数学:弧度制和弧度制与角度制之间的换算教案新人教A版必修

合集下载

《弧度制和弧度制与角度制之间的换算》教案新人教A版

《弧度制和弧度制与角度制之间的换算》教案新人教A版

数学:1.1.2《弧度制和弧度制与角度制之间的换算》教案(新人教A版)第一章基本初等函数(II)1.1.2弧度制和弧度制与角度制之间的换算教学目标:1.理解1弧度的角、弧度制的定义.能进行角度与弧度的换算.2.掌握用弧度制表示的弧长公式、扇形面积公式.培养运用弧度制解决具体的问题的意识和能力教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算.教学过程一、复习引入:1.角的概念2.角度制的定义3.圆心角不变,则弧长与半径的比值不变,二、讲解新课:1、定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用"弧度"做单位来度量角的制度叫做弧度制.⑴平角=? rad、周角=2? rad⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0⑶圆心角?的弧度数的绝对值(为弧长,为半径)⑷角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同2. 角度制与弧度制的换算:∵ 360?=2? rad ∴180?=? rad∴ 1?=3.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系任意角的集合实数集R4.(1)弧长公式:比公式简单弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积(2)扇形面积公式其中是扇形弧长,是圆的半径这比扇形面积公式要简单三、例子:例1把化成弧度,把化成度注意:常用特殊角的角度制与弧度制之间的转化角度0°30°45°60°90°120°135°150°180°弧度0π/6π/4π/3π/22π/33π/45π/6π角度210°225°240°270°300°315°330°360°弧度7π/65π/44π/33π/25π/37π/411π/62π例2用弧度制表示:1 终边在轴上的角的集合2 终边在轴上的角的集合3 终边在坐标轴上的角的集合例3.求图中公路弯道处弧AB的长(精确到1m)图中长度单位为:m?例4已知扇形的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积小结:本节课我们学习了:弧度制定义、角度制与弧度制的互化、特殊角的弧度数、用弧度制表示的弧长公式、扇形面积公式.课堂练习:第12页练习A、B课后作业:第13页习题1-1A:3、4、5,习题1-1B:3。

《任意角和弧度制》教案

《任意角和弧度制》教案

《任意角和弧度制》教案篇一:人教A版高中数学必修四1.1《任意角和弧度制》1.1 《任意角和弧度制》教案【教学目的】1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,推断象限角,掌握终边一样角的集合的书写.3.理解弧度制,能进展弧度与角度的换算.4.认识弧长公式,能进展简单应用.对弧长公式只要求理解,会进展简单应用,不必在应用方面加深.5.理解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、处理征询题. 【导入新课】复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系提出征询题:1.初中所学角的概念.2.实际生活中出现一系列关于角的征询题. 3.初中的角是如何度量的?度量单位是什么?4.1°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,构成一个角?,点O是角的顶点,射线OA,OB分别是角?的终边、始边. 说明:在不引起混淆的前提下,“角?”或“??”能够简记为?.2.角的分类:正角:按逆时针方向旋转构成的角叫做正角;负角:按顺时针方向旋转构成的角叫做负角;零角:假设一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x轴的非负轴重合,那么(1)象限角:假设角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30?,390?,?330?都是第一象限角;300?,?60?是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90?,180?,270?等等.说明:角的始边“与x轴的非负半轴重合”不能说成是“与x轴的正半轴重合”.由于x轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边一样的角的集合:由特别角30看出:所有与30角终边一样的角,连同30角本身在内,都能够写成30?k?360??????k?Z?的方式;反之,所有形如30??k?360??k?Z?的角都与30?角的终边一样.从而得出一般规律:所有与角?终边一样的角,连同角?在内,可构成一个集合S|?k?360?,k?Z?,即:任一与角?终边一样的角,都能够表示成角?与整数个周角的和. 说明:终边一样的角不一定相等,相等的角终边一定一样.例1在0与360范围内,找出与以下各角终边一样的角,并推断它们是第几象限角?(1)?120;(2)640;(3)?95012?.?????解:(1)?120?240?360,因而,与?120角终边一样的角是240,它是第三象限角;(2)640?280?360,因而,与640角终边一样的角是280角,它是第四象限角;(3)?95012??12948??3?360,??????????因而,?95012?角终边一样的角是12948?角,它是第二象限角.??例2 假设??k?360??1575?,k?Z,试推断角?所在象限. 解:∵??k?360??1575?(k?5)?360??225?, (k?5)?Z ∴?与225终边一样,因而,?在第三象限.?例3 写出以下各边一样的角的集合S,并把S中适宜不等式?360720?的元素? 写出来:(1)60;(2)?21;(3)36314?.?????解:(1)S??|??60?k?360,k?Z,??S中适宜?360720?的元素是60??1?360300?,60??0?360??60?,?60??1?360??420.??(2)S??|21?k?360,k?Z,??S中适宜?360720?的元素是?21??0?36021?,?21??1?360??339?,?21??2?260??699???(3)S??|??36314??k?360,k?ZS中适宜?360720?的元素是363?14??2?360356?46?, 363?14??1?360??3?14?,?363?14??0?360??363?14.例4 写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边一样的角分别为0?k?360,90?k?360,(k?Z);(3)第一象限角的集合确实是夹在这两个终边一样的角中间的角的集合,我们表示为:?????????M|k?360?90??k?360?,k?Z?.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90??k?360?180??k?360?,k?Z?;N|90??k?360?180??k?360?,k?Z?;Q|270??k?360?360??k?360?,k?Z?.说明:区间角的集合的表示不唯一.例5写出y??x(x?0)所夹区域内的角的集合.??解:当?终边落在y?x(x?0)上时,角的集合为?|??45?k?360,k?Z;????当?终边落在y??x(x?0)上时,角的集合为?|45?k?360,k?Z;??因而,按逆时针方向旋转有集合:S??|?45?k?36045?k?360,k?Z.??二、弧度制与弧长公式1.角度制与弧度制的换算:∵360?=2?(rad),∴180?=? rad. ∴1?=?180rad?0.01745rad.??180 1rad?57.30?5718.oSl2.弧长公式:l?r?. 由公式:?ln?r?l?r??.比公式l?简单. r180lR,其中l是扇形弧长,R是圆的半径. 2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式S?留意几点:1.今后在详细运算时,“弧度”二字和单位符号“rad”能够省略,如:3表示3rad ,sin?表示?rad角的正弦;2.一些特别角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推行之后,不管用角度制仍然弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6 把以下各角从度化为弧度:(1)252?;(2)1115;(3) 30;(4)67?30. 解:(1)/71? (2)0.0625? (3) ? (4) 0.375? 56变式练习:把以下各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o. 解:(1) ?;(2)? 18720?;(3)?. 63例7 把以下各角从弧度化为度:(1)?;(2) 3.5;(3) 2;(4)35?. 4解:(1)108 o;(2)200.5o;(3)114.6o;(4)45o. 变式练习:把以下各角从弧度化为度:(1)?4?3?;(2)-;(3).12310解:(1)15 o;(2)-240o;(3)54o.例8 知扇形的周长为8cm,圆心角?为2rad,,求该扇形的面积. 解:由于2R+2R=8,因而R=2,S=4. 课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3.牢记弧度制下的弧长公式和扇形面积公式,并灵敏运用;篇二:(教案3)1.1任意角和弧度制1.1.1任意角教学目的:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边一样的角”的含义。

..弧度制学案(人教A版必修)

..弧度制学案(人教A版必修)

1.1.2 弧度制自主探究 1.角的单位制 (1)角度制:规定周角的1360为1度的角,用度作为单位来度量角的单位制叫做角度制. (2)弧度制:把长度等于半径长的弧所对的圆心角叫做1弧度的角,记作1_rad.(3)角的弧度数求法:如果半径为r 的圆的圆心角α所对的弧长为l ,那么l ,α,r 之间存在的关系是:|α|=lr;这里α的正负由角α的终边的旋转方向决定.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.2.角度与弧度的互化 (1)360°=2πrad,180°=π rad.(2)1°=π180 rad ≈0.017_45rad ,1rad =⎝⎛⎭⎫180π°≈57°18′=57.30°. 3.扇形的弧长及面积公式我们已经学过弧长公式和扇形面积公式,请写出这两个公式,并根据“一周角(即360°)的弧度数为2π”这一事实化简上述公式.(设半径为r ,圆心角弧度数为α).解 半径为r ,圆心角n °的弧长公式为:l =nπr180,扇形面积公式为S 扇=nπr2360.∵l 2πr =|α|2π,∴l =|α|r . ∵S 扇S 圆=S 扇πr 2=|α|2π,∴S 扇=12|α|r 2.∴S 扇=12|α|r 2=12lr .名师点拨 1.弧度的概念把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.如图所示,圆O 的半径为r ,AB 的长为r ,∠AOB 就是1弧度的角,记为∠AOB =1 rad. 注意:可以证明,一定大小的圆心角α所对应的弧长与半径的比值是唯一确定的,与半径的大小无关.2.弧度数(1)一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr.这里,α的正负由角α的终边的旋转方向决定.注意:①使用公式|α|=lr求角α时,得出的是角α的弧度数的绝对值大小,其正负由角α终边的旋转方向决定.②角α与所在圆的半径大小无关,是由比值lr唯一确定的.③公式中角α是弧度数,不是角度数.(2)角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.3.角度与弧度之间的转化 一般地,我们只需根据180°=π rad 1°=π180rad ≈0.017 45 rad 1 rad =⎝⎛⎭⎫180π°≈57.30° 就可以进行弧度与角度的换算了.注意:今后用弧度制表示角时,“弧度”二字或“rad”通常略去不写,而只写该角所对应的弧度数.例如,角α=2就表示α是2 rad 的角,sin π3就表示π3 rad 的角的正弦,即sin π3=sin 60°.典例剖析一、角度制与弧度制的换算例1 (1)把11°15′化成弧度;(2)把4π5rad 化成度.分析 先将11°15′化为11.25度,然后乘以π180 rad ,即可将11°15′化成弧度.4π5乘以180°π即可化为角度.解 (1)∵11°15′=11.25°,∴11°15′=π180 rad ×11.25=π16rad.(2)4π5 rad =4π5×180°π=144°. 点拨 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad =180°即可解.把弧度转化为角度时,直接用弧度数乘以180°π即可.二、利用弧度制表示终边相同的角例2 把下列各角化成2kπ+α (0≤α<2π,k ∈Z )的形式,并指出是第几象限角:(1)-1 500° (2)236π (3)-4解 (1)-1 500°=-1 800°+300°=-10π+5π3∴-1 500°与53π终边相同,是第四象限角.(2)236π=2π+116π,∴236π与116π终边相同,是第四象限角. (3)-4=-2π+(2π-4)∴-4与2π-4终边相同,是第二象限角.点拨 在同一问题中,单位制度要统一.角度制与弧度制不能混用. 三、弧长、扇形面积的有关问题 例3 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?分析 扇形周长等于2个半径2r ,加上弧长l ,即有:2r +l =40.而面积S =12lr ,这样可以由l =40-2r 代入S =12lr ,从而建立一元二次函数,进一步可以求出最大面积.解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r .∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2, 此时θ=l r =40-2×1010=2 rad.点拨 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数最值问题.变式训练1.将下列角按要求转化: (1)85π=________度; (2)300°=________rad ; (3)-22°30′=______rad.答案 (1)288 (2)5π3 (3)-π82.将-1 485°化为2kπ+α (0≤α<2π,k ∈Z )的形式是______.答案 -10π+74π解析 ∵-1 485°=-5×360°+315°,∴-1 485°可以表示为-10π+74π.3.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.一、选择题1.集合A =⎩⎨⎧⎭⎬⎫α|α=kπ+π2,k ∈Z 与集合B =⎩⎨⎧⎭⎬⎫α|α=2kπ±π2,k ∈Z 的关系是( ) A .A =B B .A ⊆B C .B ⊆A D .以上都不对答案 A2.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin 2 C.2sin 1D .2sin 1答案 C解析 r =1sin 1,∴l =|α|r =2sin 1.3.扇形周长为6 cm ,面积为2 cm 2,则其中心角的弧度数是( )A .1或4B .1或2C .2或4D .1或5 答案 A解析 设扇形半径为r ,圆心角为α,则⎩⎪⎨⎪⎧2r +αr =612αr 2=2,解得⎩⎪⎨⎪⎧ r =1α=4或⎩⎪⎨⎪⎧r =2α=1.4.已知集合A ={α|2kπ≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 等于( )A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π,或0≤α≤π} 答案 C解析 集合A 限制了角α终边只能落在x 轴上方或x 轴上.5.扇形圆心角为π3,半径长为a ,则扇形内切圆的圆面积与扇形面积之比为( )A .1∶3B .2∶3C .4∶3D .4∶9 答案 B解析 设扇形内切圆半径为r ,则r +rsinπ6=r +2r =a .∴a =3r ,S 内切=πr 2.S 扇形=12αr 2=12×π3×a 2=12×π3×9r 2=32πr 2. ∴S 内切∶S 扇形=2∶3. 二、填空题6.若扇形圆心角为216°,弧长为30π,则扇形半径为______. 答案 25解析 216°=216×π180=6π5,l =30π=α·r =6π5r ,∴r =25.7.若2π<α<4π,且α与-7π6角的终边垂直,则α=______.答案 73π或103π解析 -76π+72π=146π=73π,-76π+92π=206π=103π. 8.若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=________.答案 -11π3,-5π3,π3,7π3解析 由题意,角α与π3终边相同,则π3+2π=73π,π3-2π=-53π,π3-4π=-113π. 三、解答题9.用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(包括边界,如图所示).解 (1)⎩⎨⎧⎭⎬⎫α|2kπ-π6≤α≤2kπ+512π,k ∈Z .(2)⎩⎨⎧⎭⎬⎫α|2kπ-34π≤α≤2kπ+34π,k ∈Z .(3)⎩⎨⎧⎭⎬⎫α|kπ+π6≤α≤kπ+π2,k ∈Z . 10.用30 cm 长的铁丝围成一个扇形,应怎样设计才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为α,半径为r ,面积为S ,弧长为l ,则有l +2r =30,∴l =30-2r ,从而S =12·l ·r =12(30-2r )·r=-r 2+15r =-⎝⎛⎭⎫r -1522+2254. ∴当半径r =152 cm 时,l =30-2×152=15 cm ,扇形面积的最大值是2254cm 2,这时α=lr =2 rad.。

弧度制教案及教学设计

弧度制教案及教学设计

1.1.2弧度制一、教材分析1、本节内容在教材中的地位和作用:2、教材地位与作用:本节课是普通高中实验教科书人教A版必修4第一章第一单元第二节..本节课起着承上启下的作用:在前面学生在初中已经学过角的度量单位“度” 并且上节课学了任意角的概念;学生已掌握了一些基本单位转换方法;并能体会不同的单位制能给解决问题带来方便;本节课作为三角函数的第二课时;该课的知识还是后继学习任意角的三角函数等知识的理论准备;因此本节课还起着启下的作用..通过本节弧度制的学习;我们很容易找出与角对应的实数而且在弧度制下的弧长公式与扇形面积公式有了更为简单形式..另外弧度制为今后学习三角函数带来很大方便..2、教学目标3、教学中的重点和难点教学重点:理解弧度的意义;能正确地进行角度制与弧度制的换算..教学难点:弧度制的概念与角度的换算..二、教学设计思想教材遵循了由浅入深、循序渐进的原则.从学生熟悉的基本单位转换入手;体会不同的单位制能给解决问题带来方便;引导学习去思考寻找另一种的单位制度量角..通过类比引出弧度制;关键弄清1弧度的定义;然后通过探索得到弧度数绝对值公式并得出角度和弧度的换算方法..在此基础上;通过具体的例子;巩固所学概念和公式;进一步认识引入弧度制的必要性..这样可以尽量自然的引入弧度制;并让学生在探索的过程中;更好的形成弧度的概念;建立角的集合与实数集的一一对应;为学习任意角的三角函数奠定基础..三、教法分析本节课我采用引导发现式的教学方法..通过教师在教学过程中的点拨;启发学生通过主动观察、主动思考、自主探究来达到对知识的发现和接受..四、教学过程五、教学流程六、教学反思本节课;学生能够在老师的引导下主动学习;基本掌握了弧度制与角度制之间的转换;完成了课堂教学..课堂气氛比较活跃..。

2024年新高一数学讲义(人教A版2019必修第一册)弧度制(解析版)

2024年新高一数学讲义(人教A版2019必修第一册)弧度制(解析版)

第22讲弧度制模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换;2.体会引入弧度制的必要性,建立角的集合与实数集的一一对应关系;3.掌握并能应用弧度制下的弧长公式和扇形面积公式.知识点1角度制与弧度制的概念1、角度制:规定周角的1360为1度的角,这种用度作为单位来度量角的单位制叫做角度制.2、弧度制的有关概念为了使用方便,数学上采用另一种度量角的单位制——弧度制.(1)1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角.(2)弧度制:①定义:以弧度作为单位来度量角的单位制.②记法:用符号rad表示,读作弧度.如图,在单位圆O中, AB的长度等于1,∠AOB就是1弧度的角.3、弧度制与角度制的区别与联系区别(1)单位不同,弧度制以“弧度”为度量单位,角度制以“度”为度量单位;(2)定义不同.联系不管以“弧度”还是以“度”为单位的角的大小都是一个与圆的半径大小无关的定值.【注意】用弧度制表示角时,“弧度”二字可以省略不写;用角度制表示角时单位“°”不能丢.知识点2角度制与弧度制之间的互化1、角度制与弧度制的换算2度0°30°45°60°90°120°135°150°180°270°360°弧度6π4π3π2π32π43π65ππ23ππ23、角的集合与实数集R 的关系角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系,如图,每个角都是唯一的实数(等于这个角的弧度数)与它对应;反之,每一个实数也都有唯一的一个角(即弧度数等于这个实数的交)与之对应.知识点3弧长与扇形面积公式1、弧长与扇形面积公式的两种表示类别/度量单位角度制弧度制扇形的弧长180n R l π=l R α=扇形的面积2360n R S π=21122S lR R α==【注】扇形的半径为R ,弧长为l ,)20(παα<<或n °为其圆心角.2、弧长公式与扇形面积公式的注意事项(1)在应用公式时,要注意α的单位是“弧度”;(2)在弧度制下的扇形面积公式12S lR =,与三角形面积公式12S ah =的形式相似,可类比记忆.考点一:角度制与弧度制概念辨析例1.(23-24高一下·陕西·月考)已知相互啮合的两个齿轮,大轮50齿,小轮20齿,当小轮转动一周时大轮转动的弧度数是()A.4π5B.5π4C.π5D.5π【答案】A【解析】小齿轮转动一周时,大齿轮转动202 505=周,故其转动的弧度数是24π2π55⨯=.故选:A.【变式1-1】(23-24高一上·全国·专题练习)(多选)下列各说法,正确的是()A.半圆所对的圆心角是πradB.圆周角的大小等于2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度【答案】ABC【解析】由弧度制的定义可知:长度等于半径的弧所对的圆心角的大小是1弧度,则长度等于半径的弦所对的圆心角的大小不是1弧度,D的说法错误,根据弧度的定义及角度与弧度的换算可知,ABC的说法正确.故选:ABC【变式1-2】(22-23高一上·上海松江·期末)下列命题中,正确的是()A.1弧度的角就是长为半径的弦所对的圆心角B.若α是第一象限的角,则π2α-也是第一象限的角C .若两个角的终边重合,则这两个角相等D .用角度制和弧度制度量角,都与圆的半径有关【答案】B【解析】1弧度的角就是长为半径的弧所对的圆心角,A 选项错误;若α是第一象限的角,则α-是第四象限的角,所以π2α-+是第一象限的角,B 选项正确;当30α= ,390β= 时,α与β终边重合,但两个角不相等,C 选项错误;不论是用角度制还是弧度制度量角,由角度值和弧度值的定义可知度量角与所取圆的半径无关,D 选项错误.故选:B【变式1-3】(22-23高一下·江西萍乡·期中)(多选)下列说法中正确的是()A .度与弧度是度量角的两种不同的度量单位B .1度的角是周角的1360,1弧度的角是周角的12πC .根据弧度的定义,180︒一定等于π弧度D .不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关【答案】ABC【解析】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确;根据弧度的定义知,180一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确.故选:ABC.考点二:角度制化为弧度制例2.(23-24高一下·北京房山·期中)300o 化成弧度是()A .5π3B .π611C .7π6D .7π4【答案】A【解析】因为180π= ,所以3π5π300300180=⨯=.故选:A 【变式2-1】(23-24高一上·安徽亳州·期末)将315- 化为弧度制,正确的是()A .3π4-B .7π4-C .45π-D .5π3-【答案】B【解析】7π3153151804π-=-⨯=-.故选:B 【变式2-2】(23-24高一上·新疆乌鲁木齐·月考)(多选)把495- 表示成2πk θ+,Z k ∈的形式,则θ值可以是()A .5π4B .5π4-C .3π4D .3π4-【答案】AD【解析】根据角度制与弧度制的互化公式,可得11π4954-=-,再由终边相同角的表示,可得11π3π5π2π4π444-=--=-,所以11π4-与3π4-和5π4的终边相同.故选:AD.【变式2-3】(23-24高一上·广东·月考)(多选)下列各角中,与角495︒终边相同的角为()A .3π4B .5π4-C .9π4-D .13π4【答案】AB【解析】对于A ,495360135︒=︒+︒,3π1354︒=,故A 正确;对于B ,与3π4终边相同的角为324k παπ=+,k ∈Z ,当1k =-时,5π4α=-,故B 正确;对于C ,令3π9π2π44k +=-,解得32k =-∉Z ,故C 错误;对于D ,令3π13π2π44k +=,解得54k =∉Z ,故D 错误.故选:AB.考点三:弧度制化为角度制例3.(23-24高一上·湖南株洲·月考)把5π4化成角度是()A .45︒B .225︒C .300︒D .135︒【答案】B【解析】5π5π18022544π︒=⨯=︒.故选:B 【变式3-1】(23-24高一上·广东汕头·月考)5π12化为角度是()A .60︒B .75︒C .115︒D .135︒【答案】B 【解析】5π5180751212=⨯︒=︒.故选:B 【变式3-2】(23-24高一上·广东汕头·月考)3rad 是第()象限角A .一B .二C .三D .四【答案】B【解析】π180rad = ,540903180πrad ⎛⎫∴<=< ⎪⎝⎭为第二象限角.故选:B【变式3-3】(22-23高一上·北京·期末)下列与7π4的终边相同的角的表达式中,正确的是()A .()2π315Z k k +∈B .()36045Z k k ⋅-∈C .()7π360Z 4k k ⋅+∈D .()5π2πZ 4k k +∈【答案】B【解析】因为7πrad 3154=,终边落在第四象限,且与45- 角终边相同,故与7π4的终边相同的角的集合{}{}31536045360S k k αααα==+⋅==-+⋅ 即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限.故选:B.考点四:扇形弧长的相关计算例4.(23-24高一上·云南曲靖·月考)半径为3cm ,圆心角为210°的扇形的弧长为()A .630cmB .7cm6C .7πcm 6D .7πcm 2【答案】D【解析】圆心角210︒化为弧度为7π6,则弧长为7π7π3cm 62⨯=.故选:D 【变式4-1】(23-24高一上·广东深圳·期末)若扇形的面积为1,且弧长为其半径的两倍,则该扇形的周长为()A .1B .2C .4D .6【答案】C【解析】设扇形的半径为r ,圆心角为α,则弧长2l r r α==,所以2α=,扇形的面积22112S r r α===,解得1r =或1r =-(舍去),所以2l r α==,则该扇形的周长为24r l +=.故选:C【变式4-2】(23-24高一下·江西景德镇·期中)古代文人墨客与丹青手都善于在纸扇上题字题画,题字题画的扇面多为扇环形.已知某纸扇的扇面如图所示,其中外弧长与内弧长之和为89cm ,连接外弧与内弧的两端的线段长均为18cm ,且该扇环的圆心角的弧度数为2.5,则该扇环的外弧长为()A .63cmB .65cmC .67cmD .69cm【答案】C【解析】设该扇环的内弧的半径为r cm ,则外弧的半径为()18cm r +,圆心角 2.5α=,所以()1889r r αα++=,即()2.5 2.51889r r ++=,解得8.8r =,所以该扇环的外弧长()()2.518 2.58.81867cm l r =+=+=.故选:C【变式4-3】(23-24高一下·山东烟台·月考)《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把郑铁饼者张开的双臂近似看成一张拉满弦的“弓”,郑铁饼者的手臂长约为π4米,肩宽约为π8米,“弓”所在圆的半径约为1.25米,则郑铁饼者双手之间的距离约为)1.41≈()A.1.01米B.1.76米C.2.04米D.2.94米【答案】B【解析】由题意可知,“弓”所在圆的弧长为 ππ5π2488BC=⨯+=,由弧度数公式得5ππ81.252lBOCr∠===,即BOC为等腰直角三角形,所以π4OBC∠=,则掷铁饼者双手之间的距离()5 1.41 1.76mπ44sin4rBC==≈⨯≈.故选:B.考点五:扇形面积的相关计算例5.(23-24高一下·广东韶关·月考)已知扇形的圆心角为2弧度,其弧长为8m,则该扇形的面积为()A.28m B.212m C.216m D.232m【答案】C【解析】由扇形的圆心角为2弧度,其弧长为8m,得扇形所在圆半径4m=r,所以该扇形的面积148162S=⨯⨯=(2m).故选:C【变式5-1】(23-24高一上·云南昆明·期末)已知某扇形的圆心角是3π8,半径为4,则该扇形的面积为.【答案】3π【解析】由扇形的圆心角是3π8,半径为4,则该扇形的面积为23π43π812S ⨯⨯==.故答案为:3π.【变式5-2】(22-23高一下·河南南阳·期中)圆环被同圆心的扇形截得的一部分叫做扇环.如图所示,扇环ABCD 的内圆弧AB 的长为2π3,外圆弧CD 的长为4π3,圆心角2π3AOB ∠=,则该扇环的面积为()A .πB .π2C .4π3D .2π3【答案】A【解析】由扇形面积公式2122l S lr α==(其中l 为扇形弧长,α为扇形圆心角,r 为扇形半径)可得,扇环面积22214π2π34ππ2334π3S α⎡⎤⎛⎫⎛⎫'=-=⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.故选:A 【变式5-3】(23-24高一下·河南驻马店·月考)如图,在菱形ABCD 中,45A ∠=︒,1A ,1B ,1C ,1D 分别是边AB ,BC ,CD ,DA 的中点,以点A 为圆心,以1AA ,2AA 为半径作出两段圆弧,与AD 分别交于点1D ,3A ,分别以B ,C ,D 为圆心,用同样方法作出如图阴影部分的扇环,其中121212121A A B B C C D D ====.若扇环1231A A A D 的周长为7π24+,则扇环1231B B B A 的面积为()A .3πB .21π8C .7π8D .3π4【答案】B【解析】设2AA r =,则11AA r =+,因为扇环1231A A A D 的周长为7π24+,所以:()ππ7π122444r r +++=+⇒3r =.所以扇环1231B B B A 的面积为:2213π13π432424⋅⋅-⋅⋅21π8=.故选:B考点六:扇形周长、面积的最值例6.(23-24高一下·重庆璧山·月考)已知某扇形的周长是24,则该扇形的面积的最大值是()A .28B .36C .42D .50【答案】B【解析】设扇形的弧长为l ,半径为r ,则224l r +=,所以扇形的面积22111212123624424l r S lr l r +⎛⎫==⋅≤=⨯= ⎪⎝⎭,当且仅当2l r =,即12,6l r ==时取等号,所以该扇形的面积的最大值是36,故选:B【变式6-1】(23-24高一上·江苏南京·期末)(多选)已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是()A .该扇形面积的最小值为8B .当扇形周长最小时,其圆心角为2C .2r l +的最小值为9D .2214r l+的最小值为12【答案】BCD【解析】由题意,知2r l rl +=,则(),22lr l l =>-,所以扇形面积22111(2)4(2)422222l l l S rl l l -+-+==⋅=⋅--1411[(2)4]4)(44)42222l l =-++≥⨯=⨯+=-,当且仅当422l l -=-,即4l =时,等号成立,选项A 错误;扇形周长为()()22242422222l l l l r l l l l l -+-++=+==---4(2)44482l l =-++≥+=-,当且仅当422l l -=-,即4l =时,等号成立,此时,圆心角为422l r==,选项B 正确;()()()222522222522222l l l l l l r l l l -+-+=-+=+=--++-5459≥=+=当且仅当()2222l l -=-,即3l =时,等号成立,选项C 正确;()22222222144841118421l r l l l l l l -⎛⎫+=+=-+=-+ ⎪⎝⎭,当114l =时,上式取得最小值为12,选项D 正确.故选:BCD.【变式6-2】(23-24高一上·云南曲靖·期末)已知一扇形的圆心角为α(α为正角),周长为C ,面积为S ,所在圆的半径为r .(1)若36α=︒,10cm r =,求扇形的弧长;(2)若4cm C =,求S 的最大值及此时扇形的半径和圆心角.【答案】(1)()2πcm ;(2)S 的最大值为1,此时扇形的半径是1cm ,圆心角2rad .【解析】(1)π13636rad πrad 1805α=⨯=︒=,扇形的弧长()1π102πcm 5l r α==⨯=;(2)设扇形的弧长为l ,半径为r ,则24r l +=,()4202l r r ∴=-<<,则()()22114221122S lr r r r r r ==-=-+=--+,当1r =时,2max 1cm S =,此时4212cm l =-⨯=,2lrα==,S ∴的最大值是21cm ,此时扇形的半径是1cm ,圆心角2rad α=.【变式6-3】(23-24高一下·河南南阳·月考)已知一扇形的圆心角为()0αα>,半径为R ,面积为S ,周长为L .(1)若24cm S =,则扇形圆心角α为多少弧度时,L 最小?并求出L 的最小值;(2)若10cm L =,则扇形圆心角α为多少弧度时,S 最大?并求出S 的最大值.【答案】(1)2rad α=,最小值为8cm ;(2)2rad α=,最大值为225cm 4.【解析】(1)2214cm 2S R α== ,28Rα∴=则288222L R R R R R R Rα=+=+⋅=+.由基本不等式可得828R R +≥=,当且仅当82R R =,即2R =时等号成立,此时2822α==.∴当2rad α=时,L 最小,最小值为8cm .(2)210cm L R R α=+= ,102RRα-∴=.22221110252552224R S R R R R R R α-⎛⎫==⋅⋅=-+=--+ ⎪⎝⎭.当52R =,即2α=时,max 254S =.∴当2rad α=时,S 最大,最大值为225cm 4.一、单选题1.(23-24高一上·贵州黔南·315︒化为弧度是()A .π4-B .7π4C .11π6D .5π3【答案】B 【解析】3157315ππ1804︒==.故选:B 2.(23-24高一上·江苏徐州·月考)把2π3弧度化成角度是()A .30︒B .60︒C .90︒D .120︒【答案】D【解析】因为π180=︒,所以22π18012033=⨯︒=︒.故选:D.3.(22-23高一上·广东深圳·期末)在半径为2的圆中,弧长为π的弧所对的圆心角为()A .60︒B .90︒C .120︒D .180︒【答案】B【解析】弧长为π的弧所对的圆心角为πrad 902︒=,故选:B 4.(23-24高一下·辽宁大连·月考)已知扇形的弧长为2π,半径为3,则扇形的面积为()A .πB .3π2C .3πD .6π【答案】C【解析】由扇形的面积可得,112π33π22S lr ==⨯⨯=.故选:C 5.(23-24高一下·内蒙古赤峰·月考)已知扇形的半径为2,圆心角为2弧度,则此扇形的弧长为()A .4B .6C .8D .10【答案】A【解析】因为半径2r =,圆心角=2α,所以根据弧长公式l r α=得4l =.故选:A.6.(23-24高一上·陕西铜川·月考)已知一扇形的周长为40,当扇形的面积最大时,扇形的圆心角等于()A .2B .3C .1D .4【答案】A【解析】设扇形所在圆半径为r ,则该扇形弧长402l r =-,020r <<,于是该扇形的面积21(20)(10)1001002S rl r r r ==-=--+≤,当且仅当10r =时取等号,所以当10r =时,扇形的面积最大,此时扇形的圆心角等于2lr=.故选:A 二、多选题7.(23-24高一下·安徽淮北·)A .120-︒化成弧度是2πrad3-B .πrad 10化成角度是18°C .1 化成弧度是180rad D .10πrad 3-化成角度是60-︒【答案】AB【解析】对于A 项,因π2120120πrad 1803-︒=-⨯=-,故A 项正确;对于B 项,因ππ180rad=(181010π⨯=,故B 项正确;对于C 项,因ππ11rad rad 180180=⨯=,故C 项错误;对于D 项,因1010180πrad π(60033π-=-⨯=-,故D 项错误.故选:AB.8.(23-24高一下·湖南·期中)已知某扇形的周长和面积均为18,则扇形的圆心角的弧度数可能为()A .4B .3C .2D .1【答案】AD【解析】设扇形的半径为r ,弧长为l ,圆心角为α,根据扇形的周长和面积均为18,则2181182l r lr +=⎧⎪⎨=⎪⎩,解得312r l =⎧⎨=⎩或66r l =⎧⎨=⎩,则4lrα==或1.故选:AD .三、填空题9.(23-24高一下·河南驻马店·月考)已知某扇形的半径为42,周长为122,则该扇形的面积为.【答案】16【解析】设扇形的弧长为l ,依题意,242122l ⨯+=,解得42l =.故该扇形的面积为14242162⨯⨯=.故答案为:16.10.(23-24高一下·河南南阳·月考)以密位作为角的度量单位,这种度量角的单位制,叫作角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数之间画一条短线,如5密位写成“005-”,235密位写成“235-”,1246密位写成“1246-”.1周角等于6000密位,写成“6000-”.已知某扇形中的弧的中点到弧所对的弦的距离等于弦长的36,则该扇形的圆心角用密位制表示为.【答案】2000-【解析】如图,C 是弧AB 的中点,由题意可得3363CD AB BD ==,即3=BD CD .因为AB CD ⊥,所以π6CBD ∠=,所以同弧所对圆心角π3AOC ∠=,所以2π2π60002000332πAOB ∠==⨯=,即该扇形的圆心角用密位制表示为2000-.故答案为:2000-11.(23-24高一下·江西乙醇·dm ,宽为1dm 的长方体木块在桌面上作无滑动翻滚,翻滚到第四次时被小木块挡住,此时长方体木块底面与桌面所成的角为π6,求点A 走过的路程为.()dm【解析】第一次是以B 为旋转中心,以2BA ==为半径旋转90︒,此次点A 走过的路径是π2π2⨯=,第二次是以C 为旋转中心,以11CA =为半径旋转90︒,此次点A 走过的路径是ππ122⨯=,第三次是以D 为旋转中心,以2DA =60︒,此次点A 走过的路径是π3=∴点A 三次共走过的路径是()3π9πdm 236++=,()dm .四、解答题12.(23-24高一下·辽宁辽阳·期中)如图,这是一个扇形环面(由扇形OCD 挖去扇形OAB 后构成)展台,4=AD 米.(1)若2π3COD ∠=,2OA =米,求该扇形环面展台的周长;(2)若该扇形环面展台的周长为14米,布置该展台的平均费用为500元/平方米,求布置该扇形环面展台的总费用.【答案】(1)16π83+米;(2)6000元【解析】(1)弧AB 的长度14π3l =,弧CD 的长度212π3l =,所以扇形环面展台周长为:1216π2483l l ++⨯=+米;(2)设COD θ∠=,OA r =米,则弧AB 的长度1l r θ=,弧CD 的长度()244l r r θθθ=+=+,因为该扇形环面的周长为14米,所以124214l l ++⨯=,即4814r r θθθ+++=,整理得23r θθ+=,则该扇形环面展台的面积:()2211(4)48421222S r r r r θθθθθθ=+-=+=+=平方米,所以布置该扇形环面展台的总费用为:125006000⨯=元.13.(23-24高一上·安徽淮北·月考)已知扇形的圆心角是α,半径为R ,弧长为l .(1)若3πα=,10cm R =,求扇形的弧长l .(2)若扇形的周长是20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若,2cm 3R πα==,求扇形的弧所在的弓形的面积.【答案】(1)10cm 3π;(2)2α=时,面积最大;(3)23π⎛⎝cm 2.【解析】(1)由,10cm 3R πα==,则扇形的弧长101033l R ππα==⨯=(cm).(2)由已知得,220l R +=,则202l R =-,∴()()22022111202252242R R S lR R R -+⎡⎤==-⋅≤=⎢⎥⎣⎦当且仅当2022R R -=,即5R =时扇形的面积最大,此时圆心角1025α===l R .(3)设弓形面积为S 弓形,由,2cm 3R πα==,得()2cm 3l R πα==,所以22121222sin cm 23233S πππ⎛=⨯⨯-⨯⨯= ⎝弓形.。

5.1.2弧度制教学设计高一上学期数学人教A版

5.1.2弧度制教学设计高一上学期数学人教A版

5.1.2 弧度制1、教学目标(1).理解弧度制的意义,能正确的进行角度制与弧度制的换算;了解角的集合和实数集R 之间可以建立起一一对应的关系;熟记特殊角的弧度数.(2).掌握并能应用弧度制下的扇形弧长公式和面积公式2、教学重点与难点1.教学重点:弧度制的定义、弧度与角度的换算2.教学难点:弧度制与角度制的联系及弧度制下扇形的弧长公式和面积公式的推导和证明。

3、教学过程设计(一) 概念的引入【问题1】 在初中几何里,我们学习过角的度量,1︒的角是怎样定义的呢?师生活动:1︒的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1︒.它是一个定值,与所取圆的半径大小无关.【问题2】度量长度可以用米、英尺、码等不同的单位制,度量质量可以用千克、磅等不同的单位制.不同的单位制能给解决问题带来方便.角的度量是否也能用不同的单位制呢?能否像度量长度那样,用十进制的实数来度量角的大小呢?师生活动:学生思考并回答问题。

教师提问,引导学生思考第二种单位制的存在。

指明本节课所学知识点:弧度制的定义以及1弧度的含义。

【设计意图】:引发学生学习兴趣,激发学生的好奇心和求知欲,让学生意识到可以用不同的单位制来度量同一个量,从而理解角度制和弧度制都是对角度量的方法。

下面介绍在数学和其他科学研究中经常采用的另一种度量角的单位制——弧度制. 如图5.19,射线OA 绕端点O 旋转到OB 形成角α.在旋转过程中,射线OA 上的一点P (不同于点O )的轨迹是一条圆弧,这条圆弧对应于圆心角α.设α =n ︒,OP=r ,点P 所形成的圆弧1PP 的长为l .由初中所学知识可知l=180n r π, 于是180l n rπ=.【问题3】:如图5.110,在射线OA 上任取一点Q (不同于点O ),OQ =1r .在旋转过程中,点Q 所形成的圆弧1QQ 的长为1l .1l 与1r 的比值是多少?你能得出什么结论?可以发现,圆心角α 所对的弧长与半径的比值,只与α 的大小有关.也就是说,这个比值随α 的确定而唯一确定.这就启发我们,可以利用圆的弧长与半径的关系度量圆心角.而这种像度量长度那样,用十进制的实数来度量角的大小的单位制称为弧度制.师生活动:学生思考并回答问题,可以独立思考,也可以进行小组讨论。

高中数学必修4弧度值教案

高中数学必修4弧度值教案

高中数学必修4弧度值教案
课题:弧度值
目标:学生能够掌握弧度值的概念,能够转换角度和弧度的关系
教学重点:弧度的定义,角度和弧度的转换
教学难点:角度和弧度的转换
教学准备:教材、黑板、粉笔、教学PPT
教学步骤:
一、导入(5分钟)
老师通过引导学生回顾之前学过的角度的概念,让学生思考什么是角度,并与圆相关联。

二、讲解(15分钟)
1. 弧度的定义:引导学生思考圆周角的度量方式,并介绍弧度的定义为圆周的长度等于半径的角。

2. 角度和弧度的关系:通过示意图和实际问题,让学生理解角度与弧度的转换关系。

三、练习(25分钟)
1. 让学生完成几道简单的练习题,巩固弧度的概念及与角度的转换。

2. 让学生通过实际问题应用角度和弧度的计算方法。

四、总结(5分钟)
老师带领学生总结本节课学到的知识点,并强调弧度值在数学中的重要性。

五、作业布置(5分钟)
布置作业,巩固学生对弧度值的理解和运用。

板书设计:
1. 弧度的定义:圆周的长度等于半径的角
2. 角度和弧度的关系:1弧度=180°
3. 角度和弧度的转换公式:θ(弧度)=θ(角度) × π/180
反思:
通过本节课的教学,学生对弧度值的概念有了更深入的认识,能够灵活运用角度和弧度的转换公式进行计算。

同时,本节课难度适中,但为了更好地巩固和理解弧度值的知识,可以设计更多场景化的问题,提高学生的实际运用能力。

高中数学《弧度制与角度制的互化》教案

高中数学《弧度制与角度制的互化》教案

(二)新课讲授
1.感知新知
【教师活动】
首先给同学们说一下弧度制的定义,弧度制规定长度和半径相等的弦所对应得圆心角叫
做 1 弧度的角,弧度可以用字母 rad 来表示像这种用弧度来度量角的制度叫做弧度制,下面
给同学们两分钟的时间思考一下圆周角等于多少弧度。
【学生活动】
学生利用之前学习的知识圆的周长等于 2πr ,又因为弧度制规定长度和半径相等的弦所
行推导,学生经过讨论,最终推导出
n
nπ 180
rad ,
rad
180 π
【设计意图】
通过自主探究,小组讨论等形式让学生自行发现并掌握知识,充分体现学生为主体,教
师为主导的教师理念。
(三)巩固提高
1.让学生根据今天的所学知识完成:“ π 等于多少度?以及 270°等于多少弧度?”帮 4
助学生进一步巩固所学知识。 2.教师在学生解题过程中进行巡视,根据学生解题情况,提问学生解题思路以及运算结
3.深化新知
【学生活动】
学生再次利用刚才的方法等式两边同时除一
180
就得到了
1=
π 180
rad
,同样等式两边
同时除一π就得到了 1rad
180 π
【教师活动】
提问学生 n°等于多少弧度以及α弧度等于多少度?
【学生活动】
学生展开小组讨论,教师惊醒巡视,巡视过程中引导学生利用我们刚才得到的式子来进
三、教学过程
(一)导入新课
【教师活动】 教师引导学生复习角度制的相关知识,并询问学生角度值的定义是什么? 【学生活动】 学生经过思考很容易回答把圆周角平均分成 360 份,其中一份所对应的圆心角是 1 度, 这种用角度来度量角的制度叫做角度制,而且角度制规定 60 分等于 1 度,60 秒等于 1 分。 【教师活动】 教师提问:那么我们还有没有其他的方法来度量角的大小呢?学生都摇头,那么这节课 呢就一起来学习一下弧度制以及角度制与弧度制之间的换算。 进而导入新课。 【设计意图】 通过复习导入的形式引入《弧度制以及弧度制与角度制之间的换算》,激发学生学习的 兴趣,找准教学起点,有效实施教学。

人教A版高中数学必修四教案弧度制和弧度制与角度制的换算新

人教A版高中数学必修四教案弧度制和弧度制与角度制的换算新

1.1.2弧度制和弧度制与角度制的换算
一、教学目标:
1.知识目标:
(1)1弧度的角的定义;(2)弧度制的定义;(3)弧度与角度的换算;(4)角的集合与实数集R之间建立的一一对应关系;(5)弧度制下的弧长公式、扇形面积公式。

2.能力目标:
(1)理解弧度的意义,能正确地进行角度与弧度的换算,熟记特殊角的弧度数;(2)了解角的集合与实数集R之间可以建立起一一对应关系;(3)掌握弧度制下的弧长公式,扇形的面积公式;(4)会利用弧度解决某些实际问题。

3.情感目标:
(1)使学生认识到角度制、弧度制都是度量角的制度,二者虽然单位不同,但是互相联系的、辩证统一的,进一步加强对辩证统一思想的理解;(2)使学生通过总结引入弧度制的好处,学会归纳、整理并认识到任何新知识的学习都会为我们解决实际问题带来方便,从而激发学生的学习兴趣。

二、教学重点、难点:
重点:弧度的意义,弧度与角度的换算方法;
难点:理解弧度制与角度制的区别。

三、教学方法:
通过几何画板多媒体课件的演示,给学生以直观的形象,使学生进一步理解弧度作为角的度量单位的可靠性和可行性。

从特殊到一般,是人类认识事物的一般规律,让学生从某一个简单的、特殊的情况开始着手,更利于教学的开展和学生思维的拓展,共同找出弧度与角度换算的方法。

通过设置问题启发引导学生观察、分析、归纳,使学生在独立思考的基础上更好地进行合作交流。

角,同一个非零角
附录(表格和图):。

任意角和弧度制(弧度制)教案 高一上学期数学人教A版(2019)必修第一册

任意角和弧度制(弧度制)教案 高一上学期数学人教A版(2019)必修第一册

第五章三角函数5.1.2 弧度制(1 课时)【教学内容】弧度与角度的互化;特殊角的弧度制;弧长公式、扇形面积公式.【教学目标】(说明:不要写成三维目标的形式,点列,可以从知识技能、过程方法、数学核心素养等角度写目标)1.理解弧度制的定义,体会引入弧度制的必要性.(数学抽象)2.能进行弧度与角度的互化,熟悉特殊角的弧度制.(逻辑推理、数学运算)3.掌握弧度制中扇形的弧长和面积公式,体会弧度制下公式形式的简洁性,会应用公式解决简单的问题.(数学运算、数学模型)【教学重难点】教学重点:角度制与弧度制间的互相转化,弧长公式及扇形的面积公式的推导与证明.教学难点:能灵活运用弧长公式、扇形面积公式解决问题.【教学过程】(说明:本环节包括新授、小结、布置作业等)一、复习回顾,温故知新1.在平面几何里,度量角的大小用什么单位?【答案】角度制的单位有:度、分、秒。

2.1 的角是如何定义的?【答案】规定:圆周1/360 的圆心角称作1 角.这种用度做单位来度量角的制度叫做角度制.日常生活中,度量长度可用不同的单位,如:一张课桌长80 厘米,也可以说长0.8 米,显然两种结果出现了不同的数值. 在数学和其他科学研究中还经常用到另一种度量角的制度—弧度制,它是如何定义呢?二、探索新知探究:在圆内,圆心角的大小和半径大小有关系吗?角度为60的圆心角,半径r 1,2,3 时,(1)分别计算相对应的弧长l ;(2)分别计算对应弧长与半径之比.思考:通过上面的计算,你发现了什么规律?【答案】①.圆心角不变,比值不变;比值的大小与所取的圆的半径大小无关;②圆心角改变,比值改变;比值的大小只与圆心角的大小有关;1.弧度的概念把长度等于半径长的弧所对的圆心角叫做1 弧度(radian)的角.弧度制:这种以弧度作为单位来度量角的单位制叫做弧度制,它的单位是弧度,单位符号是 rad. 约定: 正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为 0.思考 1:圆的半径为 r,弧长分别为 2r 、πr,则它们所对圆心角的弧度 数是多少?【答案】2rad, πrad.思考 2:如果半径为 r 的圆的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值如何计算?l【答案】|α| =r2. 角度与弧度的换算思考 3:一个周角以度为单位度量是多少度, 以弧度为单位度量是多少弧度?由此可得角度与弧度有怎样的换算关系?【答案】360º, 2π. 360︒= 2πrad,180︒ = πrad思考 4:根据上述关系,1°等于多少弧度, 1 rad 等于多少度? 【答案】1︒ =π180︒≈ 0.01745rad 1rad = 180)︒≈ 57.30︒(π三、典型例题例 1. 把下列各角的度数化为弧度。

人教版高中数学弧度制教案

人教版高中数学弧度制教案

人教版高中数学弧度制教案
教学内容:弧度制
教学目标:
1. 理解弧度制的概念及与角度制的转换关系;
2. 掌握弧度制的计算方法;
3. 能够运用弧度制解决相关问题。

教学重点:
1. 弧度制的概念及运用;
2. 弧度制和角度制的转换。

教学难点:
1. 弧度制与角度制的转换;
2. 弧度制的计算方法。

教学过程:
一、导入新知识(5分钟)
教师引导学生回顾角度制的概念及计算方法,并提出弧度制的定义。

二、讲解弧度制的概念及计算方法(15分钟)
1. 教师讲解弧度制的定义及计算方法,强调弧度制的优势和应用范围;
2. 带领学生进行弧度制与角度制的转换练习,并解释计算过程。

三、练习与讨论(20分钟)
1. 学生自主练习弧度制计算方法,并相互讨论解题思路;
2. 教师布置相关练习题,让学生在课后进行巩固练习。

四、检测与总结(10分钟)
1. 教师让学生进行弧度制的应用题练习,并及时纠正;
2. 学生合作讨论,总结本节课的知识点,提出问题并解决。

五、作业布置(5分钟)
布置相关作业,要求学生巩固掌握弧度制的概念和计算方法。

教学反思:
本节课主要围绕弧度制展开教学,通过讲解、练习和讨论,让学生充分理解弧度制的概念和计算方法,提高学生的数学运算能力和分析问题的能力。

在课后作业中,学生可以继续巩固弧度制的知识,提高解题的能力和速度。

5.1.2弧度制+课件-高一上学期数学人教A版必修第一册

5.1.2弧度制+课件-高一上学期数学人教A版必修第一册

换算,如何换算?
例1.把下列角度化成弧度或弧度化成角度.
(1)72°;(2)-300°;(3)2;(4)−
解:(1)72° = 72 ×
(3)2 = 2 ×
180


180
=
°=
2.5ຫໍສະໝຸດ 3602.
9

180
(2)−300° = −300 ×
°. (4)−
2
9
= (−
2
)
9
=−
180


×(
5.1.2 弧


我们知道,角可以用度为单位进行度量,1度的角等于周

角的 .这种用度作为单位来度量角的单位制叫做角度制.

问题1. 与 可以相加吗?为什么?
问题2.由弧长公式 = ∙


可得


=


,这说明角的大



小仅和角所对的弧长与半径的比值有关,我们能用比值 来刻
应;反过来,每一个实数也都有唯一
的一个角(即弧度数等于这个实数的
角)与它对应.
零角
负角
0
负实数
例2.利用弧度制证明下列关于扇形的公式:
(1) = ;
(2) =
1
2 ;
2
(3) =
1
.
2
其中是圆的半径,(0 < < 2)为圆心角,是扇形的弧长,
是扇形的面积.


证明:由公式|| = 可得: = .
扇形的弧长和面积公式:
设扇形的半径为,弧长为,(0 < < 2)为其圆心角,则:
弧长公式

弧度制课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册

弧度制课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册

【2】把下列弧度化成角度.
【解】
5.1.2
弧度制
研探新知
角度

30°
45°
60°
90°
120°
135°
150°
180°
210°
270°
360°
弧度
角度
弧度
5.1.2 弧度制
【3】用弧度表示:
(1)终边在x轴上的角的集合
(2)终边在y轴上的角的集合
【解】
5.1.2
弧度制
研探新知
若用R表示圆的半径,α (0<α<2π)为圆心角,l 是扇形弧长,
如何换算?
360 2π rad
180 π rad
π
1
rad
180
180
1 rad
57.30
π
5.1.2
弧度制
研探新知
两边同除以180
两边同除以π
弧度数=角度数×
rad
角度数=弧度数×(

5.1.2
弧度制
典型例题
【例4】把下列弧度化成角度或角度化成弧度:
(2) θ
4
4
|
π
π
+kπ<θ< +kπ,k ∈Z
2
(3) θ 6
|
.
.
5.1.2 弧度制
【3】用弧度制表示顶点在原点,始边重合于x轴的非负半轴,终边
π
5
- +2kπ<θ< π+2kπ,k∈
6
12
解:(1) θ
落在阴影部分内的角的集合(不包括边界,如图所示).
|


- +2kπ<θ< +2 kπ,k∈Z

人教版高一数学必修第三册《弧度制及其与角度制的换算》教案及教学反思

人教版高一数学必修第三册《弧度制及其与角度制的换算》教案及教学反思

人教版高一数学必修第三册《弧度制及其与角度制的换算》教案及教学反思一、教学目标1.掌握弧度制。

2.熟练掌握角度制和弧度制之间的换算。

3.能够灵活运用角度制和弧度制进行计算。

二、教学重点和难点1.弧度制的概念和计算方法。

2.角度制和弧度制之间的换算。

三、教学过程1.引入(5分钟)教师通过讲述一个故事或引用一个有趣的例子,让学生了解使用角度制进行计算时可能遇到的问题。

通过这个引入,让学生对今天的学习主题——弧度制及其与角度制的换算有所了解,并对其产生兴趣。

2.概念讲解(15分钟)为了更好地让学生理解弧度制,教师应该把它和角度制进行对比,逐步介绍弧度制的概念。

教师可以在黑板上画一个圆,并解释它的周长是 $2\\pi$ 倍的半径。

然后,教师可以用同样的长度来描述圆心角的大小,这就是弧度制。

3.计算弧度制(20分钟)接下来,教师应该逐步引导学生计算弧度制。

教师可以给学生一些例子,例如求圆的周长、圆心角的大小等等。

在教师给出题目的同时,应该给出解题思路,让学生能够理解用弧度制进行计算的过程。

4.角度制和弧度制的换算(25分钟)在学生掌握了弧度制的概念和计算方法之后,教师应该指导学生如何进行角度制和弧度制之间的换算。

教师可以给学生一些例子,并通过讲解解题思路,让学生理解如何将角度制转换为弧度制,以及如何将弧度制转换为角度制。

5.练习(30分钟)为了帮助学生掌握弧度制及其与角度制的换算,教师应该给学生留出足够的练习时间。

教师可以为学生提供一系列的练习题,让他们在课堂上独自或与同伴联合解答。

6.讲解(10分钟)在讲解的过程中,教师需要重点强调角度制和弧度制之间的换算技巧,以及如何使用弧度制计算有关圆的属性的方法。

四、教学反思在教学过程中,我发现学生对于弧度制的概念和计算方法有一定的概念混淆,导致了学生在计算上出现了困难。

因此,在下一次课堂上,我会更加详细地介绍弧度制的概念,让学生能够掌握弧度制的作用以及具体的计算方法。

人教版高一数学必修第三册《弧度制及其与角度制的换算》说课稿

人教版高一数学必修第三册《弧度制及其与角度制的换算》说课稿

人教版高一数学必修第三册《弧度制及其与角度制的换算》说课稿一、教材分析本篇说课稿是针对人教版高中数学必修第三册中的《弧度制及其与角度制的换算》这一单元进行的。

该单元是高一数学必修课的一部分,主要内容是介绍弧度制的概念以及与角度制进行换算。

通过本单元的学习,学生能够了解弧度制的基本概念和性质,并能够熟练进行弧度制与角度制的互相转换。

二、教学目标1.知识目标:–了解弧度制的定义和基本性质;–掌握弧度制与角度制的换算方法;–能够灵活运用弧度制与角度制进行角度的计算与单位转换。

2.能力目标:–培养学生观察问题、提出问题、解决问题的能力;–培养学生正确使用弧度制和角度制进行数学推理和计算的能力;–培养学生合作探究、团队合作的能力。

3.情感目标:–培养学生对数学学科的兴趣和热爱;–培养学生正确的学习态度和方法;–培养学生思维的灵活性和创造性。

三、教学重难点1.教学重点:–弧度制的定义和基本性质;–弧度制与角度制的换算方法。

2.教学难点:–弧度制与角度制的互相转换方法的理解与应用;–弧度制与角度制的思维方式转换的培养。

四、教学过程1. 导入与引导(5分钟)引导学生回顾角度的相关知识,并提出一个问题:我们平常计算角度时经常使用的是度数,但在某些情况下使用弧度制更加方便,你们知道弧度制吗?2. 教学呈现(10分钟)通过多媒体展示弧度制的定义及其基本性质,包括弧长与半径的关系、弧度与角度的换算公式等内容。

引导学生思考弧度制与角度制之间的关系。

3. 教学实践(40分钟)3.1 实践引入:教师设计一道相关练习,让学生通过计算角度的弧度表示,进一步理解弧度制的应用。

3.2 合作探究:学生分组进行小组讨论,针对给定问题,通过实践操作、尝试和讨论,探究弧度制与角度制之间的换算方法。

教师起到引导和组织学生思维的作用。

3.3 学生展示:每个小组选出一名代表,对自己的探究结果进行汇报,并由教师引导全班学生进行讨论和交流,加深对弧度制与角度制的理解和运用。

任意角与弧度制 教学设计-2023-2024学年高一上学期数学人教A版(2019)必修第一册

任意角与弧度制 教学设计-2023-2024学年高一上学期数学人教A版(2019)必修第一册

任意角与弧度制课时教学设计课题5.1任意角与弧度制授课时间: 年 月 日课型:新授课课时:第一课时数学核心素养目标1.通过探索让学生掌握用“旋转”定义角的概念,理解并掌握“正角”、“负角”、“象限角”、“终边相同的角”的含义。

2.培养学生判断推理和化归转化能力,加强数形结合思想的运用。

3. 培养学生观察、类比、辨析、运用的综合思维能力,体会化归与转化、类比 等数学思想,提高学生数学运算和逻辑推理能力。

学习重点难点教学重点:理解并掌握正角、负角、零角的定义,掌握终边相同的角的表示方法; 教学难点: 终边相同的角的表示; 教学准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体课件,三角尺,直尺 学习活动设计环节一:情景引入,温故知新 一、问题情境:1.思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?2.复习:初中是如何定义角的?从一个点出发引出的两条射线构成的几何图形.3.情境:生活中很多实例不在范围]360,0[00内. 体操运动员转体720º,跳水运动员向内、向外转体1080º经过1小时时针、分针、秒针转了多少度?4.问题:这些例子不仅不在范围]360,0[00,而且方向不同,有必要将角的概念推广到任意角,想想用什么办法才能推广到任意角?(二)教授新课 二、建构理论: 1.角的概念的推广 ⑴“旋转”形成角一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点.突出“旋转” 注意:“顶点”“始边”“终边”ABαO⑵“正角”与“负角”、“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角.记法:角α或α∠ 可以简记成α.⑶意义:用“旋转”定义角之后,角的范围大大地扩大了. 1︒ 角有正负之分 如:α=210︒β=-150︒γ=660︒ 2︒ 角可以任意大3︒ 还有零角: 一条射线,没有旋转.要注意:正角和负角是表示具有相反意义的旋转量,它的正负规定纯属习惯,就好象与正数、负数的规定一样,零角无正负,就好象数零无正负一样.2.“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角. 角的顶点合于坐标原点,角的始边合于x 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限).例如:30︒、390︒、-330︒是第象一限角,300︒、-60︒是第四象限角,585︒、1180︒是第三象限角,-2000︒是第二象限角等.3.终边相同的角观察:390︒,-330︒角,它们的终边都与30︒角的终边相同⑵探究:终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和: 390︒=30︒+360︒)1(=k -330︒=30︒-360︒)1(-=k30︒=30︒+0×360︒)0(=k 1470︒=30︒+4×360︒)4(=k -1770︒=30︒-5×360︒)5(-=k⑶结论:所有与α终边相同的角连同α在内可以构成一个集合:{}Z k k S ∈⋅+==,360| αββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和. ⑷注意以下四点: ①Z k ∈②α是任意角;③0360⋅k 与α之间是“+”号,如︒-⋅303600k ,应看成)30(3600︒-+⋅k .④终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.教师活动:通过对问题情景中4个问题的引入,让学生思考并从实际问题中抽象找出其中的角的关系,教师进行补充说明;通过现实生活中的问题,引导学生进一步的观察,研究。

高中数学 第四章第03课时弧度制教师专用教案 新人教A版

高中数学 第四章第03课时弧度制教师专用教案 新人教A版

第三教时 弧度制目的:要求学生掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集R 一一对应关系的概念。

过程:一、回忆(复习)度量角的大小第一种单位制—角度制的定义。

二、提出课题:弧度制—另一种度量角的单位制 它的单位是rad 读作弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。

如图:∠AOB=1rad∠AOC=2rad周角=2πrad1. 正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 2. 角α的弧度数的绝对值 rl=α(l 为弧长,r 为半径) 3. 用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同。

三、角度制与弧度制的换算抓住:360︒=2πrad ∴180︒=π rad ∴ 1︒=rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad例一 把'3067化成弧度解:⎪⎭⎫ ⎝⎛=2167'3067 ∴ rad rad ππ832167180'3067=⨯=例二 把rad π53化成度 解: 1081805353=⨯=rad π 注意几点:1.度数与弧度数的换算也可借助“计算器”《中学数学用表》进行; 2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:3表示3rad sin π表示πrad 角的正弦3.一些特殊角的度数与弧度数的对应值应该记住(见课本P9表) 4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

任意角的集合 实数集R 四、练习(P11 练习1 2)例三 用弧度制表示:1︒终边在x 轴上的角的集合 2︒终边在y 轴上的角的集合 3︒终边在坐标轴上的角的集合解:1︒终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ 2︒终边在y 轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈+==Z k k S ,2|2ππββ 3︒终边在坐标轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈==Z k k S ,2|3πββ 例四 老《精编》P118-119 4、5、6、7 五、 小结:1.弧度制定义 2.与弧度制的互化六、作业: 课本 P11 练习 3、4 P12习题4.2 2、3orC2rad 1rad r l=2roAAB正角 零角 负角正实数 零 负实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 基本初等函数(II )
1.1.2弧度制和弧度制与角度制之间的换算
教学目标:
1.理解1弧度的角、弧度制的定义.能进行角度与弧度的换算.
2.掌握用弧度制表示的弧长公式、扇形面积公式.培养运用弧度制解决具体的问题的意识和能力
教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算. 教学过程
一、复习引入: 1.角的概念 2.角度制的定义
3.圆心角不变,则弧长与半径的比值不变, 二、讲解新课:
1、定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,
这种用“弧度”做单位来度量角的制度叫做弧度制. ⑴平角= rad 、周角=2 rad
⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 ⑶圆心角的弧度数的绝对值 r
l
=
α(l 为弧长,r 为半径) ⑷角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同
2. 角度制与弧度制的换算: ∵ 360
=2 rad ∴180= rad
∴ 1
=
rad rad 017453.0180≈π
8.447157)180
(1'''︒≈︒=π
rad
3.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数
的集合之间建立一种一一对应的关系
任意角的集合 实数集R
4.(1)弧长公式:α⋅=r l 比公式180
r
n l π=
简单 弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积 (2)扇形面积公式 lR S 2
1
=
其中l 是扇形弧长,R 是圆的半径 这比扇形面积公式 360
2
R n S π=扇 要简单
三、例子:
例1把'3067
化成弧度,把rad π5
3化成度
注意:常用特殊角的角度制与弧度制之间的转化
角度

30°
45°
60°
90°
12

13
5° 15
0° 180°
弧度
π/6
π/4
π/3
π/2
2π/
3π/
5π/6
π
正角
零角 负角
正实数 零 负实数
34
角度
21
0°22
5°
24

270°300°
31
5°
33

360°
弧度7π/6
5π/
44π/

3π/

5π/

7π/4
11π
/6
2π
例2用弧度制表示:
1终边在x轴上的角的集合
2终边在y轴上的角的集合
3终边在坐标轴上的角的集合
例3.求图中公路弯道处弧AB的长l(精确到1m)图中长度单位为:m?
例4已知扇形AOB的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积
小结:本节课我们学习了:弧度制定义、角度制与弧度制的互化、特殊角的弧度数、用弧度制表示的弧长公式、扇形面积公式.
课堂练习:第12页练习A、B
课后作业:第13页习题1—1A:3、4、5,习题1—1B:3。

相关文档
最新文档