第八章--统计回归模型

合集下载

第八章相关与回归

第八章相关与回归

(Xt X )(Yt Y )
(Xt X )2 (Yt Y )2
2、相关系数r的取值范围:-1≤r≤1
r>0 为正相关,r < 0 为负相关; |r|=0 表示不存在线性关系; |r|=1 表示完全线性相关;(函数关系)
0<|r|<1表示存在不同程度线性相关:
|r| < 0.3 为微弱相关; 0.3≤ |r| <0.5为低度线性相关; 0.5≤|r| <0.8为显著性线性相关。 0.8≤ |r| 为高度相关
1. 使因变量的观察值与估计值之间的离差平方和达 到最小来求得 a 和 b 的方法。
2. 用最小二乘法拟合的直线来代表x与y之间的关 系与实际数据的误差比其他任何直线都小。
b
n xy x y n x2 ( x)2
a y bx
例:配合回归直线
x 编

人口增长量 年 需 求
(千人)
量(十吨)
y x x 编

人口增长 年 需 求 量(千人)量(十吨)
2
y2
xy
合计 3626
2261 1067614 395039 647851
Lxy n xy x y 15 647851 3626 2261
1519379
Lxx n x2 ( x)2151067614 36262 2866334
103
15
370
212
合计 3626
2261
x2
75076 32400 140625 42025 7396 70225 9604 108900 38025 2809 184900 138384 55696 24649 136900 1067614
y2
26244 14400 49729 17161

回归分析方法

回归分析方法

第八章 回归分析方法当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。

如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。

本章讨论其中用途非常广泛的一类模型——统计回归模型。

回归模型常用来解决预测、控制、生产工艺优化等问题。

变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。

另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。

例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。

回归分析就是处理变量之间的相关关系的一种数学方法。

其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据;(2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数;(3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。

应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。

运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。

MATLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。

MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。

运用MATLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。

本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。

第8章相关回归分析

第8章相关回归分析

※相关关系和函数关系有区别也有联系: 1、实际现象中,函数关系往往通过相关关系表现 出来。 2、在研究相关关系时,常常使用函数关系的形式 来表现,它是相关分析的工具。
(二)相关关系的种类 1、按相关关系涉及的因素多少划分 (1)一元(单)相关:两个因素之间的相关。 (2)多元(复)相关:三个及三个以上因素之间
2、相关系数的计算: (1)基本计算公式(“积差法”公式)
r
2 xy
xy
式中:r 相关系数
自变量x数列的标准差 x
自变量y数列的标准差 y
2 xy
两个变量数列的协方差

(x x)2
x
n
y
( y y)2 n
2 xy
(x
x )( y
y)
n
相关系数的基本计算公式可变化为:
r
2xy x y
3、回归分析的种类 (1)按自变量的多少分
①简单(一元)回归:自变量只有一个 。 [例] y = a+bx 一元回归方程
②复(多元)回归:自变量为2个或2个以上。 [例] y=0+ 1x1+ 2x2+…+ nxn
(2)按回归方程式的特征分 ①线性回归:因变量为自变量的线性函数。 [例] y = a+bx 一元线性回归方程※ ②非线性回归:因变量为自变量的非线性函数。
3、相关系数的特点及应用
(1)相关系数的取值范围为:r 1 1 r 1 (2)当γ为正值时,两变量呈正相关;当γ为负值 时,两变量呈负相关。 (3)相关系数γ的绝对值愈大,表示两变量之间 相关程度愈密切; γ=﹢1为完全正相关; γ=﹣1为 完全负相关。 (4)相关系数γ的绝对值愈小,愈接近0,表示两 变量之间相关程度愈低,当 γ=0时,两变量完全没 有直线相关。

第八章成对数据的统计分析小结课件(人教版)

第八章成对数据的统计分析小结课件(人教版)

R 1
2

i
y y
【参考数据】 y y 226 .
8
—0.5
i
i 1
n
2

N
i 1
n
yi y i
y
i 1
i
y


2
2
1
21.2
0.91 .
226
所以解释变量(身高)对于响应变量(体重)变化的决定系数 R 2 约为 0.91.
②通过残差分析,对于残差的绝对值最大的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过
善下列残差表,并求解释变量(身高)对于响应变量(体重)变化的决定系数(保留两位有效数字)R 2 ;
y y
n
编号
体重
残差
(kg ) y
e
1
2
3
4
5
6
7
8
57
58
53
61
66
57
50
66
0.1
0.3
0.9
—1.5
【参考公式】 R 1
2
i 1
解析: (2)
对编号为 6 的数据: e 6 57 0.8 169 75.9 2.3 ,
身高较矮
身高较高
合计
体重较轻
6
15
21
体重较重
6
5
11
合计
12
20
32
零假设 H0:男生的身高与体重的 BMI 指数无关
32(6 5 6 15) 2 160
由于 K

3 3.841 ,
12 20 21 11

计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

Ln(TestScore) = 6.336 + 0.0554 ln(Incomei) (0.006) (0.0021)
假设 Income 从$10,000 增加到$11,000(或者 10%)。
则 TestScore 增加大约 0.0554 10% = 0.554%。
如果 TestScore = 650, 意味着测试成绩预计会增加
非线性的回归模型
非线性的回归函数
“非线性”的含义:
(1)非线性的函数 自变量与解释变量之间的非线性
函 数形式。
(2)非线性的回归 参数与随机项的非线性形式。
非线性的回归函数
一、多项式回归 二、对数回归 三、自变量的交互作用 四、其他非线性形式的回归 五*、非线性回归(参数非线性)
一、多项式回归
1、指数函数曲线
指数函数方程有两种形式:
yˆ aebx yˆ abx
y a>0,b>0
a>0,b<0
x
图11.1方yˆ 程 aebx 的图象
二、对数函数曲线
对数函数方程的一般表达式为:
yˆ a b ln x
y
b>0
b<0
x
图11.2 方程yˆ =a+blnx 的图象
(2)根据拟合程度的好坏来确定(如,利用spss 的相关功能) 在社会科学领域里,阶数不会太高!
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
(2)多项式的本质 泰勒展开
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
Y——收入; D1——性别(1——男;0——女) D2——学历(1——大学学历;0——没有)

新教材高中数学第8章第2课时回归分析及非线性回归模型pptx课件新人教A版选择性必修第三册

新教材高中数学第8章第2课时回归分析及非线性回归模型pptx课件新人教A版选择性必修第三册

2.在两个变量y与x的回归模型中,分别选择了4个不同的模型,它
们的决定系数R2如下,其中拟合效果最好的模型是(
2为0.98
A.模型1的决定系数R

B.模型2的决定系数R2为0.80
C.模型3的决定系数R2为0.50
D.模型4的决定系数R2为0.25
A
[R2越大拟合效果越好.]
)
3.从某省“双一流”大学中随机选出8名女大学生,得到其身高
残差图
观测值等,这样作出的图形称为______.在残差图中,残差点比较
均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的
带状区域的宽度____,说明模型拟合精度越高.
越窄
残差
(3)残差分析:____是随机误差的估计结果,通过对残差的分析可以
判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据
建立两个变量间的非线性经验回归方程.
1.思考辨析(正确的画“√”,错误的画“×”)
(1)残差平方和越接近0,线性回归模型的拟合效果越好.
(√ )
(2)在画两个变量的散点图时,响应变量在x轴上,解释变量在y轴
上.
( × )
(3)R2越小,线性回归模型的拟合效果越好.
( × )
(4)在残差图中,纵坐标为残差,横坐标可以选为样本编号.( √ )
和幂函数模型的求解过程.(数学运算、数学建模)
01
必备知识·
情境导学探新知
设某幼苗从观察之日起,第x天的高度为y cm,测得的一些数据如表
所示:
第x天
1
4
9
16
25
36
49
高度y/cm
0
4
7
9

第八章 成对数据的统计分析-8.2一元线性回归模型及其应用-人A版(2019)数学-选择性必修第三册

第八章 成对数据的统计分析-8.2一元线性回归模型及其应用-人A版(2019)数学-选择性必修第三册
8.2一元线性回归模型及其应用
通过前面的学习我们已经了解到,根据成对样本数据的散 点图和样本相关系数,可以推断两个变量是否存在相关关系、 是正相关还是负相关,以及线性相关程度的强弱等.
思考:是否可以通过建立适当的统计模型来刻画两个变量之 间的相关关系?
课标要求
1.能根据给出的线性回归方程系数公式建立线性回归方程.2.了解随机 误差、残差、残差图的概念.3.会通过分析残差判断线性回归模型的拟 合效果.4.了解常见的非线性回归模型转化为线性回归模型的方法.
素养要求
1.通过对线性回归的分析,培养数据分析的素养. 2.借助回归模型的建立,培养数学建模、数据分析及数学运 算的素养.
探究点1 一元回归模型
生活经验告诉我们,儿子的身高与父亲的身高相关.一般来说, 父亲的身高较高时,儿子的身高通常也较高.为了进一步研究两者 之间的关系,有人调查了14名男大学生的身高及其父亲的身高, 得到的数据如表1所示.
均值的理想状态应该为0. 如果随机误差是一个不为0的常数 e,则可以将 e 合并到截距项a
中,否则模型无法确定,即参数没有唯一解. 如果随机误差e=0,那么Y与x之间的关系就可用一元线性函数模
型来描述.
问题5:请根据以上的分析,你能建立一个数学模型表示儿子身高与父 亲身高的关系吗?
1.一元线性回归模型
由于随机误差表示大量已知和未知的各种影响之和,它们会相互抵
消,为使问题简洁,可以假设随机误差e的均值为0,方差为与父亲身高无
关的定σ 2值 .
即: E(e) 0, D(e) 2.
思考:为什么要假设E(e)=0,而不假设其为某个不为0的常数? 因为误差是随机的,即取各种正负误差的可能性一样,所以它们
b未知,我们能否通过样本数据估计参数a和b? Y bx a e,

第八章 相关与回归分析

第八章  相关与回归分析

基本概念
统计学上采用回归分析 统计学上采用回归分析 (regression analysis)研究呈 ) 因果关系的相关变量间的关系。表示原因的变量称为自变 因果关系的相关变量间的关系。 表示结果的变量称为依变量。 量,表示结果的变量称为依变量。 研究“一因一果”,即一个自变量与一个依变量的回 研究“一因一果” 归分析称为一元回归分析 一元回归分析; 归分析称为一元回归分析; 研究“多因一果” 研究“多因一果”,即多个自变量与一个依变量的回 归分析称为多元回归分析 多元回归分析。 归分析称为多元回归分析。 直线回归分析与 一元回归分析又分为直线回归分析 曲线回归分析两 一元回归分析又分为直线回归分析与曲线回归分析两 多元回归分析又分为多元线性回归分析 多元线性回归分析与 种;多元回归分析又分为多元线性回归分析与多元非线性 回归分析两种 两种。 回归分析两种。
ˆ Y = 33.73+0.516X
历史背景
高个子父代的子代在成年之后的身高平均来说不是更 而是稍矮于其父代水平, 高,而是稍矮于其父代水平,而矮个子父代的子代的平均 身高不是更矮,而是稍高于其父代水平。 身高不是更矮,而是稍高于其父代水平。 Galton将这种趋向于种族稳定的现象称之“回归”。 将这种趋向于种族稳定的现象称之“回归” 将这种趋向于种族稳定的现象称之 “回归”已成为表示变量之间某种数量依存关系的统 回归” 回归 计学术语,并且衍生出“回归方程”“回归系数” ”“回归系数 计学术语,并且衍生出“回归方程”“回归系数”等统计 学概念。如研究糖尿病人血糖与其胰岛素水平的关系, 学概念。如研究糖尿病人血糖与其胰岛素水平的关系,研 究儿童年龄与体重的关系等。 究儿童年龄与体重的关系等。
回归分析的任务
回归分析的任务是揭示出呈因果关系的 相关变量间的联系形式,建立它们之间的回 相关变量间的联系形式, 归方程,利用所建立的回归方程,由自变量 归方程,利用所建立的回归方程, (原因)来预测、控制依变量(结果)。 原因)来预测、控制依变量(结果)。

第八章相关与回归分析统计学

第八章相关与回归分析统计学
• 判断真实相关与虚假相关,必须依靠有关的实 质性科学提供的知识做定性分析,而不能靠数 学公式或简单的数学图表来作出判断。
二、相关关系的分析
• 相关分析就是对变量之间相关关系的描述与度量。 • 其基本内容包括: • 1、直观地判断变量之间是否存在相关关系及其相关关
系的具体形式。一般是通过绘制统计图表来实现,这 也是相关分析的出发点。
• 相关表和相关图是研究相关关系的简单、直观 工具。利用它们可对现象之间存在的相关关系 的方向、表现形式和密切程度做出大致的判断。
• 相关表是一种反映变量之间相关关系的统计表, 根据资料是否分组,相关表有简单相关表和分 组相关表两种。
• 简单相关表就是先将自变量的数值按从小到大 的顺序排列出来,然后将因变量数值对应列上 而形成的表格。
式中: sx2y 表示 x,y 两个变量数列的样本协方差(Covariance),
显示 x,y 之间相关程度的大小; sx , sy 分别表示 x,y 变量数列的样 本标准差。
为了简化计算,可由上式推导出下面的计算公式:
r
n xy x y
(8.3)
[n x2 ( x)2 ][n y2 ( y)2 ]
例如上述的圆的周长 L 决定于它的半径 R ,即 L 2 R , 又如,某产品的销售额 y 与销售量 x 之间的关系,即 y px , 其中 p 为价格,这就是说,在销售价格不变的情况下,对于
该商品的某一销售量,总有一个销售额与之对应,即销售额 完全由销售量所决定,二者之间为线性函数关系。再如,企 业的原材料消耗额( y )与产量( x1 )、单位产品原材料消 耗量( x2 )、单位原材料价格( x3 )之间的关系可表示为 y x1x2 x3 ,这也是一种确定的函数关系,但它们不是线性函 数关系。

第八章8.2一元线性回归模型及其应用PPT课件(人教版)

第八章8.2一元线性回归模型及其应用PPT课件(人教版)

三、非线性回归
例3 下表为收集到的一组数据: x 21 23 25 27 29 32 35 y 7 11 21 24 66 115 325 (1)作出x与y的散点图,并猜测x与y之间的关系;
解 作出散点图如图,从散点图可以看出x 与y不具有线性相关关系,根据已有知识可 以发现样本点散布在某一条指数函数型曲线 y=c1ec2x的周围,其中c1,c2为待定的参数.
年份
2015 202X 202X 202X 202X
时间代号t
1
2
3
4
5
储蓄存款y(千亿元) 5
6
7
8
10
(1)求 y 关于 t 的经验回归方程y^=b^ t+a^ ;
n
tiyi-n t y
i=1
参考公式:b^ =
n
t2i -n
t2
,a^ =
y
-b^
t
i=1
解 由题意可知,n=5, t =1nn ti=155=3, i=1
来比较两个模型的拟合效果,R2 越 大 ,模型
n
yi- y 2
i=1
拟合效果越好,R2 越 小 ,模型拟合效果越差.
思考 利用经验回归方程求得的函数值一定是真实值吗? 答案 不一定,他只是真实值的一个预测估计值.
思考辨析 判断正误
SI KAO BIAN XI PAN DUAN ZHENG WU
知识点四 对模型刻画数据效果的分析
1.残差图法
在残差图中,如果残差比较均匀地集中在以 横轴为对称轴的水平带状
区域内 ,则说明经验回归方程较好地刻画了两个变量的关系.
2.残差平方和法
n
(yi-y^i)2
残差平方和 i=1

2022年秋高中数学第八章成对数据的统计分析8.2一元线性回归模型及其应用8.2.2一元线性回归模型

2022年秋高中数学第八章成对数据的统计分析8.2一元线性回归模型及其应用8.2.2一元线性回归模型

5 , 则 b^ =
i=1
i=1
5
uiyi-5 u y
i=1
≈4.13,a^= y -b^ u ≈0.8.
5
u2i -5 u 2
i=1
从而得到 y 关于 u 的经验回归方程为^y=4.13u+0.8,则 y 关于 x 的回 归方程为^y=4.x13+0.8.
| 素养达成 |
1.检验回归模型的拟合效果一般有三种方法: (1)残差分析:通过残差分析发现原始数据中的可疑数据,判断所建 立模型的拟合效果.其步骤是:计算残差、画残差图、在残差图中分析 残差特性.
5
yi-^yi2
i=1
R2=1-
≈0.994,
5
yi- y 2
i=1
所以回归模型的拟合效果很好.
题型2 非线性回归
下表为收集到的一组数据:
x
21
23
25
27
29
32
35
y
7
11
21
24
66
115
325
(1)作出 x 与 y 的散点图,并猜测 x 与 y 之间的关系;
(2)建立 x 与 y 的关系,预报回归模型并计算残差; (3)利用所得模型,预报 x=40 时 y 的值.
n
(2)残差平方法: (yi- y i)2 表示残差平方和,残差平方和越小,模
i=1
型的拟合效果越好;残差平方和越大,模型的拟合效果越差.
n
yi-^yi2
i=1
(3)R2 法:通过公式 R2=1-
计算 R2,R2 越大,模型的拟
n
yi- y 2
i=1
合效果越好;R2 越小,模型的拟合效果越差. 2.常见误区:不判断变量间是否具有线性相关关系,盲目求解经验

人教A版高中数学选择性必修第三册同步课件第八章成对数据的统计分析第2节一元线性回归模型及其应用

人教A版高中数学选择性必修第三册同步课件第八章成对数据的统计分析第2节一元线性回归模型及其应用

归模型进行预测.
会进行线性回归分析.
返回导航
第八章 成对数据的统计分析
数学(选择性必修·第3册 RJA)
必备知识•探新知
返回导航
第八章 成对数据的统计分析
数学(选择性必修·第3册 RJA)
知识点1 一元线性回归模型
一元线性回归模型的完整表达式为YE=eb=x+0,a+Dee,=σ2.其中 Y 称为 __因__变__量____或 __响__应__变__量____,x 称为自变量或___解__释___变量;a,b 为模 型的未知参数,e 是 Y 与 bx+a 之间的__随__机__误__差____.
i=1
i=1
5
xiyi-5 x 得b^=i=1 5
xi2-5 x 2
y =1
319405--55××55×2 50=7,a^= y -b^ x =50-7×5=15.
i=1
故所求的回归直线方程是y^=7x+15.
返回导航
第八章 成对数据的统计分析
数学(选择性必修·第3册 RJA)
(3)根据上面求出的经验回归方程,当成交量突破 100 件(含 100 件), 即 x=^y-715≥100 时,y^≥715,所以预测这家店铺的浏览量至少为 715 次.
返回导航
第八章 成对数据的统计分析
[解析] (1)散点图如图所示.
数学(选择性必修·第3册 RJA)
返回导航
第八章 成对数据的统计分析
数学(选择性必修·第3册 RJA)
(2)根据散点图可得,变量 x 与 y 之间具有线性相关关系.
5
5
根据数据可知,x =5,y =50, xiyi=1 390, xi2=145,代入公式
月份 月用电量(千瓦时)

第八章统计回归模型

第八章统计回归模型

第八章--统计回归模型第八章 统计回归模型回归分析是研究一个变量Y 与其它若干变量X 之间相关关系的一种数学工具.它是在一组试验或观测数据的基础上,寻找被随机性掩盖了的变量之间的依存关系.粗略的讲,可以理解为用一种确定的函数关系去近似代替比较复杂的相关关系.这个函数称为回归函数.回归分析所研究的主要问题是如何利用变量X 、Y 的观察值(样本),对回归函数进行统计推断,包括对它进行估计及检验与它有关的假设等.回归分析包含的内容广泛.此处将讨论多项式回归、多元线性回归、非线性回归以及逐步回归.一、多项式回归(1) 一元多项式回归一元多项式回归模型的一般形式为εβββ++++=m m x x y ...10.如果从数据的散点图上发现y 与x 呈现较明显的二次(或高次)函数关系,则可以选用一元多项式回归.1. 用函数polyfit 估计模型参数,其具体调用格式如下:p=polyfit(x,y,m) p 返回多项式系数的估计值;m 设定多项式的最高次数;x ,y 为对应数据点值.[p,S]=polyfit(x,y,m) S是一个矩阵,用来估计预测误差.2. 输出预估值与残差的计算用函数polyval实现,其具体调用格式如下:Y=polyval(p,X) 求polyfit所得的回归多项式在X处的预测值Y.[Y,DELTA]=polyval(p,X,S) p,S为polyfit的输出,DELTA为误差估计.在线性回归模型中,Y±DELTA以50%的概率包含函数在X处的真值.3. 模型预测的置信区间用polyconf实现,其具体调用格式如下:[Y,DELTA]=polyconf(p,X,S,alpha) 求polyfit所得的回归多项式在X处的预测值Y及预测值的显著性为1-alpha的置信区间Y±DELTA,alpha缺省时为0.05.4. 交互式画图工具polytool,其具体调用格式如下:polytool(x,y,m);polytool(x,y,m,alpha);用m次多项式拟合x,y的值,默认值为1,alpha 为显著性水平,默认值为0.05.例1 观测物体降落的距离s与时间t的关系,得到数据如下表,求s . t (s) 1/30 2/30 3/30 4/30 5/30 6/30 7/30 s(cm) 11.86 15.67 20.60 26.69 33.71 41.93 51.13t (s) 8/30 9/3010/30 11/30 12/30 13/30 14/30 s(cm) 61.49 72.90 85.44 99.08 113.77 129.54 146.48解 根据数据的散点图,应拟合为一条二次曲线.选用二次模型,具体代码如下:%%%输入数据t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];%%%多项式系数拟合[p,S]=polyfit(t,s,2);则得回归模型为:1329.98896.652946.489ˆ2++=t t s . %%%y 的拟合值及预测值y 的置信半径delta [y,dalta]=polyconf(p,t,S); 得结果如下:y=Columns 1 through 1111.8729 15.7002 20.6148 26.6168 33.7060 41.8826 51.1465 61.4978 72.9363 85.4622 99.0754Columns 12 through 14113.7759 129.5637 146.4389dalta=Columns 1 through 110.0937 0.0865 0.0829 0.0816 0.0817 0.0823 0.0827 0.0827 0.0823 0.0817 0.0816Columns 12 through 140.0829 0.0865 0.0937%%%交互式画图polytool(t,s,2);polytool所得的交互式图形如图8-1所示.图8-1(2) 多元二项式回归多元二项式回归模型的一般形式为εββββ∑≤≤+++++=m k j k j jk m m x x x x y ,1110....多元二项式回归命令:rstool(x,y,’model’,alpha) x 表示n ⨯m 矩阵;y 表示n 维列向量;alpha 为显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):mm x x y βββ+++= 110;purequadratic(纯二次):∑=++++=nj jjj m m x x x y 12110ββββ ; interaction(交叉):∑≤≠≤++++=m k j k j jk m m x x x x y 1110ββββ ; quadratic(完全二次):∑≤≤++++=m k j k j jk m m x x x x y ,1110ββββ .例2 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量100 75 80 70 50 65 90 100 11060 收入 1000 600 1200 500 300 400 1300 1100 1300 30价格 5 7 6 6 8 7 5 4 3 9解 选择纯二次模型,即2222211122110x x x x y βββββ++++=. %%%输入数据 x1=[1000 600 1200 500 300 400 1300 1100 1300 300];x2=[5 7 6 6 8 7 5 4 3 9];x=[x1' x2'];y=[100 75 80 70 50 65 90 100 110 60]';%%%多元二项式回归rstool(x,y,'purequadratic');得如下结果:图8-2得到一个如图所示的交互式画面,左边是x1(=1000)固定时的曲线y (x1)及其置信区间,右边是x2(=6)固定时的曲线y (x2)及其置信区间.用鼠标移动图中的十字线,或在图下方窗口内输入,可改变x1,x2.在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y1”下方的数据变为88.4791,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方单击”Export ”,在出现的窗体中单击”ok ”按钮,则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta,rmse ,得结果: beta=110.5313 0.1464 -26.5709 -0.00011.8475rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=,剩余标准差为4.5362,说明此回归模型的显著性较好.二、多元线性回归多元线性回归模型的一般形式为011...m m y x x βββε=++++. 在Matlab 统计工具箱中使用函数regress 实现多元线性回归.具体调用格式为:b=regress(Y,X) [b,bint,r,rint,stats]=regress(Y,X,alpha)其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y ...21,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nm n n m m x x x x x x x x x X ...1..................1...1212222111211.对于一元线性回归,取1=m 即可.b 为输出向量;b ,bint 表示回归系数估计值和它们的置信区间;r 表示残差;rint 表示残差的置信区间;stats 表示用于检验回归模型的统计量,有四个数值:相关系数2R 、F 值、与F 值对应的概率P 、2s 的值.相关系数2R 越接近1,说明回归方程越显著;)1,(1-->-m n m F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率α<P 时拒绝0H ,回归模型成立;alpha表示显著性水平(缺省时为0.05).残差及其置信区间可以用命令rcoplot(r,rint)画出. 例3 已知某湖泊八年来湖水中COD 浓度实测值(y )与影响因素,如湖区工业产值(x 1)、总人口数(x 2)、捕鱼量(x 3)、降水量(x 4)的资料,建立y 的水质分析模型.湖水浓度与影响因素数据表 x 11.376 1.375 1.387 1.401 1.412 1.428 1.445 1.477 x 20.450 0.475 0.485 0.500 0.535 0.545 0.550 0.575 x 32.170 2.554 2.676 2.713 2.8233.088 3.122 3.262x40.89221.1610.53460.95891.02391.04991.10651.1387y 5.19 5.30 5.60 5.82 6.00 6.06 6.45 6.95 解作出因变量y与各自变量的样本散点图作散点图的目的主要是观察因变量y与各自变量间是否有比较好的线性关系,以便选择恰当的数学模型形式.图8-3、图8-4、图8-5、图8-6分别为y与x1、x2、x3、x4的散点图.从图中可以看出这些点大致分布在一条直线旁边,因此有较好的线性关系,可以采用线性回归.图8-3 y与x1的散点图图8-4 y与x2的散点图图8-5 y与x3的散点图图8-6 y与x4的散点图在Matlab中实现回归的具体代码如下:%%%输入数据x1=[1.376 1.375 1.387 1.401 1.412 1.428 1.445 1.477];x2=[0.450 0.475 0.485 0.500 0.535 0.545 0.550 0.575];x3=[2.170 2.554 2.676 2.713 2.823 3.088 3.122 3.262];x4=[0.8922 1.1610 0.5346 0.9589 1.0239 1.04991.1065 1.1387];x=[ones(8,1) x1' x2' x3' x4'];y=[5.19 5.30 5.60 5.82 6.00 6.06 6.45 6.95];%%%多元线性回归[b,bint,r,rint,stats]=regress(y',x);得如下结果:b =-13.984913.19202.42280.0754-0.1897bint =-26.0019 -1.96791.4130 24.9711-14.2808 19.1264-1.4859 1.6366-0.9638 0.5844r =-0.06180.02280.01230.0890 0.0431 -0.1473 0.0145 0.0274 rint =-0.1130 -0.0107 -0.1641 0.2098 -0.1051 0.1297 -0.2542 0.4321 -0.0292 0.1153 -0.2860 -0.0085 -0.3478 0.3769 -0.1938 0.2486 stats =0.9846 47.9654 0.0047 0.0123 故回归模型为:43211897.00754.04228.21920.139849.13x x x x y -+++-=,此外,由stats 的值可知9846.02=R,9654.47=F ,0047.0=P 。

第八章直线相关与回归分析

第八章直线相关与回归分析

第十章一元回归与相关分析概述:许多问题需要研究多个变量之间的关系,例如生物的生长发育速度就与温度,营养,湿度等许多因素有关。

相关关系:两变量X,Y均为随机变量,任一变量的每一可能值都有另一变量的一个确定分布与之对应。

回归关系:X是非随机变量(如施肥)或随机变量(如穗长),Y是随机变量,对X的每一确定值x i都有Y的一个确定分布与之对应。

区别:1.相关中的两个变量地位对称,互为因果;回归中X是自变量,Y是因变量。

两种意义不同,分析的数学概念与推导过程不同,但如果使用共同标准即使y的残差平方和最小(最小二乘法),可得到相同的参数估计式。

因此主要讨论X为非随机变量(不包含有随机误差)的情况,所得到的参数估计式也可用于X为随机变量的情况。

2.分析目的不同。

回归分析是建立X与Y之间的数学关系式,用于预测;而相关分析研究X与Y两个随机变量之间的共同变化规律,例如当X增大时Y如何变化,以及这种共变关系的强弱。

分类:从两个变量间相关(或回归)的程度分三种:(1)完全相关。

一个变量的值确定后,另一个变量的值可通过公式求出(函数关系);生物学研究中不太多见。

(2)不相关。

变量之间完全没有任何关系。

一个变量的值不能提供另一个变量的任何信息。

(3)统计相关(不完全相关)。

介于上述两情况之间。

知道一个变量的值通过某种公式就可以提供另一个变量的均值的信息。

一个变量的取值不完全决定另一个变量的取值,但可或多或少地决定它的分布。

科研中最常遇到。

研究“一因一果”,即一个自变量与一个依变量的回归分析称为一元回归分析;研究“多因一果”,即多个自变量与一个依变量的回归分析称为多元回归分析。

一元回归分析又分为直线回归分析与曲线回归分析两种;多元回归分析又分为多元线性回归分析与多元非线性回归分析两种。

对两个变量间的直线关系进行相关分析称为直线相关分析;研究一个变量与多个变量间的线性相关称为复相关分析;研究其余变量保持不变的情况下两个变量间的线性相关称为偏相关分析。

统计学原理第八章相关分析与回归分析

统计学原理第八章相关分析与回归分析

21
例1:P354页,第1题
企业 产量 X 单位成 XY
X2
Y2
序号 (4件) 本(元)Y
1
2
52
104
4
2704
2
3
54
162
9
2916
3
4
52
208
16
2704
4
4
48
192
16
2304
5
5
48
240
25
2304
6
6

24
46
276
36
2116
300
1182
106 15048
即:∑X=24,∑Y=300, ∑XY=1182,
• 2) X倚Y的直线方程的确定
• 根据最小平方法的原理:(x xc )2 最小值
• 将xc = c + dy代入上述公式中,分别对c和d 求一阶偏导数,并令偏导数等于0,就可以
得出两个正规方程:
x nc dy yx cy dy2
d
nyx y n y2 (
x
y )2
c x dy
举例:P355,第4题。
• 偏相关:在复相关中,当假定其他变量不 变时,其中两个变量间的相关关系称为偏 相关。例如,在假定人们收入水平不变的 条件下,某种商品的需求与其价格水平的 关系就是一种偏相关。
9
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象
之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个
• 曲线相关:如果现象之间的相关关系近似 地表现为某种曲线形式时,就称这种相关 关系为曲线相关。

高考数学必背知识手册-第八章-成对数据的统计分析(公式、定理、结论图表)

高考数学必背知识手册-第八章-成对数据的统计分析(公式、定理、结论图表)

第八章成对数据的统计分析(公式、定理、结论图表)一、成对数据的统计相关性1.变量的相关关系(1)函数关系函数关系是一种确定性关系,常用解析式来表示.(2)相关关系两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.与函数关系不同,相关关系是一种非确定性关系.2.散点图(1)散点图成对样本数据都可用直角坐标系中的点表示出来,由这些点组成的统计图叫做散点图. (2)正相关和负相关如果从整体上看,当一个变量的值增加时,另一个变量的相应值也呈现增加的趋势,我们就称这两个变量正相关;如果当一个变量的值增加时,另一个变量的相应值呈现减少的趋势,则称这两个变量负相关.3.线性相关一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,则称这两个变量线性相关.4.样本相关系数(1)对于变量x和变量y,设经过随机抽样获得的成对样本数据为(,),(,),,(,),利用相关系数r来衡量两个变量之间线性关系的强弱,相关系数r的计算公式:(其中,,,和,,,的均值分别为和).①当r >0时,称成对样本数据正相关.这时,当其中一个数据的值变小时,另一个数据的值通常也变小;当其中一个数据的值变大时,另一个数据的值通常也变大.②当r <0时,称成对样本数据负相关.这时,当其中一个数据的值变小时,另一个数据的值通常会变大;当其中一个数据的值变大时,另一个数据的值通常会变小.二、一元线性回归模型及其应用1.线性回归方程:(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:()()()1122,,,,,,n n x y x y x y ,其回归方程为a bx y +=∧,则1221,.ni i i nii x y nx y b x nx a y bx ==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑注意:线性回归直线经过定点(),x y .(3)相关系数:()()()()12211nii i nni i i i xx y y rx x y y ===--=--∑∑∑1222211ni ii n ni i i i x y nxyx nx y ny ===-=⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑.【方法归纳】(1)利用散点图判断两个变量是否有相关关系是比较直观简便的方法.如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.若点散布在从左下角到右上角的区域,则正相关.(2)利用相关系数判定,当r 越趋近于1相关性越强.当残差平方和越小,相关指数2R 越大,相关性越强.(3)在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,也可计算相关系数r 进行判断.若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.(4)正确运用计算 ,ba 的公式和准确的计算,是求线性回归方程的关键.并充分利用回归直线 y bxa =+ 过样本点的中心(),x y 进行求值.2、回归分析:对具有相关关系的两个变量进行统计分析的一种常用方法。

2020_2021新教材高中数学第八章成对数据的统计分析8.2一元线性回归模型及其应用课件新人教A版

2020_2021新教材高中数学第八章成对数据的统计分析8.2一元线性回归模型及其应用课件新人教A版

有5名学生的数学和化学成绩如表所示:
学生学科
A B CDE
数学成绩(x) 87 76 73 66 63
化学成绩(Y) 78 66 71 64 61
(1)如果Y与x具有相关关系,求经验回归方程 = x+ ;
(2)预测如果某学生数学成绩为79分,他的化学成绩为多少?(结果取整数)
n
(xi- x )(yi- y )
=1-(-2.8)2+(-01..625)1 2+0.52+1.52+22 =1-01.56.5718 ≈0.9587. (4)经验回归方程 =1.23x+0.08,所以当 x=10 年时, =1.23×10+0.08=12.38(万 元), 即估计使用 10 年时维修费是 12.38 万元.
【类题通法】建立线性回归模型的基本步骤: (1)确定研究对象,明确解释变量和响应变量; (2)画出解释变量和响应变量的散点图,观察它们之间的关系(如是否存在线性关 系等); (3)由经验确定回归方程的类型; (4)按一定的规则估计回归方程的参数; (5)对所建立的模型进行残差分析,判断拟合效果.
【解析】由题意e为随机变量,e称为随机误差.根据随机误差的意义,可得E(e) =0. 答案:0
主题2 经验回归方程的求解 如何对具有线性相关关系的两个变量进行分析?
提示:对具有线性相关关系的变量,利用回归分析的方法进行研究.其步骤为 画散点图,求经验回归直线方程,并利用经验回归方程对模型刻画数据的效果 进行分析,借助残差分析对模型进行改造,使我们能够根据改进模型作出符合 实际的预测和决策.
为研究质量x(单位:克)对弹簧长度Y(单位:厘米)的影响,对不同质量的6个物 体进行测量,数据如表所示:
x 5 10 15 20 25 30 y 7.25 8.12 8.95 9.90 10.9 11.8

第8章 logistic回归模型

第8章  logistic回归模型

通常采用-2乘以设定模型和饱和模型的最大似然值的 对数:
L ˆ D 2 ln s ˆ L f
ˆ ln L ˆ ) 2(ln L s f
D统计量被称为偏差,D值越小,拟和优度越好。
四、Hosmer-Lemeshow拟合优度指标
当自变量数量增加时,尤其是连续自变量纳入模型 之后,协变类型的数量便会很大,于是许多协变类 型只有很少的观测案例.结果,偏差和皮尔逊卡方 值不再适用于估计拟合优度.Hosmer-Lemeshow研 究了一种对logistic模型拟和优度的检验方法。
线性回归模型在定量分析中也许是最流行的统计 分析方法,然而在许多情况下,线性回归会受到限 制.比如,当因变量是一个分类变量,不是一个连续 变量时,线性回归就不适用,严重违反假设条件. 分类变量分析通常采用对数线性模型(Log-linear model), 而因变量为二分变量时, 对数线性模型就变 成Logistic回归模型.
通常,假设公式中误差项εi有logistic分布或标准正 态分布.由于logistic分布和标准正态分布都是对 称的,得到:
P( yi 1 | xi ) P[ i xi ]
F[ xi ]
其中F为累积分布函数.
如果εi为logistic分布,就得到logistic模型; 如果εi为标准正态分布,就得到probit模型.
当εi为logistic分布时:
1 P( yi 1 | xi ) P[ i xi ] i 1 e 1 上式可以变换为: P( yi 1 | xi ) ( xi ) 1 e
记条件概率 P( yi 1 | xi ) pi 得logistic回归模型 pi
p (1 pi )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 统计回归模型回归分析是研究一个变量Y 与其它若干变量X 之间相关关系的一种数学工具.它是在一组试验或观测数据的基础上,寻找被随机性掩盖了的变量之间的依存关系.粗略的讲,可以理解为用一种确定的函数关系去近似代替比较复杂的相关关系.这个函数称为回归函数.回归分析所研究的主要问题是如何利用变量X 、Y 的观察值(样本),对回归函数进行统计推断,包括对它进行估计及检验与它有关的假设等.回归分析包含的内容广泛.此处将讨论多项式回归、多元线性回归、非线性回归以及逐步回归.一、多项式回归(1) 一元多项式回归一元多项式回归模型的一般形式为εβββ++++=mm x x y ...10.如果从数据的散点图上发现y 与x 呈现较明显的二次(或高次)函数关系,则可以选用一元多项式回归.1. 用函数polyfit 估计模型参数,其具体调用格式如下:p=polyfit(x,y,m) p 返回多项式系数的估计值;m 设定多项式的最高次数;x ,y 为对应数据点值. [p,S]=polyfit(x,y,m) S 是一个矩阵,用来估计预测误差.2. 输出预估值与残差的计算用函数polyval 实现,其具体调用格式如下: Y=polyval(p,X) 求polyfit 所得的回归多项式在X 处的预测值Y .[Y ,DELTA]=polyval(p,X,S) p ,S 为polyfit 的输出,DELTA 为误差估计.在线性回归模型中,Y ±DELTA 以50%的概率包含函数在X 处的真值.3. 模型预测的置信区间用polyconf 实现,其具体调用格式如下:[Y ,DELTA]=polyconf(p,X,S,alpha) 求polyfit 所得的回归多项式在X 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA ,alpha 缺省时为0.05.4. 交互式画图工具polytool ,其具体调用格式如下: polytool(x,y,m); polytool(x,y,m,alpha);用m 次多项式拟合x ,y 的值,默认值为1,alpha 为显著性水平,默认值为0.05. 例1 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s .解 根据数据的散点图,应拟合为一条二次曲线.选用二次模型,具体代码如下: %%%输入数据t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; %%%多项式系数拟合 [p,S]=polyfit(t,s,2); 则得回归模型为:1329.98896.652946.489ˆ2++=t t s. %%%y 的拟合值及预测值y 的置信半径delta [y,dalta]=polyconf(p,t,S); 得结果如下: y=Columns 1 through 1111.8729 15.7002 20.6148 26.6168 33.7060 41.8826 51.1465 61.4978 72.9363 85.4622 99.0754 Columns 12 through 14 113.7759 129.5637 146.4389 dalta=Columns 1 through 110.0937 0.0865 0.0829 0.0816 0.0817 0.0823 0.0827 0.0827 0.0823 0.0817 0.0816 Columns 12 through 14 0.0829 0.0865 0.0937 %%%交互式画图 polytool(t,s,2);polytool 所得的交互式图形如图8-1所示.图8-1(2) 多元二项式回归多元二项式回归模型的一般形式为εββββ∑≤≤+++++=mk j k j jkm m x x x x y ,1110....多元二项式回归命令:rstool(x,y,’model’,alpha) x 表示n ⨯m 矩阵;y 表示n 维列向量;alpha 为显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++=Λ110;purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββΛ;interaction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββΛ;quadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββΛ.例2 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量.需求量 100 758070 50 65 90 100 110 60 收入 1000 600 1200 500 300 400 1300 1100 1300 300 价格 5 766875439解 选择纯二次模型,即2222211122110x x x x y βββββ++++=.%%%输入数据x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9]; x=[x1' x2'];y=[100 75 80 70 50 65 90 100 110 60]'; %%%多元二项式回归 rstool(x,y,'purequadratic'); 得如下结果:图8-2得到一个如图所示的交互式画面,左边是x1(=1000)固定时的曲线y (x1)及其置信区间,右边是x2(=6)固定时的曲线y (x2)及其置信区间.用鼠标移动图中的十字线,或在图下方窗口内输入,可改变x1,x2.在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y1”下方的数据变为88.4791,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方单击”Export ”,在出现的窗体中单击”ok ”按钮,则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta,rmse ,得结果: beta=110.5313 0.1464 -26.5709 -0.0001 1.8475rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=,剩余标准差为4.5362,说明此回归模型的显著性较好.二、多元线性回归多元线性回归模型的一般形式为011...m m y x x βββε=++++.在Matlab 统计工具箱中使用函数regress 实现多元线性回归.具体调用格式为: b=regress(Y,X)[b,bint,r,rint,stats]=regress(Y,X,alpha)其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y ...21,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nm n n m m x x x x x x x x x X ...1..................1 (12)12222111211.对于一元线性回归,取1=m 即可.b 为输出向量;b ,bint 表示回归系数估计值和它们的置信区间;r 表示残差;rint 表示残差的置信区间;stats 表示用于检验回归模型的统计量,有四个数值:相关系数2R 、F 值、与F 值对应的概率P 、2s 的值.相关系数2R 越接近1,说明回归方程越显著;)1,(1-->-m n m F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率α<P 时拒绝0H ,回归模型成立;alpha 表示显著性水平(缺省时为0.05).残差及其置信区间可以用命令rcoplot(r,rint)画出.例3 已知某湖泊八年来湖水中COD 浓度实测值(y )与影响因素,如湖区工业产值(x 1)、总人口数(x 2)、捕鱼量(x 3)、降水量(x 4)的资料,建立y 的水质分析模型.湖水浓度与影响因素数据表解 作出因变量y 与各自变量的样本散点图作散点图的目的主要是观察因变量y与各自变量间是否有比较好的线性关系,以便选择恰当的数学模型形式.图8-3、图8-4、图8-5、图8-6分别为y与x1、x2、x3、x4的散点图.从图中可以看出这些点大致分布在一条直线旁边,因此有较好的线性关系,可以采用线性回归.图8-3 y与x1的散点图图8-4 y与x2的散点图图8-5 y与x3的散点图图8-6 y与x4的散点图在Matlab中实现回归的具体代码如下:%%%输入数据x1=[1.376 1.375 1.387 1.401 1.412 1.428 1.445 1.477];x2=[0.450 0.475 0.485 0.500 0.535 0.545 0.550 0.575];x3=[2.170 2.554 2.676 2.713 2.823 3.088 3.122 3.262];x4=[0.8922 1.1610 0.5346 0.9589 1.0239 1.0499 1.1065 1.1387];x=[ones(8,1) x1' x2' x3' x4'];y=[5.19 5.30 5.60 5.82 6.00 6.06 6.45 6.95];%%%多元线性回归[b,bint,r,rint,stats]=regress(y',x);得如下结果:b =-13.984913.19202.42280.0754 -0.1897 bint =-26.0019 -1.9679 1.4130 24.9711 -14.2808 19.1264 -1.4859 1.6366 -0.9638 0.5844 r =-0.0618 0.0228 0.0123 0.0890 0.0431 -0.1473 0.0145 0.0274 rint =-0.1130 -0.0107 -0.1641 0.2098 -0.1051 0.1297 -0.2542 0.4321 -0.0292 0.1153 -0.2860 -0.0085 -0.3478 0.3769 -0.1938 0.2486 stats =0.9846 47.9654 0.0047 0.0123故回归模型为:43211897.00754.04228.21920.139849.13x x x x y -+++-=, 此外,由stats 的值可知9846.02=R ,9654.47=F ,0047.0=P 。

相关文档
最新文档