ANSYS的船舶轴系振动校核计算案例
ANSYS在船舶轴系校中上的应用
ANSYS在船舶轴系校中上的应用作者:季晨龙来源:《科技与创新》2014年第11期摘要:对于船舶而言,航行的安全性和稳定性尤为重要,而轴系校中是确保船舶稳定运行的重要环节之一。
基于此点,阐述了对船舶轴系校中的必要性,并在基础上研究了ANSYS 在船舶轴系校中上的具体应用,以期能够对提高船舶轴系校中质量有所帮助。
关键词:船舶;ANSYS;轴系校中;质量中图分类号:U664.21 文献标识码:A 文章编号:2095-6835(2014)11-0065-021 对船舶轴系校中的必要性船舶轴系校中要按照一定要求和方法,将需要校中的轴系敷设成为某种状态,使其全部轴承上的负荷和各个轴段内的应力均在允许范围之内,借此来使其达到最佳数值,从而确保轴系正常运转。
如果船舶轴系校中不良,则会产生诸多危害,具体体现在以下几个方面:①增大螺旋桨轴承负荷,特别在轴承后端会出现过大局部负荷,加快轴承的磨损速度,进而造成轴承损坏;②减小前尾管轴承负荷,以产生非正负荷,促使轴承间距发生较大变化,在降低轴系回旋振动固有频率的作用下,极有可能出现回旋振动共振转速;③破坏前尾管轴承密封装置,磨损中间轴轴承,尤其是柴油机后1~3个主轴承有可能遭到损坏;④齿轮箱前轴承与后轴承的负荷差值增大,对建立油膜产生负面影响,造成齿轮啮合不良,严重情况下,还会产生轴承合金烧熔、推力轴承和推力块发热、齿击振动等,进而导致船体尾部振动。
基于上述原因,有必要对船舶轴系进行校中,特别是对超大型船舶,为了确保其正常稳定运转,必须采取科学的计算方法进行校中,避免因轴系校中不良造成严重后果。
2 ANSYS在船舶轴系校中上的具体应用研究2.1 ANSYS的基本假设采用ANSYS法对船舶轴系进行校中时,在具体编程前,需要对船舶轴系进行假设,以满足ANSYS的计算要求,需要进行假设以下几点内容:①连续性。
一般情况下,固体物质的颗粒间会存在一定的空隙,所以其不具备连续性的特征,但这种空隙相对比较微小,所以可忽略不计,因此,假定固体连续存在于整个体积当中。
船舶推进轴系扭转振动计算分析
作者签名: 年 月 日
学位论文版权使用授权书
本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保 留并向有关学位论文管理部门或机构送交论文的复印件和电子版, 允许论文被查 阅和借阅。 本人授权省级优秀学士论文评选机构将本学位论文的全部或部分内容 编入有关数据进行检索, 可以采用影印、缩印或扫描等复制手段保存和汇编本学 位论文。 本学位论文属于 1、保密囗,在 2、不保密囗 。 年解密后适用本授权书
关键词:扭转振动;轴系;霍尔茨法;MATLAB
-2-
武汉理工大学毕业设计(论文)
Abstract
Ship propulsion shafting is a complicated flexible system with multi-masses, whose function is mainly as follows: transferring the power generated by main engine to drive the propeller, so the thrust is born for ship moving. Propulsion shafting torsional vibration is one of the combustion engine power unit malfunction reasons. The torsional vibration aggravated problems can cause crankshaft, intermediate shaft, propeller shaft and other shaft segment fracture can cause gear wear, tooth surface pitting, coupler damage, excessive noise and other issues. These all affect the dynamic property and safety of ship driving, so the propulsion shafting torsional vibration research has very important significance. Having looked up to plenty of information, this paper is taking ship propulsion shafting as a researched object, gives a brief summary of principles and methods for research and study of torsional vibration. The main works are as follows: (1)Establish a lumped parameter model for various parts of the ship shafting to transfer the complex shafting to a simple model: homogeneous rigid disc elements, no inertia damping elements, no inertia torsion spring elements. (2)Do the study or research about the theory of the inherent characteristics of torsion vibration (natural frequencies and mode shape) in ship propulsion shafting torsional vibration calculation. Comparing different characteristics and applicable features by their calculation process. (3) Verify the correctness of the methods used by modeling specific real ship
基于ANSYS的滚装船超长轴系扭转振动仿真计算
基于 ANSYS的滚装船超长轴系扭转振动仿真计算摘要:针对包含调距桨液压控制装置及抱轴式轴发的滚装船超长轴系扭转振动计算的问题,通过ANSYS软件对其进行了模态分析和谐响应分析。
模态分析的结果表明在0-300Hz内OD-BOX轴、轴发转子处以及两根中间轴的连接处容易出现较大的扭转振动变形,所有扭转振动的固有频率均高于其设计频率,在轴频激励下不会出现共振,同时扭转振动的最大振动应力均小于许用应力,满足设计的要求。
谐响应分析的结果表明在整个轴在160Hz处扭转振动最为剧烈。
关键词:滚装船; 扭转振动; ANSYS; 模态分析; 谐响应Simulation of shaft torsional vibration of long shafton Ro-Ro ship based on ANSYSWei Dong-liang,Ge Ji-huanChina Merchants JinLing shipyard (Nanjing) CO.,LTD., JiangsuNanjing 210015Abstract:For the purpose of the torsional vibration calculationof long shaft with controllable-pitch propeller hydraulic controldevice and shaft generator on Ro-Ro ship, the modal and harmonic response analysis were carried out by ANSYS. The modal analysisresults show that the OD-BOX shaft, the shaft generator rotor and the joint of two intermediate shafts are easy to deform in 0-300Hz. All natural frequencies of the torsional vibration are higher than design frequency. There will be no resonance under shaft frequency excitation. The maximum vibration stress of torsional vibration is less than theallowable stress, which meets the design requirements. The harmonic response analysis results show that the shaft has the maximumtorsional vibration at 160Hz.Key words:Ro-Ro ship; Torsional vibration; ANSYS; Modal analysis; Harmonic Response0引言扭转振动是船舶轴系的振动形式之一,由于弹性作用,在其旋转的过程中,各组成部件之间会而产生大小、相位不相同的瞬时旋转速度的差异,从而产生沿旋转方向的来回扭动。
4振动分析ANSYS算例
4振动分析ANSYS算例UNIT 4 振动分析ANSYS应⽤实例【ANSYS应⽤实例4.1】桥梁结构的振动模态分析【ANSYS应⽤实例4.2】卫星结构的振动模态分析学习要点:【ANSYS应⽤实例4.3】⼤型模锻液压机机架的振动模态分析(3梁2⽴柱的3D结构)【ANSYS应⽤实例4.1】桥梁结构的振动模态分析针对静⼒分析ANSYS算例中的⼩型铁路钢桥的桁架结构,进⾏振动模态的分析和计算。
【建模要点】X采⽤【ANSYS应⽤实例 1.2】中的模型和相应的约束条件,在此基础上采⽤命令< ANTYPE,2>设置模态分析类型、采⽤命令< MODOPT >设置分块Lanczos法进⾏模态分析;Y进⼊后处理,采⽤命令< SET,LIST >列出所计算出的前各阶固有频率,然后采⽤命令< ANMODE >以动画⽅式显⽰每⼀阶固有频率所对应的振型。
解答:以下为基于ANSYS图形界⾯(GUI)的菜单操作流程;注意:符号“→”表⽰针对菜单中选项的⿏标点击操作。
1 基于图形界⾯的交互式操作(step by step)⾸先利⽤【ANSYS应⽤实例1.2】中已建⽴的模型和相应的约束条件,即前8步,在此基础上完成模态分析如下。
(1)~(8)与【ANSYS应⽤实例1.2】完全相同。
(9)设置分析类型为模态分析Main Menu: Solution → Analysis Type → New Analysis → ANTYPE: Modal →OK(10) 采⽤分块Lanczos法提取前10阶模态Main Menu: Solution → Analysis Type → Analysis Options → Mode extraction method: Block Lanczos , No.of modes to extract: 10 → OK → OK(11)求解Main Menu: Solution → Solve → Current LS →(弹出⼀个对话框)OK →(求解完成后,弹出⼀个对话框Solution is done!)Close →(关闭信息⽂件右上⾓的X)/ STATUS Command(12)列出前10阶固有频率Main Menu: General Postproc → List Results → Detailed Summary前10阶固有频率如下:***** INDEX OF DATA SETS ON RESULTS FILE *****SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE1 49.674 1 1 12 74.797 1 2 23 156.97 1 3 34 200.44 1 4 45 253.34 1 5 56 280.88 1 6 67 322.24 1 7 78 359.48 1 8 89 382.20 1 9 910 449.79 1 10 10(13)对于线型单元(如杆、梁)按实体效果进⾏显⽰(以3倍⽐例)Utility Menu: PlotCtrls → Style → Size and Shape → ESHAPE: [9]ON, SCALE:3 → OK(14)调⼊第⼀阶固有频率Main Menu: General Postproc → Read Results → First Set(15)在显⽰时将变形形状与原型⼀起显⽰Utility Menu: Plot → Results → Deformed Shape → KUND: Def+undeformed →OK(16)以动画⽅式显⽰对应的阵型Utility Menu: PlotCtrls → Animate → Mode Shape → No. of frames to create: 10 , Time delay(seconds): 0.5 ,Display Type: DOF solution , Def+undeformed → OK(18) 退出系统ANSYS Utility Menu: File → Exit…→ Save Everything → OK桥梁结构的第1阶振型及第10阶振型见图4-1及图4-2。
基于ANSYS的船舶轴系校中优化计算
维普资讯
基于 A S S N Y 的船舶轴系校中优化计算 王金娥 间轴 9 30m, . 支承轴承包括前 、 艉管轴承 , 7 后 中 间轴承, 推力轴承和 5 个主机轴承, 各轴承支承刚
度 5 0 / 。 ×19 m N
文件应该参数化建立模 型, 参数化提取变量并设 定状态变量和目标函数 ;
() 明优化变量 , 4声 选择优化工具或优化计 算方法 , 指定优化循环控制方式 , 进行优化分析 ; () 5 查看设计序列结果和分析结果。 优化设计数据的流 向见 图 2 N Y 优化设 。A S S 计计算方法有零 阶方法 、 一阶方法 、 随机搜索法 、 等步长搜索法 、 乘子计算法 和最优梯度法。一 阶 方法将真实的有限元结果最 小化 , 而不是对其进 行逼近数值操作 , 计算精度高 , 因此这里采用一阶
主要 约束 条件 有
Rfi ≤ R ≤ R a x
i ≤ ≤
化计算方法, 讨论 了船舶轴系合理校 中的最优化 设计 。
随着计算机技术 和有 限元理论的发展及广 泛应
用, 出现 了很多通 用有限元 计算软 件, A SS 如 NY 、 艇℃,A' A N SR N等, I 为工程设计和计算提供 了支持。
支反力 、 最大支反力 ; f P 、 P f ~ 分别为轴 承 i 的最小 比压 、 比压 、 最大 比压 ; 、一 分别为尾管 0 后轴承支点处的转角 、 最大允许转角。
1 轴 系校 中优化 计算模 型
1 1 目标 函数 .
2 轴 系校 中有 限元模型
以一大型船舶的推进轴 系为研究对象 , 系 轴
了详细 的建摸过程 和优化计算 步骤 , 通过 工程 实例 验证 了该 方法 的适用 性 , 并 对工 程设计 具 有一 定 的指 导
ANSYS环境中的船舶推进轴系冲击动力学仿真计算
ANSYS环境中的船舶推进轴系冲击动力学仿真计算许庆新1沈荣瀛1臧述升2(1. 上海交通大学振动冲击噪声国家重点实验室,上海,200030,2.上海交通大学动力机械与工程实验室,上海,200030)摘要:本文提出了一种基于ANSYS环境的船舶推进轴系冲击动力学计算的方法。
首先采用有限元方法,把连续轴系离散成由二维梁单元构成的离散质量系统,轴承座处理成弹性约束的边界条件,螺旋桨简化为集中质量,求得轴系弯曲振动的固有频率和固有振型。
然后在垂向加速度冲击输入条件下,求解轴系任意点处的位移响应,以及轴承支承处的冲击应力。
通过一个工程计算实例,说明该方法的适用性。
关键词:推进轴系、冲击响应、仿真计算Simulation of Shock Dynamics of Ship Propulsive Shafting UsingANSYSXU Qingxin1 SHEN Rongying1 ZANG Shusheng2(1.Shanghai Jiaotong University State Key Laboratory of Vibration Shock Noise, Shanghai,200030 2.Shanghai Jiaotong University Power Mechanical Engineering Laboratory,Shanghai, 200030)Abstract : This paper discusses the method of simulation of shock dynamics of ship propulsive shafting by use of ANSYS. According to Finite Element Method, continuous shafting is considered as a discrete mass system in terms of 2D beam element, bearing block is considered as elastic constraint condition, and the propeller is simplified lumped mass, so the natural frequency and natural mode of flexural vibration of shafting can be calculated. Then, shock response of propulsive shafting and shock stress of bearing block under vertical acceleration shock can be computed. Finally, the practical engineering calculation example illustrates the availability of the proposed method.Keywords : propulsive shafting, shock response, simulation computing1 前言:船舶推进轴系是船舶动力系统的一个重要组成部分,它包括从主机输出端推力轴承直到螺旋桨之间的传动轴及轴上附件。
基于ANSYS的80FT游艇结构强度校核分解
青 岛 科 技 大 学 本 科 毕 业 设 计 (论 文)题 目 ____________________________________________________________________指导教师__________________________辅导教师__________________________学生姓名__________________________学生学号________________________________________________________学院 ____________________________专业________________班______年 ___月 ___日基于ANSYS 的80FT 游艇结构强度分析 辛峻峰 赵悦 1205080225 机电工程 船舶与海洋工程 船舶122 2016 6 61绪论1.1研究背景纵观全世界,在游艇行业有着一个多元化而且广阔的市场前景,而游艇的价格也是不等的,可根据人们需要进行设计建造,其价值也是根据人们需求所赋予的。
世界众多富豪钟与超级豪华游艇,而普通的钓鱼船,休闲艇则是大多数中层社会人士喜欢的。
北美占世界游艇市场份额的55.9%,大多数游艇销售单价在1.5万-5万美元之间,豪华游艇的销量只占 2.5%;欧洲市场是较为广泛的游艇销售市场,其中主要销售的也只是豪华类游艇,平均的销售价格大约为10万美元,合70万人民币。
目前,欧美游艇价格已经进一步滑落。
在美洲,大约有1700万家庭有游艇,但是这之间大多数都是帆船,所占比例为70%,中小型游艇占80%,这些中小型游艇都是5万美元左右的。
这几年美洲的游艇销售平均价格为3万美元,折合人民币不到20万,而欧洲的中小型游艇以及帆船也占了84%的比例。
1.2研究方向在本文中,参照《游艇入级与建造规范(2012)》对所需要校核的船体进行校核检验,主要涉及的是船体物理强度的验证。
船舶轴系扭转振动校核及案例分析
99/0
4
1
0.123
2.539E-07
99/0
5
1
0.153
2.491E-07
99/0
6
1
0.153
2.539E-07
99/0
7
1
0.123
2.539E-07
99/0
8
1
0.153
1.474E-07
99/0
9
1
2.348
1.493E-05
0/0
10
1
0.038
1.143E-06
52/0
11
1
0.117
46
中国水运
第 21 卷
根据《钢质内河船舶建造规范》(2016),案例船有 6 缸, 应计算航行工况和离合器脱开工况及在这两种工况下每一缸 熄火工况的扭振计算。通过 COMPASS 软件的计算,得出上 述工况下的曲轴扭转振动应力、中间轴扭转振动应力、螺旋 桨轴扭转振动应力、齿轮啮合处振动扭矩、弹性联轴器振动 扭矩。
3.704E-07
82/71.5
12
1
0.041
0
0/0
13
1
0.077
1.585E-07
73/0
14
1
0.013
0
0/0
15
1.733
0.022
1.608E-06
70/0
16
1.733
0.021
1.315E-06
75/0
17
1.733
0.032
4.957E-06
100/0
18
1.733
0.040
5.364E-05
船舶轴系的振动与控制分析船舶专业毕业设计毕业论文
船舶轴系的振动与控制分析摘要本文主要进行船舶轴系振动的模态分析(固有频率与固有振型),通过MATLAB 平台实现了船舶轴系纵向振动模态计算的通用程序,并且分别应用该通用程序与ANSYS中的模态分析计算了船舶轴系扭转振动与纵向振动(给定轴系)的模态,并对所计算的结果进行了对比与分析。
同时,本文也介绍了船舶轴系强迫振动的计算以及船舶轴系振动的控制分析。
本文以船舶推进轴系的振动为研究对象,查阅了国内外大量文献,首先介绍了船舶推进轴系振动的分类,接着以一种通俗的方式阐述了各种振动的机理。
其次论述了轴系振动计算的几种常用的方法:霍尔兹法、传递矩阵法与有限元法。
接着论证了传递矩阵法的可用性,以及在什么情况下使用该方法可以达到所需的精度要求。
然后通过MATLAB平台实现了船舶轴系振动(包括扭转振动与纵向振动)的通用程序。
紧随其后,使用该程序计算了一个扭转振动与纵向振动的实例,再后来使用ANSYS对同样的例子进行了计算分析,通过比对,证实了通过MATLAB平台实现的通用程序计算的结果是令人满意的。
随后介绍了轴系的强迫振动及计算强迫振动的传递矩阵法,并给出了该方法的一个简单的算例,之后介绍了避振的几种思路。
最后对研究成果和有关问题进行了总结,对研究中的不足作了说明,对今后的工作做出了展望。
关键词:纵向振动,传递矩阵法,有限元法,通用程序,强迫振动Analysis of Vibration and ControlOn Ship ShaftingAbstractThis paper is mainly researching the vibration characteristics on ship shafting (natural frequencies and mode shapes). Through the platform of MATLAB, we get the general program which can calculate the mode of the longitudinal vibration and torsional vibration on ship shafting, and using this general program, an instance is calculated. ANSYS is applied to, too. And then both of the calculated results were compared and analyzed. At the same time, the paper also describes the calculation of the forced oscillation of ship shafting and the analysis of ship shaft vibration control.In this paper, viewing vibration of ship propulsion shafting as the research object, I consulted relevant data at home and abroad. First, I have introduced the classification of ship propulsion shafting vibration, and then described in a easy manner to various vibration mechanism.Next, several commonly used methods to vibration calculations are discussed: the Holzer method, the transfer matrix method and the finite element method.Then the availability of the transfer matrix method is demonstrated, and also is the required precision when we can achieve by the method.After that, through the platform of MATLAB, we get the general program which can calculate the mode of the vibration (including the longitudinal and the torsional vibration) vibration on ship shafting. Then we use the general program to calculate an instance of longitudinal and torsional vibration. And then we use ANSYS to calculate the same example. By comparison, we confirm the results by the general program through MATLAB platform are satisfactory.Then we introduce the forced vibration of ship shafting and the transfer matrix method of the forced vibration, and a simple example is showed, after that we introduce several ideas to avoid vibration.Finally, a summary about the achievement and problems is presented. An explanation of imperfectness in the study and pieces of advisement for the future work is given.Key words: Longitudinal Vibration,Transfer Matrix Method,Finite Element Method,General Program, Forced Vibration目录摘要........................................................................................................................ I ABSTRACT ................................................................................................................. I I 目录 ................................................................................................................ III 一绪论 (1)1.课题研究的目的和意义 (1)2.国内外研究概况 (2)3.本文主要工作 (3)二船舶轴系振动简介 (5)1.纵向振动 (5)2.扭转振动 (6)3.回旋振动 (7)三轴系振动计算方法 (9)1.霍尔兹(Holzer)法 (9)2.传递矩阵法 (11)3.有限元法 (19)四轴系振动通用程序实现 (23)1.船舶轴系的构造 (23)2.轴系振动通用程序实现 (25)3.轴系振动通用程序的应用与检验 (28)五船舶轴系振动的控制 (46)1.船舶轴系的强迫振动 (46)2.船舶轴系强迫振动的传递矩阵法 (46)3.强迫振动算例 (48)4.船舶轴系避振措施 (50)六总结 (52)1.结论 (52)2.设计评价和展望 (52)致谢 (53)附录 (54)参考文献 (62)一绪论1.课题研究的目的和意义声明:本论文中除特殊说明之外出现的所有物理量的单位均为国际制单位,即长度为米,时间为秒,质量为千克等。
基于ANSYS船舶轴系的振动校核计算
基于ANSYS船舶轴系的振动校核计算船舶轴系的振动校核计算是船舶设计过程中的重要一环,它可以用于评估船舶轴系在使用和加载条件下的振动性能,确保船舶的可靠性和安全性。
在这个过程中,基于ANSYS软件的有限元分析方法被广泛应用。
本文将介绍船舶轴系振动校核计算的一般步骤和方法,并结合ANSYS软件的使用进行详细说明。
一般步骤:1.轴系建模:首先,需要将船舶的轴系进行建模。
在建模过程中,需要考虑船舶的轴系几何形状、材料属性和加载条件等因素。
通常,可以采用ANSYS软件中的几何建模工具和材料库来完成这一步骤。
2.边界条件设定:在建模完成后,需要设定轴系的边界条件。
边界条件包括轴系的支座约束和加载条件。
在船舶轴系中,支座约束通常是轴系的一些点(例如轴承支座)在几个方向上的约束,以模拟船舶运行时的实际情况。
加载条件通常是指轴系所受到的各种外部载荷,如水流载荷、潮汐载荷和推进器载荷等。
3.网格划分:在设定边界条件后,需要对轴系进行网格划分。
网格划分是有限元分析的重要一步,它决定了计算结果的精度和计算效率。
在ANSYS软件中,可以使用自动网格划分工具或手动网格划分工具来完成这一步骤。
4.材料属性设定:在划分好网格后,需要为轴系的各个部分指定材料属性。
船舶轴系通常由不同的材料构成,如轴承、轴颈和轴管等部分。
在ANSYS软件中,可以使用材料库中的材料数据或自定义材料数据来指定材料属性。
5.振动分析:在完成前述的步骤后,可以对船舶轴系进行振动分析。
振动分析是有限元分析中的一种重要分析方法,它可以用于评估船舶轴系在不同频率下的振动性能。
在ANSYS软件中,可以使用模态分析或频率响应分析等方法来进行振动分析。
6.结果评估:在完成振动分析后,可以通过查看计算结果来评估船舶轴系的振动性能。
计算结果通常包括振动模态、固有频率和振动幅值等信息。
根据评估结果,可以确定轴系是否满足设计要求,或者需要进行进一步的改进。
基于ANSYS软件的船舶轴系振动校核计算方法可以提供船舶设计和重要决策的依据,为船舶的可靠性和安全性提供保障。
ansys-workbench的轴结构强度校核计算
轴有限元分析1 概述本计算是对轴进行强度校核仿真,通过SOLIDWORKS软件对轴进行三维几何建模,在ANSYS/WORKBENCH软件中进行有限元网格划分、载荷约束施加,计算轴在工作状态下的结构应力及形变量,校核轴的强度是否满足要求。
2 材料参数轴采用的材料——,其材料各力学属性见表1。
表1 材料属性材料名称弹性模量泊松比密度——200GPa 0.3 7850kg/m33 结构有限元分析3.1 结构几何模型打开WORKBENCH软件,将Static Structural模块左键按着拖入到右侧工作窗口内,如图1。
图1右键点击Geometry,选择Import Geometry,点击Browse,最后选择我们在SOLIDWORKS里面建好的三维模型,如图2所示。
图2双击Geometry,进入DM界面。
右键点击Import1,点击Generate,最终显示的几何模型如图3所示。
图33.2 结构有限元模型关闭DM界面,重新回到工作窗口。
双击Model,如图5所示。
图4双击Model后,进入DS界面。
左键点击Mesh,左键点击Generate Mesh,进行网格划分,最终画好的有限元模型如图5所示。
图53.3 载荷和约束3.3.1载荷根据轴的工作方式,在轴的右端齿面上的载荷分别圆周力、径向力、和轴向力其中通过计算得到,圆周力为90.42N,径向力为33.80N,轴向力为21.2N,其次在轴中段会施加一个弯矩,大小为278.5N·mm。
具体的载荷施加如图6所示。
图63.3.2约束根据轴的工作方式,在轴的两端添加约束,即距离左端3.5mm处和距离右端15mm处固支。
点击Support 选择Fixed Support,选择约束处,点击Apply,如图7所示。
图73.4 有限元计算结果在设置好载荷和约束后,点击Solution,选择Insert,选择Deformation,选择Total,添加变形约束结果显示,点击Solution,选择Insert,选择Stress,选择Von-Mises,添加应力结果显示。
船舶轴系扭振计算(精)
船舶轴系扭振计算1 已知条件轴系原始资料2 当量系统2.1惯量计算(或给定) 2.2 刚度计算(或给定)2.3 当量系统转化,即将系统转化成惯量-刚度系统,并给出当量系统图以及相关参数(见表)当量系统参数3 固有频率计算(自由振动计算并画出振型图)Holzer表4 共振转速计算5强迫振动计算(动力放大系数法的计算步骤) 步骤1:激励计算步骤2:计算第1惯性圆盘的平衡振幅步骤3:计算各部件的动力放大系数步骤4:求总的放大系数1Q=1Qe+1Qp+1Qs+1Qr+1Qd步骤5:计算第1质量的振幅A=Q×A1st步骤6:轴段共振应力计算τk,k+1=τ0⋅A1步骤7:共振力矩计算步骤8:非共振计算A1=⎡⎢1-⎢⎣A1st2⎛n⎫⎤1 ⎪⎥+2 n⎪Q⎝c⎭⎥⎦2⎛n⎫⎪ n⎪⎝c⎭2步骤9:扭振许用应力计算(按CCS96规范)步骤10:作出扭振应力或振幅-转速曲线能量法计算步骤:步骤1 相对振幅矢量和的计算(如为一般轴系,可省略)步骤2 激励力矩计算Mv(若为柴油机轴系,方法同动力放大系数法步骤1;若为一般轴系,则已知条件给定)步骤3:激励力矩功的计算WT=πMνA1∑αk 步骤4:阻尼功的计算各部件的阻尼功部件外阻尼功的计算:步骤5:阻尼力矩功Wc的计算(为系统各部件总阻尼功之和)Wc=Wce+Wcd+Wcp+Wcs+Wcr+步骤6:求第1质量振幅A1 A1=WTWc步骤7-11同动力放大系数法步骤6-10 强迫振动计算结果表:6 一缸不发火的扭振计算1)不发火气缸的平均指示压力近似为零,相应的气体简谐系数为bv;其他气缸的平均指示压力pimis为:pimis=zz-1pi N/mm2;式中:z-气缸数,pi按前面计算公式计算。
2)相应的Cimis为:Cimis=avpimis+bv3)一缸不发火影响系数为:γ=Cimis a∑mis Cν∑a式中:Cv、Cvmis——分别为正常发火与一缸不发火时的简谐系数;∑ a、∑amis分别为正常发火与一缸不发火时的相对振幅矢量和,其中∑amis按下式计算:∑ amis=zz(∑βkaksinνζk=1)+(∑βkakcosνζ1,kk=12) 1,k2不发火缸βk=bνCvmis,其他气缸为1;4)一缸不发火的振幅、应力和扭矩:第1质量振幅为:A1mis=γA1轴段应力为:τ1misk,k+!=γτk,k+1齿轮啮合处振动扭矩为:Tgmis=γTG弹性联轴器振动扭矩为:Trmis=γTR7 柴油机激励的不均匀柴油机各缸在允许误差范围内存在各缸负荷不均匀情况。
基于ANSYS船舶轴系的振动校核计算
基于ANSYS船舶轴系的振动校核计算ANSYS是一种广泛应用于工程领域的有限元分析软件,能够模拟和分析船舶结构的振动响应。
船舶结构的振动校核计算可以帮助设计师评估船舶的结构强度和舒适度,以确保其安全性和稳定性。
船舶振动分析考虑了多个因素,包括船体的自然频率、结构材料的弹性特性、载荷作用以及流体力学因素。
ANSYS船舶振动校核计算可以通过以下步骤完成:1.建立船舶结构模型:使用ANSYS软件建立船舶结构的三维有限元模型,包括船体、船底、船舱等部分。
结构模型的准确性和细节度直接影响振动分析的准确性。
2.材料属性定义:根据实际使用的材料,定义船舶结构的弹性模量、泊松比和密度等材料属性。
这些属性对于计算结构的自然频率和振动响应至关重要。
3.边界条件和约束:在模型中定义边界条件和约束,模拟船舶与海水的相互作用。
可以通过添加约束来限制船舶在特定运动方向上的自由度,例如在船舶底部添加一定的支撑约束。
4.载荷应用:根据实际运行条件和设计要求,模拟载荷的作用。
常见的载荷包括船舶自身重力、海浪和液货运输等引起的动力载荷。
5.静态分析:进行船舶结构的静态强度分析,计算结构在不同载荷下的应力和应变。
这可以帮助设计师确定船舶结构的强度和稳定性。
6.动态分析:在船舶结构上施加动力载荷,模拟船舶在运行过程中的振动响应。
通过计算结构的自由振动频率以及对外部激励的响应,可以评估结构的自振特性和舒适性。
7.结果分析和后处理:通过分析计算结果,评估船舶的结构响应和安全性。
可以确定结构的共振频率、振动模态以及响应的幅值和幅值分布。
船舶轴系的振动校核计算是船舶结构振动分析的重要组成部分。
通过ANSYS软件的应用可以帮助设计师评估船舶轴系的振动特性,并确定结构的自振频率以及对外界激励的响应。
在船舶轴系的振动校核计算中,需重点考虑轴系结构的弹性特性、载荷情况以及激励源(如发动机振动和螺旋桨激励)对轴系的影响。
可以采用有限元法建立轴系的详细模型,通过加载实际工况下的载荷进行振动分析。
「基于ANSYS船舶轴系的振动校核计算」
「基于ANSYS船舶轴系的振动校核计算」根据ANSYS船舶轴系的振动校核计算,我们需要确定振动计算的目的、振动源和船舶轴系的相关参数。
振动计算的目的通常是为了评估船舶轴系在不同工况下的振动水平,
以确定是否满足振动设计要求,以及通过对振动源的分析,确定降低振动
的措施。
首先,我们需要确定振动源。
在船舶轴系中,可能存在的振动源包括
主机与传动系统、螺旋桨与水流之间的相互作用、覆盖层的不平衡和不同
部位的流体动力振动等。
其次,我们需要确定船舶轴系的相关参数。
包括轴系的结构特征,例
如轴的直径、长度、材料等;以及振动响应特性,例如转动惯量、振动模
态等。
接下来,我们可以使用ANSYS软件进行振动计算。
首先,根据船舶轴
系的几何特征,我们需要绘制模型并进行网格划分。
然后,需要定义边界
条件,例如轴承支撑约束和外部载荷。
接着,我们可以选择适当的振动分
析方法,例如模态分析、谐响应分析或响应谱分析等。
在进行振动计算之后,我们可以获得船舶轴系在不同工况下的振动响应。
根据振动响应结果,我们可以评估船舶轴系的振动水平是否满足设计
要求。
如果超过要求,我们可以通过分析振动源,确定降低振动的措施。
例如,可以采取平衡轴系、改变传动系统参数或增加振动吸收装置等来减
小振动水平。
总之,基于ANSYS船舶轴系的振动校核计算可以帮助我们评估船舶轴系在不同工况下的振动水平,并确定相应的振动控制措施。
这对于提高船舶的安全性和舒适性具有重要意义。
基于 ANSYS 的高速艇艉轴架轴系振动响应分析
基于 ANSYS 的高速艇艉轴架轴系振动响应分析郭进涛;董威【摘要】针对高速艇艉轴架轴系振动的问题,建立三维有限元模型,应用ANSYS 软件对其结构振动响应进行分析预报。
通过静力计算、模态求解、谐响应分析、时间历程处理、扩展位移解及查看扩展解,对该艇的舷外艉轴架轴系结构振动响应进行全面评估。
%Aiming at the vibration problem of the propeller strut and shafting of a high-speed vessel, the finite element meth-od is applied to analyze the vibration response of structure components.According to the static calculation, modal solution, the frequency response analysis, time process disposal, the vibration response characteristics of the propeller strut and shafting of the high-speed vessel are evaluated comprehensively.【期刊名称】《船海工程》【年(卷),期】2015(000)004【总页数】4页(P18-20,24)【关键词】高速艉;艉轴架轴系振动;有限元分析【作者】郭进涛;董威【作者单位】中国舰船研究设计中心,武汉430064;中国舰船研究设计中心,武汉430064【正文语种】中文【中图分类】U661.44基于ANSYS的高速艇艉轴架轴系振动响应分析郭进涛,董威(中国舰船研究设计中心,武汉430064)摘要:针对高速艇艉轴架轴系振动的问题,建立三维有限元模型,应用ANSYS 软件对其结构振动响应进行分析预报。
变刚度支承对船舶轴系横向振动影响分析
变刚度支承对船舶轴系横向振动影响分析摘要:为研究轴承水平和垂直变刚度对船舶轴系横向振动的影响,在ANSYS中建立船舶推力轴系有限元模型,通过模态分析和谐响应分析,研究了尾轴承两个共轭方向变刚度时,轴系的横向固有振动频率以及横向受迫振动情况。
关键词:船舶轴系;横向振动;ANSYS;模态分析;谐响应分析引言本文以变刚度的方法,建立有限元模型,应用ANSYS模态分析和谐响应分析模块,分析轴承水平和垂直刚度变化时轴系的横向振动特性,为进一步研究船舶轴系振动控制奠定基础。
1.分析实例1.1分析对象的基本参数本文研究船轴全长24320mm,由一根螺旋桨轴、3根中间轴组成,由5个轴承支承,分别是1个后尾轴承、一个前尾轴承、3个中间轴承。
轴系的主要参数如下:螺旋桨直径=1380mm,附水质量为1800kg;螺旋桨轴外径7200mm;中间轴外径48mm.轴段材料为34CrMo1密度为7800kg/m3,弹性模量207Gpa,泊松比为0.25。
1.2轴系有限元模型的建立采用BEAM188梁单元来模拟船舶轴系,Z轴为轴方向,联轴节和法兰盘可以用BEAM188设置不同直径的梁截面来模拟。
轴系的轴承采用COMBIN14弹簧单元进行模拟,在推进轴系的水平和垂直方向分别设置两个弹簧。
弹簧单元的一端与轴承对应的节点相连,另一端为固定端,进行全约束。
对于螺旋桨,根据质量守恒定理和转动惯量守恒定理,将螺旋桨转换为质量和转动惯量均和螺旋桨相同的圆盘,采用BEAM188梁单元模拟。
2.模态分析为了研究轴承支承刚度对推进轴系振动的影响规律,本文以轴承刚度4.6×109N/m为基准],分别按轴承水平刚度为 2.3×108N/m ,垂直刚度为4.6×109N/m、轴承水平刚度为4.6×109N/m ,垂直刚度为4.6×109N/m、水平刚度为4.6×109N/m,垂直刚度为4.6×109N/m、水平刚度为4.6×109N/m,垂直刚度为4.6×109N/m四种种不同情况时,进行模态分析,得到轴系振动的前10阶固有频率。
大型船舶轴系回旋振动特性的模拟计算及实测
大型船舶轴系回旋振动特性的模拟计算及实测周飞云【摘要】For super-large vessels,the vertical bending stiffness of thehull,especially the stem part,is relatively low.Meantime,vessels often use large and multi-blade propellers for higher efficiency.The combination of the two factors cause higher bending moment and lower whirling vibration characteristic frequency of the shafting system,which gets near to the frequency induced by the propeller.There is a possibility of resonance.The calculating and measurement of propulsion shafting whirling vibration is not defined in the classification rules.The propulsion shafting whirling vibration of a large container ship using transfer matrix method is calculated and the result is compared to the measurements.Analysis indicates that there exist two resonance points in the range of operation revolution,which demonstrates the necessity of whirling vibration check for large vessels with long shafting system or special shafting system designs.%船舶的大型化发展使得船体(特别是船尾)的刚度有所下降;同时,为提高推进效率而采用大规格多叶片的大型螺旋桨,导致轴系的弯曲力矩增大,推进轴系回旋振动固有频率降低并与螺旋桨在水中的激振频率接近,有引发回旋共振的可能,而船级社规范没有对这类船舶的推进轴系回旋振动的计算测量作出要求.利用传递矩阵法对某大型集装箱船轴系回旋振动进行建模分析,并与实船测量结果相对比.通过对比分析发现,在主机正常转速范围内存在二次回旋共振点,因此对于一些长轴系大型船舶及特殊推进轴系船舶而言,应在主机常用转速范围内进行轴系回旋振动的测量分析,确保轴系安全、有效运转.【期刊名称】《中国航海》【年(卷),期】2017(040)004【总页数】5页(P30-33,38)【关键词】回旋振动;推进轴系;固有频率;振动模型【作者】周飞云【作者单位】中国船级社福州分社,福州350008【正文语种】中文【中图分类】U664.21船舶推进轴系振动通常有扭转振动、纵向振动和回旋振动等3种形式。
ANSYS谐响应分析实例-振动电机轴分析
最小网原创教程——AnsysWorkBench11.0振动电机轴谐响应分析 AnsysWorkBench11.0振动电机轴谐响应分析 最小网站长:kingstudio最小网Ansys 教程频道为您打造最IN 的教程/1.谐响应分析简介任何持续的周期载荷将在结构系统中产生持续的周期响应(谐响应)。
谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时的稳态响应的一种技术。
分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对频率的曲线。
从这些曲线上可以找到“峰值”响应,并进一步观察峰值频率对应的应力。
该技术只计算结构的稳态受迫振动,而不考虑发生在激励开始时的瞬态振动。
(见图1)。
谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共振、疲劳,及其它受迫振动引起的有害效果。
谐响应分析是一种线性分析。
任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。
分析中可以包含非对称系统矩阵,如分析在流体─结构相互作用中问题。
谐响应分析也可以分析有预应力结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。
谐响应分析的定义与应用介绍:/ArticleContent.asp?ID=7852. 工程背景在长距离振动输送机、概率振动筛等变载荷振动机械中,由于载荷的变化幅度较大,且多为冲击或交变载荷,使得作为动力源与振动源的振动电机寿命大为缩短,其中振动电机阶梯轴的弹塑性变形又会中速振动电机的失效,故研究振动电机轴的谐响应,进而合理设计其尺寸与结构,是角决振动电机在此类场合过早失效的主要途径之一。
现以某型振动电机阶梯轴为分对象,振动电机属于将动帮源与振动源合为一体的电动施转式激振源,在振动电机轴两端分别装有两个偏心块,工作时电机轴还动两偏心块作顺转无能无力产生周期性激振力t sin F F 1ω=,其中为施加载荷,由些电机轴受到偏心块施加的变载荷冲击,极易产生变形和疲劳损坏,更严重者,当激振力的频率与阶梯轴的固有频率相等时,就会发生共振,造成电机严重破坏,故对电机进行谐应力分析很必要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文尝试对轴系元件进行简化,并进行轴系振动的校合计算。
通过和以往计算方法的比较,我们认为运用ANSYS进行船舶轴系振动计算,方法简单、方便、迅速,计算结果和分布趋势是合理的,误差也在工程允许的范围以内。
运用ANSYS进行船舶轴系的振动校合计算在工程上是完全适用的。
本文介绍了ANSYS的船舶轴系振动校核计算案例
摘要:本文利用大型商用有限元计算软件ANSYS,进行船舶轴系的振动校合计算。
首先通过适当简化各种轴系元件,对船舶轴系部分进行几何建模,对轴系本体部分采用三维B EAM188梁单元模拟,对弹性支承的轴承部分采用COMBINE14弹簧单元模拟,对螺旋桨部分采用MASS21质量单元模拟。
然后确定出轴系计算的边界条件,进行模态分析,就可以得到轴系振动的各阶固有频率和固有振型(包括横向振动、纵向振动和扭转振动),以及模态参与因子。
通过一个实际船舶轴系振动的计算,说明该方法的适用性。
关键词:船舶轴系、振动校合计算
1 概述
船舶轴系是由推力轴、中间轴、艉轴、推力轴承、滑动轴承、联轴节、螺旋桨等组成的复杂系统,在船舶运行过程中,它会发生弯曲振动现象,对船舶正常运行产生不利影响。
船舶轴系振动有三种类型:由旋转轴不平衡引起的横向振动,可以是垂直方向的,也可以是水平方向的,会造成艉管密封漏水或漏油,轴承座松动,甚至破裂;由螺旋桨推力不均匀引起的纵向振动,情况严重时可以造成推力轴承敲击,曲柄箱破裂,有齿轮传动时,还会损坏齿轮;此外,从主机通过轴系传递功率至螺旋桨造成轴段来回摆动,各轴段间的扭角不相同,从而产生扭转振动,破坏的结果是轴系断裂,有齿轮传动时,会造成齿轮敲击。
因此,在船舶设计过程中,有必要对船舶轴系进行振动校合计算。
对于轴系这样的复杂结构,运用有限元方法进行振动计算具有明显的优越性。
本文针对上海交通大学和某造船厂共同设计开发的46000吨集装箱船,应用ANSYS有限元软件6. 0版本对其传动轴系进行振动校合计算,为进一步的设计提供参考。
ANSYS是美国ANSYS公司开发的大型通用有限元分析软件,它具有结构静力分析、结构动力分析、瞬态分析、模态分析、流体动力学分析、电磁场分析等多种功能。
本文即是利用ANSYS软件的模态分析功能,完成对船舶轴系这一复杂结构的建模和有限元分析。
实践证明,这种方法可以有效的提高工作效率,缩短分析周期,对工程实际是非常有效的。
2 轴系计算的有限元模型
进行校合计算的46000吨集装箱船,采用的是瓦西兰公司的32缸柴油发动机组,发动机输出法兰通过齿轮箱变速后,和中间轴连接,中间轴和艉轴之间有联轴节。
中间轴长3. 68m,外径0.4m,无轴承支承。
艉轴长5.3m,外径0.48m,前后分别有两个轴承,前轴承宽0.48m,后轴承宽1.08m,轴承刚度由轴承说明书给出。
中间轴和艉轴中都布置有润滑系统。
螺旋桨是变距螺旋桨,总重14500kg。
根据实际需要,只需对船舶轴系的自由振动情况进行
校合计算,不考虑受迫振动情况。
所以在轴系的有限元建模中,只保留从齿轮箱输出法兰到螺旋桨部分的轴系。
根据轴系的实际结构,建模过程中进行了以下简化:
对轴系本体部分采用BEAM188梁单元模拟。
BEAM188单元是三维梁单元,每个节点具有六个自由度:UX、UY、UZ、ROTX、ROTY、ROTZ,可以满足各种振动计算的要求。
设置不同的梁截面,可以模拟不同直径的轴结构。
考虑到润滑系统的布置,这里都设置为内径100外径不同的环形截面。
对弹性支承的轴承部分采用COMBINE14弹簧单元模拟。
COMBINE14通常是一维线性弹簧单元,可以分别有三个方向的自由度UX、UY、UZ,只沿弹簧方向传递力。
由于轴承有一定的宽度,可以有力矩作用,所以考虑在轴承部分的每个节点上都设置弹簧单元,来模拟力矩对轴承的影响。
由于是一维弹簧单元,所以考虑在轴的水平和垂直方向分别设置两个弹簧,来分别模拟轴承部分在Y向和Z向的弹性。
所以最后是在轴承部分的每个节点上有两个弹簧单元,弹簧单元一端直接连接在轴的节点上,一端设置为固定端。
在轴系和齿轮箱法兰的连接处,考虑存在弹性连接,所以在纵向上设置一个弹簧单元来模拟纵向的弹性连接,弹簧的刚度由经验数据给出。
在水平和垂直方向上也设置两个弹簧,来模拟齿轮箱法兰对轴系的支承作用。
对联轴节部分,为了计算方便将其同样简化为梁单元,梁单元的内径不变,只是将梁单元的外径适当放大,来模拟这部分的强度。
对螺旋桨部分,将艉轴部分适当延长来模拟螺旋桨部分的长度,将螺旋桨的质量加上附水质量(变距桨按30%的螺旋桨干质量计算)简化为集中质量,集中质量直接加在螺旋桨的几何中心位置。
经过以上简化处理,可以建立轴系的有限元计算模型,见图1。
轴系共有节点63个,其中方向节点27个,BEAM188梁单元27个,采用了5种不同的截面形状,COMBINE14弹簧单元15个,MASS21质量单元1个。
材料的弹性常数为:弹性模量E=2.1 x 1011 N/m2,泊松比μ=0.3,密度ρ=7.8 x 10 3g/m3。
图1 船舶轴系的有限元计算模型
3 轴系横向振动的计算
轴系横向弯曲振动计算中,假设轴承的刚度在各个方向上是相同的,轴系在水平和垂直方向上的振动是相同的,所以只计算垂直方向的振动。
ANSYS模态分析中,BEAM188单元只保留UY、ROTZ自由度,其他自由度都去掉。
模态分析后可以得出各阶固有频率,各节点的相对位移值、转角值,各单元的弯矩值、剪力值。
如果在模态分析的结果上,作垂直方向上的谐响应分析,就可以得到各阶模态对应的模态参与因子。
横向振动的固有频率见表1。
第一阶固有频率14.286Hz下的参数值见表2。
前两阶的计算结果图示如下,见图2-9。
表1 横向振动的固有频率
表2 横振频率f=12.83494 Hz时的参数值
4 轴系纵向振动的计算
轴系纵向振动计算中,BEAM188单元只保留UX自由度,其他自由度都去掉。
和横向振动类似,进行模态分析,就可以得到各阶固有频率和模态参与因子,各节点的相对振幅,各单元的轴向力。
5 轴系扭转振动的计算
轴系扭转振动计算中,BEAM188单元只保留ROTX自由度,其他自由度都去掉。
和横向振动类似,进行模态分析,就可以得到各阶固有频率,各节点的扭转角、扭角力矩。
6 计算结果的分析和小结
ANSYS软件为船舶轴系振动计算结果分析提供了强有力的后处理功能。
一方面,可以用列表方式查询各阶频率下节点和单元的参数值,这对考察轴系在某一频率下的强度和安全性很有帮助。
另一方面,可以用彩色云图的方式显示计算结果的分布情况,这对于船舶结构的进一步设计具有重要的指导意义。
从轴系的振动有限元分析过程可以知道,几何建模是整个分析的关键环节,建立的模型是否合适,是否和实际情况一致,特别是模型简化,必须符合实际情况,不应该改变整个结构的物理特性,否则就会造成比较大的误差。
在以上轴系振动计算中,进行了很多简化和假设,可能会影响计算结果。
例如,假设轴承的刚度在各个方向是相同的,但实际上船舶上的滑动轴承的刚度在水平和垂直方向是不相同的,轴的中心环绕旋转中心的轨迹是椭圆而不是圆形;假设轴是简支在轴承支座上,轴承支座是绝对刚性的,但是如果轴的直径相当粗,轴和支座的刚度就可能是一个数量级,
这样系统的总刚度就降低了;轴承间隙会降低固有频率;由于船的航速变化及吃水深度的不同,附水质量实际上也是一个变数;对艉轴轴承,特别是靠近螺旋桨的最后一道轴承,由于受到较大的螺旋桨悬臂的力矩,受力不均匀,所以是倾侧的,轴承和轴不可能均匀的全部接触,这也影响了固有频率计算的准确。
因此,轴系元件的合理简化是轴系振动计算中最为困难的事。
本文尝试对轴系元件进行简化,并进行轴系振动的校合计算。
通过和以往计算方法的比较,我们认为运用ANSYS进行船舶轴系振动计算,方法简单、方便、迅速,计算结果和分布趋势是合理的,误差也在工程允许的范围以内。
运用ANSYS进行船舶轴系的振动校合计算在工程上是完全适用的。