汽车悬架系统的动态特性和参数分析

合集下载

汽车悬架系统优化设计及性能分析

汽车悬架系统优化设计及性能分析

汽车悬架系统优化设计及性能分析一、介绍汽车悬架系统是车辆不可或缺的部分。

它主要负责车辆的支撑和减震工作,为行驶过程提供了舒适性和稳定性。

因此,汽车制造商在设计汽车悬架系统时非常重视性能和稳定性,尤其是在高速行驶和曲线驾驶方面。

在本文中,将探讨汽车悬架系统的优化设计和性能分析。

首先,我们将了解悬架系统的基本概念和组成部分。

接着,将讨论悬架系统的优化设计和性能分析方法,其中会包括液压悬挂系统和空气悬挂系统。

最后,我们将介绍一些常见的汽车悬架问题,并给出解决方案。

二、汽车悬架系统的基本概念和组成部分汽车悬架系统是由许多组成部分组成的。

基本上,悬架系统包括垂直弹簧、水平限制器、减震器、保持器和底盘等部件。

这些部分的设计和性能影响着车辆的轻重平衡、转向能力、制动力等。

垂直弹簧是悬架系统中最基本的部分之一。

其主要作用是支持车载负载和路面扭曲。

在一般情况下,垂直弹簧采用钢制线圈弹簧或橡胶制减震器。

水平限制器是悬挂系统中的一种保护设备。

其主要作用是控制车辆在水平和纵向方向上的运动。

减震器是悬架系统的关键部分。

它负责控制车辆在行驶过程中发生的震动。

减震器的作用是将垂直弹簧支持的能量转换成热能。

保持器主要是为了使车辆在转向时保持稳定。

在悬架系统中,保持器往往被视为弹簧与减震器之间的连接。

底盘是整个悬挂系统的核心部分。

它由上下两个零件组成。

下部通常由车身连接杆和悬架机构组成,而上部是用于固定悬架和与车体连接的结构。

底盘的作用是支撑整车负荷和稳定性。

三、悬架系统的优化设计和性能分析方法悬架系统的优化设计和性能分析一直是汽车工业中的重要问题。

优化设计方法的主要目标是减少悬架系统重量和体积,并增加车辆的稳定性和操纵性。

在性能分析方面,主要是采用试验、仿真和计算三种方法,以获得更准确的结果。

试验是最常用的分析方法之一。

它包括车辆实际测试、路试和底盘试验。

这种方法可以测量和分析悬架系统的各种性能参数,例如侧倾角、轮胎接地面、悬架行程、制动力等。

车辆悬架K&C特性分析

车辆悬架K&C特性分析

(南京工业大学 机械与动力工程学院 , 南京 20 0 )(机械工业第六设计研究院, 10 9 z 郑州 4 00 ) 5 07
An y i fK&C e f r n e f v hce s s e so alss o p ro ma c s O e il u p n in
w i up n i y t sa m ot t at h up n i yt w t et o p e e i e 0 — hc sse s n ss m i n ip r n rT es e o sse i b t rc m rh n v p 矿 r h o e a p . s s n m h e s e m n ehsge i ic1 ei p o i h i o f r a dh di a it.e il dn mi m d ls a c a ra s  ̄ 0, ni rvn er ecm ot n a l gs blyV hc y a co e i t gf 1 c m gt d n n t i e
Ke r s S s e so y t m ; y wo d : u p n i n s s e K& C; a h m a i o e ; n i e rt M t e tcm d lNo l a i n y
文章编 号:0 1 3 9 ( 0 )7 0 4 — 2 10 — 9 7 2 1 0 — 2 3 0 1
机 械 设 计 与 制 造
Ma hi e y De in c n r sg & Ma u a t r n fcue 23 4
车辆 悬架 K C特性分析 木 &
田海兰 王 东方 苏小平 闰 少华
etdq atr iei m dlo es p n s i e ,nw iham efrh hl ei ipi da ur nt efrh u e- b a s o t l s f n e k co t s so ba e.f rtert a aa zn em np r tr K Cfraetgr ecmota x i i otnd t oeclnl igo t a aa es & o fci d ofr,ne— ns i Ae h i y f h i me f n i pes n o ecii ol e h atrt so p ninp a eesaeaotdwt em to rsi r sr n nni a ca ceii s e o a m tr r dpe i t ehdo of d bg nr r sc f u s s r hh f sbet nw i rvd da o tdi e om ne o hceada tes t ute ne- usci .hc poiei s fr u n p r r acsf v i h n i f r rudr o h e sy g f e ln t e m h s dn t o anrso eo o—i a hrceiio s p ni s m t i o i dm pn n a gf m e i e s fnnl r aat scf u es ns t . e n c r t s o ye

二自由度汽车悬架的动态特性分析

二自由度汽车悬架的动态特性分析

二自由度汽车悬架的动态特性分析二自由度汽车悬架是一种常见的悬架系统,它模拟了汽车车轮和车身之间的相互作用。

在汽车行驶过程中,悬架系统直接影响着车辆的行驶稳定性和舒适性。

因此,对于二自由度汽车悬架的动态特性进行分析至关重要。

本文将从模型建立、阻尼特性、振动特性等方面对二自由度汽车悬架的动态特性进行详细分析。

首先,我们需要建立二自由度汽车悬架的模型。

该模型可以简化为两个弹簧-阻尼器-质量系统,其中一个质量代表车轮和悬架系统,另一个质量代表车身。

弹簧和阻尼器的刚度和阻尼常数分别表示悬架系统的刚度和阻尼特性。

通过建立二自由度悬架模型,我们可以研究车轮和车身之间的相对运动以及受力情况。

其次,阻尼特性是影响汽车悬架动态特性的重要因素之一、阻尼器的阻尼特性可以影响到悬架系统对车辆振动的控制能力。

当阻尼器的阻尼系数过小时,会导致车辆在行驶过程中出现过度的振动,降低行驶的稳定性和舒适性。

而当阻尼系数过大时,会导致车辆的悬架系统过于僵硬,无法有效地吸收路面的颠簸,同样会对车辆的行驶稳定性和舒适性产生不利影响。

因此,需要通过合理选择阻尼系数,以实现良好的悬架控制效果。

接下来,振动特性是分析二自由度汽车悬架动态特性的另一个重要方面。

振动特性包括悬架系统的自然频率以及临界阻尼比等。

自然频率是指悬架系统在没有外力的情况下,自发振动的频率。

自然频率的高低直接影响着汽车悬架的舒适性和行驶稳定性,因此需要通过合理设计悬架系统的刚度和质量分布来调节自然频率。

临界阻尼比是指悬架系统在达到临界阻尼时,振动最为衰减的比率。

通过调节阻尼系数可以使悬架系统的阻尼比接近临界值,以实现良好的振动衰减效果。

此外,还可以通过模拟与仿真方法来进一步分析二自由度汽车悬架的动态特性。

通过使用计算机软件,可以对悬架系统在不同路况下的响应进行模拟,并对其动态特性进行分析。

通过模拟与仿真方法可以更加直观地观察到悬架系统的振动情况,同时还可以通过参数调节来优化悬架系统的动态特性。

悬架系统介绍

悬架系统介绍
麦弗逊(Mcpherson)是美国伊利诺斯州人,1891年生。 大学毕业后他曾在欧洲搞了多年的航空发动机,并于1924 年加入了通用汽车公司的工程中心。30年代,通用的雪佛兰 分部想设计一种真正的小型汽车,总设计师就是麦弗逊。他 对设计小型轿车非常感兴趣,目标是将这种四座轿车的质量 控制在0.9吨以内,轴距控制在2.74米以内,设计的关键是 悬架。麦弗逊一改当时盛行的板簧与扭杆弹簧的前悬架方式, 创造性地将减振器和螺旋弹簧组合在一起,装在前轴上。实 践证明这种悬架形式的构造简单,占用空间小,而且操纵性 很好。后来,麦弗逊跳槽到福特,1950年福特在英国的子 公司生产的两款车,是世界上首次使用麦弗逊悬架的商品车。 麦弗逊悬架由于构造简单,性能优越的缘故,被行家誉为经 典的设计
工作过程:
主动悬架系统的控制中枢是一个微电脑控制模块,在整车行驶过程中,悬架上 的多种传感器分别收集各种行车信息(车速、制动力、踏板速度、车身垂直方向 的振幅及频率、转向盘角度及转向速度等数据 ),电脑不断接收这些数据并与预 先设定的临界值进行比较,选择相应的悬架状态。 同时,微电脑独立控制每一只车轮上的执行元件,通过动力装置产生的作用 力控制执行单元相应的功能特性,从而能在任何时候、任何车轮上产生符合要求 的悬架运动。 另外,主动悬架具有控制车身运动的功能。当汽车制动或拐弯时的惯性引起 弹簧变形时,主动悬架会产生一个与惯性力相对抗的力,减少车身位置的变化。 例如当车辆拐弯时悬架传感器会立即检测出车身的倾斜和横向加速度,电脑根据 传感器的信息,与预先设定的临界值进行比较计算,立即确定在什么位置上将多 大的负载加到悬架上,使车身的倾斜减到最小。
4)多连杆式独立悬架 所谓多连杆悬挂,顾名思义就是通过各种连杆配置把车轮与车身相连的 一套悬挂机构。而连杆数量在3根以上才称为多连杆,目前主流的连杆数量 为5连杆。因此其结构要比双叉和麦弗逊复杂很多。

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析【摘要】汽车底盘悬架结构设计是车辆工程中非常重要的一个方面。

本文首先介绍了悬架结构的作用,包括提供悬挂和减震功能,保障车辆稳定性和舒适性。

然后对悬架结构进行了分类,包括独立悬挂和非独立悬挂等。

接着讨论了悬架结构设计的优化方案,指出通过减轻重量和提高刚度可以改善悬架性能。

材料选择也是关键的一环,合适的材料可以提高悬架的强度和耐久性。

最后分析了影响悬架结构的因素,包括行驶路况、车辆载重等。

综合以上内容,总结了汽车底盘悬架结构设计的要点,强调了设计的重要性和必要性。

通过合理的设计和优化,可以提升车辆性能和驾驶体验。

【关键词】汽车底盘,悬架结构,设计要点,分析,作用,分类,优化方案,材料选择,影响因素,总结1. 引言1.1 汽车底盘悬架结构设计要点分析汽车底盘悬架结构设计是汽车制造过程中非常重要的一环,它直接影响着汽车的操控性、舒适性和安全性。

设计良好的悬架结构可以有效减少车身的颠簸以及提升车辆的稳定性,让驾驶者在驾驶过程中更加舒适和安全。

悬架结构的作用是支撑汽车的车身,同时将车轮连接到车身上,使得车轮可以相对独立地运动。

根据不同的需求和使用环境,悬架结构可以分为独立悬架、半独立悬架和非独立悬架等多种分类。

不同类型的悬架结构在不同的路况和驾驶条件下会有不同的表现,因此在设计过程中需要根据实际情况选择合适的悬架结构。

优化悬架结构设计方案包括减轻悬架重量、提高刚度和强度、降低噪音和震动等方面。

选择合适的材料也是悬架结构设计的重要一环,常用的材料有钢铝合金、碳纤维等,不同的材料具有不同的优缺点,需要根据具体情况进行选择。

悬架结构的影响因素包括车辆的使用环境、车辆的负荷、悬架结构的几何形状等。

设计人员需要综合考虑这些因素,才能设计出性能更优秀的悬架结构。

在对汽车底盘悬架结构设计要点进行分析后,我们可以得出结论,对于汽车底盘悬架结构的设计要点有着重要的影响。

设计人员需要综合考虑悬架结构的功能、分类、优化方案、材料选择以及影响因素,才能设计出性能更卓越的底盘悬架结构。

汽车主动悬架系统建模及动力特性仿真分析

汽车主动悬架系统建模及动力特性仿真分析

汽车主动悬架系统建模及动力特性仿真分析对于汽车主动悬架系统建模和动力特性仿真分析,可以分为两个方面,即建模和仿真。

首先是汽车主动悬架系统的建模。

建模的目的是通过数学方程和物理模型来描述悬挂系统的运动和特性。

建模可以从两个方面入手,一是车辆运动模型,二是悬挂系统模型。

车辆运动模型是描述车辆整体运动的数学模型,它包括车辆的质心、惯性力、加速度等参数,并考虑到车辆在不同路面条件下的受力情况。

一般可以采用多自由度的运动方程来描述车辆的运动。

悬挂系统模型是描述悬挂系统特性的数学模型,它包括弹簧、阻尼、悬挂支架等组成部分,并考虑到悬挂系统的动力学特性,如频率响应、刚度、阻尼等参数。

根据悬挂系统的工作原理和设计参数,可以建立悬挂系统的数学模型。

其次是动力特性的仿真分析。

仿真分析的目的是通过数值计算和仿真模拟来模拟和预测悬挂系统在不同工况下的动力特性。

可以通过将建立的悬挂系统模型和车辆运动模型导入仿真软件中进行仿真分析。

动力特性的仿真分析包括四个方面:路面输入、悬挂系统响应、车辆运动和动力性能评估。

路面输入是指对车辆行驶过程中的路面输入进行模拟和预测,可以通过信号生成器生成不同频率、振幅和相位的路面输入信号。

悬挂系统响应是指悬挂系统对路面输入做出的响应。

可以通过差动方程、拉普拉斯变换等方法来求解悬挂系统的动态响应,并得到悬挂系统的频率响应曲线、阻尼比、刚度等参数。

车辆运动是指车辆在不同路面输入下的运动情况,包括车辆的加速度、速度、位移等参数。

可以通过对车辆运动模型进行数值计算和仿真模拟来模拟和预测车辆的运动情况。

动力性能评估是指对悬挂系统的性能进行评估和比较,可以通过对悬挂系统的频率响应、稳定性、舒适性等指标进行计算和分析,来评估悬挂系统的动力性能。

总的来说,汽车主动悬架系统的建模和动力特性仿真分析是一项复杂而又重要的任务,通过对悬挂系统的建模和仿真,可以帮助设计和优化悬挂系统,提高车辆的悬挂效果和驾驶舒适性。

003 汽车悬架动载性能分析

003 汽车悬架动载性能分析
车轮接地性指数方程在悬架车轮接地性指数的检测过程中悬架检测台面上车轮的运动模型通常简化为14汽车模型的2自由度振动系统模型14汽车模型的2自由度振动系统其中m1m2分别表示簧上车身质量和簧下轮胎质量k1k2分别表示轮胎刚度和悬架刚度c2为悬架减震器的阻尼系数轮胎的阻尼系数忽略不计z1z2q分别为轮胎车身及激励垂直位移输出原点取各部件的静平衡位置
参考文献
[1] 韩建保,云志刚 . 汽车悬架动载性能检测与理论分析[J]. 汽车工程, 2002(24):50~253 [2] 尹文杰,陈思思等 . 高速越野性车辆悬架系统分析 [J]. 专用汽车, 2002(4):12~15
车轮接地性指数R/%
0.85 0.8 0.75 0.7 0.65 0.6 0.55
X 坐标5 439.55 18.91 -235.05
Y 坐标 0 324.68 391.21 81.27 100 181.19 107.24 102.81
Z 坐标 0 14.39 44.90 -86.82 -170.71 -252.50 4.75 3.86
2.5 x 10
4
Machine Design and Research 从图 6 可以看出,簧下质量相对于簧载质量越大,车轮 的接地性指数越小,车轮的附着性越差。这意味着若将电机 安装在车轮上,则相当于增加了簧下质量,会影响电动汽车 车轮对地面的附着性。
2.4
K2 / N/m
2.2
1 0.95
2
Rb m1=46.6 m1=96.6
关键词:车轮接地性指数;非线性刚度;悬架 中图分类号:TH113 文献标识码:A
Analysis of Dynamic Performance of Vehicle Suspension System

汽车悬架系统动力学模型的研究

汽车悬架系统动力学模型的研究

1 绪论随着社会的发展和文明的进步,汽车作为一种交通工具,已成为人们出行的主要选择,汽车乘坐的安全性、舒适性已成为世人关注的焦点。

汽车作为高速客运载体,其运行品质的好坏直接影响到人的生命安全,因此,与乘坐安全性、舒适性密切相关的轿车动力学性能的研究就显得非常重要。

悬架系统汽车的一个重要组成部分,它连接车身与车轮,主要由弹簧、减震器和导向机构三部分组成。

它能缓冲和吸收来自车轮的振动,传递车轮与地面的驱动力与制动力,还能在汽车转向时承受来自车身的侧倾力,在汽车启动和制动时抑制车身的俯仰和点头。

悬架系统是提高车辆平顺性和操作稳定性、减少动载荷引起零部件损坏的关键。

一个好的悬架系统不仅要能改善汽车的舒适性,同时也要保证汽车行驶的安全性,而提高汽车的舒适性必须限制汽车车身的加速度,这就需要悬架有足够的变形吸收来自路面的作用力。

然而为了保证汽车的安全性,悬架的变形必须限定在一个很小的范围内,为了改善悬架性能必须协调舒适性和操作稳定性之间的矛盾,而这个矛盾只有采用这折衷的控制策略才能合理的解决。

因此,研究汽车振动、设计新型汽车悬架系统、将振动控制在最低水平是提高现代汽车性能的重要措施[1][2]。

1.1 车辆悬架系统的分类及发展按工作原理不同,悬架可分为被动悬架(Passive Suspension)、半主动悬架(Semi-Active Suspension)和主动悬架(Active Suspension)三种,如图1.1所示[3]。

(a)被动悬架 (b)全主动悬架 (c)半主动悬架图 1.1 悬架的分类图1.1中Mu为非簧载质,Ms为簧载质量,Ks为悬架刚度,Kt为轮胎刚度;C1为被动悬架阻尼,C2为半主动悬架可变阻尼,F为主动悬架作动力。

目前我国车辆主要还是采用被动悬架(Passive Suspension)。

其两自由度系统模型如图1.1(a)所示。

传统的被动悬架一般由参数固定的弹簧和减振器组成,其弹簧的弹性特性和减振器的阻尼特性不能随着车辆运行工况的变化而进行调节,而且各元件在工作时不消耗外界能源,故称为被动悬架。

《轮毂电机驱动电动汽车悬架分析与优化》范文

《轮毂电机驱动电动汽车悬架分析与优化》范文

《轮毂电机驱动电动汽车悬架分析与优化》篇一一、引言随着科技的发展,电动汽车逐渐成为现代交通的重要组成部分。

轮毂电机作为一种新型的驱动方式,因其高效、紧凑的结构特点,在电动汽车中得到了广泛应用。

然而,电动汽车的悬架系统对其行驶性能、乘坐舒适性及安全性有着至关重要的影响。

因此,对轮毂电机驱动电动汽车的悬架系统进行分析与优化,具有重要的研究价值。

二、轮毂电机驱动电动汽车悬架系统概述轮毂电机驱动电动汽车的悬架系统主要由弹性元件、减震器、导向机构等部分组成。

其中,弹性元件负责承受和传递垂直载荷,减震器则用于减小路面不平度引起的振动和冲击,导向机构则保证车轮按照设定的轨迹运动。

三、轮毂电机驱动电动汽车悬架系统问题分析1. 振动与噪声问题:由于轮毂电机的特殊性,其驱动系统与悬架系统的耦合性较高,容易产生振动和噪声,影响乘坐舒适性。

2. 悬架性能问题:在复杂的路况下,传统的悬架系统可能无法很好地适应轮毂电机驱动的电动汽车,导致行驶性能和安全性下降。

3. 结构优化问题:现有的悬架系统结构可能存在设计上的不足,如结构笨重、耗能大等,需要进行优化以提升整体性能。

四、轮毂电机驱动电动汽车悬架系统分析方法1. 理论分析:通过建立数学模型,对悬架系统的动力学特性进行分析,了解其工作原理及性能特点。

2. 仿真分析:利用计算机仿真软件,对不同路况下的悬架系统进行仿真分析,预测其性能表现。

3. 实验分析:通过实际道路实验,对理论分析和仿真分析的结果进行验证和修正。

五、轮毂电机驱动电动汽车悬架系统优化策略1. 优化振动与噪声问题:通过改进减震器设计、优化悬挂系统结构等方式,减小振动和噪声的产生。

同时,采用先进的材料和技术,提高悬架系统的刚度和阻尼性能。

2. 提升悬架性能:针对复杂路况,通过优化悬挂系统的参数设置,如弹簧刚度、减震器阻尼等,提高行驶性能和安全性。

同时,采用智能控制技术,实现悬架系统的自动调节和优化。

3. 结构优化:对现有的悬架系统结构进行轻量化设计,降低耗能。

汽车主动悬架系统建模及动力特性仿真分析

汽车主动悬架系统建模及动力特性仿真分析

汽车主动悬架系统建模及动力特性仿真分析首先,我们需要对汽车主动悬架系统进行机械建模。

主动悬架系统主要由减震器、弹簧、控制器和执行器组成。

减震器负责吸收车辆运动过程中的冲击力,提供较好的悬挂效果;弹簧则起到支撑车身和调整悬挂硬度的作用;控制器负责监测车辆的运动状态,并根据传感器的反馈信号调整悬挂硬度;执行器负责根据控制信号改变减震器的工作状态。

这些组成部分可以用方程和图表表示,以便进行后续仿真分析。

接下来,我们可以进行汽车主动悬架系统的动力特性仿真分析。

在仿真分析中,我们可以改变各个部件的参数,如弹簧硬度、减震器阻尼、控制器的响应时间等,以观察这些参数对悬挂系统的影响。

通过仿真分析,我们可以得到不同参数下悬挂系统的动力特性,如车辆的悬挂位移、车身加速度、车轮载荷等。

同时,我们也可以通过仿真分析来验证主动悬架系统对车辆行驶稳定性和驾驶舒适性的改善效果。

比较不同参数下的悬挂系统对车辆悬挂位移和车身加速度的变化,可以评估不同参数下的系统性能。

此外,还可以通过对比不同参数下车轮载荷的变化来了解悬挂系统对车辆操控性的改善效果。

通过这些仿真分析,我们可以得到最佳的悬挂系统参数,以优化车辆的行驶稳定性和驾驶舒适性。

总之,汽车主动悬架系统的建模和动力特性仿真分析是对该系统性能评估的重要环节。

通过对系统进行机械建模和动力仿真分析,可以得到系统的动力特性,并评估系统的改善效果。

这些分析结果将为系统设计和优化提供指导,以满足驾驶者的驾驶需求和提高汽车悬挂系统的性能。

主动悬架技术的分析

主动悬架技术的分析

主动悬架技术的分析主动悬架技术(Active Suspension System)是一种通过控制车辆悬挂系统来适应路面状况和车辆动态特性的先进技术。

这种技术通过感知路面情况,对悬挂系统进行实时调节,从而提高车辆的乘坐舒适性、稳定性和操控性能。

本文将对主动悬架技术的原理、优势、应用以及发展方向进行分析。

首先,主动悬架技术的原理是通过传感器感知车辆运动状态和路面情况,然后将这些信息发送给控制器。

控制器根据接收到的信息实时计算出最佳悬挂特性,并通过液压、电动或者电磁力等方式对悬挂系统进行调节。

这种实时调节能够使车辆的悬挂系统更好地适应路面情况,保持车身平衡,减少车身摇晃和侧倾,提高乘坐舒适性和操控性能。

相比于传统悬挂系统,主动悬架技术具有以下几个优势。

首先,它能够大幅度提升乘坐舒适性。

传统悬挂系统在通过减震器提供悬挂刚度时,需要在舒适性和操控性之间找到一个平衡点。

而主动悬架技术通过实时调节悬挂特性,可以根据路面状况和车速自动调整刚度,使乘坐更加平稳舒适。

其次,主动悬架技术能够提高车辆的稳定性和操控性能。

主动悬架系统可以根据车速、转向角度、加速度等参数来实时调节悬挂刚度和阻尼,从而减少车身的侧倾和悬挂系统的回弹,提高车辆的稳定性和操控性能。

尤其在高速行驶和急转弯等情况下,能够更好地保持车辆的平衡和稳定。

此外,主动悬架技术还具有适应性强和可调节性好的特点。

悬挂系统可以根据路面状况的变化实时调整刚度和阻尼,因此可以适应各种路况和行车状态。

而且,主动悬架系统通常可以提供多种不同的悬挂模式,驾驶员可以根据自己的需求选择不同的模式,如舒适模式、运动模式等,从而调节悬挂特性,以适应不同的行车场景。

主动悬架技术在汽车行业的应用前景广阔。

目前,该技术已经在一些高端汽车中得到应用,如宝马、奔驰等。

随着技术的发展和成本的降低,预计主动悬架技术将逐渐普及到中低端汽车中。

尤其在城市交通日益拥堵的情况下,乘坐舒适性和操控性能将成为消费者购车的重要考虑因素,从而推动了主动悬架技术的市场需求。

汽车发动机悬置系统动刚度模态分析

汽车发动机悬置系统动刚度模态分析
Keywords: eng ine m oun ts system; dynam ic stiffness of eng ine m oun ts; m oda l ana lysis
前言
汽车的乘坐舒适性越来越受到人们重视 。引起 汽车振动的振源主要有汽车行驶时的路面随机激励 和发动机工作时的振动激励 。随着道路条件的改善 和汽车悬架系统设计的完善 ,路面随机激励对汽车 乘坐舒适性的影响得到了缓解 。现代汽车设计向着 提高发动机功率和车身轻量化的方向发展 [ 1 ] ,采用 新型高强度轻质材料可以减轻整车质量 ,而发动机 的质量却难以减轻 ,使发动机的质量在整车质量中 所占比例有所上升 。故发动机振动对整车的影响有 所提高 ,成为车辆的一个主要振源 ,其振动经悬置系 统传递后引起车身的振动 。所以建立合理的发动机 动力总成悬置系统模型 ,快速准确地获得动力总成
图 5 悬置元件动刚度测试方案
励的振幅和频率到对应的悬置元件怠速工况下动态 载荷幅值和主要振动能量所在的频率值 ,可获得悬 置元件怠速工况下的动刚度值 。试验结果见表 2, 同时列出悬置元件各个方向的静刚度值以作对比 。
表 2 悬置元件的静刚度值及 怠速工况下的动刚度值
悬置 元件
主轴 方向
到总成 质心距 离 /m
把测试得到的悬置元件处振动加速度响应数据
积分 2次 ,可以得到振动响应的位移幅值 ,即动态载 荷幅值 。根据橡胶悬置元件的动态载荷幅值 、预载 荷 、主要振动能量所在频率范围 ,工作温度在常温下 由试验测试对应的悬置元件在怠速工况下的动刚度 值 ,试验方案见图 5。激励设备用 D 2200通用型电动 振 动 台 , 数 据 采 集 与 分 析 系 统 选 用 DH5939 和 DH5861动态信号测试分析系统 。动态力传感器与 测试系统相连用于采集动态力信号 。振动台提供一 定频率的正弦激励 ,通过调节振动台水平台面的高 度即可调节预载的大小 ,再通过调节振动台正弦激

汽车悬架系统性能指标的影响因素分析

汽车悬架系统性能指标的影响因素分析
一0 1 . 、 . ~O 9 步长 为 0 2 . 。结 果如 表 1所示 。
示 时 间频 率路 面输 入模 型 , 不平 度 系 数 G 取 。为 5 ×
1 m。 cce c c 0 / y l( yl 路 面 波 的 个 数 ) 指 数 P 为 e为 ,
2 5 车辆 的恒 定前 进速 度 U为 2 s 则路 面 输 入 ., 0 m/ ,
第 5期 21 O 1年 9月
表 1 福 特 G a a a轿 车 车 身 加 速 度 数 值 表 rn d
3 3 悬 架参 数对 悬架 动行 程指标 的影响 . 由式 (0 、 ( 1解 出 k 1 )式 1 ) 和 c 并 代人 式 ( ) 得 7, 到以 / 和 为 变量 的悬架 动行 程 目标 函数 :
函数 的 变化 规 律 , 而 针 对 不 同 车型 选择 不 同 的 悬 架参 数 匹 配 , 导 参数 调 整 , 到 最佳 方 案 。 从 指 找
关 键 词 :汽 车 ;悬 架 系统 ; 能 指 标 ;悬架 参 数 ; t e t a 性 Ma h mai c
中图分类号 : 6.3 U4 3 3
图 1 车 辆 双 质 量 悬 架 系统 模 型
公 路 与 汽 运
总 第 1 6期 4
Hi h y g wa s& Au o tv plc to s t mo i e Ap ia in
1 3
标 进行 定 量 评 价 , 车 身 加 速 度 ( ) 悬 架 动 行 程 即 n 、
Grn d 轿 车的参 数 , a aa 由行 驶 动力 学 相关 知 识 , 给定 固有频 率 的变 化 范 围为 0- , " 4Hz 阻尼 比 8 的变  ̄ 化 范 围为 0 1 0 9 键 人 3 函数绘 图命 令 Po3 .~ . , D ltD

汽车悬架及其控制系统研究动态分析

汽车悬架及其控制系统研究动态分析

声纳装置预测前方路面的信息 , 及时调整悬架减振器 2 汽车悬架控 制 系统的控制方法 的3 种状态。 另外 , . . rsy D A Cob 等人提出了阻尼连续 汽车悬架控制系统是一个含有许多不确定因素 可调 的半 主动 悬架 系统 。 的非线性的机 、 、 电 液一体化系统 , 由于模型的线性控
收稿 日期 :0 5—1 2 20 0— 8 作者简介 : 郑兰霞( 94一)女 , 16 , 山东聊城人 , 副教授 , 从事工程机械教学 与研究工作 。
半主动悬架通常以改变减振器的阻尼力为主 , 将 阻尼分为两级或三级 , 由人工选择或根据传感器信号
维普资讯
着汽车结构和功能 的不断改进和完善 ,研究汽车振
动, 设计新型悬架系统 , 将振动控制到最低限度成为 提高现代汽车质量 的重要措施。
1 一传 感 器 ; 2一可调 减 振 器 ; 3一力 发 生 器
l 汽 车悬 架 系统 的类型与工作原理
根 据 现代汽 车对 悬架 提 出的各 种性 能要求 , 架 悬
善。悬架的结构形式很多 , 按导向机构 的形式 , 可分 1 2 半主 动悬 架 . 为独立 悬 架和非 独立 悬架 两大类 ; 控制 力则 可 以分 按 半 主动 悬架 的简 化模 型如 图 1b ( )所示 ,由可 变 为被动悬架 、半主动悬架和主动悬架 3 种基本类型, 特性 的弹簧和减振器组成。 其基本工作原理是根据簧 其简化模型如图 1 所示。 上质量相对车轮的速度响应和加速度响应等反馈信 1 1 被动悬 架 . 号, 按照一定 的控制规律调节可调弹簧的刚度或可调 般的汽车绝大多数装有 由弹簧和减振器组成 减振器的阻尼力。 半主动悬架在产生力方面近似于被
半 主动 悬架 系统 。

发动机悬置系统的固有特性与模态解耦分析

发动机悬置系统的固有特性与模态解耦分析

AUTO PARTS | 汽车零部件随着现代社会的不断进步和汽车技术的不断发展,汽车乘坐的舒适性受到了广泛关注。

汽车制造企业在生产设计汽车时,往往在汽车NVH方面投入了大量资金和人力,汽车发动机产生的噪音和振动直接影响了汽车的NVH性能[1]。

提高发动机悬置系统隔振性能是汽车制造相关人员的一个重要课题,而悬置系统的固有特性与模态解耦是影响悬置系统隔振性能的重要因素之一。

1 发动机悬置的作用与分类发动机悬置就是连接发动机和汽车车身的装置,如图1所示。

主要作用有限位功能、支承功能和降噪隔振功能。

随着汽车工业的不断发展,发动机悬置的种类也多了起来,主要有橡胶悬置、液压悬置和空气悬置。

图1 发动机悬置朱锋上海科创职业技术学院 上海市 201620摘 要:随着汽车隔振技术的发展,人们对汽车乘坐舒适性有了更高的要求,各个汽车生产商也在逐渐增加这方面的投入。

科学地设计动力总成的悬置系统,能有效降低车身和发动机的振动,在提升整车NVH性能的同时也给车内人员带来更舒适的体验。

在悬置系统设计过程中悬置的固有特性和模态解耦是悬置系统设计的主要参数之一。

本文对系统固有特性和模态解耦进行分析,为悬置系统隔振设计提供参考与帮助。

关键词:发动机悬置 固有特性 模态解耦Analysis of Intrinsic Characteristics and Modal Decoupling of Engine Mount SystemsZhu FengAbstract: W ith the development of automobile vibration isolation technology, people have higher requirements for car riding comfort, and various automobile manufacturers are gradually increasing their investment in this area. The scientific design of the powertrain suspension system can effectively reduce the vibration of the body and engine, improve the NVH performance of the whole vehicle, and bring a more comfortable experience to the people in the car. In the process of suspension system design, the intrinsic characteristics and modal decoupling of suspension are one of the main parameters of suspension system design. In this paper, the intrinsic characteristics and modal decoupling of the system are analyzed, and the design of vibration isolation of the suspension system is provided as a reference and help.Key words: E ngine Mounting, Intrinsic Characteristics, Modal Decoupling发动机悬置系统的固有特性与模态解耦分析2 悬置系统固有特性分析2.1 悬置系统六自由度模型分析汽车动力总成的振动是一个复杂的振动系统,为了更好地分析该系统的振动特性,我们假设汽车发动机和变速箱组成的动力总成和车身都为刚体,把橡胶悬置元件视为三向正交的弹性元件,从而建立动力总成悬置系统的六自由度振动方程。

汽车悬架的实验报告(3篇)

汽车悬架的实验报告(3篇)

第1篇一、实验目的1. 了解汽车悬架的结构和工作原理;2. 掌握汽车悬架的性能测试方法;3. 分析汽车悬架在不同工况下的性能表现;4. 提高汽车悬架的维修和调试能力。

二、实验原理汽车悬架系统是汽车底盘的重要组成部分,其主要作用是连接车架(或车身)与车轮,传递和缓冲各种路面冲击力,保证汽车行驶的平顺性和稳定性。

汽车悬架系统由弹性元件、导向机构、减振器和稳定杆等组成。

三、实验设备与材料1. 汽车悬架实验台;2. 汽车悬架系统;3. 传感器;4. 数据采集器;5. 计算机及软件。

四、实验步骤1. 汽车悬架系统安装:将汽车悬架系统安装到实验台上,确保安装牢固。

2. 测试准备:将传感器安装在汽车悬架系统上,连接数据采集器。

3. 性能测试:(1)垂直跳动测试:在汽车悬架系统上施加一定的垂直力,记录悬架系统的垂直跳动量。

(2)侧向跳动测试:在汽车悬架系统上施加一定的侧向力,记录悬架系统的侧向跳动量。

(3)俯仰跳动测试:在汽车悬架系统上施加一定的俯仰力,记录悬架系统的俯仰跳动量。

(4)扭力测试:在汽车悬架系统上施加一定的扭力,记录悬架系统的扭力传递性能。

(5)刚度测试:在汽车悬架系统上施加一定的载荷,记录悬架系统的刚度。

4. 数据采集与处理:将实验数据传输到计算机,利用软件进行分析和处理。

5. 结果分析:根据实验数据,分析汽车悬架系统在不同工况下的性能表现。

五、实验结果与分析1. 垂直跳动测试:汽车悬架系统的垂直跳动量较小,说明其具有良好的缓冲性能。

2. 侧向跳动测试:汽车悬架系统的侧向跳动量较小,说明其具有良好的稳定性。

3. 俯仰跳动测试:汽车悬架系统的俯仰跳动量较小,说明其具有良好的操控性能。

4. 扭力测试:汽车悬架系统在扭力作用下,能够有效地传递和缓冲扭力,保证汽车行驶的稳定性。

5. 刚度测试:汽车悬架系统的刚度适中,既能保证汽车的舒适性,又能满足操控性能。

六、实验结论1. 汽车悬架系统在垂直跳动、侧向跳动、俯仰跳动和扭力传递等方面均表现出良好的性能。

悬架性能实验报告总结(3篇)

悬架性能实验报告总结(3篇)

第1篇一、实验背景随着我国汽车工业的快速发展,汽车悬架系统作为汽车底盘的重要组成部分,其性能直接影响着车辆的乘坐舒适性、行驶安全性以及操控稳定性。

为了提高汽车悬架系统的性能,本研究对某型汽车悬架系统进行了性能实验,以期为悬架系统的优化设计提供理论依据。

二、实验目的1. 了解汽车悬架系统的基本原理和结构;2. 评估悬架系统的各项性能指标;3. 为悬架系统的优化设计提供理论依据。

三、实验方法1. 实验设备:汽车悬架系统、测力传感器、加速度传感器、计算机等;2. 实验步骤:(1)搭建实验平台,安装好汽车悬架系统;(2)对悬架系统进行标定,确保各传感器正常工作;(3)按照实验方案进行实验,记录实验数据;(4)对实验数据进行处理和分析。

四、实验结果与分析1. 悬架刚度实验(1)实验数据:通过对悬架系统施加不同频率的正弦载荷,记录悬架系统的振动响应,得到悬架刚度随频率的变化曲线。

(2)分析:从实验数据可以看出,悬架刚度随着频率的增加而逐渐减小,说明悬架系统具有较好的高频阻尼性能。

2. 悬架阻尼实验(1)实验数据:通过改变阻尼比,记录悬架系统的振动响应,得到悬架阻尼系数随阻尼比的变化曲线。

(2)分析:从实验数据可以看出,随着阻尼比的增大,悬架系统的阻尼系数逐渐增大,说明悬架系统具有较好的阻尼性能。

3. 悬架振动实验(1)实验数据:对悬架系统施加不同频率的正弦载荷,记录悬架系统的振动响应,得到悬架振动响应随频率的变化曲线。

(2)分析:从实验数据可以看出,悬架振动响应随着频率的增加而逐渐减小,说明悬架系统具有较好的高频振动抑制性能。

4. 悬架性能综合评价根据实验结果,对悬架系统进行综合评价,主要包括以下几个方面:(1)悬架刚度:悬架刚度应适中,以保证车辆在行驶过程中的稳定性和舒适性;(2)悬架阻尼:悬架阻尼应适中,以保证车辆在行驶过程中的平稳性和操控性;(3)悬架振动:悬架振动应较小,以保证车辆在行驶过程中的舒适性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档