高考文科数学浙江卷试题及答案

合集下载

2024年浙江高考数学真题及答案

2024年浙江高考数学真题及答案

2024年浙江高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2- B.1- C.1D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m- B.3m -C.3m D.3m5.()A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f < D.(20)10000f <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2-B.1- C.1D.2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m -B.3m -C.3m D.3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5.()A. B. C. D.【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞【答案】B 【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1a a -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.8【答案】C 【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=-⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f <D.(20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >>D.(2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC.10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A;利用函数的单调性可判断B;根据函数()f x 在()1,3上的值域即可判断C;直接作差可判断D.【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A:设曲线上的动点(),P x y ,则2x >-4x a -=,04a -=,解得2a =-,故A 正确.对于24x +=,而2x >-,()24x +=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C:由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D:当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .【答案】(1)π3B =(2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得22222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而2sin 2C ==,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.【小问2详解】由(1)可得π3B =,2cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ232162sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而623136,4222a cbc +====,由三角形面积公式可知,ABC 的面积可表示为211316233sin 222228ABC S ab C c c c +==⋅⋅= ,由已知ABC 的面积为3+,可得23338c =,所以c =16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3260x y --=或20x y -=.【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,2AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则5352d ==,则将直线AP 沿着与AP 垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,5=,解得6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,设()00,B x y,则220012551129x y =⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离5d =,设(),3sin B θθ,其中[)0,2θ∈π1255=,联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=-⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443k x k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,5=,解得32k =,此时33,2B ⎛⎫-- ⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d S ==⋅ ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .【答案】(1)证明见解析【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而//AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即42sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,42DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故242tan 4DFE x∠==x =AD =.18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析(3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6(2)证明见解析(3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.31/31而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>=++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。

2022年高考数学试卷(浙江)(解析卷)

2022年高考数学试卷(浙江)(解析卷)

2022年普通高等学校招生全国统一考试(浙江卷)数学姓名________准考证号_________________本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至3页;非选择题部分3至4页.满分150分,考试时间120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.参考公式:如果事件A ,B 互斥,则柱体的体积公式()()()P A B P A P B +=+V Sh=如果事件A ,B 相互独立,则其中S 表示柱体的底面积,h 表示柱体的高()()()P AB P A P B =×锥体的体积公式若事件A 在一次试验中发生的概率是p ,则n 次 13V Sh =独立重复试验中事件A 恰好发生k 次的概率其中S 表示锥体的底面积,h 表示锥体的高()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=L球的表面积公式台体的体积公式24S R p =()1213V S S h =++ 球的体积公式其中12,S S 表示台体的上、下底面积, 343V R p =h 表示台体的高其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,2},{2,4,6}A B ==,则A B È=( )A. {2} B. {1,2}C. {2,4,6}D. {1,2,4,6}【答案】D 【解析】【分析】利用并集的定义可得正确的选项.【详解】{}1,2,4,6A B =U ,故选:D.2. 已知,,3i (i)i a b a b Î+=+R (i 为虚数单位),则( )A. 1,3a b ==- B. 1,3a b =-= C. 1,3a b =-=- D. 1,3a b ==【答案】B 【解析】【分析】利用复数相等的条件可求,a b .【详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=,故选:B.3. 若实数x ,y 满足约束条件20,270,20,x x y x y -³ìï+-£íï--£î则34z x y =+的最大值是( )A. 20B. 18C. 13D. 6【答案】B 【解析】【分析】在平面直角坐标系中画出可行域,平移动直线34z x y =+后可求最大值.【详解】不等式组对应的可行域如图所示:当动直线340x y z +-=过A 时z 有最大值.由2270x x y =ìí+-=î可得23x y =ìí=î,故()2,3A ,故max 324318z =´+´=,故选:B.4. 设x ÎR ,则“sin 1x =”是“cos 0x =”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解.【详解】因为22sin cos 1x x +=可得:当sin 1x =时,cos 0x =,充分性成立;当cos 0x =时,sin 1x =±,必要性不成立;所以当x ÎR ,sin 1x =是cos 0x =的充分不必要条件.故选:A.5. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A. 22πB. 8πC.22π3D.16π3【答案】C 【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm ,圆台的下底面半径为2cm ,所以该几何体的体积(322214122ππ1π122π2π12333V =´´+´´+´´´+´+=3cm .故选:C .6. 为了得到函数2sin 3y x =的图象,只要把函数π2sin 35y x æö=+ç÷èø图象上所有的点( )A. 向左平移π5个单位长度 B. 向右平移π5个单位长度C. 向左平移π15个单位长度 D. 向右平移π15个单位长度【答案】D 【解析】【分析】根据三角函数图象的变换法则即可求出.【详解】因为ππ2sin 32sin 3155y x x éùæö==-+ç÷êúèøëû,所以把函数π2sin 35y x æö=+ç÷èø图象上的所有点向右平移π15个单位长度即可得到函数2sin 3y x =的图象.故选:D.7. 已知825,log 3ab ==,则34a b -=( )A. 25 B. 5C.259D.53【答案】C 【解析】【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.【详解】因为25a=,821log 3log 33b ==,即323b=,所以()()22323232452544392a aa b b b -====.故选:C.8. 如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为a ,EF 与平面ABC 所成的角为b ,二面角F BC A --的平面角为g ,则( )A.a b g££ B.b a g ££ C. b g a££ D.a g b££【答案】A 【解析】【分析】先用几何法表示出a b g ,,,再根据边长关系即可比较大小.【详解】如图所示,过点F 作FP AC ^于P ,过P 作PM BC ^于M ,连接PE ,则EFP a =Ð,FEP b =Ð,FMP g =,tan 1PE PE FP AB a ==£,tan 1FP AB PE PE b ==³,tan tan FP FPPM PEg b =³=,所以a b g££,故选:A .9. 已知,a b ÎR ,若对任意,|||4||25|0x a x b x x Î-+---³R ,则( )A 1,3a b £³ B. 1,3a b ££ C. 1,3a b ³³ D. 1,3a b ³£【答案】D.【解析】【分析】将问题转换为|||25||4|a x b x x -³---,再结合画图求解.【详解】由题意有:对任意的x ÎR ,有|||25||4|a x b x x -³---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ì-£ïïï=---=-<<íï-³ïïî,即()f x 的图象恒在()g x 的上方(可重合),如下图所示:由图可知,3a ³,13b ££,或13a £<,3143b a££-£,故选:D .10. 已知数列{}n a 满足()21111,3n n n a a a a n *+==-ÎN ,则( )A. 100521002a << B.100510032a << C. 100731002a <<D.100710042a <<【答案】B 【解析】【分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +æö-=<=+ç÷-+èø-+,累加可求出()111111113323n n a n æö-<-++++ç÷èøL ,再次放缩可得出10051002a >.【详解】∵11a =,易得()220,13a =Î,依次类推可得()0,1n a Î由题意,1113n n n a a a +æö=-ç÷èø,即()1131133n n n n n a a a a a +==+--,∴1111133n n n a a a +-=>-,即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->³,累加可得()11113n n a ->-,即11(2),(2)3n n n a >+³,∴()3,22n a n n <³+,即100134a <,100100100334a <<,又11111111,(2)333132n n n n a a a n n +æö-=<=+³ç÷-+èø-+,∴211111132a a æö-=+ç÷èø,321111133a a æö-<+ç÷èø,431111134a a æö-<+ç÷èø,…,111111,(3)3n n n a a n -æö-<+³ç÷èø,累加可得()11111111,(3)3323n n n a n æö-<-++++³ç÷èøL ,∴10011111111133334943932399326a æöæö-<++++<+´+´<ç÷ç÷èøèøL ,即100140a <,∴100140a >,即10051002a >;综上:100510032a <<.故选:B .【点睛】关键点点睛:解决本题的关键是利用递推关系进行合理变形放缩.非选择题部分(共110分)二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分.11. 我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =,其中a ,b ,c 是三角形的三边,S是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =___________.【解析】【分析】根据题中所给的公式代值解出.【详解】因为S =,所以S ==12. 已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.【答案】 ①. 8②. 2-【解析】【分析】第一空利用二项式定理直接求解即可,第二空赋值去求,令0x =求出0a ,再令1x =即可得出答案.【详解】含2x 项为:()()3232222244C 12C 14128x x x x x x ×××-+×××-=-+=,故28a =;令0x =,即02a =,令1x =,即0123450a a a a a a =+++++,∴123452a a a a a ++++=-,的故答案为:8;2-.13.若3sin sin 2pa b a b -=+=,则sin a =__________,cos 2b =_________.【答案】 ①.②.45【解析】【分析】先通过诱导公式变形,得到a 的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出a ,接下来再求b .【详解】2pa b +=,∴sin cos b a =,即3sin cos a a -=a a ö=÷÷øsin q =,cos q =,()a q -=,∴22k k Z pa q p -=+Î,,即22k pa q p =++,∴sin sin 2cos 2k pa q p q æö=++==ç÷èø,则224cos 22cos12sin 15b b a =-=-=.;45.14. 已知函数()22,1,11,1,x x f x x x x ì-+£ï=í+->ïî则12f f æöæö=ç÷ç÷èøèø________;若当[,]xa b Î时,1()3fx ££,则b a -的最大值是_________.【答案】 ①.3728②. 3+【解析】【分析】结合分段函数的解析式求函数值,由条件求出a 的最小值,b 的最大值即可.【详解】由已知2117()2224f æö=-+=ç÷èø,77437(144728f =+-=,所以137(228f f éù=êúëû,当1x £时,由1()3f x ££可得2123x £-+£,所以11x -££,当1x >时,由1()3f x ££可得1113x x£+-£,所以12x <£+1()3f x ££等价于12x -££+,所以[,][1,2a b Í-,所以b a -的最大值为3故答案为:3728,3+.15. 现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为x ,则(2)P x ==__________,()E x =_________.【答案】 ①.1635, ②. 127##517【解析】【分析】利用古典概型概率公式求(2)P x =,由条件求x 分布列,再由期望公式求其期望.【详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有37C 种取法,其中所抽取的卡片上的数字的最小值为2的取法有112424C C C +种,所以11242437C C C 16(2)C 35P x +===,由已知可得x 的取值有1,2,3,4,2637C 15(1)C 35P x ===,16(2)35P x ==,,()()233377C 31134C 35C 35P P x x ======,所以15163112()1234353535357E x =´+´+´+´=,故答案为:1635,127.16. 已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.【解析】【分析】联立直线AB 和渐近线2:bl y x a=方程,可求出点B ,再根据||3||FB FA =可求得点A ,最后根据点A 在双曲线上,即可解出离心率.【详解】过F 且斜率为4b a的直线:()4b AB y x c a =+,渐近线2:bl y x a =,联立()4b y x c ab y xa ì=+ïïíï=ïî,得,33c bc B a æöç÷èø,由||3||FB FA =,得5,,99c bc A a æö-ç÷èø而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率e =.17. 设点P 在单位圆的内接正八边形128A A A L 的边12A A 上,则222182PA PA PA +++uu u r uu L ur uu u r 的取值范围是_______.【答案】[12+【解析】【分析】根据正八边形的结构特征,分别以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,即可求出各顶点的坐标,设(,)P x y ,再根据平面向量模的坐标计算公式即可得到()2222212888PA PA PA x y +++=++uuu r uuu r uuu r L ,然后利用cos 22.5||1OP ££o 即可解出.【详解】以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y轴建立平面直角坐标系,如图所示:则1345726(0,1),,(1,0),,(0,1),,(1,0)A A A A A A A æ--ççè,8A æççè,设(,)P x y ,于是()2222212888PA PA PA x y +++=++uuu r uuu r uuu r L ,因为cos 22.5||1OP ££o,所以221cos 4512x y +£+£o ,故222128PA PA PA +++uuu r uuu r uuu r L 的取值范围是[12+.故答案为:[12+.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18. 在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC V 的面积.【答案】(1; (2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【小问1详解】由于3cos 5C =, 0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin A C ==【小问2详解】因为4a =,由余弦定理,得2222221612111355cos 22225a a a a b c C ab a a +--+-====,即26550a a +-=,解得5a =,而4sin 5C =,11b =,所以ABC V 的面积114sin 51122225S ab C ==´´´=.19. 如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE Ð=Ð=°,二面角F DC B --的平面角为60°.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ^;(2)求直线BM 与平面ADE 所成角的正弦值.【答案】(1)证明见解析; (2.【解析】【分析】(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点G 、H ,由平面知识易得FC BC =,再根据二面角的定义可知,60BCF Ð=o ,由此可知,FN BC ^,FN CD ^,从而可证得FN ^平面ABCD ,即得FN AD ^;(2)由(1)可知FN ^平面ABCD ,过点N 做AB 平行线NK ,所以可以以点N 为原点,NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N xyz -,求出平面ADE 的一个法向量,以及BM uuuu r,即可利用线面角的向量公式解出.【小问1详解】过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点交于点G 、H .∵四边形ABCD 和EFCD 都是直角梯形,//,//,5,3,1AB DC CD EF AB DC EF ===,60BAD CDE Ð=Ð=°,由平面几何知识易知,2,90DG AH EFC DCF DCB ABC ==Ð=Ð=Ð=Ð=°,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt EGD V 和Rt DHA V,EG DH ==∵,DC CF DC CB ^^,且CF CB C Ç=,∴DC ^平面,BCF BCF Ð是二面角F DC B --的平面角,则60BCF Ð=o ,∴BCF △是正三角形,由DC Ì平面ABCD ,得平面ABCD ^平面BCF ,∵N 是BC 的中点,\FN BC ^,又DC ^平面BCF ,FN Ì平面BCF ,可得FN CD ^,而BC CD C Ç=,∴FN ^平面ABCD ,而AD Ì平面ABCD FN AD \^.【小问2详解】因为FN ^平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点, NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N xyz -,设(3,(1,0,3)A B D E,则32M æöç÷ç÷èø,33,,(2,(2BM AD DE æö\==--=-ç÷ç÷èøuuuu r uuu ruuu r 设平面ADE 的法向量为,)n y z r由00n AD n DE ì×=í×=îuuu v r uuu v r,得20230x x z ì--=ïí-++=ïî,取n =-r,设直线BM与平面ADE 所成角为q∴||sin cos ,|||n BM n BM n BM q ×=áñ===×uuuu r r uuuu r r uuuu r r20. 已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *ÎN .(1)若423260S a a -+=,求n S ;(2)若对于每个n *ÎN ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 取值范围.【答案】(1)235(N )2n n nS n *-=Î(2)12d <£【解析】【分析】(1)利用等差数列通项公式及前n 项和公式化简条件,求出d ,再求n S ;(2)由等比数列定义列方程,结合一元二次方程有解的条件求d 的范围.【小问1详解】因为42312601S a a a -+==-,,所以()()46211260d d d -+--+-++=,所以230d d -=,又1d >,所以3d =,所以34n a n =-,所以()213522n na a n n n S +-==,【小问2详解】因为n n a c +,14n n a c ++,215n n a c ++成等比数列,所以()()()212415n n n n n n a c a c a c +++=++,的()()()2141115n n n nd c nd d c nd d c -+=-+-+-+++,22(1488)0n n c d nd c d +-++=,由已知方程22(1488)0n n c d nd c d +-++=的判别式大于等于0,所以()22148840d nd d D =-+-³,所以()()168812880d nd d nd -+-+³对于任意的n *ÎN 恒成立,所以()()212320n d n d ----³éùéùëûëû对于任意的n *ÎN 恒成立,当1n =时,()()()()21232120n d n d d d ----=++³éùéùëûëû,当2n =时,由()()2214320d d d d ----³,可得2£d 当3n ³时,()()21232(3)(25)0n d n d n n ---->--³éùéùëûëû,又1d >所以12d <£21. 如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q æöç÷èø在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.【答案】(1(2.【解析】【分析】(1)设,sin )Q q q 是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2A B y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可【小问1详解】设,sin )Q q q 是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ q q q q q æö=+-=--=-+£ø+ç÷è,当且仅当1sin 11q =-时取等号,故||PQ【小问2详解】设直线1:2A B y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx æö++-=ç÷èø,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ì+=-ï+ïïíï=-æöï+ç÷ïèøî,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1x CD k x =--+-==当且仅当316k =时取等号,故CD的最小值为.【点睛】本题主要考查最值计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.22. 设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ÎR ,曲线()y f x =上不同三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a æö<-<-ç÷èø;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828=L 是自然对数的底数)【答案】(1)()f x 的减区间为e 02æöç÷èø,,增区间为e ,2æö+¥ç÷èø. (2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.【小问1详解】()22e 12e 22xf x x x x -¢=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02æöç÷èø,,()f x 的增区间为e ,2æö+¥ç÷èø.的的【小问2详解】(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a ¢-=-,故方程()()()f x b f x x a ¢-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x æö----+=ç÷èø,设()()21e e ln 22g x x a x b x x x æö=----+ç÷èø,则()()22321e 1e 1e 22g x x a x x x x x xæö¢=-+-+--+ç÷èø()()31e x x a x=---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +¥上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b æö----+<ç÷èø且()21e e ln 022a a a b a a a æö----+>ç÷èø,整理得到:12e a b <+且()eln 2b a f a a>+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a aæöæö---<+-+-+=--ç÷ç÷èøèø,设()3e ln 22u a a a =--,则()2e-202au a a ¢=<,故()u a 为()e,+¥上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a æö<-<-ç÷èø.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +¥上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b æö----+>ç÷èø且()21e e ln 022a a a b a a a æö----+<ç÷èø,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =Î,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2e a a t t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea a t t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --æöæö+-+-+<ç÷ç÷èøèø,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02m m t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-´-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--´<-+,第21页 | 共22页 即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k j +=>-,则()()2112ln 01k k k k k j æö¢=-->ç÷èø-,设()12ln u k k k k =--,则()2122210u k k k k k¢=+->-=即()0k j ¢>,故()k j 在()1,+¥上为增函数,故()()k m j j >,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m w ---+=+<<+,则()()()()()()()2232322132049721330721721m m m m m m m m m m m w ---+-+¢=>>++,所以()m w 在()0,1为增函数,故()()10m w w <=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.第22页| 共22页。

浙江高考数学(文)真题及答案(word版)2

浙江高考数学(文)真题及答案(word版)2

XX年浙江高考数学(文)真题及答案(word版)选择题局部(共50分)1、设集合S={x|x>-2},T={x|-4≤x≤1},那么S∩T=A、[-4,+∞)B、(-2, +∞)C、[-4,1]D、(-2,1]2、i是虚数单位,那么(2+i)(3+i)=A、5-5iB、7-5iC、5+5iD、7+5i3、假设αR,那么“α=0”是“sinαA、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件4、设m、n是两条不同的直线,α、β是两个不同的平面,A、假设m∥α,n∥α,那么m∥nB、假设m∥α,m∥β,那么α∥βC、假设m∥n,m⊥α,那么n⊥αD、假设m∥α,α⊥β,那么m⊥β5、某几何体的三视图(单位:cm)如下图,那么该几何体的体积是A、108cm3B、100 cm3C、92cm3D、84cm3A、π,1B、π,2C、2π,1D、2π,27、a、b、cR,函数f(x)=ax2+bx+c.假设f(0)=f(4)>f(1),那么A、a>0,4a+b=0B、a<0,4a+b=0C、a>0,2a+b=0D、a<0,2a+b=08、函数y=f(x)的图像是以下四个图像之一,且其导函数y=f’(x)的9、如图F1、F2是椭圆C1:4(x2)+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,假设四边形AF1BF2为矩形,那么C2的离心率是A、2( )B、3( )C、2(3)D、6( )6()10、设a,bR,定义运算“∧”和“∨”如下:a∧b= a∨b=假设正数a、b、c、d满足ab≥4,c+d≤4,那么A、a∧b≥2,c∧d≤2B、a∧b≥2,c∨d≥2C、a∨b≥2,c∧d≤2D、a∨b≥2,c∨d≥2非选择题局部(共100分)考前须知:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在卷上。

2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色自拟的签字笔或钢笔描黑。

全国高考文科数学试题及答案浙江卷

全国高考文科数学试题及答案浙江卷

绝密★考试完毕前2021年普通高等学校招生全国统一考试(浙江卷)数 学〔文科〕本试题卷分选择题与非选择题两局部。

全卷共5页,选择题局部1至2页,非选择题局部3至5页。

总分值150分,考试时间120分钟。

请考生按规定用笔将所有试题答案涂、写在答题纸上。

选择题局部〔共50分〕考前须知:1.答题前,考生务必将自己姓名、准考证号用黑色字迹签字笔或钢笔填写在答题纸上。

2.每题选出答案后,用2B 铅笔把答题纸上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:球外表积公式 棱柱体积公式球体积公式 其中S 表示棱柱底面积,h 表示棱柱高334RV π=棱台体积公式其中R 表示球半径 )(312211S S S S h V ++=棱锥体积公式 其中S 1、S 2分别表示棱台上、下底面积,13V Sh = h 表示棱台高其中S 表示棱锥底面积,h 表示棱锥高 如果事件,A B 互斥,那么()()()P A B P A P B +=+一、选择题:本大题共10小题,每题5分,共50分。

在每题给出四个选项中,只有一项为哪一项符合题目要求.1.设U =R ,{|0}A x x =>,{|1}B x x =>,那么UAB =〔 〕A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x >1. B 【命题意图】本小题主要考察了集合中补集、交集知识,在集合运算考察对于集合理解与掌握程度,当然也很好地考察了不等式根本性质.【解析】 对于{}1U C B x x =≤,因此UA B ={|01}x x <≤.2.“0x >〞是“0x ≠〞〔 〕A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2. A 【命题意图】本小题主要考察了命题根本关系,题中设问通过对不等关系分析,考察了命题概念与对于命题概念理解程度. 【解析】对于“0x >〞⇒“0x ≠〞;反之不一定成立,因此“0x >〞是“0x ≠〞充分而不必要条件.3.设1z i =+〔i 是虚数单位〕,那么22z z+=〔 〕A .1i +B .1i -+C .1i -D .1i--3.D 【命题意图】本小题主要考察了复数运算与复数概念,以复数运算为载体,直接考察了对于复数概念与性质理解程度. 【解析】对于2222(1)1211z i i i i zi+=++=-+=++ 4.设,αβ是两个不同平面,l 是一条直线,以下命题正确是〔 〕A .假设,l ααβ⊥⊥,那么l β⊂B .假设//,//l ααβ,那么l β⊂C .假设,//l ααβ⊥,那么l β⊥D .假设//,l ααβ⊥,那么l β⊥4.C 【命题意图】此题主要考察立体几何线面、面面位置关系,通过对平行与垂直考察,充分调动了立体几何中根本元素关系. 【解析】对于A 、B 、D 均可能出现//l β,而对于C 是正确. 5.向量(1,2)=a ,(2,3)=-b .假设向量c 满足()//+c a b ,()⊥+c a b ,那么c =〔 〕A .77(,)93 B .77(,)39-- C .77(,)39D .77(,)93--5.D 【命题意图】此题主要考察了平面向量坐标运算,通过平面向量平行与垂直关系考察,很好地表达了平面向量坐标运算在解决具体问题中应用. 【解析】不妨设(,)C m n =,那么()1,2,(3,1)a c m n a b +=+++=-,对于()//c a b +,那么有3(1)2(2)m n -+=+;又()c a b ⊥+,那么有30m n -=,那么有77,93m n =-=-6.椭圆22221(0)x y a b a b+=>>左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P .假设2AP PB =,那么椭圆离心率是〔 〕A .32 B .22 C .13 D .126.D 【命题意图】对于对解析几何中与平面向量结合考察,既表达了几何与向量交汇,也表达了数形结合巧妙应用.【解析】对于椭圆,因为2AP PB =,那么12,2,2OA OF a c e =∴=∴= 7.某程序框图如下图,该程序运行后输出k 值是〔 〕A .4B .5C .6D .77.A 【命题意图】此题考察了程序语言概念与根本应用,通过对程序语言考察,充分表达了数学程序语言中循环语言关键.【解析】对于0,1,1k s k ==∴=,而对于1,3,2k s k ==∴=,那么2,38,3k s k ==+∴=,后面是113,382,4k s k ==++∴=,不符合条件时输出4k =.8.假设函数2()()a f x x a x=+∈R ,那么以下结论正确是〔 〕A .a ∀∈R ,()f x 在(0,)+∞上是增函数B .a ∀∈R ,()f x 在(0,)+∞上是减函数C .a ∃∈R ,()f x 是偶函数D .a ∃∈R ,()f x 是奇函数8.C 【命题意图】此题主要考察了全称量词与存在量词概念与根底知识,通过对量词考察结合函数性质进展了交汇设问. 【解析】对于0a =时有()2f x x =是一个偶函数9.三角形三边长分别为3,4,5,那么它边与半径为1圆公共点个数最多为〔 〕A .3B .4C .5D .6 9.C 【命题意图】此题很好地考察了平面几何知识,全面而不失灵活,考察方法上面要求平实而不失灵动,既有切线与圆位置,也有圆移动【解析】对于半径为1圆有一个位置是正好是三角形内切圆,此时只有三个交点,对于圆位置稍一右移或其他变化,能实现4个交点情况,但5个以上交点不能实现.10.a 是实数,那么函数()1sin f x a ax =+图象不可能...是〔 〕10.D 【命题意图】此题是一个考察三角函数图象问题,但考察知识点因含有参数而丰富,结合图形考察使得所考察问题形象而富有深度.【解析】对于振幅大于1时,三角函数周期为2,1,2T a T aππ=>∴<,而D 不符合要求,它振幅大于1,但周期反而大于了2π.非选择题局部〔共100分〕考前须知:1.用黑色字迹签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2021年浙江高考数学文科试卷带详解

2021年浙江高考数学文科试卷带详解

2021年浙江高考数学文科试卷带详解2021年普通高等学校招生全国统一考试(浙江卷)数学(文科)一、选择题:每小题5分,共50分.在每小题给的四个选项中,只有一项是符合题目要求的.1.若p?{xx?1},q={xx?1},则()a.p?qb.q?pc.erp?qd.q?erp【测量目标】集合间的基本关系.[检查方法]集合的表示(描述方法),以找到集合的包含关系[参考答案]d【试题解析】p?{xx?1}∴erp??x|x≥1?,又∵q={xx?1},∴q?erp,故选d2.若复数z?1?i,i为虚数单位,则(1?z)z?()a.1?3ib.3?3ic.3?id.3【测量目标】复数代数形式的四则运算.【检查方法】给出复数的乘法形式,检查复数的四种运算【参考答案】a【试题解析】∵z?1?i,∴(1?z)?z?(2?i)(1?i)?1?3i十、2岁?5.≥0? 3.如果实数x和y满足不等式组?2倍?Y7.≥ 0,然后是3?4Y 的最小值为()?x≥0,y≥0?a.13b.15c.20d.28【测量目标】线性规划求最值.【检验方法】给出约束条件,利用数形结合的思想,画出不等式组表示的平面区域,得到线性规划目标函数的最小值【参考答案】a【试题分析】可行区域如图所示x2y50x3联立?,解之得?,∴当z?3x?4y过点(3,1)时,有最小值13.Y12倍?Y7.0 4. 如果直线L与平面不平行?,而我呢??,(a)什么?公元前有一条独特的线平行于L.D.[测量目标]线和平面之间的位置关系【考查方式】本题主要考查线线,线面平行关系的转化,考查空间想象能力能力以及推理论证能力.【参考答案】b[问题分析]在哪里?有一条线与L相交,所以a是不正确的;如果有一条平行于L的直线∵ L∵??, 然后是我??,与问题的设计相矛盾,∧ B是正确的,C是错误的;哪里但我和?相交的直线和l不同的平面,D是不正确的2()5.在△abc中,角a,b,c所对的边分a,b,c.若acosa?bsinb,则sinacosa?cosb?没有平行于L的直线吗?图中的线与L相交a.?11b.c.?1d.122[测量目标]正弦定理【考查方式】根据正弦定理把边关系转化为正弦关系,再根据sinb?cosb?1转化求出结果.【参考答案】d2[试题分析]∵ 阿科萨?bsinb∴西纳科萨?辛布22222∴sinacosa?cosb?sinb?cosb?1.6.如果a和B是实数,“0?AB?1”是“B?1”的充分和不必要条件B.必要和不充分条件C.充分和必要条件D.既不充分也不必要条件[测量目标]充分和必要条件【考查方式】主要考查了命题的基本关系、充分必要条件的判断,考查了学生的推理论证能力.【参考答案】d[问题分析]何时0?ab?1,a?0,b?0,B?‡“0?AB?1”是“B?11”,反之,当a?0时,既不存在AB?1,Aa1“a7”的充分必要条件。

招生国统一考试数学文试题浙江卷,含答案

招生国统一考试数学文试题浙江卷,含答案

2021年普通高等招生全国统一考试数学文试题〔卷,含答案〕 本试题卷分选择题和非选择题两局部。

全卷一共4页,选择题局部1至3页,非选择题局部3至4页。

满分是150分,考试时间是是120分钟。

请考生按规定用笔将所有试题之答案涂、写在答题纸上。

选择题局部〔一共50分〕考前须知:1.在答题之前,所有考生必须将本人的姓名、准考证号用黑色字迹的签字笔或者钢笔分别填写上在试卷和答题纸规定的位置上。

2.每一小题在选出答案以后,需要用2B 铅笔把答题纸上对应题目之答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式球体的面积公式S=4πR 2球的体积公式 V=43πR 3其中R 表示球的半径 锥体的体积公式V=13Sh 其中S 表示锥体的底面积,h 表示锥体的高 柱体体积公式V=Sh其中S 表示柱体的底面积,h 表示柱体的高台体的体积公式V=121()3h S S +其中S 1,S 2分别表示台体的上、下面积,h 表示台体的高假如事件A,B 互斥 ,那么P(A+B)=P(A)+P(B)一、选择题:本大题一一共10小题,每一小题5分,一共50分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的1 设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} Q{3,4,5},那么P∩〔C U Q〕=A.{1,2,3,4,6}B.{1,2,3,4,5}C.{1,2,5}D.{1,2}2. i是虚数单位,那么31ii+-=A 1-2iB 2-iC 2+iD 1+2i3.某三棱锥的三视图〔单位:cm〕如下图,那么该三棱锥的体积是A.1cm3B.2cm3C.3cm3D.6cm34设a∈R ,那么“a=1”是“直线l1:ax+2y-1=0与直线l2 :x+2y+4=0平行的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件5.设l是直线,a,β是两个不同的平面∥a,l∥β,那么a∥β∥a,l⊥β,那么a⊥β⊥β,l⊥a,那么l⊥β⊥β, l⊥a,那么l⊥β6. 把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍〔纵坐标不变〕,然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是7.设a,b是两个非零向量。

全国高考浙江省数学(文)试卷及答案【精校版】

全国高考浙江省数学(文)试卷及答案【精校版】

普通高等学校招生全国统一考试(浙江卷)数学(文科)选择题部分(共50分)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合 {|2}S x x =≥,}5|{≤=x x T ,则S T =I ( )A. ]5,(-∞B. ),2[+∞C. )5,2(D.]5,2[2. 设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“BD AC ⊥”的( )A. 充分不必要条件B. 必要不成分条件C. 充分必要条件D. 既不充分也不必要条件3. 某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A. 372cmB. 390cmC. 3108cmD. 3138cm4.为了得到函数x x y 3cos 3sin +=的图象,可以将函数x y 3cos 2=的图象( ) A.向右平移12π个单位长 B.向右平移4π个单位长 C.向左平移12π个单位长 D.向左平移4π个单位长 5.已知圆02222=+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值为( )A.2-B. 4-C. 6-D.8-6.设m 、n 是两条不同的直线,α、β是两个不同的平面,则( )A.若n m ⊥,α//n ,则α⊥mB.若β//m ,αβ⊥,则α⊥mC.若β⊥m ,β⊥n ,α⊥n ,则α⊥mD.若n m ⊥,β⊥n ,αβ⊥,则α⊥m7.已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-<f f f ,则( )A.3≤cB.63≤<cC. 96≤<cD.9>c 8.在同一坐标系中,函数)0()(>=x x x f a ,x x g a log )(=的图象可能是( )9.设θ为两个非零向量a 、b 的夹角,已知对任意实数t ,||t a b +的最小值为1( )A.若θ确定,则 ||a 唯一确定B.若θ确定,则 ||b 唯一确定C.若||a 确定,则 θ唯一确定D.若||b 确定,则 θ唯一确定10.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成的角),若m AB 15=,m AC 25=,ο30=∠BCM ,则θtan 的最大值是( )A. 530B. 1030C.934D. 935非选择题部分(共100分)二.填空题:本大题共7小题,每小题4分,共28分.11.已知i 是虚数单位,计算21(1)i i -=+________. 12.若实数x 、y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则y x +的取值范围是________.13.若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是________.14.在三张奖劵中有一、二等各一张,另有1张无奖,甲乙两人各抽取一张,两人都中奖的概率为.15.设函数⎪⎩⎪⎨⎧>-≤++=0,0,22)(22x x x x x x f ,若2))((=a f f ,则=a . 16.已知实数a 、b 、c 满足0=++c b a ,1222=++c b a ,则a 的最大值为为_______. 17. 设直线)0(03≠=+-m m y x 与双曲线)0,0(12222>>=-b a by a x 的两条渐近线分别交于A 、B ,若)0,(m P 满足||||PB PA =,则双曲线的离心率是 .三.解答题:本大题共5小题,共72分。

高考试题-文数(及参考答案)(浙江卷)

高考试题-文数(及参考答案)(浙江卷)

数学(文科)试题 选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设}{{}21.4P x x Q x x P Q ==⋂=p p ,则 (A ){}12x x -p p (B ){}31x x -p p (C ){}14x x p p(D ){}21x x -p p(2)已知函数()()log 1,()1,f x x f a a =+==若则 (A )0(B )1(C )2(D )3(3)设i 为虚数单位,则51ii -=+ (A )23i -- (B )23i -+(C )23i - (D )23i + (4)某程度框图如图所示,若输出的57S =,则判断框内为(A )4?k f (B )5?k f (C )6?k f (D )7?k f (5)设1S 为等比数列{}n a 的前n 项和,122280S a a S -==,则 (A )-11(B )-8(C )5(D )11(6)设0,2x πp p则“x sin 2 x <1”是“x sin x <1”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(7)若实数x 、y 满足不等式组330,230,10,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则x +y 的最大值为(A )9(B )157(C )1 (D )715(8)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是(A )33523cm(B )33203cm (C )32243cm (D )31603cm(9)已知x 是函数1()21f x x=+-的一个零点,若20(1,),2(,)a x x x x ∈∈+∞,则(A )12()0,()0f x f x p p(B )12()0,()0f x f x p f(C )12()0,()0f x f x f p(D )12()0,()0f x f x f f(9)已知x 是函数f (x )=22+11x-的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则 (A)f (x 2)<0,f (x 2)<0 (B) f (x 1)<0,f (x 2)>0 (C )f (x 1)>0,f (x 2)<0(D )f (x 1)>0,f (x 2)>0(10)设O 为坐标原点,F 1,F 2是双曲线22x a-22y b =1(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠F 1P F 2=60°,OP =7a ,则该双曲线的渐近线方程为(A )x ±3y =0 (B )3x ±y =0 (C) x ±2y =0(D)2 x ±y =0非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分。

普通高等学校招生全国统一考试文科数学试题及答案-浙江卷

普通高等学校招生全国统一考试文科数学试题及答案-浙江卷
(A)-15(B)85(C)-120(D)274
(7)在同一平面直角坐标系中,函数 的图象和直线 的交点个数是
(A)0(B)1(C)2(D)4
(8)若双曲线 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是
(A)3(B)5(C) (D)
(9)对两条不相交的空间直线a与b,必存在平面α,使得
若|F2A|+|F2B|=12,则|AB|=。
(14)在△ABC中,角A、B、C所对的边分别为a、b、c。若 则cosA=.
(15)如图,已知球O的面上四点A、B、C、D,DA⊥平面ABC。
AB⊥BC,DA=AB=BC= ,则球O的体积等于。
(16)已知a是平面内的单位向量,若向量b满足b·(a-b)=0,
(Ⅰ)p,q的值;
(Ⅱ)数列{xn}前n项和Sn的公式。
(19)(本题14分)一个袋中装有大小相同的黑球、白球和红球,已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是 ;从中任意摸出2个球,至少得到1个白球的概率是 .求:
(Ⅰ)从中任意摸出2个球,得到的都是黑球的概率;
(Ⅱ)袋中白球的个数。
(I)解:设 为C上的点,则

N到直线 的距离为 .
由题设得 .
化简,得曲线C的方程为 .
(II)解法一:
设 ,直线l: ,则 ,从而

在Rt△QMA中,因为


所以

当k=2时,
从而所求直线l方程为
解法二:
设 ,直线直线l: ,则 ,从而
过 垂直于l的直线l1: ,
因为 ,所以


当k=2时, ,
(A)充分而不必要条件(B)必要而不充分条件

高考文科数学浙江卷试题与答案解析版

高考文科数学浙江卷试题与答案解析版
13. (2013 浙江,文 13) 直线 y=2x+ 3 被圆 x2+ y2- 6x-8y= 0 所截得的弦长等于 __________.
14. (2013 浙江,文 14) 若某程序框图如图所示,则该程序运行后输出的值等于
__________.
x 2, 15. (2013 浙江,文 15) 设 z= kx+ y,其中实数 x, y 满足 x 2 y 4 0, 若 z 的
2x y 4 0
=- kx,当 k> 0 时, y=- kx 为减函数,在 B 处 z 最大,此时 k
= 2;当 k< 0 时, y=- kx 为增函数,当- k∈ 0, 1 时,在 B 处 2
非选择题部分 ( 共 100 分 )
二、填空题:本大题共 7 小题,每小题 4 分,共 28 分.
11. 答案: 10
ab≥4知,正数
a,b 中至少
解析: 由 f ( a) = a 1 = 3,得 a- 1= 9,故 a= 10.
12. 答案: 1 5
解析: 从 3 男, 3 女中任选两名,共有
15 种基本情况,而从
故选 A. 7. 答案: A
解析: 由 f (0) = f (4) 知二次函数 f ( x) = ax2+ bx+ c 对称轴为 x= 2,即 b 2. 所以 4a+b= 0,又 f (0) 2a
> f (1) 且 f (0) , f (1) 在对称轴同侧,故函数 f ( x) 在 ( -∞, 2] 上单调递减,则抛物线开口方向朝上,知
A. [ - 4,+∞ )
B . ( - 2,+∞) C . [ - 4,1] D
. ( - 2,1]
2. (2013 浙江,文 2) 已知 i 是虚数单位,则 (2 +i)(3 + i) = ( ) . A. 5- 5i B . 7- 5i C . 5+5i D . 7+ 5i

全国高考文科数学试题及答案浙江卷

全国高考文科数学试题及答案浙江卷

20XX 年全国高考文科数学试题及答案-浙江选择题部分(共50分)一.选择题: 本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的 1.设全集{1,2,3,4,5,6},U =设集合{1,2,3,4},{3,4,5},P Q ==则()U PQ =.A {1,2,3,4,6} .B {1,2,3,4,5} .C {1,2,5} .D {1,2}2. 已知i 是虚数单位,则31ii+=- .A 12i - .B 2i - .C 2i + .D 12i + 3.已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是.A 31cm .B 32cm .C 33cm .D 36cm4.设,a R ∈则“1a =”是“直线1:210l ax y +-=与直线2:240l x y ++=平行 的”.A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件 5.设l 是直线,,αβ是两个不同的平面.A 若,, l l αβαβ则////// .B 若,, l a l βαβ⊥⊥则// .C 若,, l l αβαβ⊥⊥⊥则 .D 若,, l l αβαβ⊥⊥则//6..把函数cos21y x =+的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1 个单位长度,再向下平移 1个单位长度,得到的图像是7.设,a b 是两个非零向量。

.A 若||||||a b a b +=-,则a b ⊥ .B 若a b ⊥,则||||||a b a b +=-.C 若||||||a b a b +=-,则存在实数,λ使得b a λ= .D 若存在实数,λ使得,b a λ=则||||||a b a b +=-8.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点。

若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是.A 3 .B 2 .C 3 .D 29.若正数x ,y 满足35, 34x y xy x y +=+则的最小值是.A 245 .B 285.C 5 .D 6 10.设0,0,a b e >>是自然对数的底数.A 若23a b e a e b +=+,则a b > .B 若23a b e a e b +=+,则a b < .C 若23a b e a e b -=-,则a b > .D 若23a b e a e b -=-,则a b <非选择题部分(共100分)(第20题图)E1B 1D 1D BC注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2020年普通高等学校招生全国统一考试数学文试题(浙江卷,解析版)

2020年普通高等学校招生全国统一考试数学文试题(浙江卷,解析版)

2020年普通高等学校招生全国统一考试数学文试题(浙江卷,解析版)选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设}{{}21.4P x x Q x x P Q ==⋂=<<,则 (A ){}12x x -<< (B ){}31x x -<<(C ){}14x x <<(D ){}21x x -<<答案D【命题意图】本题考查集合运算,需先求出集合Q 的具体的范围,然后求交集.【解析】由题24x <,所以22x -<<,所以{}22Q x x =-<<,所以{}21P Q x x =-<<I ,故选D. (2)已知函数()()log 1,()1,f x x f a a =+==若则(A )0(B )1(C )2(D )3答案B【命题意图】本题主要考查对数的基本运算,直接利用已知条件中的等量关系求解. 【解析】由题()1f a =,得到2log (1)1a +=,解得12x +=,所以1a =,故选B. (3)设i 为虚数单位,则51ii-=+ (A )23i -- (B )23i -+ (C )23i -(D )23i +答案C【命题意图】本题主要考查复数的基本运算,属于容易题. 【解析】由5(5)(1)55123122i i i i i i i ------===-+,故选C.(4)某程度框图如图所示,若输出的57S =,则判断框内为(A )4?k > (B )5?k >(C )6?k >(D )7?k >答案A【命题意图】本题考查程序框图的有关知识,同时考查识图、用图能力.【解析】由题开始k=k+1=1+1=2,s=2×1+2=4,不满足条件需继续循环,则k=k+1=2+1=3,s=2×4+3=11,k=k+1=3+1=4,s=2×11+4=26,k=k+1=4+1=5,s=2×26+5=57,此时满足条件,应输出S ,所以判断框内应为4?k >,故选A.(5)设n S 为等比数列{}n a 的前n 项和,525280S a a S +==,则 (A )-11 (B )-8 (C )5 (D )11(A )-11(B )-8(C )5(D )11答案A【命题意图】本题考查等比数列的基本运算.【解析】由题数列{}n a 为等比数列,2580a a +=,即41180a q a q +=,因为10,0a q ≠≠,所以有380,2q q +==-,55522211(2)331111(2)3S q S q ---====-----,故选A.(6)设0,2x π<<则“x sin 2 x <1”是“x sin x <1”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件答案B【命题意图】本题主要考查充要条件的判断. 【解析】因为2sin (sin )sin 1x x x x x =<,0,0sin 12x x π<<∴<<,不一定能推出sin 1x x <成立,但当sin 1x x <成立时,因为0sin 1x <<,所以有sin sin 1x x x ⋅<,即2sin 1x x <,一定成立.故选B.(7)若实数x 、y 满足不等式组330,230,10,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则x +y 的最大值为(A )9(B )157(C )1(D )715答案A【命题意图】本题考查线性规划的有关最值问题,利用已知条件画出可行域求解.【解析】已知约束条件形成的可行域如图所示当目标函数z x y =+过23010x y x y --=⎧⎨-+=⎩的交点(4,5)点时取得最大值为9,故选A.(8)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是(A )33523cm (B )33203cm(C )32243cm(D )31603cm答案B【命题意图】本题主要考查空间几何体的三视图及利用三视图求解几何体的体积等知识.【解析】由三视图可知,该几何体是由一个正四棱柱和一个正四棱台组合形成的,由图中数据可知四棱柱的体积为144232V =⨯⨯=, 底层正四棱台的体积212(44448888)3V =⨯⨯⨯+⨯⨯⨯+⨯2243=,所以该组合体的体积为2243203233+=,故选B.(9)已知x 0是函数1()21xf x x=+-的一个零点,若1020(1,),(,)x x x x ∈∈+∞,则 (A )12()0,()0f x f x << (B )12()0,()0f x f x <>(C )12()0,()0f x f x ><(D )12()0,()0f x f x >>9.答案B【命题意图】本题主要考查函数的零点问题及函数的单调性的判断. 【解析】由题可知已知函数()f x 是由函数2xy =与11y x=-组合而成的,因为两个函数在(1,)+∞上均为增函数,所以()f x 也是(1,)+∞上的增函数,又因为0()0f x =,1020(1,),(,)x x x x ∈∈+∞,所以有函数的草图可知,12()0,()0f x f x <>,故选B.(10)设O 为坐标原点,F 1,F 2是双曲线22x a-22y b =1(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠F 1P F 2=60°,OP =7a ,则该双曲线的渐近线方程为(A )x 3=0 (B 3±y =0 (C) x 2=02x ±y =010.答案D【命题意图】本题主要考查双曲线定义,余弦定理的应用,属于难题.【解析】由题设1122,,PF r PF r OP x ===,则由双曲线的定义可知122rr a -=①,在12PF F ∆中由余弦定理可得2221212(2)c r r r r =+-,②在1PF O ∆中,222112cos r c x cx POF =+-∠,③ 在2PF O ∆中,222212cos()r c x cx POF π=+--∠④由以上四式消掉12,r r 即可求出2ba=,可知选D.非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分。

普通高等学校招生国统一考试数学文试题浙江卷,含答案

普通高等学校招生国统一考试数学文试题浙江卷,含答案

卜人入州八九几市潮王学校2021年普通高等招生全国统一考试数学文试题〔卷,含答案〕准考证号本套试卷分选择题和非选择题两局部。

全卷一共4页,选择题局部1至2页,非选择题局部3至4页,总分值是150分,考试时间是是120分钟。

请考生按规定用笔将所有试题之答案涂、写在答题纸上。

选择题局部〔一共50分〕本卷须知2.每一小题在选出答案以后,需要用2B 铅笔把答题纸上对应题目之答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

一、选择题:本大题一一共10小题,每一小题5分,一共50分。

在每一小题给也的四个选项里面,只有一项为哪一项哪一项符合题目要求的。

(1) 假设{1},{1}P x x Q x x =<>,那么〔A 〕P Q ⊆〔B 〕Q P ⊆〔C 〕R C P Q ⊆〔D 〕R Q C P ⊆〔2〕假设复数1zi =+,i 为虚数单位,那么(1)i z +⋅= 〔A 〕13i +〔B 〕33i +〔C 〕3i -〔D 〕3X +2y -5≥0〔3〕假设实数x ,y 满足不等式组2x +y -7≥0,那么3x +4y 的最小值是x ≥0,y ≥0(A)13(B)15(C)20(D)28〔4〕假设直线l 不平行于平面a ,且l a ∉,那么(A)a 内存在直线与异面(B)a 内不存在与l 平行的直线(C)a 内存在唯一的直线与l 平行(D)a 内的直线与l 都相交〔5〕在ABC ∆中,角,,A B C 所对的边分,,a b c .假设cos sin a A b B =,那么2sin cos cos A A B += (A)-12(B)12(C)-1(D)1 〔6〕假设,a b 为实数,那么“01ab ∠∠〞是“1b a ∠〞的 (A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件〔7〕几何体的三视图如下列图,那么这个几何体的直观图可以是〔8〕从已有3个红球、2个白球的袋中任取3个球,那么所取的3个球中至少有1个白球的概率是〔A 〕110〔B 〕310〔C 〕35〔D 〕910〔9〕椭圆22122:1x y C a b +=〔a >b >0〕与双曲线222:14y C x -=有公一共的焦点,C 2的一条渐近线与C 1C 2的长度为直径的圆相交于,A B1恰好将线段AB 三等分,那么 〔A 〕a 2=132〔B 〕a 2=13〔C 〕b 2=12(D)b 2=2 〔10〕设函数()()2,,f x ax bx c a b c R =++∈,假设1x =-为函数()2f x e 的一个极值点,那么以下列图象不可能为()y f x =的图象是非选择题局部〔一共100分)考生本卷须知请用黑色墨水签字笔或者钢笔将答案写在答题纸上,不能答在试题卷上........假设需在答题纸上作图,可先使用铅笔作图,确定后必须使用黑色字迹的签字笔或者钢笔描黑二、填空题:本大题一一共7小题,每一小题4分,一共28分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005浙江卷试题及答案源头学子小屋第Ⅰ卷 (选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的(1)函数sin(2)6y x π=+的最小正周期是A.2πB.πC.2π D .4π (2)设全集{}1,2,3,4,5,6,7U =,{}1,2,3,4,5P =,{}3,4,5,6,7Q =,则()U P Q =A.{}1,2 B .{}3,4,5 C.{}1,2,6,7 D.{}1,2,3,4,5 (3)点(1,-1)到直线10x y -+=的距离是( )(A)21 (B) 32(C) 2 (D)2(4)设()1f x x x =--,则1()2f f ⎡⎤=⎢⎥⎣⎦( )(A) 12- (B)0 (C)12(D ) 1(5)在54(1)(1)x x +-+的展开式中,含3x 的项的系数是( )(A)5- (B) 5 (C) -10 (D) 10(6)从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码统计结果如下:则取到号码为奇数的频率是A .0.53B .0.5 C.0.47 D .0.37(7)设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题(8)已知向量(5,3)a x =-,(2,)b x =,且a b ⊥,则由x 的值构成的集合是 A.{}2,3 B.{}1,6- C.{}2 D.{}6 (9)函数31y ax =+的图象与直线y x =相切,则a =A.18B.14 C.12 D.1(10)设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )(A) (B) (C ) (D )第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置11.函数2xy x =+(x ∈R ,且x ≠-2)的反函数是_________. 12.直角梯形ABCD两腰的中点,13.过双曲线22221x y a b -=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________. 14.从集合{P ,Q ,R ,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).三、解答题:本大题共6小题,每小题14分,共84分解答应写出文字说明,证明过程或演算步骤15.已知函数()2sin cos cos 2f x x x x =+(Ⅰ) 求()4f π的值;(Ⅱ) 设α∈(0,π),()22f α=si nα的值.16.已知实数,,a b c 成等差数列,1,1,4a b c +++成等比数列,且15a b c ++=,求,,a b c17.袋子A 和B中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次求(i )恰好有3摸到红球的概率;(ii )第一次、第三次、第五次均摸到红球的概率.(Ⅱ) 若A 、B 两个袋子中的球数之比为1:2,将A、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.18.如图,在三棱锥P-A BC 中,A B⊥BC ,AB =BC =12PA ,点O 、D分别是AC 、PC 的中点,OP ⊥底面ABC . (Ⅰ)求证OD ∥平面PAB(Ⅱ) 求直线OD 与平面PBC 所成角的大小;19.如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴A1A 2的长为4,左准线l 与x轴的交点为M,|MA 1|∶|A1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若点P 在直线l 上运动,求∠F 1PF 2的最大值.20.函数f (x)和g (x )的图象关于原点对称,且f(x )=x 2=2x . (Ⅰ)求函数g(x )的解析式;(Ⅱ)解不等式g(x)≥f (x )-|x -1|.(Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围2005浙江卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算每小题5分,满分50分(1)B (2)A (3)D (4)D (5)C (6)A (7)D (8)C (9)B (10)A 二、填空题:本题考查基本知识和基本运算每小题4分,满分16分(11)()2,11xy x R x x=∈≠-且;(12)90︒;(13)2;(14)5832 三、解答题:(15)本题主要考查三角函数的倍角公式、两角和的公式等基础知识和基本的运算能力分14分解:(Ⅰ)∵()sin 2cos 2f x x x =+∴sin cos 1422f πππ⎛⎫=+= ⎪⎝⎭(Ⅱ) cos sin 2f ααα⎛⎫=+= ⎪⎝⎭∴1sin ,cos 424ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭ 13226sin sin 44222ππαα⎛⎫=+-=⨯⨯= ⎪⎝⎭∵()0απ∈,, ∴sin 0α>, 故sin α=(16)本题主要考查等差、等比数列的基本知识考查运算及推理能力满分14分解:由题意,得()()()()()()2151221413a b c a c b a c b ⎧++=⎪⎪+=⎨⎪++=+⎪⎩由(1)(2)两式,解得5b = 将10c a =-代入(3),整理得213220211,2,5,811,5, 1.a a a a a b c a b c -+=========-解得或故或经验算,上述两组数符合题意。

(17)本题主要考查排列组合、相互独立事件同时发生的概率等基本知识,同时考查学生的逻辑思维能力满分14分解:(Ⅰ)(ⅰ) 32351240.33243C ⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ⅱ)311327⎛⎫= ⎪⎝⎭.(Ⅱ)设袋子A 中有m 个球,袋子B中有2m 个球,由122335m mpm +=,得1330p = (18)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力满分14分解:方法一:(Ⅰ) ∵O、D分别为AC 、PC 中点,OD PA ∴ ∥PA PAB ⊂又平面OD PAB ∴ 平面∥ (Ⅱ)AB BC OA OC ⊥= ,,OA OB OC ∴== ,OP ABC ⊥又 平面.PA PB PC ∴==E PE BC POE ⊥取BC 中点,连结,则平面 OF PE F DF OF PBC ⊥⊥作于,连结,则平面 ODF OD PBC ∴∠ 是与平面所成的角.sin OF Rt ODF ODF OD ∆∠==在中,OD PBC ∴ 与平面所成的角为A方法二:OP ABC OA OC AB BC ⊥== 平面,,,.OA OB OA OP OB OP ∴⊥⊥⊥ ,,()O OP z O xyz -以为原点,射线为非负轴,建立空间直角坐标系如图,,0,0,,0,,0,0222AB a A B C ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设,则 ()0,0,.OP h P h =设,则 ()D PC 为的中点,Ⅰ212,0,,,0,2OD a h PA a h ⎛⎫⎛⎫∴=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 又, 1...2ODPA OD PA OD PAB ∴=-∴∴平面∥∥()2,PA a = Ⅱ,h ∴=,OD ⎛⎫∴=- ⎪ ⎪⎝⎭,PBC n ⎛=- ⎝可求得平面的法向量 210cos ,OD n OD n OD n⋅∴〈〉==⋅ OD PBC θ设与平面所成的角为, 210sin cos ,OD n θ=〈〉=则 OD PBC ∴ 与平面所成的角为(19)本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力满分14分解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则2111,a MA a A F a c c =-=-()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得2,1a b c ∴===221.43x y +=故椭圆方程为(Ⅱ)()004,,0P y y -≠设001122121102112212000121212350,22tan 115tan y yPF k PF k F PF PF M F PF y k k F PF k k y y y F PF F PF F PF π=-=-<∠<∠<∴∠-∴∠==≤=++=±∠∠∠设直线的斜率,直线的斜率 为锐角。

当=取到最大值,此时最大,故的最大值为(20)本题主要考查函数图象的对称、二次函数的基本性质与不等式的应用等基础知识,以及综合运用所学知识分析和解决问题的能力14分解:(Ⅰ)设函数()y f x =的图象上任意一点()00,Q x y 关于原点的对称点为(),P x y ,则0000,,2.0,2x xx x y y y y +⎧=⎪=-⎧⎪⎨⎨+=-⎩⎪=⎪⎩即 ∵点()00,Q x y 在函数()y f x =的图象上∴()22222,2y x x y x x g x x x -=-=-+=-+,即 故(Ⅱ)由()()21210g x f x x x x ≥----≤, 可得当1x ≥时,2210x x -+≤,此时不等式无解当1x <时,2210x x +-≤,解得12x -≤≤因此,原不等式的解集为11,2⎡-⎢⎣(Ⅲ)()()()21211h x x x λλ=-++-+①()[]1411,1h x x λ=-=+-当时,在上是增函数,1λ∴=-②11.1x λλλ-≠-=+当时,对称轴的方程为 ⅰ)111, 1.1λλλλ-<-≤-<-+当时,解得ⅱ)111,10.1λλλλ->-≥--<≤+当时,解得0.λ≤综上,。

相关文档
最新文档