙地。

为了急切回家,小伙子选择了直线路程AB。

但是,他忽略了在驿道上行走要比在砂土地带行走快的这一因素。

如果他能选择一条合适的路线(尽管这条路线长一些,但是速度可以加快),是可以提前抵达家门的。

那么,这合适的路线应该是哪条路线呢?显然,根据两种路面的状况和在其上行走的速度值,可以在驿道上选定一点C,小伙子从A走到点C,然后从点C折往点B,可望最早到达点B。

用现代的科学语言表达,就是:若在驿道上行走的速度为v1,在沙地上行走的速度为v2,即求ACv1+BCv2的最小值。

二、问题解决说明:为了便于理解胡不归问题,将上述模型具体化。

即驿道上的速度为2m/s,沙地上的速度为1m/s,则问题转化为求AC2+BC的最小值。

联系:关于线段之和最小,我们熟悉的模型是将军饮马,但本题AC前的系数是12,应该如何做呢?假如能将AC2转化为系数为1的某条线段,就成为熟悉的将军饮马模型。

中考数学专题复习-例说线段的最值问题 (共62张)

中考数学专题复习-例说线段的最值问题  (共62张)

MA MD 1 AD 1,FDM 60. 2
A
N
B
解答过程:
F M D 3 0 , F D = 1 M D = 1 .
2
2
FM =MD cos30= 3 . 2
MC = FM 2+CF 2 = 7.
A 'C = M C M A ' = 7 1.
FD
C
M
A‘'
A
N
B
小结:
“关联三角形”的另外两条边尽可能长度已知(或 可求),再利用三角形三边关系求解,线段取得最值时 ,“关联三角形”不存在(三顶点共线).
解答过程:
连接OC交e O于点P,此时PC最小. 在RtBCO中, Q BC=4,OB=3, OC=5,PC=OC OP=2. 即PC最小值为2.
小结:
此道作业题构造“辅助圆”的突破口在于发现动点与 两定点连线的夹角为确定值;若点P在△ABC外部,则CP 长存在最大值;若∠APB为非直角时,则作△ABP的外接 圆,此时AB为非直径的弦.
'
2
2
2
在 R t C D D '中 ,
C D '= C D 2 D D '2 3 2 4 2 5 , 即 PC PD的 最 小 值 为 5.
小结:
1. 本题从形的角度得到点P的位置,再从数的角度计算 出点P的坐标,进而得到最小值.这正是体现了数形结合 的重要性.
典型例题2:
D
C
M
A‘'
,52
),B(4,m)两点,点P是线段AB上异于A,B的动点
,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的表达式.
y

中考数学最值问题总结

中考数学最值问题总结

中考数学最值问题总结中考数学中最值问题是一个重要的考点,通常涉及到二次函数、一次函数、不等式等问题。

以下是一些常见的最值问题及解决方法:1. 二次函数最值问题二次函数的最值问题是最常见的最值问题之一。

解决这类问题的一般步骤是:首先确定自变量的取值范围,然后利用二次函数的顶点式或开口方向来求最值。

如果二次函数的开口向上,那么在顶点处取得最小值(当x<0时),在x轴上取得最大值(当x>0时)。

如果二次函数的开口向下,那么在顶点处取得最大值(当x<0时),在x轴上取得最小值(当x>0时)。

2. 一次函数最值问题一次函数的最值问题通常涉及到一次函数的单调性和自变量的取值范围。

如果一次函数是递增的,那么在自变量取值范围内的最大值是当x取最大值时的函数值,最小值是当x取最小值时的函数值。

如果一次函数是递减的,那么在自变量取值范围内的最大值是当x取最小值时的函数值,最小值是当x取最大值时的函数值。

3. 不等式最值问题不等式的最值问题通常涉及到不等式的性质和不等式的取值范围。

解决这类问题的一般步骤是:首先确定不等式的取值范围,然后利用不等式的性质来求最值。

如果是不等式左边是一个定值,右边是一个变量的形式,那么当变量取最大或最小值时,不等式取得最值。

如果是不等式两边都是变量,那么需要利用不等式的性质来求解。

4. 代数式的最值问题代数式的最值问题通常涉及到代数式的化简和代数式中字母的取值范围。

解决这类问题的一般步骤是:首先将代数式进行化简,然后根据代数式中字母的取值范围来确定最值。

如果代数式中包含有二次项,那么可以利用配方法将其化简为顶点式或开口方向式来求解最值。

如果代数式中包含有绝对值,那么需要先去掉绝对值符号再化简求解最值。

解决中考数学最值问题需要掌握各种知识点和方法,包括二次函数、一次函数、不等式、代数式等,同时需要注意自变量的取值范围和函数的单调性等问题。

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案一、轴对称求最小值1.如图,四边形ABCD是边长为6的正方形,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的值最小,求这个最小值.2.四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数.3.如图,∠AOB =45°,OC为∠AOB内部一条射线,点D为射线OC上一点,OD=√2,点E、F分别为射线0A、OB上的动点,求△DEF周长的最小值.二、垂线段最短求最值4.如图,矩形ABCD中,AD=3,AB=4,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,求PQ 的最小值.5.如图,边长为6的等边三角形ABC中,E是对称轴AD上一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动的过程中,求DF的最小值.6.如图所示,在RtΔABC中,∠C=90°,AC=4,BC=3,P为AB上一动点(不与A、 B重合),作PE ⊥AC于点E,PF⊥BC于点F,连接EF,求EF的最小值.7.如图,在ΔABC中,∠BAC=90,AB=6,BC=10,BD平分∠ABC,若P,Q分别是BD,AB上的动点,求PA+PQ的最小值.8.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE,P,N分别为AC,BE上的动点,连接AN, PN,若DF=5,AC=9,求AN+PN的最小值.二、两点之间,线段最短求最值9.如图,等边△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A´B´C´公关于直线l对称,D为线段BC´上一动点,求AD+CD的最小值是( )10.如图,在长方形ABCD中,AB=3,AD=4,动点P满足S△PCD=14S长方形ABCD´,求点P到A,B两点的距离之和PA+PB的最小值.三、三角形三边的关系求最值问题11.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、 C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A´,求则A´C的最小值.参考答案1.析:连接BP.因为点B 与点D 关于直线AC 对称,所以PB=PD .所以PD+PE =PB+PE≥BE,所以PD+PE 的最小值即为BE 的长.BE =AB =6,则PD+PE 的值最小为6.2.析:如图,延长AB 到A ´使得BA ´=AB,延长AD 到A ´使得DA"=AD,连接A ´A"与BC 、CD 分别交于点M 、N.∵∠ABC=∠ADC=90° ∴ A 、A ´关于BC 对称,A 、A"关于CD 对称,此时ΔAMN 的周长最小∵BA=BA ´,MB ⊥ AB ∴MA =MA ´同理:NA=NA" ∴∠A ´=∠MAB,∠A"=∠NAD∵∠AMN =∠A ´+∠MAB =2∠A ´,∠ANM =∠A"+∠NAD =2∠A"∴∠AMN +∠ANM = 2(∠A ´+∠A")∵∠BAD=122° ∴ ∠A ´+LA"=180°-∠BAD=58° ∴∠AMN +∠ANM=2x58°=116∴∠MAN =180-116°=64°3.析:作点D 作关于OA 的对称点P,点D 关于OB 的对称点Q,连接PQ,与OA 的交点为点E,与OB 的交点为点F.△DEF 的最小周长为DE +EF +QF =PE+EF+QF =PQ连接OP 、OQ,则OP=0Q=√2 ∵∠POQ =2∠AOB=90°∴ΔOPQ 是等腰直角三角形∴PQ =√2OD=2∴ΔDEF 的周长的最小值是2.4.析:如图,连接CM∵MP ⊥CD 于点P,MQ ⊥BC 于点Q ∴∠CPM =∠CQM=90°∴四边形ABCD 是矩形∴BC=AD=3,CD=AB=4,∠BCD=90°∴四边形PCQM 是矩形,PQ =CM∴BD =√32+42=5当CM ⊥BD 时,CM 最小,则PQ 最小,此时,S △BCD =1 2BD ·CM=12BC ·CD ∴PQ 的最小值为125.5.析:取线段AC 的中点G,连接EG∵ΔABC 为等边三角形,AD 为△ABC 的对称轴∴CD=CG=1 2AB=3,∠ACD =60° ∵ ∠ECF =60°∴∠FCD =∠ECG在ΔFCD 和ΔECG 中,FC =EC,∠FCD=∠ECG,DC=GC∴ΔFCD ≌AECG ∴DF =GE当EG ⊥AD 时,EG 最短,即DF 最短∵点G 为AC 的中点,EG=DF=1 2CD=32 6.析: 连接CP.∵∠C=90,AC=3,BC =4 ∴AB =√32+42=5∵PE ⊥AC,PF ⊥BC,∠C=90°∴四边形CFPE 是矩形∴EF =CP由垂线段最短可得CP ⊥AB 时,线段EF 的值最小S △ABC=1 2BC ·AC=12AB ·CP ∴1 2×4×3=12×5·CP ∴CP =2.4 7.如图,作点Q 关于直线BD 的对称点Q ´∵BD 平分∠ABC ∴点Q 在BC 上连接PQ ´,则PA+PQ 的最小值即为PA+PQ ´的最小值∴当A 、P 、Q ´三点共线且AQ ´⊥BC 时,PA+PQ 的值最小过点A 作AM ⊥BC 于点M,则PA+PQ 的最小值即为AM 的长∵AB=6,BC=10 ∴AC ²=10²-6²=64 ∴AC=8∵ S △ABC =1 2AM ·BC=1 2AB ·AC ∴AM=AB·AC BC =48 10=4.88.析:连接AD ,与BE 交于点O∵四边形ABDE 是正方形 ∴BE ⊥AD,OD =OA ,点A 与点D 关于直线BE 对称 求PN + AN 的最小值,只需D ,N ,P 在同一条直线上,由于P ,N 分别是AC 和BE 上的动点,过点D 作DP ⊥AC 于P 交BE 于点 N ,此时PN + AN =PN+ND=PD ,由△ABC ≌ △BDF 可知,BF= AC = 9,BC=DF=5,易知四边形DFCP 是矩形,CF=PD=BF+BC=9+5=149.析:如图,连接AD∵△ABC 是边长为4的等边三角形 ∴AB =BC=4,∠ABC=60° ∵△ABC 与△ A ´B ´C ´关于直线l 对称∴A ´B=BC,∠AB ´C ´=60°∴∠CBC ´=60°=∠A ´BD∴△BCD ≌△BA ´D(SAS)∴A ´D=CD ∴CD +AD =AD +A ´D当A 、D 、A ´三点共线时,AD+A ´D 最小,此时CD+AD 最小,最小为4+4=8.10.析:如图,设APC 的CD 边上的高是h.∵S △PCD =1 2S 长形ABCD ,AD=4 ∴1 2·CD ·h =1 4CD ·AD ∴h=12AD=2 ∵动点P 在与CD 平行且与CD 的距离是2的直线l 上连接AC 交直线l 于点P ´∵l//CD,AD=4,四边形ABCD 是长方形 ∴l ⊥AD,l ⊥BC∴直线l 是BC 边的垂直平分线 ∴BP ´=CP ´∴AP ´+BP ´=AP ´+CP ´ ∴ AC 的长是最短距离∴AC=√32+4=5,PA +PB 的最小值为5.11.析:连接BA ´∵AB=√5,BC =4若点A 关于BP 的对称点为A ´ ∴BA ´=BA=√5在△BA ´C 中,A ´C ≥BC-BA ´,即AC ´≥4-√5∴AC ´的最小值为4-√5。

中考数学复习:专题9-9 探究动点背景下的线段最值问题

中考数学复习:专题9-9 探究动点背景下的线段最值问题

探究动点背景下的线段最值问题【专题综述】图形运动问题是中考数学命题的热点题型,其中有一类动点背景下线段长度的最值问题,常常使学生感到比较为难.本文谈谈破解这类问题的方法. 动点背景下线段长度的最值问题一般有两种解法:1、代数解法.通过设未知量,建立函数关系或列方程列不等式等,用函数最值、二次方程判别式、解不等式来求解.2、几何方法.常通取特殊点,如线段中点、端点;与动点的特殊位置相关的特殊线段,如三角形的高、中线、圆的直径等;特殊图形,如直角三角形、等边三角形、矩形等,用几何公理、定理来求解. 一般而言,用几何方法抓住特殊情形处理,比代数方法更有独特魅力. 【方法解读】一、从动点所在特殊位置入手图形中动点的运动有一定的范围,其较为特殊的位置有:线段上动点的两端点、线段中点等;若点在线段外运动,则与某线段共线就是特殊位置.这些特殊位置正是产生最值的关键点.例1 如图1,在四边形ABCD 中,90A ∠=︒,33AB =,3AD =,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为. 分析 DM ,MN 的长度随点M ,N 分别在线段BC ,AB 上运动而变化,点E ,F 分别为DM ,MN 的中点却保持不变.题设中EF 与不变量A ∠,AB ,AD 无直接数量关系,但连结DN ,则由三角形的中位线定理可知12EF DN =,如图1所示,从而可知DN 最大时,EF 最大.因为N 在线段AB 上,当点N 与其端点B 重合时DN 最大,如图2所示.此时,由勾股定理知6BD =,所以EF 长度的最大值为3.例2 如图3,在⊙O 中,直径6AB =,BC 是弦,30ABC ∠=︒,点P 是BC 上的一个动点,点Q 在⊙O 上,且OP PQ ⊥.求PQ 长的最大值.分析 点P 在BC 运动时,OP ,PQ 的位置和大小都变化,但OP PQ ⊥,圆的半径不变,连结OQ ,则OPQ ∆保持直角三角形不变.在Rt OPQ ∆中,22223PQ OQ OP OP =-=-,所以OP 最小时PQ 的长的最大.由垂径定理知,此时点P 正好是CB 的中点,如图4所示,Q 点与C 点重合.分析 连结OQ . ∵OP PQ ⊥,∴OPQ ∆为直角三角形. 又∵OP CB ⊥,132OB AB ==,30ABC ∠=︒, ∴32OP =由勾股定理,得223333()22PQ =-=即PQ 长的最大值332. 二、从动点产生的特殊线段入手在图形中,点的运动会引起相应线段位置和长度大小的变化,位置的变化会使线段成为具有某种特殊性质抓住这些线段变化的特殊性:如三角形的高、中线、圆的直径等,往往会找到最值的答案.例3 如图5,在直角ABC ∆中,90C ∠=︒,3AC =,4BC =,P 为AB 上(不与AB 重合)一动点,过点P 分别作PE AC ⊥于点E ,PF BC ⊥与F ,则EF 的最小值 .分析 因为点P 在AB 上运动时,PE AC ⊥于点E ,PF BC ⊥与F ,90C ∠=︒,所以四边形CFDE 是矩形,且这些关系不变.连结PC ,则EF CP =,要求EF 的最小值,就是求CP 的最小值.显然当CD AB ⊥,即CD 是斜边AB 的高时,CD 最小.又由勾股定理,得5AB =,根据三角形面积不变,得AC BC CD AB ⨯=⨯,解得125CP =,所以EF 的最小值为125. 例4 如图6,在圆O 上有定点C 和动点P 位于直径AB 的异侧,过点C 作CP 的垂线,与PB 的延长线交于点G .已知:圆O 半径为52,4tan 3ABC ∠=,则CG 的最大值是(). (A)5 (B)154(C)253(D)203分析 点P 在AB 上运动时,PC 的位置和大小会随之变化,但CAB CPG ∠=∠,90ACB PCG ∠=∠=︒保持不变,故有ABCPGC ∆∆,∴BC AC CG PC =,即BC CG PC AC=,由3tan 4AC ABC PC ∠==,知43CG PC =,当PC 最大时,CQ 取到最大值易知,当PC 经过圆心,即PC 为圆O 的直径时,PC 最大(此时CG 是圆O 的切线). ∵圆O 半径为52, ∴PC 的最大值为5,∴315544CG =⨯=. ∴CG 的最大值154,故选B.三、抓住动点问题的特性,从构造特殊图形入手某些动点问题中,难以找到图形变化时与相关线段最值的特殊情形若要用几何解法,应联系整个问题所含条件添加辅助线,构造特殊图形,然后借助特殊图形的性质将问题进行有效转化.例5 如图7,ABC ∆中,45B ∠=︒,60BAC ∠=︒,22AB =. D 是BC 上的一个动点以AD 为直径画圆与AB ,AC 相交于E ,F 两点,求EF 的最小值.分析 点D 在BC 上运动,AD 的位置改变引起圆O 的位置和大小变化,而所求EF 的 值与不变量B ∠,BAC ∠以及AB 的关系不明显.连结OE ,OF ,构造含120︒角的特殊等腰三角形,如图8所示,过O 点作OH EF ⊥垂足为H ,由圆周角定理可知1602EOH EOF BAC ∠=∠=∠=︒.在Rt EOH ∆中,由垂径定理可知23EF EH OE ==.所以当OE 最小时,EF 的值最小,而12OE AD =,由垂线段的性质可知,当AD 为ABC ∆的边BC 上的高时,直径AD 最短,此时线段EF 最小.在Rt ADB ∆中,45ABC ∠=︒,22AB =∴2AD BD ==,即此时圆的直径为2. 在Rt EOH ∆中,33sin 122EH OE EOH =∠=⨯= ∴23EF EH ==, 即EF 的最小值为3.四、从图形运动中相对保持不动的点入手若图形中的动点不止一个,这种情形相对单一动点问题要复杂一般会引起变化的量增加或整个图形发生运动,难以找到原图中保存不变的量,这时可着眼于图中的相对不变量.相对不变量是指在整个图形运动变化中,保持某种特性不变的量与动点下线段最值所对应的仍是图中特殊相对不变量透过图形运动的整体,抓住特殊相对不变量才是解题的关键.例6 如图9,在ABC ∆中,90ACB ∠=︒,3BC =,8AC =,点A ,C 分别在x 轴、y 轴的正半轴上.当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动中OB 的最大值是多少?分析 当点A 在x 轴上运动时,点C 随之在y 轴上运动,这样改变了ABC ∆的位置,点B 的位置也随之改变,OB 的长度随之发生变化.虽然BC 、AC 的长度不变,但些相对不变的量与OB 没有直接的关系. 仔细观察图9,AC 是Rt COA ∆的斜边,AC 长度不变,则点O 与其中点D 的连线段OD 的长度保持不变,这个隐含的相对不变的特殊量与OB 有关. 于是,连结DB ,则OB DB OD <+,所以,当O 、D 、B 三点共线时OB 值最大,即BO OD DB =+. 在Rt BCA ∆中,4CD =,3CB =,5DB =. 则OB 的最大值为549+=:.综上可知,解决动点背景下线段长度的最值问题时,一般可用几何方法从特殊情形出发考虑.1、在分析动点位置变化的同时,重点抓住图形中不变的量,不变的关系和性质,以不变应万变,动中求静.2、线段的最大值和最小值,常与下列知识相关:两点之间线段最短,垂线段最短,直径是圆中最大的弦,三角形中任意两边之和大于第三边,任意两边之差小于第三边等等.所以要抓住特殊情形,联系与问题相关的结论进行有效转化.【强化训练】1.(2017四川省内江市)如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=430,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且P A+AB+BQ 最小,此时P A+BQ= .2.(2017山东省东营市)如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.3.(2017山东省威海市)如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠P AB=∠ACP,则线段PB长度的最小值为.4. (2017甘肃省天水市)如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是.5.(2017贵州省贵阳市)如图,在矩形纸片ABCD 中,AB =2,AD =3,点E 是AB 的中点,点F 是AD 边上的一个动点,将△AEF 沿EF 所在直线翻折,得到△A ′EF ,则A ′C 的长的最小值是 .6.(2016山东省枣庄市)如图,把△EFP 放置在菱形ABCD 中,使得顶点E ,F ,P 分别在线段AB ,AD ,AC 上,已知EP =FP =6,EF =63,∠BAD =60°,且AB >63. (1)求∠EPF 的大小;(2)若AP =10,求AE +AF 的值;(3)若△E FP 的三个顶点E 、F 、P 分别在线段AB 、AD 、AC 上运动,请直接写出AP 长的最大值和最小值.7.(2016山东省枣庄市)如图,已知抛物线2y ax bx c =++(a ≠0)的对称轴为直线x =﹣1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y =mx +n 经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴x =﹣1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴x =﹣1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.8.(2017山东省烟台市)如图1,抛物线22y ax bx =++与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E . (1)求抛物线的解析式;(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G ,作PH ⊥EO ,垂足为H .设PH 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.9.(2016四川省眉山市)已知如图,在平面直角坐标系xOy 中,点A 、B 、C 分别为坐标轴上上的三个点,且OA =1,OB =3,OC =4.(1)求经过A 、B 、C 三点的抛物线的解析式;(2)在平面直角坐标系xOy 中是否存在一点P ,使得以以点A 、B 、C 、P 为顶点的四边形为菱形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)若点M 为该抛物线上一动点,在(2)的条件下,请求出当|PM ﹣AM |的最大值时点M 的坐标,并直接写出|PM ﹣AM |的最大值.10. (2016广西梧州市)如图,抛物线24y ax bx =+-(a ≠0)与x 轴交于A (4,0)、B (﹣1,0)两点,过点A 的直线y =﹣x +4交抛物线于点C . (1)求此抛物线的解析式;(2)在直线AC 上有一动点E ,当点E 在某个位置时,使△BDE 的周长最小,求此时E 点坐标; (3)当动点E 在直线AC 与抛物线围成的封闭线A →C →B →D →A 上运动时,是否存在使△BDE 为直角三角形的情况,若存在,请直接写出符合要求的E 点的坐标;若不存在,请说明理由.。

中考线段最小值问题四种常见解法

中考线段最小值问题四种常见解法

方法一:利用几何性质解决问题知识点1:垂线段最短(点到直线的距离,垂线段最短)知识点2:两点之间线段最短(即“将军饮马”问题)知识点3:利用“画圆”来确定动点问题解决最值问题运用画圆解决问题有两种情况:情况1:动点到某一定点的距离是定值(圆上的点到圆心的距离恒等于半径)情况2:动点为90°固定角的顶点(直径所对的圆周角恒定为90°)在中考中最常用的是“知识点2”、“知识点3”方法二:利用代数法直接证明知识点1:利用配方法求三次二项式的最值知识点2:运用二次函数中顶点求最值代数方法较为常见,所以我们本篇暂时不会涉及.接下来,我们来简单看一下每个几何知识点对应的问题知识点1:垂线段最短常出现几何图形问题中,通常在初二会见到,中考中不会涉及。

例:如图,在△ABC中有一点D在AC上移动,若AB=AC=5,BC=6则AD+BD+CD的最小值为_______.分析:题目中问“AD+BD+CD”的最小值,通过图形我们可以知道“AD+CD”是定值,所以问题可以转换为求BD的最小值.那么求BD的最小值即为求一点B到某一直线AC上的最小值,所以可以利用“垂线段最短”的性质来求解.过点B作AC垂线即可解决问题.知识点2:两点之间线段最短这类问题常出现在函数的大题中,考生如果函数知识不过关也不能拿到满分,因为仅作出图形别不能得出答案,还需要利用函数知识进行求点坐标.解题思路:通常做定点关于动点所在直线的对称点(两个动点所在直线就做两个对称点),然后连接对称点与另一点与动点所在直线的交点即为动点位置。

例1.如图,在直角坐标系中,点A、B的坐标分别为(1,3)和(2,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是______.分析:典型的“将军饮马”问题。

通过作点B关于y轴的对称点即可解决问题.例2:如图所示,直线y=x+2与两坐标轴分别交于A、B两点,点C 是OB的中点,D、E分别是直线AB、y轴上的动点,则△CDE周长的最小值是_______.分析:本题中存在两个动点,分别是点D、点E所以我们只需要做点C关于直线AB、关于y轴的对称点即可解决问题.知识点3:利用“画圆”来确定动点问题解决最值问题例1:如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF长的最小值是________.分析:由翻折得到,DF=DB=3.所以点F在以点D为圆心以3为半径的圆上.连接A与圆心D,AD与圆的交点即为F'所以AF的最小值是AD-DF'=5-3=2.例2:如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是________.分析:根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG 全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°.所以点H在以AB为直径的圆上,所以以AB中点为圆心,以AB长的一半为半径画圆,连接D与圆心交点即为点H.所以DH'=OD-OH'中考中常见的求最值方法就是上面所提到的这些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学几何最值问题解法在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

下面通过近年全国各地中考的实例探讨其解法。

应用两点间线段最短的公理(含应用三角形的三边关系)求最值典型例题:例1. 如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】A .21+B .5C .1455 5D .52例2.在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 ▲ 。

例3.如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 ▲ cm 。

练习题:1. 如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为【】A.13cmB.12cmC.10cmD.8cm2.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=23 BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是【】A、6(4)π+㎝ B、5cm C、35㎝ D、7cm3.如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是_ ▲ .二、应用垂线段最短的性质求最值:典型例题:例1. (2012山东莱芜4分)在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是▲ .例2.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK 的最小值为【】A. 1 B.3 C. 2 D.3+1例3.已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ,DC的长能否相等,为什么?问题2:如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题3:若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题4:如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作平行四边形PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.上运动,当线段AB最短例4.如图,点A的坐标为(-1,0),点B在直线y x时,点B的坐标为【】A.(0,0)B.(21-,21-)C.(22,22-)D.(22-,22-) 例5.如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①△DFE 是等腰直角三角形;②四边形CEDF 不可能为正方形;③四边形CEDF 的面积随点E 位置的改变而发生变化;④点C 到线段EF 的最大距离为.其中正确结论的个数是【 】A .1个B .2个C .3个D .4个例6.如图,长方形纸片ABCD 中,AB=8cm ,AD=6cm ,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC(余下部分不再使用); 第二步:如图②,沿三角形EBC 的中位线GH 将纸片剪成两部分,并在线段GH 上任意取一点M ,线段BC 上任意取一点N ,沿MN 将梯形纸片GBCH 剪成两部分;第三步:如图③,将MN 左侧纸片绕G 点按顺时针方向旋转180°,使线段GB 与GE 重合,将MN 右侧纸片绕H 点按逆时针方向旋转180°,使线段HC 与HE 重合,拼成一个与三角形纸片EBC 面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为▲ cm,最大值为▲ cm.例8. 如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=22,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为▲ .例9. 如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD 上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.例10.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.例11. 如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)练习题:1. 如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为【】A、1B、2C、3D、42如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为【】A.错误!未找到引用源。

B.错误!未找到引用源。

C.3 D.24.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为▲ .5.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.三、应用轴对称的性质求最值:典型例题:例1. 如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为▲ cm.例2. 如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN 周长最小时,则∠AMN+∠ANM的度数为【】A.130° B.120° C.110° D.100°例3. 点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角-的值最大的点,Q是y轴上使得QA十QB的值最小的点,坐标系如图所示.若P是x轴上使得PA PB⋅=▲.则OP OQ例4. 如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 ▲ .例5.如图,MN 为⊙O 的直径,A 、B 是O 上的两点,过A 作AC⊥MN 于点C ,过B 作BD⊥MN 于点D ,P 为DC上的任意一点,若MN =20,AC =8,BD =6,则PA +PB 的最小值是 ▲ 。

例6. 阅读材料:例:说明代数式22x 1(x 3)4+-+解:222222x 1(x 3) 4 (x 0)1(x 3)2+-+=-+-+P (x ,0)是x 22(x 0)1-+P 与点A (0,122(x 3)2-+P 与点B (3,2)的距离,所以原代数式的值可以看成线段PA 与PB 长度之和,它的最小值就是PA +PB 的最小值. 设点A 关于x 轴的对称点为A′,则PA=PA′,因此,求PA +PB 的最小值,只需求PA′+PB 的最小值,而点A′、B 间的直线段距离最短,所以PA′+PB 的最小值为线段A ′B 的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以2,即原式的最小值为2。

根据以上阅读材料,解答下列问题:(1)代数式22(x 1)1(x 2)9-++-+的值可以看成平面直角坐标系中点P (x ,0)与点A (1,1)、点B 的距离之和.(填写点B 的坐标)(2)代数式 22x 49x 12x 37++-+的最小值为 .例7. 在学习轴对称的时候,老师让同学们思考课本中的探究题。

相关文档
最新文档