二次函数解析式的求法练习题

合集下载

求二次函数解析式-综合题-练习+答案

求二次函数解析式-综合题-练习+答案

求二次函数解析式:综合题例1 已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式.分析:本题可以利用抛物线的一般式来求解,但因A(-1,0)、B(1,0)是抛物线与x轴的交点,因此有更简捷的解法.如果抛物线y=ax2+bx+c与x轴(即y=0)有交点(x1,0),(x2,0).那么显然有∴x1、x2是一元二次方程ax2+bx+c=0的两个根.因此,有ax2+bx+c=a(x-x1)(x-x2)∴抛物线的解析式为y=a(x-x1)(x-x2) (*)(其中x1、x2是抛物线与x轴交点的横坐标)我们将(*)称为抛物线的两根式.对于本例利用两根式来解则更为方便.解:∵抛物线与x轴交于A(-1,0)、B(1,0)∴设抛物线的解析式为y=a(x+1)(x-1)又∵抛物线过M(0,1),将x=0,y=1代入上式,解得a=-1∴函数解析式为y=-x2+1.说明:一般地,对于求二次函数解析式的问题,可以小结如下:①三项条件确定二次函数;②求二次函数解析式的一般方法是待定系数法;③二次函数的解析式有三种形式:究竟选用哪种形式,要根据具体条件来决定.例2 由右边图象写出二次函数的解析式.分析:看图时要注意特殊点.例如顶点,图象与坐标轴的交点.解:由图象知抛物线对称轴x=-1,顶点坐标(-1,2),过原点(0,0)或过点(-2,0).设解析式为y=a(x+1)2+2∵过原点(0,0),∴a+2=0,a=-2.故解析式为y=-2(x+1)2+2,即y=-2x2-4x.说明:已知顶点坐标可以设顶点式.本题也可设成一般式y=ax2+bx+c,∵过顶点(-1,2)和过原点(0,0),本题还可以用过点(0,0),(-2,0)而设解析式为y=a(x+2)·x再将顶点坐标(1,2)代入求出a.例3 根据下列条件求二次函数解析式.(1)若函数有最小值-8,且a∶b∶c=1∶2∶(-3).(2)若函数有最大值2,且过点A(-1,0)、B(3,0).(3)若函数当x>-2时y随x增大而增大(x<-2时,y随x增大而减小),且图象过点(2,4)在y轴上截距为-2.分析:(1)由a∶b∶c=1∶2∶(-3)可将三个待定系数转化为求一个k.即设a=k,b=2k,c=-3k(2)由抛物线的对称性可得顶点是(1,2)(3)由函数性质知对称轴是x=-2 解:(1)设y=ax2+bx+c ∵a∶b∶c=1∶2∶(-3)∴设a=k,b=2k,c=-3k ∵有最小值-8∴解析式y=2x2+4x-6(2)∵图象过点A(-1,0)、B(3,0),A、B两点均在x 轴上,由对称性得对称轴为x=1.又函数有最大值2,∴顶点坐标为(1,2),∴设解析式为y=a(x-1)2+2.(3)∵函数当x>-2时y随x增大而增大,当x<-2时y 随x增大而减小∴对称轴为x=-2设y=a(x+2)2+n∵过点(2,4)在y轴上截距为-2,即过点(0,-2)说明:题(3)也可设成y=ax2+bx+c,得:题(2)充分利用对称性可简化计算.例4 已知抛物线y=ax2+bx+c与x轴相交于点A(-3,0),对称轴为x=-1,顶点M到x轴的距离为2,求此抛物线的解析式.分析:此例题给出了三个条件,但实际上要看到此题还有隐含条件,如利用A点关于对称轴x=-1对称的对称点A′(1,0),因此可以把问题的条件又充实了,又如已知顶点M到x轴的距离为2,对称轴为x=-1,因此又可以找顶点坐标为(-1,±2),故可利用顶点坐标式求出函数的解析式,此题的解法不唯一,下面分别介绍几种解法.解法(一):∵抛物线的对称轴是x=-1,顶点M到x轴距离为2,∴顶点的坐标为M(-1,2)或M′(-1,-2).故设二次函数式y=a(x+1)2+2或y=a(x+1)2-2又∵抛物线经过点A(-3,0)∴0=a(-3+1)2+2或0=a(-3+1)2-2所求函数式是解法(二):根据题意:设函数解析式为y=ax2+bx+c ∵点A(-3,0)在抛物线上∴0=9a-3b+c ①又∵对称轴是x=-1∵顶点M到x轴的距离为2解由①,②,③组成的方程组:∴所求函数的解析式是:解法(三):∵抛物线的对称轴是x=-1又∵图象经过点A(-3,0)∴点A(-3,0)关于对称轴x=-1对称的对称点A′(1,0)∴设函数式为y=a(x+3)(x-1)把抛物线的顶点M的坐标(-1,2)或(-1,-2)分别代入函数式,得2=a(-1+3)(-1-1)或-2=a(-1+3)(-1-1)解关于a的方程,得∴所求函数式为:说明:比较以上三种解法,可以看出解法(一)和解法(三)比解法(二)简便.M点到x轴的距离为2,纵坐标可以是2,也可以是-2,不要漏掉一解.例5 已知抛物线y=x2-6x+m与x轴有两个不同的交点A 和B,以AB为直径作⊙C,(1)求圆心C的坐标.(2)是否存在实数m,使抛物线的顶点在⊙C上,若存在,求出m的值;若不存在,请说明理由.分析:(1)根据抛物线的对称性,由已知条件AB是直径圆心应是抛物线的对称轴与x轴的交点.(2)依据圆与抛物线的对称性知,抛物线的顶点是否在⊙C上,需要看顶点的纵坐标的绝对值是否等于⊙C的半径长,依据这个条件,列出关于m的方程,求出m值后再由已知条件做出判断.解:(1)∵y=x2-6x+m=(x-3)2+m-9∴抛物线的对称轴为直线x=3∵抛物线与x轴交于A和B两点,且AB是⊙C的直径,由抛物线的对称性∴圆心C的坐标为(3,0)(2)∵抛物线与x轴有两个不同交点∴△=(-b)2-4m>0,∴m<9设A(x1,0),B(x2,0)∵抛物线的顶点为P(3,m-9)解得:m=8或m=9∵m<9,∴m=9舍去∴m=8∴当m=8时,抛物线的顶点在⊙C上.说明“存在性”问题是探索性问题的主要形式.解答这类问题的基本思路是:假设“存在”—→演绎推理—→得出结论(合理或矛盾).例6 已知抛物线y=ax2+bx+c,其顶点在x轴的上方,它与y轴交于点C(0,3),与x轴交于点A及点B(6,0).又知方程:ax2+bx+c=0(a≠0)两根平方和等于40.(1)求抛物线的解析式;(2)试问:在此抛物线上是否存在一点P,在x轴上方且使S△PAB=2S△CAB.如果存在,求出点P的坐标;如果不存在,说明理由.分析:求解析式的三个条件中有一个是由方程的根来得到系数的关系式,通过解方程组求出系数也就得到解析式.第(2)问中问是否存在那么假设存在进行推理,从而判断存在或不存在.解:(1)由题设条件得∴抛物线顶点为(2,4).又A点坐标为(-2,0),而△ABC与△PAB同底,且当P点位于抛物线顶点时,△PAB面积最大.显然,S△PAB=16<2S△ABC=2×12=24.故在x轴上方的抛物线上不存在点P使S△PAB=2S△CAB.例7 在一块底边长为a,高为h的三角形的铁板ABC上,要截出一块矩形铁板EFGH,使它的一边FG在BC边上,矩形的边EF等于多长时,矩形铁板的面积最大.分析:问题问“矩形的边EF等于多长时,矩形铁板的面积最大”,所以题目的目标是矩形面积(S)而自变量就是EF的长(x),因此问题的关键就是用EF(x)表示矩形面积S,这就要用EF表示出EH.解:设内接矩形EFGH中,AM⊥BC,∵EH∥BC,设EF=x(0<x<h)则AN=h-x设矩形EFGH的面积为S说明:解决联系实际的问题,又与几何图形有关就应综合应用几何、代数知识,利用相似成比例列出函数式再求最值.例8 二次函数y=ax2+bx-5的图象的对称轴为直线x=3,图象与y轴相交于点B,(1)求二次函数的解析式;(2)求原点O到直线AB的距离.分析:为直线x=3,来求系数a,b.注意根与系数关系定理的充分应用.为求原点O到直线AB的距离要充分利用三角形特征和勾股定理.解: (1)如图,由已知,有∴(x1+x2)2-2x1x2=26,∴a=-1.∴解析式为y=-x2+6x-5=-(x-3)2+4.(2)∵OB=5,OC=4,AC=3,∴△AOB为等腰三角形,作OD⊥AB于D,说明:有部分学生把二次函数的顶点坐标记错,也有的学生不会用“根与系数的关系”,得不出解析式.有不少学生没有发现△AOB是等腰三角形,若发现为等腰三角形,OD 是底边AB的高,利用勾股定理就迎刃而解了.发生错误的原因,没记熟抛物线的顶点坐标公式,有的学生记下来了,但与两个根如何综合使用发生了问题,有些学生求点O到直线AB的距离,没有分析出图形与数量关系,其实△AOB是等腰三角形,知道这一性质求OD的数据就方便多了.纠正错误的办法,加强抛物线顶点坐标的学习、顶点坐标与巧用“根与系数的关系”的学习;另外,也要加强寻找特殊点的学习.一般说,无论多难的题目,总是有解题规律的.在几何图形中,经过认真分析,有的题目总含等边三角形、等腰三角形、直角三角形.例9 设A,B为抛物线y=-3x2-2x+k与x轴的两个相异交点,M为抛物线的顶点,当△MAB为等腰直角三角形时,求k的值.分析:首先按题意画出图形,再运用抛物线的对称性挖掘题中的隐含条件,来解答本题,得出解后要分析解的合理性进行取舍.解:∵抛物线与x轴有两个相异交点,故△>0,即(-2)2-4·(-3)k>0,解关于k的不等式,得根据题意,作出图象,如图设N为对称轴与x轴的交点,由抛物线的对称性知,N 为AB中点.∵∠AMB=Rt∠,且MN的长即为M点的纵坐标,又设A点坐标(x1,0),B点坐标(x2,0),则有解关于k的方程,得∴k=0.说明:本题有一个重要的隐含条件,即要使抛物线与x 轴有两个相异交点,应首先满足△>0.(2)本题要求学生会运用抛物线的对称性观察图形,联想直角三角形斜边上的中线等于斜边的一半这个重要定理,找到等量关系,列出关于k的方程,如果没有这种灵活运用定理的能力,将得不到关于k的方程,难以求解.例10 某商场将进货单价为18元的商品,按每件20元销售时,每日可销售100件,如果每提价1元(每件),日销售量就要减少10件,那么把商品的售出价定为多少时,才能使每天获得的利润最大?每天的最大利润是多少?分析:此题主要涉及两个量,即售出价和每天获得的利润.而每天获得的利润是随着售出价的改变而改变的,所以要找到二者的函数关系式,应把售出价设为自变量,把每天获得的利润看作是售出价的函数.这样,再根据已知条件,就可列出二者的函数关系式.解:设该商品的售出价定为x元/件时,每天可获得y 元的利润.即每件提价(x-20)(元),每天销售量减少10(x-20)(件),也就是每天销售量为[100-10(x-20)](件),每件利润(x-18)(元)根据题意,得:y=(x-18)[100-(x-20)×10]=-10x2+480x-5400=-10(x-24)2+360.(20≤x≤30)y是x的二次函数∵a=-10<0,20≤24≤30∴当x=24时,y有最大值为360.答:每件售出价为24元时,才能使每天获得的利润最大,每天的最大利润是360元.例11 改革开放后,不少农村用上了自动喷灌设备,如图所示,设水管AB高出地面1.5米,在B处有一个自动旋转的喷水头,一瞬间,喷出的水流呈抛物线状,喷头B与水流最高点C的连线与水平面成45°角,水流的最高点C比喷头B高出2米,在所建的坐标系中,求水流的落地点F到A 点的距离是多少?分析:要求点F到A点的距离,也就是求A、F两点横坐标的差.又A点横坐标为0,所以只需求出F点横坐标.F 点在抛物线上是抛物线与x轴的交点,所以要根据已知条件,求出抛物线的解析式.解:过C点作CD⊥Ox于D,BE⊥CD于E,则有CE=BE =2,AB=DE=1.5,则B(0,1.5),C(2,3.5).∵C为抛物线的最高点,例12 如图,这是某空防部队进行射击训练时在平面直角坐标系中的示意图.地导弹运行达到距地面最大高度3千米时,相应的水平距离为4千米(即图中E点).(1)若导弹运行轨道为一抛物线,求抛物线的解析式;(2)说明按(1)中轨道运行的导弹能否击中目标C的理由.分析:题中的实际条件转化成数学意义就是已知抛物线的顶点E,而且过点D求抛物线的解析式以及判断C是否在曲线上.解:(1)设抛物线的解析式为y=a(x-4)2+3(2)设C(x0,y0),过C点作CB⊥Ox,垂足为B.在Rt△OBC 和Rt△ABC中,OA=1,例13 已知函数y1=-x2+b1x+c1与x轴相交于原点O(0,0)和点A(4,0),若函数y2=-x2+b2x+c2,(b1≠b2)也经过点A,且y1与y2的顶点所在直线平行于x轴.(1)求两个函数的解析式.(2)当x为何值时,y1<y2.分析:解答第(1)题的关键是求y2的解析式,由题意可知a1=a2=-1,因此可以判断两条抛物线的形状和开口方向都相同,再利用y1与y2的顶点所在直线平行于x轴,可判断出y1和y2在x轴上截得的线段长相等,从而求出y2与x轴另一个交点B(8,0),由A,B点都是抛物线与x轴交点,可设解析式为y=a(x-x1)(x-x2)形式解:(1)∵y1=-x2+b1x+c1过点O(0,0),A(4,0)∴0=0+0+c1 ∴c1=00=-16+4b1+0 ∴b1=4∴函数y1=-x2+4x∵a1=a2=-1∴两条抛物线的形状,开口方向相同.又∵y1与y2的顶点所在直线平行于x轴∴y1与y2的顶点纵坐标相等∵b1≠b2,y1与y2都经过A(4,0)点∴y2与x轴的另一个交点是点B(8,0)y2=-(x-4)(x-8)=-x2+12x-32注:以上求y2的解析式是采用数、形结合的方法,进行推理得到的,此外,也可用计算方法求到b2和c2,然后写出y2的解析式,具体解法如下:∵y1的顶点是(2,4)y1与y2的顶点所在直线平行于x轴∴y1与y2的顶点纵坐标相等,y2又过点A(4,0)∵b1=4,而b1≠b2 ∴b′2=4(舍去)∴y2=-x2+12x-32解:(2)若要使y1<y2只要使-x2+4x<-x2+12x-32即可解不等式,得x>4∴当x>4时,y1<y2例14 m是怎样的数值时,二次函数y=(m-2)x2-4mx+2m-6的图象与x轴的负方向交于两个不同点.分析:二次函数的图象与x轴的负方向交于两个不同点的条件是二次项系数不为零,判别式大于零,两根之和小于零,两根之积大于0.(所谓两根是这个函数对应的一元二次方程的两根)解:设二次函数与x轴两交点的横坐标为x1,x2.要使它的图象与x轴两交点都在x轴的负方向上,应满足不等式组:解得1<m<2.答:当1<m<2时,二次函数y=(m-2)x2-4mx+2m-6的图象与x轴的负方向交于两个不同点.对二次函数式中的m不知代表什么,也无从下手求m.当抛物线与x轴相交时,y=0,两个交点的横标即为方程的两个根,两个根在原点的左方,列不出算式,不知道列出这种算式与“根与系数的关系”有关.总之有不少学生没有掌握二次函数与一元二次方程的内在联系而解题失败.发生错误的原因,不知道在一元二次函数式中的m其实质是参数.一元二次方程的根在直角坐标系x轴上的分布理论如何表达,许多学生不清楚.解不等式功底不深厚也会发生错误.纠正错误的办法,加强一元二次函数式的学习,m属于实数,任给m一个数值,就存在一条具体数值的抛物线,给出m的数值是无穷的,随着m值的不同也产生了不同的抛物线,可用“抛物线族”这个名词去表达本题的一元二次函数表达式所勾勒的抛物线是无穷无尽的.另外也要加强方程理论、根与系数关系、根的判别式的学习.例15 已知抛物线l:y=x2-(k-2)x+(k+1)2.(1)证明:不论k取何值,抛物线l的顶点总在抛物线y=3x2+12x+9上;(2)要使抛物线y=x2-(k-2)x+(k+1)2和x轴有两个不同的交点A,B,求k的取值范围;(3)当(2)中的A,B间距离取得最大值时,设这条抛物线顶点为C,求此时的k值和∠ACB的度数.分析:把l的顶点坐标用k的代数式表示分别代入y=3x2+12x+9的左、右后能使两边相等说明顶点在抛物线y=3x2+12x+9上.抛物线与x轴交点的情况就是相应一元二次方程有无实根的情况.AB间距离又可列出反的二次函数.解:∴左边=右边,所以不论k取何值,抛物线l的顶点总在抛物线y=3x2+12x+9上.(2)欲使抛物线l与x轴有两个交点,则△>0,即△=[-(k-2)]2-4(k+1)2=-3k2-12k>0,解之,-4<k<0.(3)当-4<k<0时,抛物线l与x轴有两个不同的交点A,B,设A(x1,0),B(x2,0),且x1>x2,x1+x2=k-2,x1x2=(k+1)2,说明:不明白“不论k取何值,抛物线l的顶点总在抛物线y=3x2+12x+9”上这句话的意思,实质上就是方程与曲线的关系,点在曲线上,即点的坐标满足曲线的方程;将抛物线顶点坐标的表达式代入抛物线函数式左右相等,即达到(1)提问;不知道抛物线与x轴相交,是△>0,无法运算而失败;不知道用“根与系数的关系”以及截距公式,不会巧用“根与系数的关系”,求不出最大值,因而求不出y=ax2+bx+c(a≠0)的a,b,c,使该题后面的提问无法进行;在x轴与抛物线顶点所构造出的三角形中,求边长时没有绝对值的概念、正切函数值不熟悉而求不出∠ACB=60°.发生错误的原因,本题是综合题,而且是中考的考题,要顺利而正确地回答出本题所有答案,从初一至初三所学的数学知识应该牢固掌握,第一问求出抛物线顶点坐标表达式,将表达式代入(1)的函数式,若相等,即满足了函数式的要求,按初中阶段属于验根的手段,按高中就是曲线与方程的关系了.这个不难的问题为什么学生束手无策呢?只是用文字表示了顶点坐标,很抽象,不易理解.本题的难度之一是出现了“k”,这个“k”其本质起到了参数作用.有些精品文档。

二次函数解析式的求法专题

二次函数解析式的求法专题

二次函数解析式的求法专题1.已知二次函数的顶点坐标为A(1,9),且其图象经过点(-1,5)(1)求此二次函数的解析式;(2)若该函数图象与x轴的交点为B、C,求△ABC的面积.2.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),B点坐标为(5,0)点C(0,5),M为它的顶点.(1)求抛物线的解析式;(2)求△MAB的面积.3.如图,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求二次函数的解析式;(2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.4.二次函数的图象经过(3,1),且当x=2时有最大值为3.求此函数关系式.5.设二次函数的图象的顶点坐标为(-2,2),且过点(1,1),求这个函数的关系式.6.已知抛物线对称轴是直线x=2,且图象经过点(2,1)和点(1,0).(1)求抛物线解析式;(2)若抛物线与x轴交于点A,点B,与y轴交于点C,求△ABC的面积.7.如图,已知二次函数y=1x2+bx+c的图象经过A(2,0),B(0,-6)两点.2(1)求这个二次函数的解析式并写出它的对称轴;(2)把该抛物线平移,使它的顶点与B点重合,直接写出平移后抛物线的解析式.8.已知二次函数y=ax2+bx+c的图象上部分点的坐标(x,y)满足下表:(1)求这个二次函数的解析式;(2)用配方法求出这个二次函数图象的顶点坐标和对称轴.,0)三点,求这个二次9.一个二次函数的图象经过(0,-1),(-2,0),(12函数的解析式.10.已知二次函数图象的顶点为(3,-1),与y轴交于点(0,-4)(1)求二次函数解析式;(2)求函数值y>-4时,自变量x的取值范围.答案和解析1.【答案】解:(1)设抛物线解析式为y=a(x-1)2+9,把(-1,5)代入得a(-1-1)2+9=5,解得a=-1,所以抛物线解析式为y=-(x-1)2+9;(2)当y=0时,-(x-1)2+9=0,解得x1=4,x2=-2,所以B、C两点的坐标为(-2,0),(4,0),×9×(4+2)=27.所以△ABC的面积=12【解析】(1)先利用待定系数法求出抛物线解析式;(2)通过解方程-(x-1)2+9=0得到B、C两点的坐标,然后根据三角形面积公式求解.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.2.【答案】解:(1)设抛物线解析式为y=a(x+1)(x-5),把C(0,5)代入得a•1•(-5)=5,解得a=-1,所以抛物线解析式为y=-x2+4x+5;(2)y=-x2+4x+5=-(x-2)2+9,则M(2,9)×(5+1)×9=27.所以△MAB的面积=12【解析】(1)设交点式y=a(x+1)(x-5),然后把C(0,5)代入求出a即可得到抛物线解析式;(2)先把解析式配成顶点式,然后写出M点的坐标,再利用三角形面积公式求解.本题考查了抛物线与x轴的交点:从二次函数的交点式:y=a(x-x1)(x-x2)(a,b,c是常数,a≠0)可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).3.【答案】解;(1)设二次函数的解析式为y=a(x+3)(x-1),把C(0,3)代入得a•3•(-1)=3,解得a=-1,所以抛物线解析式为y=-(x+3)(x-1),即y=-x2-2x+3;(2)当y=3时,-x2-2x+3=3,解得x1=0,x2=-2,则D(-2,3),观察函数图象得当x<-2或x>1时,一次函数值大于二次函数值.【解析】(1)由于已知抛物线与x轴两交点,则设交点式y=a(x+3)(x-1),然后把C(0,3)代入求出a的值即可得到抛物线解析式;(2)通过解方程-x2-2x+3=3可得到D(-2,3),然后观察函数图象,写出一次函数图象在抛物线上方所对应的自变量的范围即可.本题考查了抛物线与x轴的交点:由二次函数的交点式y=a(x-x1)(x-x2)(a,b,c是常数,a≠0)可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).也考查了二次函数与不等式.4.【答案】解:根据题意设抛物线解析式为y=a(x-2)2+3,把(3,1)代入得:a+3=1,解得:a=-2,则抛物线解析式为y=-2(x-2)2+3=-2x2+8x-5.【解析】根据题意找出顶点坐标,设出顶点式,把已知点坐标代入求出即可.此题考查了待定系数法求二次函数解析式,二次函数的图象上点的坐标特征,以及二次根式的最值,熟练掌握待定系数法是解本题的关键.5.【答案】解:设这个函数的关系式为y=a(x+2)2+2,把点(1,1)代入y=a(x+2)2+2得9a+2=1,,解得a=-19(x+2)2+2.所以这个函数的关系式为y=-19【解析】由于已知抛物线的顶点坐标,则可设顶点式y=a(x+2)2+2,然后把点(1,1)代入求出a的值即可.本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.6.【答案】解:(1)∵抛物线对称轴是直线x=2,而抛物线与x轴的一个交点为(1,0),∴抛物线与x轴的另一个交点为(3,0),设抛物线解析式为y=a(x-1)(x-3),把(2,1)代入得a•1•(-1)=1,解得a=-1,所以抛物线解析式为y=-(x-1)(x-3),即y=-x2+4x-3;(2)由(1)得A(1,0),B(3,0),当x=0时,y=-x2+4x-3=-3,则C(0,-3),×(3-1)×3=3.所以△ABC的面积=12【解析】(1)利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可设交点式y=a(x-1)(x-3),然后把(2,1)代入求出a的值即可;(2)由(1)可确定A点和B点坐标,再求出C点坐标,然后根据三角形的面积公式求解.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.7.【答案】解:(1)把A(2,0),B(0,-6)代入y=-12x2+bx+c得{c=−6−2+2b+c=0,解得{c=−6b=4,所以抛物线解析式为y=-12x2+4x-6,∵y=-12(x-4)2+2,∴抛物线的对称轴为直线x=4,(2)y=-12x2-6.【解析】(1)把A点和B点坐标代入y=-x2+bx+c得到关于b、c的方程组,然后解关于b、c的方程组即可得到抛物线解析式,再把解析式配成顶点式得到对称轴;(2)利用顶点为(0,-6)写出抛物线解析式.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.【答案】解:(1)由题意,得 {a −b +c =−4c =−2a +b +c =2,解这个方程组,得 a =1,b =3,c =-2,所以,这个二次函数的解析式是y =x 2+3x -2;(2)y =x 2+3x -2=(x +32)2-174,顶点坐标为(-32,-174),对称轴是直线x =-32.【解析】(1)把已知三点坐标代入求出a ,b ,c 的值,即可确定出解析式;(2)利用顶点坐标公式及对称轴公式求出即可.此题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.9.【答案】解:设抛物线解析式为y =a (x +2)(x -12), 把(0,-1)代入得a •2•(-12)=-1,解得a =1.所以抛物线解析式为y =(x +2)(x -12),即y =x 2+32x -1.【解析】由于已知抛物线与x 轴的交点坐标,则可设交点式y=a (x+2)(x-),然后把(0,-1)代入求出a 的值即可.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.10.【答案】解:(1)设抛物线解析式为y=a(x-3)2-1,,把(0,-4)代入得9a-1=-4,解得a=-13所以抛物线解析式为y=-1(x-3)2-1,3(x-3)2-1=-4,解得x1=0,x2=6,(2)y=-4时,-13所以当0<x<6时,y>-4.【解析】(1)设顶点式y=a(x-3)2-1,然后把(0,-4)代入求出a即可得到抛物线解析式;(2)计算函数值为-4所对应的自变量的值,然后利用二次函数图象求解.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.第11页,共11页。

求二次函数解析式的题

求二次函数解析式的题

求二次函数解析式的题题目 1已知二次函数的图像经过点$(0, 3)$,$(1, 4)$,$(2, 5)$,求该二次函数的解析式。

解析:设二次函数的解析式为$y = ax^2 + bx + c$,将点$(0, 3)$,$(1, 4)$,$(2, 5)$分别代入解析式得:$\begin{cases}c = 3 \\ a + b + c = 4 \\ 4a + 2b + c = 5\end{cases}$将$c = 3$代入后两个方程可得:$\begin{cases}a + b = 1 \\ 4a + 2b = 2\end{cases}$由第一个方程得$b = 1 a$,代入第二个方程得:$4a + 2(1 a) = 2$$4a + 2 2a = 2$$2a = 0$$a = 0$则$b = 1$所以二次函数的解析式为$y = x + 3$题目 2二次函数的顶点坐标为$(1, 2)$,且经过点$(2, 1)$,求其解析式。

解析:因为顶点坐标为$(1, 2)$,所以设二次函数的解析式为$y = a(x 1)^2 2$,将点$(2, 1)$代入得:$a(2 1)^2 2 = 1$$a 2 = 1$$a = 3$所以二次函数的解析式为$y = 3(x 1)^2 2$题目 3已知二次函数的图像与$x$轴交于点$(1, 0)$和$(3, 0)$,且过点$(0, 3)$,求该二次函数的解析式。

解析:因为二次函数与$x$轴交于点$(1, 0)$和$(3, 0)$,所以设二次函数的解析式为$y = a(x + 1)(x 3)$,将点$(0, 3)$代入得:$a(0 + 1)(0 3) = 3$$3a = 3$$a = 1$所以二次函数的解析式为$y = (x + 1)(x 3) = x^2 2x 3$题目 4二次函数的对称轴为直线$x = 2$,且经过点$(3, 5)$和$(0,1)$,求其解析式。

解析:因为对称轴为直线$x = 2$,所以设二次函数的解析式为$y = a(x + 2)^2 + k$,将点$(3, 5)$和$(0, 1)$代入得:$\begin{cases}a(3 + 2)^2 + k = 5 \\ a(0 + 2)^2 + k =1\end{cases}$$\begin{cases}a + k = 5 \\ 4a + k = 1\end{cases}$两式相减得:$3a = 6$,$a = 2$将$a = 2$代入$a + k = 5$得:$k = 7$所以二次函数的解析式为$y = 2(x + 2)^2 + 7$题目 5二次函数的图像经过点$(1, 0)$,$(3, 0)$,$(2, 1)$,求其解析式。

完整版)二次函数求解析式专题练习题

完整版)二次函数求解析式专题练习题

完整版)二次函数求解析式专题练习题1.已知抛物线经过点A(1,1),求这个函数的解析式。

解析式为y = ax^2 + bx + c,代入点A得1 = a + b + c。

因为抛物线是二次函数,所以需要三个点才能确定解析式。

无法确定解析式。

2.已知二次函数的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式。

设解析式为y = ax^2 + bx + c,代入顶点坐标得3 = 4a - 2b + c,代入过点(1,0)得0 = a + b + c。

解得a = -1,b = 1,c = 0,所以解析式为y = -x^2 + x。

3.抛物线过顶点(2,4)且过原点,求抛物线的解析式。

因为过顶点,所以解析式为y = a(x - 2)^2 + 4.因为过原点,所以代入(0,0)得0 = 4a - 4,解得a = 1.所以解析式为y = (x -2)^2 + 4.4.若一抛物线与x轴两个交点间的距离为8,且顶点坐标为(1,5),则它们的解析式为。

设解析式为y = ax^2 + bx + c,因为顶点坐标为(1,5),所以解析式为y = a(x - 1)^2 + 5.设两个交点的横坐标为p和q,且p < q,则有8 = |(p - 1)(q - 1)|/4,化简得4p + 4q = pq - 4.因为顶点在抛物线的对称轴上,所以p + q = 2.解得p = -2,q = 8.代入顶点坐标得a = 1/9.所以解析式为y = (x - 1)^2/9 + 5.5.已知二次函数当x = -1时有最小值-4,且图象在x轴上截得线段长为4,求函数解析式。

设解析式为y = ax^2 + bx + c,因为在x轴上截得线段长为4,所以有b^2 - 4ac = 16.因为当x = -1时有最小值-4,所以有a < 0.代入最小值得-4 = a - b + c。

解得a = -1,b = 4,c = -1.所以解析式为y = -x^2 + 4x - 1.6.抛物线经过(0,0)和(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式。

求二次函数的解析式例题

求二次函数的解析式例题

求二次函数关系式求二次函数的关系式,有一定的灵活性和技巧性,一般地,二次函数的关系式有以下三种不同的表达形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0,(h,k)是抛物线的顶点坐标)(3)两点式:y=a(x-p)(x-q)+h[a≠0,(p,h)和(q,h)是图象上两个对称点的坐标.特别地,当已知二次函数的图象与x轴的两个交点的坐标是(x1,0)和(x2,0)时,可设所求函数式为:y=a(x-x1)(x-x2)(a≠0).例1 已知二次函数的图象过A(-1,-8)、B(4,-3)、C(5,-8)三点,求它的函数式.解法1设所求二次函数为y=ax2+bx+c,由已知,图象经过(-1,-8)、(4,-3),(5,-8)三点,得解得 a=-1,b=4,c=-3.所以,所求二次函数式为,y=-x2+4x-3.解法2由A、C两点的坐标可知,图象的对称轴是直线x=2,设所求函数式为y=a(x-2)2+k,因为图象过A(-1,-8)和B(4,-3),所以解得 a=-1,k=1.因此,所求函数为y=-(x-2)2+1, 即 y=-x2+4x-3解法3 由已知可知,点A(-1,-8)与点C(5,-8)互为对称点(对称轴是直线x=2),因此,设所求函数式为y=a(x-5)(x+1)-8,又点(4,-3)在函数图象上,于是得-3=a(4-5)(4+1)-8. a=-1所以,所求函数为y=-(x-5)(x+1)-8, 即 y=-x2+4x-3.例2 已知二次函数的图象与x轴的两交点的距离是4,且当x=1,函数有最小值-4,求这个二次函数的关系式.解法1 由已知,得抛物线的对称轴是x=1,与x轴两交点的坐标分别是(-1,0)和(3,0),顶点坐标是(1,-4),设所求二次函数式为y=ax2+bx+c,则有解得 a=1,b=-2,c=-3.所以所求二次函数关系式为y=x2-2x-3.解法2 因为抛物线的顶点坐标为(1,-4),且过(-1,0),故设二次函数关系式为y=a(x-1)2-4,并将x=-1,y=0代入,得 a=1,所以所求二次函数关系式为y=(x-1)2-4,即 y=x2-2x-3.)和(3,0),顶点坐标是(1,-4),解法3因为抛物线与x轴的交点坐标分别是(1,0因此,设函数关系式为y=a(x+1)(x+3),将x=1,y=-4代入,得 a=1,故所求二次函数关系式为y=(x+1)(x-3), 即 y=x2-2x-3解法4 设所求函数关系式为y=ax2+bx+c,因为抛物线顶点坐标为(1,-4),且过(-1,0),于是得解得 a=1,b=-2,c=-3.故所求二次函数关系式为y=x2-2x-3.。

一次函数、反比例函数和二次函数求解析式练习题

一次函数、反比例函数和二次函数求解析式练习题

举 例
*
急性冠脉综合症(ACS)
在冠状动脉粥样硬化病变的基础上,由于不稳定性斑块的破裂,引起冠状动脉内血栓形成所致严重心肌缺血(不完全或完全性堵塞),而产生的一组进展性临床综合征。
1
2
ACS病理生理:斑块破裂
01
不稳定斑块的主要特征包括:
02
大的脂质池;
03
薄的纤维帽;
04
丰富的炎性细胞;
1
PE临床症状:
2
呼吸困难(90%),尤以活动后明显;
3
胸痛(88%),有两种性质,多数为胸膜性疼痛,少数为心绞痛发作;
4
咯血(30%); ④ 惊恐(55%);
5
咳嗽(50%); ⑥ 晕厥(13%)等。
6
临床有典型肺梗死三联症 (呼吸困难、胸痛及咯血)的患者不足1/3 。
6~10h后升高,12h内高峰,3~4d恢复正常
6~10h后升高,24h内高峰,3~6d恢复正常
6~10h后升高,2~3d内高峰,1~2w恢复正常
其他 超声心动图 运动负荷试验 胸部CT 腹部B超 冠脉造影 胸痛三联CT等
胸痛急性发病的特点决定了我们在处理急性胸痛患者时要本着快速、便捷的原则,在最短的时间内完成明确诊断或排除诊断的检查,“只求必需,不苛求全面”。最常用的检查有心电图、化验、影像学、超声。
*
急 性 胸 痛 の 诊断与鉴别诊断
202X
单击此处添加正文,文字是您思想的提炼, 请尽量言简意赅的阐述观点。
演讲人姓名
CHEST PAIN
*
胸痛是指颈部与上腹之间的不适或疼痛。胸痛主要由胸部疾病所致,少数为其他疾病引起。胸痛的程度与个体的痛阈有关,与疾病轻重程度不完全一致。

待定系数法求二次函数的解析式练习题

待定系数法求二次函数的解析式练习题

待定系数法求二次函数解析式一、根据所给点的坐标求函数解析式:例1 已知二次函数的图象经过A(-1,3)、B(1,3)、C(2,6); 求它的解析式。

练习:1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式。

2.二次函数y= ax2+bx+c,x=-2时y=-6,x=2时y=10,x=3时y=24,求此函数的解析式。

二、根据所给的顶点坐标或对称轴求函数解析式:例2 已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式练习:1.已知抛物线的顶点(-1,-2),且图象经过(1,10),求此抛物线解析式。

2.已知抛物线cbxaxy++=2顶点坐标为)1,4(-,与y轴交于点)3,0(,求这条抛物线的解析式.变式1:已知抛物线对称轴是直线x=2,且经过(3,1)和(0,-5)两点,求二次函数的关系式。

练习:抛物线的对称轴是x=2,且过(4,-4)、(-1,2),求此抛物线的解析式。

变式2:已知抛物线的顶点是(2,-4),它与y轴的一个交点的纵坐标为4,求函数的关系式。

变式3.二次函数y= ax2+bx+c的对称轴为x=3,最小值为-2,,且过(0,1),求此函数的解析式。

变式4:一条抛物线y x mx n =++142经过点()032,与()432,。

求这条抛物线的解析式。

三、已知函数图像与X 轴的两交点坐标,求函数解析式例3、已知二次函数的图象与x 轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式。

变式1:已知二次函数的图象经过A(-1,0)、B(3,0),函数有最小值-8,求它的解析式。

练习:一条抛物线y =ax 2+bx +c 经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。

变式 2: 已知二次函数的图象与x 轴交点的横坐标分别是x 1=-3,x 2=1,且与y 轴交点为(0,-3),求这个二次函数解析式。

求二次函数解析式专项练习60题(含解析)

求二次函数解析式专项练习60题(含解析)

文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持.求二次函数解析式专项练习60题(含解析)1.已知二次函数图象的顶点坐标是(1,﹣4),且与y轴交于点(0,﹣3),求此二次函数的解析式.2.已知二次函数y=x2+bx+c的图象经过点A(﹣1,12),B(2,﹣3).(1)求这个二次函数的解析式.(2)求这个图象的顶点坐标及与x轴的交点坐标.3.在平面直角坐标系xOy中,直线y=﹣x绕点O顺时针旋转90°得到直线l,直线l与二次函数y=x2+bx+2图象的一个交点为(m,3),试求二次函数的解析式.4.已知抛物线y=ax2+bx+c与抛物线形状相同,顶点坐标为(﹣2,4),求a,b,c的值.5.已知二次函数y=ax2+bx+c,其自变量x的部分取值及对应的函数值y如下表所示:(1)求这个二次函数的解析式;x …﹣2 0 2 …y …﹣1 1 11 …6.已知抛物线y=x+(m+1)x+m,根据下列条件分别求m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为x=2.7.已知抛物线经过两点A(1,0)、B(0,3),且对称轴是直线x=2,求其解析式.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出y>0时,x的取值范围_________;(2)写出y随x的增大而减小的自变量x的取值范围_________;(3)求函数y=ax2+bx+c的表达式.9.已知二次函数y=x2+bx+c的图象经过点A(﹣2,5),B(1,﹣4).(1)求这个二次函数解析式;(2)求这个图象的顶点坐标、对称轴、与坐标轴的交点坐标;(3)画出这个函数的图象.10.已知:抛物线经过点A(﹣1,7)、B(2,1)和点C(0,1).(1)求这条抛物线的解析式;(2)求该抛物线的顶点坐标.11.若二次函数y=ax2+bx+c的图象与y轴交于点A(0,3),且经过B(1,0)、C(2,﹣1)两点,求此二次函数的解析式.12.二次函数y=x2+bx+c的图象过A(2,3)和B(﹣1,0)两点,求此二次函数的解析式.13.已知:一抛物线y=ax2+bx﹣2(a≠0)经过点(3,4)和点(﹣1,0)求该抛物线的解析式,并用配方法求它的对称轴.14.二次函数y=2x2+bx+c的图象经过点(0,﹣6)、(3,0),求这个二次函数的解析式,并用配方法求它的图象的顶点坐标.15.如图,抛物线y=﹣x2+5x+m经过点A(1,0),与y轴交于点B,(1)求m的值;(2)若抛物线与x轴的另一交点为C,求△CAB的面积;(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.16.如图,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).(1)求这条抛物线对应函数的表达式;(2)若P点在该抛物线上,求当△PAB的面积为8时,点P的坐标.17.已知二次函数的图象经过点(0,﹣1)、(1,﹣3)、(﹣1,3),求这个二次函数的解析式.并用配方法求出图象的顶点坐标.18.已知:二次函数的顶点为A(﹣1,4),且过点B(2,﹣5),求该二次函数的解析式.19.已知一个二次函数y=x2+bx+c的图象经过(1,2)、(﹣1,6),求这个函数的解析式.20.已知二次函数y=x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)求该二次函数图象与x轴的另一个交点.21.已知抛物线最大值为3,其对称轴为直线x=﹣1,且过点(1,﹣5),求其解析式.22.已知二次函数图象顶点坐标为(﹣2,3),且过点(1,0),求此二次函数解析式.23.已知抛物线y=﹣x2+bx+c,它与x轴的两个交点分别为(﹣1,0),(3,0),求此抛物线的解析式.24.一个二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,求这个函数的关系式.25.已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(1,﹣4).(1)求这个函数的解析式;(2)求这个函数图象与x轴、y轴的交点坐标.26.已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0).求二次函数的解析式.27.已知二次函数y=ax2+bx+c,当x=0时,函数值为5,当x=﹣1或﹣5时,函数值都为0,求这个二次函数的解析式.28.已知抛物线的图象经过点A(1,0),顶点P的坐标是.(l)求抛物线的解析式;(2)求此抛物线与两坐标轴的三个交点所围成的三角形的面积.29.如图为抛物线y=﹣x2+bx+c的一部分,它经过A(﹣1,0),B(0,3)两点.(1)求抛物线的解析式;(2)将此抛物线向左平移3个单位,再向下平移1个单位,求平移后的抛物线的解析式.30.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)试求二次函数的解析式;(2)求y的最大值;(3)写出当y>0时,x的取值范围.31.已知某二次函数的最大值为2,图象的顶点在直线y=x+1上,并且图象经过点(2,1),求二次函数的解析式.32.抛物线y=﹣x2+bx+c的对称轴是x=l,它与x轴有两个交点,其中的一个为(3,0),求此抛物线的解析式.33.已知二次函数的图象经过点(0,﹣3),且顶点坐标为(﹣1,﹣4).(1)求该二次函数的解析式;(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.34.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(2,0),B(5,3).(1)求m的值和抛物线的解析式;(2)求不等式ax2+bx+c≤x+m的解集(直接写出答案);(3)若抛物线与y轴交于C,求△ABC的面积.35.二次函数的图象经过点(1,2)和(0,﹣1)且对称轴为x=2,求二次函数解析式.36.如图所示,二次函数y=﹣x2+bx+c的图象经过坐标原点O和A(4,0).(1)求出此二次函数的解析式;(2)若该图象的最高点为B,试求出△ABO的面积;(3)当1<x<4时,y的取值范围是_________.37.已知:一个二次函数的图象经过(﹣1,10),(1,4),(2,7)三点.(1)求出这个二次函数解析式;(2)利用配方法,把它化成y=a(x+h)2+k的形式,并写出顶点坐标和y随x变化情况.38.已知抛物线y=x2﹣2(k﹣2)x+1经过点A(﹣1,2)(1)求此抛物线的解析式;(2)求此抛物线的顶点坐标与对称轴.39.根据条件求下列抛物线的解析式:(1)二次函数的图象经过(0,1),(2,1)和(3,4);(2)抛物线的顶点坐标是(﹣2,1),且经过点(1,﹣2).40.已知二次函数的图象的顶点坐标为(3,﹣2)且与y轴交于(0,)(1)求函数的解析式;(2)当x为何值时,y随x增大而增大.41.已知二次函数的图象经过点(0,﹣2),且当x=1时函数有最小值﹣3.(1)求这个二次函数的解析式;(2)如果点(﹣2,y1),(1,y2)和(3,y3)都在该函数图象上,试比较y1,y2,y3的大小.42.已知二次函数y=x2+bx+c的图象经过点(0,3)、(4,3)(1)求二次函数的解析式,并在给定的坐标系中画出该函数的图象(不用列表);(2)直接写出x2+bx+c>3的解集.43.不论m取任何实数,y关于x的二次函数y=x2+2mx+m2+2m﹣1的图象的顶点都在一条直线上,求这条直线的函数解析式.44.抛物线y=ax2+bx+c过点A(﹣2,1),B(2,3),且与y轴负半轴交于点C,S△ABC=12,求其解析式.45.直线y=kx+b过x轴上的A(2,0)点,且与抛物线y=ax2相交于B、C两点,已知B点坐标为(1,1),求直线和抛物线所表示的函数解析式,并在同一坐标系中画出它们的图象.46.已知二次函数y=x2+bx+c的图象经过点P(2,7)、Q(0,﹣5).(1)试确定b、c的值;(2)若该二次函数的图象与x轴交于A、B两点(其中点A在点B的左侧),试求△PAB的面积.47.抛物线y=ax2﹣3ax+b经过A(﹣1,0),C(3,﹣2)两点.(1)求此抛物线的解析式;(2)求出这个二次函数的对称轴和顶点坐标.48.已知二次函数y=x2+bx+c的图象经过点A(0,4),且对称轴是直线x=﹣2,求这个二次函数的表达式.49.已知关于x的二次函数的图象的顶点坐标为(﹣4,3),且图象过点(l,﹣2).(1)求这个二次函数的关系式;(2)写出它的开口方向、对称轴.50.如图,A(﹣1,0)、B(2,﹣3)两点在一次函数y1=﹣x+m与二次函数y2=ax2+bx﹣3的图象上.(1)求m的值和二次函数的解析式.(2)二次函数交y轴于C,求△ABC的面积.51.若二次函数的图象的对称轴是直线x=1.5,并且图象过A(0,﹣4)和B(4,0)(1)求此二次函数的解析式;(2)求此二次函数图象上点A关于对称轴对称的点A′的坐标.52.若二次函数y=ax2+bx+c中,c=3,图象的顶点坐标为(2,﹣1),求该二次函数的解析式.53.过点A(﹣1,4),B(﹣3,﹣8)的二次函数y1=ax2+bx+c与二次函数的图象的形状一样,开口方向相同,只是位置不同,求这个函数的解析式及顶点坐标.54.二次函数的图象与x轴的两交点的横坐标为1和﹣7,且经过点(﹣3,8).求:(1)这个二次函数的解析式;(2)试判断点A(﹣1,2)是否在此函数的图象上.55.已知二次函数y=ax2+bx+c的图象经过点(0,﹣9)、(1,﹣8),对称轴是y轴.(1)求这个二次函数的解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.56.如图,抛物线y=ax2+bx经过点A(4,0)、B(2,2),连接OB、AB.(1)求抛物线的解析式;(2)求证:△OAB是等腰直角三角形.57.如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.58.已知二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积和周长.59.如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标.60.已知函数y=x2+bx+c过点A(2,2),B(5,2).(1)求b、c的值;(2)求这个函数的图象与x轴的交点C的坐标;(3)求S△ABC的值.二次函数解析式60题参考答案:1.∵顶点坐标是(1,﹣4)因此,设抛物线的解析式为:y=a(x﹣1)2﹣4,∵抛物线与y轴交于点(0,﹣3)把(0,﹣3)代入解析式:﹣3=a(0﹣1)2﹣4解之得:a=1(14分)∴抛物线的解析式为:y=x2﹣2x﹣3.2.(1)把点A(﹣1,12),B(2,﹣3)的坐标代入y=x2+bx+c 得得∴y=x2﹣6x+5.(2)y=x2﹣6x+5,y=(x﹣3)2﹣4,故顶点为(3,﹣4).令x2﹣6x+5=0解得x1=1,x2=5.与x轴的交点坐标为(1,0),(5,0).3.由题意,直线l的解析式为y=x,将(m,3)代入直线l的解析式中,解得m=3.将(3,3)代入二次函数的解析式,解得,∴二次函数的解析式为4.抛物线y=ax2+bx+c 与抛物线形状相同,则a=±.当a=时,解析式是:y=(x+2)2+4=x2+x+5.即a=,b=1,c=5;当a=﹣时,解析式是:y=﹣(x+2)2+4=﹣x2﹣x+3.即a=﹣,b=﹣1,c=3.5.(1)依题意,得,解得;∴二次函数的解析式为:y=x2+3x+1.(2)由(1)知:y=x2+3x+1=(x+)2﹣,故其顶点坐标为(﹣,﹣)6.(1)∵抛物线过原点,∴0=02+(m+1)×0+m.解得m=0;(2)∵抛物线的顶点在x轴上.∴△=(m+1)2﹣4m=0.解得:m=1;(3)∵抛物线的对称轴是x=2,∴﹣=2.解得m=﹣57.∵抛物线对称轴是直线x=2且经过点A(1,0)由抛物线的对称性可知:抛物线还经过点(3,0)设抛物线的解析式为y=a(x﹣x1)(x﹣x2)(a≠0)即:y=a(x﹣1)(x﹣3)把B(0,3)代入得:3=3a∴a=1∴抛物线的解析式为:y=x2﹣4x+3.8.(1)抛物线开口向下,与x轴交于(1,0),(3,0),当y>0时,x的取值范围是:1<x<3;(2)抛物线对称轴为直线x=2,开口向下,y随x的增大而减小的自变量x的取值范围是x>2;(3)抛物线与x轴交于(1,0),(3,0),设解析式y=a(x﹣1)(x﹣3),把顶点(2,2)代入,得2=a(2﹣1)(2﹣3),解得a=﹣2,∴y=﹣2(x﹣1)(x﹣3),即y=﹣2x2+8x﹣6.9.(1)把A(﹣2,5),B(1,﹣4)代入y=x2+bx+c,得,解得b=﹣2,c=﹣3,∴二次函数解析式为y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3,∴﹣=1,=﹣4,∴顶点坐标(1,﹣4),对称轴为直线x=1;又当x=0时,y=﹣3,∴与y轴交点坐标为(0,﹣3);y=0时,x=3或﹣1,∴与x轴交点坐标为(3,0),(﹣1,0).(3)图象如图.10.(1)设所求抛物线解析式为y=ax2+bx+c.根据题意,得,解得.故所求抛物线的解析式为y=2x2﹣4x+1.(2)∵,∴该抛物线的顶点坐标是(1,﹣1)11.∵二次函数y=ax2+bx+c的图象与y轴交于点A(0,3),∴c=3.又∵二次函数y=ax2+bx+c的图象经过B(1,0)、C(2,﹣1)两点,∴代入y=ax2+bx+c得:a+b+c=0,①4a+2b+c=﹣1,②由①②及c=3解得∴二次函数的解析式为y=x2﹣4x+312.由题意得解得,.此二次函数的解析式为y=x2﹣1.13.把点(3,4)、(﹣1,0)代入y=ax2+bx﹣2得:解得:则抛物线的解析式是y=x2﹣x﹣2=(x ﹣)2﹣则抛物线的对称轴是:x=14.由题意得,解得.∴这个二次函数的解析式是y=2x2﹣4x﹣6.y=2(x2﹣2x)﹣6=2(x2﹣2x+1)﹣2﹣6(1分)=2(x﹣1)2﹣8.(1分)∴它的图象的顶点坐标是(1,﹣8).15.(1)根据题意,把点A的坐标代入抛物线方程得:0=﹣1+5+m,即得m=﹣4;(2)根据题意得:令y=0,即﹣x2+5x﹣4=0,解得x1=1,x2=4,∴点C坐标为(4,0);令x=0,解得y=﹣4,∴点B的坐标为(0,﹣4);∴由图象可得,△CAB的面积S=×OB×AC=×4×3=6;(3)根据题意得:①当点O为PB的中点,设点P的坐标为(0,y),(y>0)则y﹣4=0,即得y=4,∴点P的坐标为(0,4).②当AB=BP时,AB=,∴OP 的长为:﹣4,∴P(0,﹣4),∴P(0,﹣4),或(0,4)16.(1)点(1,0),(3,0)在抛物线y=﹣x2+bx+c上.则有解得:则所求表达式为y=﹣x2+4x﹣3.(2)依题意,得AB=3﹣1=2.设P点坐标为(a,b)当b>0时,×2×b=8.则b=8.故﹣x2+4x﹣3=8即x2+4x+11=0△=(﹣4)2﹣4×1×11=16﹣44=﹣28<0,方程﹣x2+4x+11=0无实数根.当b<0时,×2×(﹣b)=8,则b=﹣8故﹣x2+4x﹣3=﹣8 即﹣x2+4x﹣5=0.解得x1=﹣1,x2=5所求点P坐标为(﹣1,﹣8),(5,﹣8)17.设二次函数的解析式为y=ax2+bx+c,由题意得,解得.故二次函数的解析式为y=x2﹣3x﹣1;y=x2﹣3x﹣1=x2﹣3x+()2﹣()2﹣1=(x ﹣)2﹣,所以抛物线的顶点坐标为(,﹣).18.设此二次函数的解析式为y=a(x+1)2+4.∵其图象经过点(2,﹣5),∴a(2+1)2+4=﹣5,∴a=﹣1,∴y=﹣(x+1)2+4=﹣x2﹣2x+3.故答案为:y=﹣x2﹣2x+319.∵二次函数y=x2+bx+c的图象经过(1,2)、(﹣1,6),∴,解得,∴所求的二次函数的解析式为y=x2﹣2x+3.20.(1)把A(2,0)、B(0,﹣6)代入y=x2+bx+c得,4+2b+c=0,c=﹣6,∴b=1,c=﹣6,∴这个二次函数的解析式y=x2+x﹣6;(2)令y=0,则x2+x﹣6=0,解方程得x1=2,x2=﹣3,∴二次函数图象与x轴的另一个交点为(﹣3,0).21.∵已知抛物线最大值为3,其对称轴为直线x=﹣1,∴抛物线的顶点坐标为(﹣1,3)设抛物线的解析式为:y=a(x+1)2+3,∵(1,﹣5)在抛物线y=a(x+1)2+3上,∴解得a=﹣2,∴此抛物线的解析式y=﹣2(x+1)2+322.设二次函数式为y=k(x+2)2+3.将(1,0)代入得9k+3=0,解得k=.∴所求的函数式为 y=(x+2)2+323.根据题意得,,解得,∴抛物线的解析式为y=﹣x2+2x+3;或:由已知得,﹣1、3为方程﹣x2+bx+c=0的两个解,∴﹣1+3=b,(﹣1)×3=c,解得b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.24.设二次函数的关系式为y=ax2+bx+c(a≠0),∵二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,∴点(0,0),(﹣1,﹣1),(1,9)满足二次函数的关系式,∴,解得,所以这个函数关系式是:y=4x2+5x25.(1)由题意,将A与B 代入代入二次函数解析式得:,解得:,则二次函数解析式为y=x2﹣2x﹣3;(2)令y=0,则x2﹣2x﹣3=0,即(x+1)(x﹣3)=0,解得:x1=﹣1,x2=3,∴与x轴交点坐标为(﹣1,0),(3,0);令x=0,则y=﹣3,∴与y轴交点坐标为(0,﹣3)26.根据题意,得,解得,;∴该二次函数的解析式为:y=x2﹣2x﹣3.27.由题意得,二次函数y=ax2+bx+c,过(0,5)(﹣1,0)(﹣5,0)三点,∴,解得a=1,b=6,c=5,∴这个二次函数的解析式y=x2+6x+528.(1)由题意,可设抛物线解析式为y=a(x ﹣)2+,把点A(1,0)代入,得a(1﹣)2+=0,解之得a=﹣1,∴抛物线的解析式为y=﹣(x ﹣)2+,即y=﹣x2+5x﹣4;(2)令x=0,得y=﹣4,令y=0,解得x1=4,x2=1,S=×(4﹣1)×4=6.所以抛物线与两坐标轴的三个交点所围成的三角形的面积为6.29.(1)∵抛物线经过A(﹣1,0),B(0,3)两点∴解得∴抛物线的解析式为y=﹣x2+2x+3.(2)∵y=﹣x2+2x+3可化为y=﹣(x﹣1)2+4,∴抛物线y=﹣x2+2x+3的顶点坐标为(1,4),又∵此抛物线向左平移3个单位,再向下平移1个单位,∴平移后的抛物线的顶点坐标为(﹣2,3).∴平移后的抛物线的解析式为y=﹣(x+2)2+3=﹣x2﹣4x﹣1.30.(1)∵二次函数图象与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3),∴x=﹣1,y=0代入y=﹣x2+bx+c得:﹣1﹣b+c=0①,把x=0,y=3代入y=﹣x2+bx+c得:c=3,把c=3代入①,解得b=2,则二次函数解析式为y=﹣x2+2x+3;(2)∵二次函数y=﹣x2+2x+3的二次项系数a=﹣1<0,∴抛物线的开口向下,则当x=﹣=﹣=1时,y有最大值,最大值为=4;(3)令二次函数解析式中的y=0得:﹣x2+2x+3=0,可化为:(x﹣3)(x+1)=0,解得:x1=3,x2=﹣1,由函数图象可知:当﹣1<x<3时,y>031.∵函数的最大值是2,则此函数顶点的纵坐标是2,又顶点在y=x+1上,那么顶点的横坐标是1,设此函数的解析式是y=a(x﹣1)2+2,再把(2,1)代入函数中可得a(2﹣1)2+2=1,解得a=﹣1,故函数解析式是y=﹣x2+2x+1.32.∵﹣=﹣=1,∴b=2,又∵点(3,0)在函数上,∴﹣9+6+c=0,∴c=3,∴函数的解析式是y=﹣x2+2x+3.33.(1)设y=a(x+1)2﹣4,把点(0,﹣3)代入得:a=1,∴函数解析式y=(x+1)2﹣4或y=x2+2x﹣3;(2)∵x2+2x﹣3=0,解得x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),C(0,﹣3),∴△ABC的面积=.34.(1)解:∵直线y=x+m经过A点,∴当x=2时,y=0,∴m+2=0,∴m=﹣2,∵抛物线y=x2+bx+c过A(2,0),B(5,3),∴,解得,∴抛物线的解析式为y=x2﹣6x+8;(2)由图可知,不等式ax2+bx+c≤x+m的解集为2≤x≤5;(3)解:设直线AB与y轴交于D,∵A(2,0)B(5,3),∴直线AB的解析式为y=x﹣2,∴点D(0,﹣2),由(1)知C(0,8),∴S△BCD =×10×5=25,∵S△ACD =×10×2=10,∴S△ABC=S△BCD﹣S△ACD=25﹣10=15.35.设二次函数的解析式为y=ax2+bx+c,由题意得,二次函数的图象对称轴为x=2且图象过点(1,2),(0,﹣1),故可得:,解得:.即可得二次函数的解析式为:y=﹣x2+4x﹣136.(1)由条件得解得所以解析式为y=﹣x2+4x,(2)∵该图象的最高点为B,∴点B的坐标为(2,4),∴△ABO的面积=×4×4=8,(3)∵当x=1时,y=3,∴当1<x<4时,y的取值范围是0<y<4.故答案为:0<y<4.37.(1)这个二次函数解析式y=ax2+bx+c(a≠0),把三点(﹣1,10),(1,4),(2,7)分别代入得:,解得:,故这个二次函数解析式为:y=2x2﹣3x+5;(2)y=2x2﹣3x+5=2(x2﹣x+﹣)+5=2(x ﹣)2﹣+5=2(x ﹣)2+,则抛物线的顶点坐标是(,),因为抛物线的开口向上,所以当x >时,y随x的增大而增大,当x时,y随x的增大而减小.38.(1)将A(﹣1,2)代入y=x2﹣2(k﹣2)x+1得:2=1﹣2(k ﹣2)+1,解得:k=2,则抛物线解析式为y=x2+1;(2)对于二次函数y=x2+1,a=1,b=0,c=1,∴﹣=0,=1,则顶点坐标(0,1);对称轴为直线x=0(y轴)39.(1)设抛物线的解析式是y=ax2+bx+c,把(0,1),(2,1),(3,4)代入得:,解得:,∴y=x2﹣2x+1.(2)设抛物线的解析式是:y=a(x+2)2+1,把(1,﹣2)代入得:﹣2=a(1+2)2+1,∴a=﹣,∴y=﹣(x+2)2+1,即y=﹣x2﹣x ﹣.40.(1)设函数的解析式是:y=a(x﹣3)2﹣2根据题意得:9a﹣2=,解得:a=;∴函数解析式是:y=﹣2;(2)∵a=>0 ∴二次函数开口向上又∵二次函数的对称轴是x=3.∴当x>3时,y随x增大而增大.41.(1)由题意知:抛物线的顶点坐标为(1,﹣3)设二次函数的解析式为y=a(x﹣1)2﹣3,由于抛物线过点(0,﹣2),则有:a(0﹣1)2﹣3=﹣2,解得a=1;因此抛物线的解析式为:y=(x﹣1)2﹣3.(2)∵a=1>0,∴故抛物线的开口向上;∵抛物线的对称轴为x=1,∴(1,y2)为抛物线的顶点坐标,∴y2最小.由于(﹣2,y1)和(4,y1)关于对称轴对称,可以通过比较(4,y1)和(3,y3)来比较y1,y3的大小,由于在y轴的右侧是增函数,所以y1>y3.于是y2<y3<y1.42.(1)由于二次函数y=x2+bx+c的图象经过点(0,3)、(4,3),则,解得:,∴此抛物线的解析式为:y=x2﹣4x+3.函数图象如下:(2)由函数图象可直接写出x2+bx+c>3的解集为:x<0或x>4.43.二次函数可以变形为y=(x+m)2+2m﹣1,抛物线的顶点坐标为(﹣m,2m﹣1).由,消去m,得y=﹣2x﹣1.所以这条直线的函数解析式为y=﹣2x﹣144.设直线AB的解析式为y=kx+b,∴,解得,直线AB的解析式为y=x+2,令x=0,则y=2,∴直线AB与y轴的交点坐标(0,2),∵S△ABC=12,∴C(0,﹣4),∵抛物线y=ax2+bx+c过点A(﹣2,1),B(2,3),且与y轴负半轴交于点C,∴,解得,∴抛物线的解析式为y=x2+x﹣445.∵直线y=kx+b过点A(2,0)和点B(1,1),∴,解得,∴直线AB所表示的函数解析式为y=﹣x+2,∵抛物线y=ax2过点B(1,1),∴a×12=1,解得a=1,∴抛物线所表示的函数解析式为y=x2.它们在同一坐标系中的图象如下所示:46.(1)∵二次函数y=x2+bx+c的图象经过点P(2,7)、Q(0,﹣5),,解得b=4,c=﹣5.∴b、c的值是4,5;(2)∵二次函数的图象与x轴交于A、B两点,(其中点A在点B 的左侧),∴A(1,0),B(﹣5,0),∴AB=6,∵P点的坐标是:(2,7),∴△PAB的面积=×6×7=2147.(1)根据题意得,解得,所以抛物线的解析式为y=﹣x﹣2;(2)y=﹣x﹣2=(x ﹣)2﹣,所以抛物线的对称轴为直线x=,顶点坐标为(,﹣)48.∵二次函数的图象过A(0,4),∴c=4,∵对称轴为x=﹣1,∴x=﹣=﹣2,解得b=4;∴二次函数的表达式为y=x2+4x+4.49.(1)∵关于x的二次函数的图象的顶点坐标为(﹣4,3),∴设该二次函数的关系式为:y=a(x+4)2+3(a≠0);又∵图象过点( l,﹣2),∴﹣2=a(1+4)2+3,解得,a=﹣;∴设该二次函数的关系式为:y=﹣(x+4)2+3;(2)由(1)知,该二次函数的关系式为:y=﹣(x+4)2+3,∴a=﹣<0,∴该抛物线的方向向下;∵关于x的二次函数的图象的顶点坐标为(﹣4,3),∴对称轴方程为:x=﹣4.50.(1)把A(﹣1,0)代入y1=﹣x+m得﹣(﹣1)+m=0,解得m=1,把A(﹣1,0)、B(2,﹣3)代入y2=ax2+bx﹣3得,解得.故二次函数的解析式为y2=x2﹣﹣2x﹣3;(2)因为C点坐标为(0,﹣3),B(2,﹣3),所以BC⊥y轴,所以S△ABC =×2×3=3.51.(1)设此二次函数的解析式为y=ax2+bx+c,把A(0,﹣4)和B(4,0),即对称轴x=1.5代入解析式得:,解得:故y=x2﹣3x﹣4;(2)∵A(0,﹣4),对称轴是x=1.5,∴A′(3,﹣4)52.∵二次函数y=ax2+bx+c的顶点坐标为(﹣,),二次函数y=ax2+bx+c中,c=3,图象的顶点坐标为(2,﹣1),∴﹣=2,=﹣1,解得a=1,b=﹣4,∴二次函数的解析式y=x2﹣4x+353.∵二次函数y1=ax2+bx+c 与二次函数的图象的形状一样,开口方向相同,∴a=﹣2,将点A(﹣1,4),B(﹣3,﹣8)代入y1=﹣2x2+bx+c,得,解得,∴y1=﹣2x2﹣2x+4;∵y1=﹣2x2﹣2x+4=﹣2(x2+x)+4=﹣2(x+)2+,∴顶点坐标为(﹣,).故这个函数的解析式为y1=﹣2x2﹣2x+4,顶点坐标为(﹣,).54.(1)∵二次函数的图象与x轴的两交点的横坐标为1和﹣7,且经过点(﹣3,8),∴两交点的横坐标为:(1,0),(﹣7,0),且经过点(﹣3,8),∴代入解析式:y=a(x﹣1)(x+7),8=a(﹣3﹣1)×(﹣3+7),解得:a=﹣,∴y=﹣(x﹣1)(x+7);(2)∵将点A(﹣1,2)此函数的解析式,∴左边=2,右边=﹣(﹣1﹣1)(﹣1+7)=6;∴左边≠右边,∴点A(﹣1,2)不在此函数的图象上.55.(1)∵二次函数的对称轴为y轴,即x=0,∴b=0,即二次函数解析式为y=ax2+c,又二次函数的图象经过点(0,﹣9)、(1,﹣8),∴,解得:,则二次函数的解析式为y=x2﹣9;(2)由平移规律得:二次函数向右平移2个单位的解析式为:y=(x﹣2)2﹣9,即y=x2﹣4x﹣5,令x=0,解得:y=﹣5,∴C(0,﹣5),即OC=5,又平移后抛物线的顶点P的坐标为(2,9),即P的横坐标为2,则S△POC =OC•x P的横坐标=×5×2=5.56.1)解:由题意得,解得;∴该抛物线的解析式为:y=﹣x2+2x;(2)证明:过点B作BC⊥x轴于点C,则OC=BC=AC=2;∴∠BOC=∠OBC=∠BAC=∠ABC=45°;∴∠OBA=90°,OB=AB;∴△OAB是等腰直角三角形;57.(1)将A(﹣1,0)代入抛物线y=x2+bx﹣2得,×(﹣1)2﹣b﹣2=0,解得,b=﹣,则函数解析式为y=x2﹣x﹣2.配方得,y=(x ﹣)2﹣,可见,顶点坐标为(,﹣).(2)将上述抛物线先向下平移3个单位,再向右平移2个单位,可得,y=(x ﹣﹣2)2﹣﹣3=(x ﹣)2﹣=x2﹣x.58.(1)把(2,0)、(0,﹣6)代入二次函数解析式,可得,解得,故解析式是y=﹣x2+4x﹣6;(2)∵对称轴x=﹣=4,∴C点的坐标是(4,0),∴AC=2,OB=6,AB=2,BC=2,∴S△ABC =AC•OB=×2×6=6,△ABC的周长=AC+AB+BC=2+2+2.59.(1)A坐标是(﹣1,﹣1),B点的坐标是(3,﹣9),代入y=ax2﹣4x+c 得:解得:a=1,c=﹣6.则二次函数表达式是:y=x2﹣4x﹣6(2)y=x2﹣4x﹣6=(x﹣2)2﹣10,因此对称轴为直线x=2,顶点坐标为(2,﹣10)60.(1)把A(2,2),B(5,2)分别代入y=x2+bx+c,文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持. 可得,解得;(2)由b=﹣7,c=12,知y=x2﹣7x+12令y=0,得x2﹣7x+12=0,∴x=3或x=4,∴C(3,0)或C(4,0);(3)∵A(2,2)B(5,2)∴AB=|2﹣5|=3,且△ABC的AB边上的高h=2,∴S△ABC =AB•h=×3×2=311word版本可编辑.欢迎下载支持.。

(完整版)二次函数求解析式专题练习题

(完整版)二次函数求解析式专题练习题

1.已知抛物线y=ax2经过点A(1,1).(1)求这个函数的解析式;2.已知二次函数y=ax2+bx+c的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.3.抛物线y=ax2+bx+c的顶点坐标为(2,4),且过原点,求抛物线的解析式.4.若一抛物线与x轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为。

5.已知二次函数y=ax2+bx+c,当x=-1时有最小值-4,且图象在x轴上截得线段长为4,求函数解析式.6.抛物线y=ax2+bx+c经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.7.已知二次函数为x=4时有最小值-3且它的图象与x轴交点的横坐标为1,求此二次函数解析式.8. 已知抛物线经过点(-1,1)和点(2,1)且与x 轴相切.(1)求二次函数的解析式。

9.已知二次函数y=ax 2+bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式.10.把抛物线y =(x -1)2沿y 轴向上或向下平移后所得抛物线经过点Q (3,0),求平移后的抛物线的解析式.11.二次函数y =x 2-mx +m -2的图象的顶点到x 轴的距离为,1625求二次函数解析式.12.已知二次函数m x x y +-=62的最小值为1,求m 的值.13.已知抛物线y =ax 2经过点A (2,1).(1)求这个函数的解析式;(2)写出抛物线上点A 关于y 轴的对称点B 的坐标;(3)求△OAB 的面积;(4)抛物线上是否存在点C ,使△ABC 的面积等于△OAB 面积的一半,若存在,求出C 点的坐标;若不存在,请说明理由.14、在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某个二次函数图象的一部分,如图所示,如果这名男同学出手处A 点的坐标为(0,2),铅球路线的最高处B 点的坐标为(6,5)。

二次函数求解析式专题练习题

二次函数求解析式专题练习题

1.已知抛物线y=ax2经过点A(1,1).(1)求这个函数的解析式;2.已知二次函数y=ax2+bx+c的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.3.抛物线y=ax2+bx+c的顶点坐标为(2,4),且过原点,求抛物线的解析式.4.若一抛物线与x轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为。

5.已知二次函数y=ax2+bx+c,当x=-1时有最小值-4,且图象在x轴上截得线段长为4,求函数解析式.6.抛物线y=ax2+bx+c经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.7.已知二次函数为x=4时有最小值 -3且它的图象与x轴交点的横坐标为1,求此二次函数解析式.8. 已知抛物线经过点(-1,1)和点(2,1)且与x轴相切.(1)求二次函数的解析式。

9.已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a、b、c,并写出函数解析式.10.把抛物线y=(x-1)2沿y轴向上或向下平移后所得抛物线经过点Q(3,0),求平移后的抛物线的解析式.11.二次函数y=x2-mx+m-2的图象的顶点到x轴的距离25求二次函数解析式.为,1612.已知二次函数m2的最小值为1,求m的值.-=6y+xx13.已知抛物线y=ax2经过点A(2,1).(1)求这个函数的解析式;(2)写出抛物线上点A关于y轴的对称点B的坐标;(3)求△OAB的面积;(4)抛物线上是否存在点C,使△ABC的面积等于△OAB面积的一半,若存在,求出C点的坐标;若不存在,请说明理由.14、在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某个二次函数图象的一部分,如图所示,如果这名男同学出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5)。

(1)求这个二次函数的解析式;(2)该同学把铅球推出多远?(精确到0.01米,提示:)3.87315.函数y=x2+2x-3(-2≤x≤2)的最大值和最小值分别为( )A.4和-3 B.5和-3 C.5和-4 D.-1和423.抛物线y=ax2+bx+c(a≠0)的图象如下图所示,那么a()0,b()0,c()024.二次函数y=mx2+2mx-(3-m)的图象如下图所示,那么m的取值范围是( )A.m>0B.m>3C.m<0D.0<m<325.在同一坐标系内,函数y=kx2和y=kx-2(k≠0)的图象大致如图( )26.已知抛物线y=-x 2+mx+n 的顶点坐标是(-1,- 3 ),则m和n 的值分别是( )A.2,4B.-2,-4C.2,-4D.-2,027、已知二次函数2y ax bx c =++的图象经过原点和第一、二、三象限,则( )(A )0,0,0a b c >>>(B )0,0,0a b c <<= (C )0,0,0a b c <<> (D )0,0,0a b c >>=29.下列抛物线,对称轴是直线x=12的是( ) (A ) y=12x2(B )y=x2+2x(C )y=x2+x+2(D )y=x2-x-230.已知抛物线经过A (0,3),B (4,6)两点,对称轴为x=53, (1) 求这条抛物线的解析式;。

二次函数解析式求法与例题

二次函数解析式求法与例题

二次函数解析式求法与例题
小编整理了关于二次函数解析式求法与例题,希望对于同学们的二次函数解析式的求法有所了解,包括相关例题以供同学们呢练习和实践!二次函数一般形式:y=ax2+bx+c(任意三点)
顶点式:y=a(x+d)2+h(顶点和任意除顶点以外的点)有的版本教材也注原理相同
例:某二次函数图像顶点(-2,1)且经过(1,0),求二次函数解析式
解:设y=a(x+2)2+l注意:y=a(x-d)2+h中d是顶点横坐标,h是顶点纵坐标
由于二次函数图像过点(1,0)
因此a*3的平方的二0解得a=T∕9
所以所求作二次函数解析式为y=-l∕9(x+2)2÷l
(此题是样题,所以就不进一步化简成一般形式)
两根式:函数图像与X轴两交点与另外一点首先必须有交点(b2-4ac0)y=a(χ-χl)(χ-χ2)其中xl,x2是图像与X轴两交点并且是ax2+bx+c=0的两根
如果二次函数一般形式和与X轴的一个交点,那么可以求出另一个交点利用根与系数的关系
例:y=x2+4x+3与X轴的一个交点是(T,0),求其与X轴的另一交点坐标解:由根与系数的关系得:
xl+x2=-b∕a--4那么x2=-4-XI=-4-(T)=-3
所以与X轴的另一交点坐标为(-3,0)
另外将y=ax2+bx+c向右平移2个单位可得
y=a(x-2)2÷b(χ-2)+c
再向下平移2个单位得:y=a(x-2)2+b(x-2)+c-2
二次函数解析式求法与例题,仅供同学们参考,希望同学们的二次函数解析式学习有所帮助!。

用待定系数法求二次函数解析式专题练习

用待定系数法求二次函数解析式专题练习

用待定系数法求二次函数解析式专项练习类型一:已知顶点和另外一点用顶点式1.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二 次函数的关系式。

2. 已知二次函数的图象经过A(-1,0)、B(3,0),函数有最小值-8,求它的解析式3. 已知抛物线对称轴是直线x =2,且经过(3,1)和(0,-5)两点,求二次函数的关系式。

4. 已知抛物线的顶点是(2,-4),它与y 轴的一个交点的纵坐标为4,求函数的关系式。

5. 一条抛物线y x mx n =++142经过点()032,与()432,。

求这条抛物线的解析式。

6.已知抛物线经过点(-1,1)和点(2,1)且顶点在x 轴上.(1)求二次函数的解析式。

7.已知一个二次函数当x=8时,函数有最大值9,且图象过点(0,1),求这个二次函数的关系式.8.已知一个二次函数对称轴x=8,函数最大值9,且图象过点(0,1),求这个二次函数的关系式9.二次函数y =x 2-mx +m -2的图象的顶点到x 轴的距离为,1625求二次函数解析式. 类型二:已知图像上任意三点用一般式1. 已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.2. 已知二次函数的图象经过A(-1,3)、B(1,3)、C(2,6); 求它的解析式。

3. 已知一个二次函数,当x=-1时,y=3;当x=1时,y=3;当x=2时,y=6。

求这个二次函数的解析式。

4. 已知抛物线过三点:(-1,2),(0,1),(2,-7).求解析式5.已知抛物线过三点:(0,-2)、(1,0)、(2,3)求二次函数的关系式 类型三:已知图像与x 轴两个交点坐标和另外一点坐标,用两根式1. 已知二次函数的图象顶点坐标是(-1,9),与x 轴两交点间的距离是6.求它的 解析式。

2. 抛物线y =ax 2+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.3. 已知二次函数的图象与x 轴交点的横坐标分别是x 1=-3,x 2=1,且与y 轴交点为(0,-3),求这个二次函数解析式。

《用待定系数法求二次函数的解析式》同步练习(含答案)

《用待定系数法求二次函数的解析式》同步练习(含答案)

用待定系数法求二次函数的解析式同步练习题基础题知识点1利用“三点式”求二次函数解析式1.已知二次函数y=-12x2+bx+c的图象经过A(2,0),B(0,-6)两点,则这个二次函数的解析式为______________________.2.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x -7 -6 -5 -4 -3 -2y -27 -13 -3 3 5 3则此二次函数的解析式为____________________.3.已知二次函数y=ax2+bx+c,当x=0时,y=1;当x=-1时,y=6;当x=1时,y=0.求这个二次函数的解析式.4.如图,抛物线y=x2+bx+c与x轴交于A,B两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标.知识点2 利用“顶点式”求二次函数解析式5.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =29(x -1)2+8D .y =2(x -1)2-86.已知抛物线的顶点坐标为(4,-1),与y 轴交于点(0,3),求这条抛物线的解析式.知识点3 利用“交点式”求二次函数解析式 7.如图所示,抛物线的函数表达式是( )A .y =12x 2-x +4B .y =-12x 2-x +4C .y =12x 2+x +4D .y =-12x 2+x +48.已知一个二次函数的图象与x 轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),则该二次函数的解析式为_______________.9.已知二次函数经过点A(2,4),B(-1,0),且在x 轴上截得的线段长为2,求该函数的解析式.中档题10.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A .y =x 2-x -2B .y =-12x 2-12x +2C .y =-12x 2-12x +1D .y =-x 2+x +211.二次函数y =-x 2+bx +c 的图象的最高点是(-1,-3),则b ,c 的值分别是( )A .b =2,c =4B .b =2,c =-4C .b =-2,c =4D .b =-2,c =-412.二次函数的图象如图所示,则其解析式为________________.13.已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0),B(0,-3)两点,则这条抛物线所对应的函数关系式为________________.14.设抛物线y =ax 2+bx +c(a ≠0)过A(0,2),B(4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为___________________________________.15.如图,已知抛物线的顶点为A(1,4),抛物线与y 轴交于点B(0,3),与x 轴交于C ,D 两点.点P 是x 轴上的一个动点.(1)求此抛物线的解析式;(2)当PA +PB 的值最小时,求点P 的坐标.16.已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.综合题17.设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.参考答案基础题1.y =-12x 2+4x -6 2.y =-2x 2-12x -133.由题意,得⎩⎪⎨⎪⎧a +b +c =0,a -b +c =6,c =1,解得⎩⎪⎨⎪⎧a =2,b =-3,c =1.∴二次函数的解析式为y =2x 2-3x +1.4.(1)∵抛物线y =x 2+bx +c与x 轴交于A(-1,0),B(3,0)两点,∴⎩⎪⎨⎪⎧1-b +c =0,9+3b +c =0.解得⎩⎪⎨⎪⎧b =-2,c =-3.∴二次函数解析式是y =x 2-2x -3.(2)∵y =x 2-2x -3=(x -1)2-4,∴抛物线的对称轴为x =1,顶点坐标为(1,-4). 5.D6.依题意,设y =a(x -h)2+k.将顶点坐标(4,-1)和与y 轴交点(0,3)代入,得3=a(0-4)2-1.解得a =14.∴这条抛物线的解析式为y =14(x -4)2-1.7.D 8.y =x 2-x -29.∵B(-1,0)且在x 轴上截得的线段长为2,∴与x 轴的另一个交点坐标为(1,0)或(-3,0).设该函数解析式为y =a(x -x 1)(x -x 2),把A(2,4),B(-1,0),(1,0)代入得a(2+1)(2-1)=4,解得a =43.所以y =43(x+1)(x -1).同理,把A(2,4),B(-1,0),(-3,0)代入,可以求得y =415(x +1)(x +3).∴函数的解析式为y =43(x +1)(x -1)或y =415(x +1)(x +3).中档题10.D 11.D 12.y =-x 2+2x +3 13.y =x 2-2x -3 14.y =18x 2-14x +2或y =-18x 2+34x +215.(1)∵抛物线顶点坐标为(1,4),∴设y =a(x -1)2+4.∵抛物线过点B(0,3),∴3=a(0-1)2+4,解得a=-1.∴抛物线的解析式为y =-(x -1)2+4,即y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E(0,-3),连接AE 交x 轴于点P.设AE 解析式为y =kx +b ,则⎩⎪⎨⎪⎧k +b =4,b =-3,解得⎩⎪⎨⎪⎧k =7,b =-3.∴y AE =7x -3.∵当y =0时,x=37,∴点P 的坐标为(37,0). 16.(1)∵A(1,0),B(3,0),∴设抛物线解析式为y =a(x -1)(x -3).∵抛物线过(0,-3),∴-3=a(-1)×(-3).解得a =-1.∴y =-(x -1)(x -3)=-x 2+4x -3.∵y =-x 2+4x -3=-(x -2)2+1,∴顶点坐标为(2,1).(2)答案不唯一,如:先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y =-x 2,平移后抛物线的顶点为(0,0)落在直线y =-x 上. 综合题17.(1)当k =0时,y =-(x -1)(x +3),所画函数图象图略.(2)①三个图象都过点(1,0)和点(-1,4);②图象总交x轴于点(1,0);③k取0和2时的函数图象关于点(0,2)中心对称;④函数y=(x-1)[(k-1)x+(x-3)]的图象都经过点(1,0)和点(-1,4);等等.(其他正确结论也行)(3)将函数y2=(x-1)2的图象向左平移4个单位,再向下平移2个单位,得到函数y3=(x+3)2-2,∴当x =-3时,函数y3取最小值,等于-2.。

二次函数求解析式专题练习试题

二次函数求解析式专题练习试题

1. 已知抛物线y=ax2经过点A(1, 1). (1)求这个函数的解析式;2. 已知二次函数y=ax2+bx+c的图象顶点坐标为(-2, 3), 且过点(1, 0), 求此二次函数的解析式.3. 抛物线y=ax2+bx+c的顶点坐标为(2, 4), 且过原点, 求抛物线的解析式.4. 若一抛物线与轴两个交点间的距离为8, 且顶点坐标为(1, 5), 则它们的解析式为。

5. 已知二次函数y=ax2+bx+c, 当x=-1时有最小值-4, 且图象在x轴上截得线段长为4, 求函数解析式.6. 抛物线y=ax2+bx+c经过(0, 0), (12, 0)两点, 其顶点的纵坐标是3, 求这个抛物线的解析式.7.已知二次函数为x=4时有最小值 -3且它的图象与x轴交点的横坐标为1, 求此二次函数解析式.8.已知抛物线经过点(-1, 1)和点(2, 1)且与x轴相切. (1)求二次函数的解析式。

9.已知二次函数y=ax2+bx+c, 当x=0时, y=0;x=1时, y=2;x=-1时, y=1.求a、b、c, 并写出函数解析式.10. 把抛物线y=(x-1)2沿y轴向上或向下平移后所得抛物线经过点Q(3, 0), 求平移后的抛物线的解析式.11. 二次函数y=x2-mx+m-2的图象的顶点到x轴的距离为求二次函数解析式.12. 已知二次函数的最小值为1, 求m的值.13. 已知抛物线y=ax2经过点A(2, 1).(1)求这个函数的解析式;(2)写出抛物线上点A关于y轴的对称点B的坐标;(3)求△OAB的面积;(4)抛物线上是否存在点C, 使△ABC的面积等于△OAB面积的一半, 若存在, 求出C点的坐标;若不存在, 请说明理由.14.在体育测试时, 初三的一名高个子男生推铅球, 已知铅球所经过的路线是某个二次函数图象的一部分, 如图所示, 如果这名男同学出手处A点的坐标为(0,2), 铅球路线的最高处B点的坐标为(6,5)。

二次函数求解析式专题练习题

二次函数求解析式专题练习题

二次函数表达式的确定练习题 姓名__________1.已知二次函数y =ax 2+bx +c 的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.2.抛物线y =ax 2+bx +c 的顶点坐标为(2,4),且过原点,求抛物线的解析式.3. 若一抛物线与x 轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为 .4.抛物线y =ax 2+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.5.已知二次函数为x =4时有最小值 -3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式.6.已知二次函数y=ax 2+bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式.7.把抛物线y =(x -1)2沿y 轴向上或向下平移后所得抛物线经过点Q (3,0),求平移后的抛物线的解析式.8.二次函数y =x 2-mx +m -2的图象的顶点到x 轴的距离为,1625求二次函数解析式.9.已知二次函数m x x y +-=62的最小值为1,求m 的值.10.函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别为( )A .4和-3B .5和-3C .5和-4D .-1和411.在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )12.已知抛物线y=-x 2+mx+n 的顶点坐标是(-1,- 3 ),则m 和n 的值分别是( ) ,4 ,-4 ,-4 ,013.已知二次函数2y ax bx c =++的图象经过原点和第一、二、三象限,则( )(A )0,0,0a b c >>>(B )0,0,0a b c <<= (C )0,0,0a b c <<>(D )0,0,0a b c >>=14.下列抛物线,对称轴是直线x=12的是( ) (A ) y=12x2(B )y=x2+2x(C )y=x2+x+2(D )y=x2-x-2 15.(2008?仙桃)如图,抛物线y=ax 2+bx+c (a >0)的对称轴是直线x=1,且经过点P (3,0),则a ﹣b+c 的值为( )A . 0B . ﹣1C . 1D . 216.在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某个二次函数图象的一部分,如图所示,如果这名男同学出手处A 点的坐标为(0,2),铅球路线的最高处B 点的坐标为(6,5)。

二次函数解析式习题及详解

二次函数解析式习题及详解

二次函数解析式习题及详解求二次函数解析式练习题1.已知二次函数y=a某+b某+c(a≠0)的图象如图所示对称轴为某=﹣.下列结论中,正确的是()A.abc>0 B a+b=0 C.2b+c>0 D.4a+c<2b 【答案】D2.二次函数y=a某2+b某+c(a≠0)的图象如图所示,给出下列结论:① b-4ac>0;② 2a+b<0;③ 4a-2b+c=0;④ a︰b︰c= -1︰2︰3.其中正确的是( ) (A) ①② (B) ②③ (C) ③④ (D)①④ 【答案】D3.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式.4.已知一个二次函数当某=8时,函数有最大值9,且图象过点(0,1),求这个二次函数的关系式.解:设y=a(某-8)^2+9且a<0图象过点(0,1),所以有:1=64a+9解得:a=-1/8则这个二次函数的关系式;y=-1/8(某-8)^2+95.已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.6.6.已知二次函数的图象过(-2,0)、(4,0)、(0,3)三点,求这个二次函数的关系式.7.7.已知二次函数的图象过(3,0)、(2,-3)二点,且对称轴是某=1,求这个二次函数的关系式.8.(3,0)是二次函数的一个零点对称轴某=1则另一零点是1-(3-1)=-1(-1,0)设二次函数y=a(某-3)(某+1)代入(2,-3)-3=a(2-3)(2+1)a=1y=(某-3)(某+1)y=某2-2某-39.8.已知二次函数的图象与某轴交于A,B两点,与某轴交于点C。

若AC=20,BC=15,∠ACB=90°,试确定这个二次函数的解析式记原点为O,1、当A在O的左边,C在O的上方时,由勾股定理得AB=25.设│OB│=a,则│OA│=25-a,因为OC是两个小直角三角形的公共边,所以202-(25-a)2=152-a2.解得a=9,则25-a=16.于是可得三点坐标为A(-16,0)B(9,0)C(0,12),利用顶点式得y=-1/12·(某+16)(某-9).2、当A在O的右边,C在O的上方时,比较(1)的结论得y=-1/12·(某-16)(某+9).3、当A在O的左边,C在O的下方时,比较(1)的结论得y=1/12·(某+16)(某-9).4、当A在O的右边,C在O的下方时,比较(1)的结论得y=1/12·(某-16)(某+9).9.根据下列条件,分别求出对应的二次函数的关系式.10.(1).已知抛物线的顶点在原点,且过点(2,8);(2).已知抛物线的顶点是(-1,-2),且过点(1,10);(3).已知抛物线过三点:(0,-2)、(1,0)、(2,3)1)设y=a某^2,代入点(2,8),8=a某4,得:a=2,故y=2某^22)设y=a(某+1)^2-2,代入点(1,10),10=4a-2,得:a=3,故y=3(某+1)^2-23)设y=a某^2+b某-2代入(1,0)得:a+b-2=0,得:a+b=2代入(2,3)得:4a+2b-2=3,得:2a+b=2.5解得:a=0.5,b=1.5故y=0.5某^2+1.5某-210.已知抛物线过三点:(-1,0)、(1,0)、(0,3).(1).求这条抛物线所对应的二次函数的关系式;(2).写出它的开口方向、对称轴和顶点坐标;(3).这个函数有最大值还是最小值?这个值是多少?11.如图,在平面直y?a某?b某?c角坐标系中,抛物线y?a某?b某?c经过A(-2,-4),O(0,0),B(2,0)三点.(1)求抛物线的解析式;(2)若点M是抛物线对称轴上一点,求AM+OM的最小值.【答案】22解:(1)把A(-2,-4),O(0,0),B(2,0)三点代入y?a某2?b某?c中,得4a2bc?4?4a?2b?c?0………………3分?c?0?112,b=1,c=0.所以解析式为y?某?某2212112(2)由y?某?某=?(某?1)?,可得222抛物线的对称轴为某=1,并且对称垂直平分线段OB.∴OM=BM,OM+AM=BM+AM连接AB交直线某=1于M,则此时OM+AM最小.过A点作AN⊥某轴于点N,在Rt△ABN中解这个方程组,得a?AB=AN2?BN2?42?42?42因此OM+AM最小值为4211.如图,点A在某轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.【答案】解:(1)如图,过点B作BC⊥某轴,垂足为C,则∠BCO=90°.∵∠AOB=120°,∴∠BOC=60°.又∵OA=OB=4∴OC=311OB=某4=2,BC=OB·sin60°=4某=23. 222∴点B的坐标是(-2,-23). (2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=a某2+b某.. 将A(4,0),B(-2,-23)代入3a=-,??16a?4b=0,6得?解得??b=23.?4a?2b=?23.?3?∴此抛物线的解析式为y=-3223某?某.63(3)存在.如图,抛物线的对称轴是某=2,直线某=2与某轴的交点为D.设点P的坐标为(2,y)①若OB=OP则22+,y,2=42,解得y=±23.当y=23时,在Rt△POD中,∠POD=90°,PD233.==OP42∴∠POD=60°.∴∠POB=∠POD+∠AOB=60°+120°=180°sin∠POD=即P,O,B三点在同一条直线上∴y=23不符合题意,舍去.∴点P的坐标为(2,-23).方法一:②若OB=PB,则42+,y+23,2=42,解得y=-23.∴点P的坐标是(2,-23).③若OB=PB,则22+,y,2=42+,y+23,2,解得y=-23.∴点P的坐标是(2,-23).综上所述,符合条件的点P只有一个,其坐标为(2,-23).方法二:在△BOP中,求得BP=4,OP=4,又∵OB=4,∴△BOP为等边三角形.∴符合条件的点P只有一个,其坐标为(2,-23).。

求二次函数的解析式专项练习60题(有答案)

求二次函数的解析式专项练习60题(有答案)

求二次函数的解析式专项练习60题(有答案)1.已知二次函数图像的顶点坐标为(1,-4),与y轴交于点(0,-3),求此二次函数的解析式。

2.已知二次函数y=x^2+bx+c的图像经过点A(-1,12)和B(2,-3)。

1)求这个二次函数的解析式。

2)求这个图像的顶点坐标及与x轴的交点坐标。

3.在平面直角坐标系xOy中,直线y=-x绕点O顺时针旋转90°得到直线l,直线l与二次函数y=x^2+bx+2的图像的一个交点为(m,3),试求此二次函数的解析式。

4.已知抛物线y=ax^2+bx+c与抛物线y=x^2+2x+3的顶点坐标相同,为(-2,4),求a,b,c的值。

5.已知二次函数y=ax^2+bx+c,其自变量x的部分取值及对应的函数值y如下表所示:x。

-2.2y。

-11.111)求这个二次函数的解析式。

2)写出这个二次函数图像的顶点坐标。

6.已知抛物线y=x^2+(m+1)x+m,根据下列条件分别求m 的值:1)若抛物线过原点;2)若抛物线的顶点在x轴上;3)若抛物线的对称轴为x=2.7.已知抛物线经过两点A(1,5)、B(-1,3),且对称轴是直线x=2,求其解析式。

8.二次函数y=ax^2+bx+c(a≠0)的图像如图所示,根据图像解答下列问题:1)写出y>0时,x的取值范围;2)写出y随x的增大而减小的自变量x的取值范围;3)求函数y=ax^2+bx+c的表达式。

9.已知二次函数y=x^2+bx+c的图像经过点A(-2,5)、B(1,-4)。

1)求这个二次函数的解析式;2)求这个图像的顶点坐标、对称轴、与坐标轴的交点坐标;3)画出这个函数的图像。

10.已知:抛物线经过点A(-1,7)、B(2,1)和点C (0,1)。

1)求这条抛物线的解析式;2)求该抛物线的顶点坐标。

11.若二次函数y=ax^2+bx+c的图像与y轴交于点A(0,3),且经过B(1,4)、C(2,-1)两点,求此二次函数的解析式。

求二次函数的解析式专项练习题有答案ok

求二次函数的解析式专项练习题有答案ok

求二次函数解析式专项练习60题(有答案)1.已知二次函数图象的顶点坐标是(1,﹣4),且与y轴交于点(0,﹣3),求此二次函数的解析式.2.已知二次函数y=x2+bx+c的图象经过点A(﹣1,12),B(2,﹣3).(1)求这个二次函数的解析式.(2)求这个图象的顶点坐标及与x轴的交点坐标.3.在平面直角坐标系xOy中,直线y=﹣x绕点O顺时针旋转90°得到直线l,直线l与二次函数y=x2+bx+2图象的一个交点为(m,3),试求二次函数的解析式.4.已知抛物线y=ax2+bx+c与抛物线形状相同,顶点坐标为(﹣2,4),求a,b,c的值.5.已知二次函数y=ax2+bx+c,其自变量x的部分取值及对应的函数值y如下表所示:(1)求这个二次函数的解析式;(2)写出这个二次函数图象的顶点坐标.x …﹣2 0 2 …y …﹣1 1 11 …6.已知抛物线y=x2+(m+1)x+m,根据下列条件分别求m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为x=2.7.已知抛物线经过两点A(1,0)、B(0,3),且对称轴是直线x=2,求其解析式.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出y>0时,x的取值范围_________;(2)写出y随x的增大而减小的自变量x的取值范围_________;(3)求函数y=ax2+bx+c的表达式.9.已知二次函数y=x2+bx+c的图象经过点A(﹣2,5),B(1,﹣4).(1)求这个二次函数解析式;(2)求这个图象的顶点坐标、对称轴、与坐标轴的交点坐标;(3)画出这个函数的图象.10.已知:抛物线经过点A(﹣1,7)、B(2,1)和点C(0,1).(1)求这条抛物线的解析式;(2)求该抛物线的顶点坐标.11.若二次函数y=ax2+bx+c的图象与y轴交于点A(0,3),且经过B(1,0)、C(2,﹣1)两点,求此二次函数的解析式.12.二次函数y=x2+bx+c的图象过A(2,3)和B(﹣1,0)两点,求此二次函数的解析式.13.已知:一抛物线y=ax2+bx﹣2(a≠0)经过点(3,4)和点(﹣1,0)求该抛物线的解析式,并用配方法求它的对称轴.14.二次函数y=2x2+bx+c的图象经过点(0,﹣6)、(3,0),求这个二次函数的解析式,并用配方法求它的图象的顶点坐标.15.如图,抛物线y=﹣x2+5x+m经过点A(1,0),与y轴交于点B,(1)求m的值;(2)若抛物线与x轴的另一交点为C,求△CAB的面积;(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.16.如图,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).(1)求这条抛物线对应函数的表达式;(2)若P点在该抛物线上,求当△PAB的面积为8时,点P的坐标.17.已知二次函数的图象经过点(0,﹣1)、(1,﹣3)、(﹣1,3),求这个二次函数的解析式.并用配方法求出图象的顶点坐标.18.已知:二次函数的顶点为A(﹣1,4),且过点B(2,﹣5),求该二次函数的解析式.19.已知一个二次函数y=x2+bx+c的图象经过(1,2)、(﹣1,6),求这个函数的解析式.20.已知二次函数y=x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)求该二次函数图象与x轴的另一个交点.21.已知抛物线最大值为3,其对称轴为直线x=﹣1,且过点(1,﹣5),求其解析式.22.已知二次函数图象顶点坐标为(﹣2,3),且过点(1,0),求此二次函数解析式.23.已知抛物线y=﹣x2+bx+c,它与x轴的两个交点分别为(﹣1,0),(3,0),求此抛物线的解析式.24.一个二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,求这个函数的关系式.25.已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(1,﹣4).(1)求这个函数的解析式;(2)求这个函数图象与x轴、y轴的交点坐标.26.已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0).求二次函数的解析式.27.已知二次函数y=ax2+bx+c,当x=0时,函数值为5,当x=﹣1或﹣5时,函数值都为0,求这个二次函数的解析式.28.已知抛物线的图象经过点A(1,0),顶点P的坐标是.(l)求抛物线的解析式;(2)求此抛物线与两坐标轴的三个交点所围成的三角形的面积.29.如图为抛物线y=﹣x2+bx+c的一部分,它经过A(﹣1,0),B(0,3)两点.(1)求抛物线的解析式;(2)将此抛物线向左平移3个单位,再向下平移1个单位,求平移后的抛物线的解析式.30.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)试求二次函数的解析式;(2)求y的最大值;(3)写出当y>0时,x的取值范围.31.已知某二次函数的最大值为2,图象的顶点在直线y=x+1上,并且图象经过点(2,1),求二次函数的解析式.32.抛物线y=﹣x2+bx+c的对称轴是x=l,它与x轴有两个交点,其中的一个为(3,0),求此抛物线的解析式.33.已知二次函数的图象经过点(0,﹣3),且顶点坐标为(﹣1,﹣4).(1)求该二次函数的解析式;(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.34.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(2,0),B(5,3).(1)求m的值和抛物线的解析式;(2)求不等式ax2+bx+c≤x+m的解集(直接写出答案);(3)若抛物线与y轴交于C,求△ABC的面积.35.二次函数的图象经过点(1,2)和(0,﹣1)且对称轴为x=2,求二次函数解析式.36.如图所示,二次函数y=﹣x2+bx+c的图象经过坐标原点O和A(4,0).(1)求出此二次函数的解析式;(2)若该图象的最高点为B,试求出△ABO的面积;(3)当1<x<4时,y的取值范围是_________.37.已知:一个二次函数的图象经过(﹣1,10),(1,4),(2,7)三点.(1)求出这个二次函数解析式;(2)利用配方法,把它化成y=a(x+h)2+k的形式,并写出顶点坐标和y随x变化情况.38.已知抛物线y=x2﹣2(k﹣2)x+1经过点A(﹣1,2)(1)求此抛物线的解析式;(2)求此抛物线的顶点坐标与对称轴.39.根据条件求下列抛物线的解析式:(1)二次函数的图象经过(0,1),(2,1)和(3,4);(2)抛物线的顶点坐标是(﹣2,1),且经过点(1,﹣2).40.已知二次函数的图象的顶点坐标为(3,﹣2)且与y轴交于(0,)(1)求函数的解析式;(2)当x为何值时,y随x增大而增大.41.已知二次函数的图象经过点(0,﹣2),且当x=1时函数有最小值﹣3.(1)求这个二次函数的解析式;(2)如果点(﹣2,y1),(1,y2)和(3,y3)都在该函数图象上,试比较y1,y2,y3的大小.42.已知二次函数y=x2+bx+c的图象经过点(0,3)、(4,3)(1)求二次函数的解析式,并在给定的坐标系中画出该函数的图象(不用列表);(2)直接写出x2+bx+c>3的解集.43.不论m取任何实数,y关于x的二次函数y=x2+2mx+m2+2m﹣1的图象的顶点都在一条直线上,求这条直线的函数解析式.44.抛物线y=ax2+bx+c过点A(﹣2,1),B(2,3),且与y轴负半轴交于点C,S△ABC=12,求其解析式.45.直线y=kx+b过x轴上的A(2,0)点,且与抛物线y=ax2相交于B、C两点,已知B点坐标为(1,1),求直线和抛物线所表示的函数解析式,并在同一坐标系中画出它们的图象.46.已知二次函数y=x2+bx+c的图象经过点P(2,7)、Q(0,﹣5).(1)试确定b、c的值;(2)若该二次函数的图象与x轴交于A、B两点(其中点A在点B的左侧),试求△PAB的面积.47.抛物线y=ax2﹣3ax+b经过A(﹣1,0),C(3,﹣2)两点.(1)求此抛物线的解析式;(2)求出这个二次函数的对称轴和顶点坐标.48.已知二次函数y=x2+bx+c的图象经过点A(0,4),且对称轴是直线x=﹣2,求这个二次函数的表达式.49.已知关于x的二次函数的图象的顶点坐标为(﹣4,3),且图象过点(l,﹣2).(1)求这个二次函数的关系式;(2)写出它的开口方向、对称轴.50.如图,A(﹣1,0)、B(2,﹣3)两点在一次函数y1=﹣x+m与二次函数y2=ax2+bx﹣3的图象上.(1)求m的值和二次函数的解析式.(2)二次函数交y轴于C,求△ABC的面积.51.若二次函数的图象的对称轴是直线x=1.5,并且图象过A(0,﹣4)和B(4,0)(1)求此二次函数的解析式;(2)求此二次函数图象上点A关于对称轴对称的点A′的坐标.52.若二次函数y=ax2+bx+c中,c=3,图象的顶点坐标为(2,﹣1),求该二次函数的解析式.53.过点A(﹣1,4),B(﹣3,﹣8)的二次函数y1=ax2+bx+c与二次函数的图象的形状一样,开口方向相同,只是位置不同,求这个函数的解析式及顶点坐标.54.二次函数的图象与x轴的两交点的横坐标为1和﹣7,且经过点(﹣3,8).求:(1)这个二次函数的解析式;(2)试判断点A(﹣1,2)是否在此函数的图象上.55.已知二次函数y=ax2+bx+c的图象经过点(0,﹣9)、(1,﹣8),对称轴是y轴.(1)求这个二次函数的解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.56.如图,抛物线y=ax2+bx经过点A(4,0)、B(2,2),连接OB、AB.(1)求抛物线的解析式;(2)求证:△OAB是等腰直角三角形.57.如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.58.已知二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积和周长.59.如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标.60.已知函数y=x2+bx+c过点A(2,2),B(5,2).(1)求b、c的值;(2)求这个函数的图象与x轴的交点C的坐标;(3)求S△ABC的值.二次函数解析式60题参考答案:1.∵顶点坐标是(1,﹣4)因此,设抛物线的解析式为:y=a(x﹣1)2﹣4,∵抛物线与y轴交于点(0,﹣3)把(0,﹣3)代入解析式:﹣3=a(0﹣1)2﹣4解之得:a=1(14分)∴抛物线的解析式为:y=x2﹣2x﹣3.2.(1)把点A(﹣1,12),B(2,﹣3)的坐标代入y=x2+bx+c 得得∴y=x2﹣6x+5.(2)y=x2﹣6x+5,y=(x﹣3)2﹣4,故顶点为(3,﹣4).令x2﹣6x+5=0解得x1=1,x2=5.与x轴的交点坐标为(1,0),(5,0).3.由题意,直线l的解析式为y=x,将(m,3)代入直线l的解析式中,解得m=3.将(3,3)代入二次函数的解析式,解得,∴二次函数的解析式为4.抛物线y=ax2+bx+c 与抛物线形状相同,则a=±.当a=时,解析式是:y=(x+2)2+4=x2+x+5.即a=,b=1,c=5;当a=﹣时,解析式是:y=﹣(x+2)2+4=﹣x2﹣x+3.即a=﹣,b=﹣1,c=3.5.(1)依题意,得,解得;∴二次函数的解析式为:y=x2+3x+1.(2)由(1)知:y=x2+3x+1=(x+)2﹣,故其顶点坐标为(﹣,﹣)6.(1)∵抛物线过原点,∴0=02+(m+1)×0+m.解得m=0;(2)∵抛物线的顶点在x轴上.∴△=(m+1)2﹣4m=0.解得:m=1;(3)∵抛物线的对称轴是x=2,∴﹣=2.解得m=﹣57.∵抛物线对称轴是直线x=2且经过点A(1,0)由抛物线的对称性可知:抛物线还经过点(3,0)设抛物线的解析式为y=a(x﹣x1)(x﹣x2)(a≠0)即:y=a(x﹣1)(x﹣3)把B(0,3)代入得:3=3a∴a=1∴抛物线的解析式为:y=x2﹣4x+3.8.(1)抛物线开口向下,与x轴交于(1,0),(3,0),当y>0时,x的取值范围是:1<x<3;(2)抛物线对称轴为直线x=2,开口向下,y随x的增大而减小的自变量x的取值范围是x>2;(3)抛物线与x轴交于(1,0),(3,0),设解析式y=a(x﹣1)(x﹣3),把顶点(2,2)代入,得2=a(2﹣1)(2﹣3),解得a=﹣2,∴y=﹣2(x﹣1)(x﹣3),即y=﹣2x2+8x﹣6.9.(1)把A(﹣2,5),B(1,﹣4)代入y=x2+bx+c,得,解得b=﹣2,c=﹣3,∴二次函数解析式为y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3,∴﹣=1,=﹣4,∴顶点坐标(1,﹣4),对称轴为直线x=1;又当x=0时,y=﹣3,∴与y轴交点坐标为(0,﹣3);y=0时,x=3或﹣1,∴与x轴交点坐标为(3,0),(﹣1,0).(3)图象如图.10.(1)设所求抛物线解析式为y=ax2+bx+c.根据题意,得,解得.故所求抛物线的解析式为y=2x2﹣4x+1.(2)∵,∴该抛物线的顶点坐标是(1,﹣1)11.∵二次函数y=ax2+bx+c的图象与y轴交于点A(0,3),∴c=3.又∵二次函数y=ax2+bx+c的图象经过B(1,0)、C(2,﹣1)两点,∴代入y=ax2+bx+c得:a+b+c=0,①4a+2b+c=﹣1,②由①②及c=3解得∴二次函数的解析式为y=x2﹣4x+312.由题意得解得,.此二次函数的解析式为y=x2﹣1.13.把点(3,4)、(﹣1,0)代入y=ax2+bx﹣2得:解得:则抛物线的解析式是y=x2﹣x﹣2=(x ﹣)2﹣则抛物线的对称轴是:x=14.由题意得,解得.∴这个二次函数的解析式是y=2x2﹣4x﹣6.y=2(x2﹣2x)﹣6=2(x2﹣2x+1)﹣2﹣6(1分)=2(x﹣1)2﹣8.(1分)∴它的图象的顶点坐标是(1,﹣8).15.(1)根据题意,把点A的坐标代入抛物线方程得:0=﹣1+5+m,即得m=﹣4;(2)根据题意得:令y=0,即﹣x2+5x﹣4=0,解得x1=1,x2=4,∴点C坐标为(4,0);令x=0,解得y=﹣4,∴点B的坐标为(0,﹣4);∴由图象可得,△CAB的面积S=×OB×AC=×4×3=6;(3)根据题意得:①当点O为PB的中点,设点P的坐标为(0,y),(y>0)则y﹣4=0,即得y=4,∴点P的坐标为(0,4).②当AB=BP时,AB=,∴OP 的长为:﹣4,∴P(0,﹣4),∴P(0,﹣4),或(0,4)16.(1)点(1,0),(3,0)在抛物线y=﹣x2+bx+c上.则有解得:则所求表达式为y=﹣x2+4x﹣3.(2)依题意,得AB=3﹣1=2.设P点坐标为(a,b)当b>0时,×2×b=8.则b=8.故﹣x2+4x﹣3=8即x2+4x+11=0△=(﹣4)2﹣4×1×11=16﹣44=﹣28<0,方程﹣x2+4x+11=0无实数根.当b<0时,×2×(﹣b)=8,则b=﹣8故﹣x2+4x﹣3=﹣8即﹣x2+4x﹣5=0.解得x1=﹣1,x2=5所求点P坐标为(﹣1,﹣8),(5,﹣8)17.设二次函数的解析式为y=ax2+bx+c,由题意得,解得.故二次函数的解析式为y=x2﹣3x﹣1;y=x2﹣3x﹣1=x2﹣3x+()2﹣()2﹣1=(x ﹣)2﹣,所以抛物线的顶点坐标为(,﹣).18.设此二次函数的解析式为y=a(x+1)2+4.∵其图象经过点(2,﹣5),∴a(2+1)2+4=﹣5,∴a=﹣1,∴y=﹣(x+1)2+4=﹣x2﹣2x+3.故答案为:y=﹣x2﹣2x+319.∵二次函数y=x2+bx+c的图象经过(1,2)、(﹣1,6),∴,解得,∴所求的二次函数的解析式为y=x2﹣2x+3.20.(1)把A(2,0)、B(0,﹣6)代入y=x2+bx+c得,4+2b+c=0,c=﹣6,∴b=1,c=﹣6,∴这个二次函数的解析式y=x2+x﹣6;(2)令y=0,则x2+x﹣6=0,解方程得x1=2,x2=﹣3,∴二次函数图象与x轴的另一个交点为(﹣3,0).21.∵已知抛物线最大值为3,其对称轴为直线x=﹣1,∴抛物线的顶点坐标为(﹣1,3)设抛物线的解析式为:y=a(x+1)2+3,∵(1,﹣5)在抛物线y=a(x+1)2+3上,∴解得a=﹣2,∴此抛物线的解析式y=﹣2(x+1)2+322.设二次函数式为y=k(x+2)2+3.将(1,0)代入得9k+3=0,解得k=.∴所求的函数式为y=(x+2)2+323.根据题意得,,解得,∴抛物线的解析式为y=﹣x2+2x+3;或:由已知得,﹣1、3为方程﹣x2+bx+c=0的两个解,∴﹣1+3=b,(﹣1)×3=c,解得b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.24.设二次函数的关系式为y=ax2+bx+c(a≠0),∵二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,∴点(0,0),(﹣1,﹣1),(1,9)满足二次函数的关系式,∴,解得,所以这个函数关系式是:y=4x2+5x25.(1)由题意,将A与B 代入代入二次函数解析式得:,解得:,则二次函数解析式为y=x2﹣2x﹣3;(2)令y=0,则x2﹣2x﹣3=0,即(x+1)(x﹣3)=0,解得:x1=﹣1,x2=3,∴与x轴交点坐标为(﹣1,0),(3,0);令x=0,则y=﹣3,∴与y轴交点坐标为(0,﹣3)26.根据题意,得,解得,;∴该二次函数的解析式为:y=x2﹣2x﹣3.27.由题意得,二次函数y=ax2+bx+c,过(0,5)(﹣1,0)(﹣5,0)三点,∴,解得a=1,b=6,c=5,∴这个二次函数的解析式y=x2+6x+528.(1)由题意,可设抛物线解析式为y=a(x ﹣)2+,把点A(1,0)代入,得a(1﹣)2+=0,解之得a=﹣1,∴抛物线的解析式为y=﹣(x ﹣)2+,即y=﹣x2+5x﹣4;(2)令x=0,得y=﹣4,令y=0,解得x1=4,x2=1,S=×(4﹣1)×4=6.所以抛物线与两坐标轴的三个交点所围成的三角形的面积为6.29.(1)∵抛物线经过A(﹣1,0),B(0,3)两点∴解得∴抛物线的解析式为y=﹣x2+2x+3.(2)∵y=﹣x2+2x+3可化为y=﹣(x﹣1)2+4,∴抛物线y=﹣x2+2x+3的顶点坐标为(1,4),又∵此抛物线向左平移3个单位,再向下平移1个单位,∴平移后的抛物线的顶点坐标为(﹣2,3).∴平移后的抛物线的解析式为y=﹣(x+2)2+3=﹣x2﹣4x﹣1.30.(1)∵二次函数图象与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3),∴x=﹣1,y=0代入y=﹣x2+bx+c得:﹣1﹣b+c=0①,把x=0,y=3代入y=﹣x2+bx+c得:c=3,把c=3代入①,解得b=2,则二次函数解析式为y=﹣x2+2x+3;(2)∵二次函数y=﹣x2+2x+3的二次项系数a=﹣1<0,∴抛物线的开口向下,则当x=﹣=﹣=1时,y 有最大值,最大值为=4;(3)令二次函数解析式中的y=0得:﹣x2+2x+3=0,可化为:(x﹣3)(x+1)=0,解得:x1=3,x2=﹣1,由函数图象可知:当﹣1<x<3时,y>031.∵函数的最大值是2,则此函数顶点的纵坐标是2,又顶点在y=x+1上,那么顶点的横坐标是1,设此函数的解析式是y=a(x﹣1)2+2,再把(2,1)代入函数中可得a(2﹣1)2+2=1,解得a=﹣1,故函数解析式是y=﹣x2+2x+1.32.∵﹣=﹣=1,∴b=2,又∵点(3,0)在函数上,∴﹣9+6+c=0,∴c=3,∴函数的解析式是y=﹣x2+2x+3.33.(1)设y=a(x+1)2﹣4,把点(0,﹣3)代入得:a=1,∴函数解析式y=(x+1)2﹣4或y=x2+2x﹣3;(2)∵x2+2x﹣3=0,解得x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),C(0,﹣3),∴△ABC的面积=.34.(1)解:∵直线y=x+m经过A点,∴当x=2时,y=0,∴m+2=0,∴m=﹣2,∵抛物线y=x2+bx+c过A(2,0),B(5,3),∴,解得,∴抛物线的解析式为y=x2﹣6x+8;(2)由图可知,不等式ax2+bx+c≤x+m的解集为2≤x≤5;(3)解:设直线AB与y轴交于D,∵A(2,0)B(5,3),∴直线AB的解析式为y=x﹣2,∴点D(0,﹣2),由(1)知C(0,8),∴S△BCD =×10×5=25,∵S△ACD =×10×2=10,∴S△ABC=S△BCD﹣S△ACD=25﹣10=15.35.设二次函数的解析式为y=ax2+bx+c,由题意得,二次函数的图象对称轴为x=2且图象过点(1,2),(0,﹣1),故可得:,解得:.即可得二次函数的解析式为:y=﹣x2+4x﹣136.(1)由条件得解得所以解析式为y=﹣x2+4x,(2)∵该图象的最高点为B,∴点B的坐标为(2,4),∴△ABO的面积=×4×4=8,(3)∵当x=1时,y=3,∴当1<x<4时,y的取值范围是0<y<4.故答案为:0<y<4.37.(1)这个二次函数解析式y=ax2+bx+c(a≠0),把三点(﹣1,10),(1,4),(2,7)分别代入得:,解得:,故这个二次函数解析式为:y=2x2﹣3x+5;(2)y=2x2﹣3x+5=2(x2﹣x+﹣)+5=2(x ﹣)2﹣+5=2(x ﹣)2+,则抛物线的顶点坐标是(,),因为抛物线的开口向上,所以当x >时,y随x的增大而增大,当x时,y随x的增大而减小.38.(1)将A(﹣1,2)代入y=x2﹣2(k﹣2)x+1得:2=1﹣2(k﹣2)+1,解得:k=2,则抛物线解析式为y=x2+1;(2)对于二次函数y=x2+1,a=1,b=0,c=1,∴﹣=0,=1,则顶点坐标(0,1);对称轴为直线x=0(y轴)39.(1)设抛物线的解析式是y=ax2+bx+c,把(0,1),(2,1),(3,4)代入得:,解得:,∴y=x2﹣2x+1.(2)设抛物线的解析式是:y=a(x+2)2+1,把(1,﹣2)代入得:﹣2=a(1+2)2+1,∴a=﹣,∴y=﹣(x+2)2+1,即y=﹣x2﹣x ﹣.40.(1)设函数的解析式是:y=a(x﹣3)2﹣2根据题意得:9a﹣2=,解得:a=;∴函数解析式是:y=﹣2;(2)∵a=>0∴二次函数开口向上又∵二次函数的对称轴是x=3.∴当x>3时,y随x增大而增大.41.(1)由题意知:抛物线的顶点坐标为(1,﹣3)设二次函数的解析式为y=a(x﹣1)2﹣3,由于抛物线过点(0,﹣2),则有:a(0﹣1)2﹣3=﹣2,解得a=1;因此抛物线的解析式为:y=(x﹣1)2﹣3.(2)∵a=1>0,∴故抛物线的开口向上;∵抛物线的对称轴为x=1,∴(1,y2)为抛物线的顶点坐标,∴y2最小.由于(﹣2,y1)和(4,y1)关于对称轴对称,可以通过比较(4,y1)和(3,y3)来比较y1,y3的大小,由于在y轴的右侧是增函数,所以y1>y3.于是y2<y3<y1.42.(1)由于二次函数y=x2+bx+c的图象经过点(0,3)、(4,3),则,解得:,∴此抛物线的解析式为:y=x2﹣4x+3.函数图象如下:(2)由函数图象可直接写出x2+bx+c>3的解集为:x<0或x>4.43.二次函数可以变形为y=(x+m)2+2m﹣1,抛物线的顶点坐标为(﹣m,2m﹣1).由,消去m,得y=﹣2x﹣1.所以这条直线的函数解析式为y=﹣2x﹣144.设直线AB的解析式为y=kx+b,∴,解得,直线AB的解析式为y=x+2,令x=0,则y=2,∴直线AB与y轴的交点坐标(0,2),∵S△ABC=12,∴C(0,﹣4),∵抛物线y=ax2+bx+c过点A(﹣2,1),B(2,3),且与y轴负半轴交于点C,∴,解得,∴抛物线的解析式为y=x2+x﹣445.∵直线y=kx+b过点A(2,0)和点B(1,1),∴,解得,∴直线AB所表示的函数解析式为y=﹣x+2,∵抛物线y=ax2过点B(1,1),∴a×12=1,解得a=1,∴抛物线所表示的函数解析式为y=x2.它们在同一坐标系中的图象如下所示:46.(1)∵二次函数y=x2+bx+c的图象经过点P(2,7)、Q(0,﹣5),,解得b=4,c=﹣5.∴b、c的值是4,5;(2)∵二次函数的图象与x轴交于A、B两点,(其中点A在点B的左侧),∴A(1,0),B(﹣5,0),∴AB=6,∵P点的坐标是:(2,7),∴△PAB的面积=×6×7=2147.(1)根据题意得,解得,所以抛物线的解析式为y=﹣x﹣2;(2)y=﹣x﹣2=(x ﹣)2﹣,所以抛物线的对称轴为直线x=,顶点坐标为(,﹣)48.∵二次函数的图象过A(0,4),∴c=4,∵对称轴为x=﹣1,∴x=﹣=﹣2,解得b=4;∴二次函数的表达式为y=x2+4x+4.49.(1)∵关于x的二次函数的图象的顶点坐标为(﹣4,3),∴设该二次函数的关系式为:y=a(x+4)2+3(a≠0);又∵图象过点(l,﹣2),∴﹣2=a(1+4)2+3,解得,a=﹣;∴设该二次函数的关系式为:y=﹣(x+4)2+3;(2)由(1)知,该二次函数的关系式为:y=﹣(x+4)2+3,∴a=﹣<0,∴该抛物线的方向向下;∵关于x的二次函数的图象的顶点坐标为(﹣4,3),∴对称轴方程为:x=﹣4.50.(1)把A(﹣1,0)代入y1=﹣x+m得﹣(﹣1)+m=0,解得m=1,把A(﹣1,0)、B(2,﹣3)代入y2=ax2+bx﹣3得,解得.故二次函数的解析式为y2=x2﹣﹣2x﹣3;(2)因为C点坐标为(0,﹣3),B(2,﹣3),所以BC⊥y轴,所以S△ABC =×2×3=3.51.(1)设此二次函数的解析式为y=ax2+bx+c,把A(0,﹣4)和B(4,0),即对称轴x=1.5代入解析式得:,解得:故y=x2﹣3x﹣4;(2)∵A(0,﹣4),对称轴是x=1.5,∴A′(3,﹣4)52.∵二次函数y=ax2+bx+c 的顶点坐标为(﹣,),二次函数y=ax2+bx+c中,c=3,图象的顶点坐标为(2,﹣1),∴﹣=2,=﹣1,解得a=1,b=﹣4,∴二次函数的解析式y=x2﹣4x+353.∵二次函数y1=ax2+bx+c 与二次函数的图象的形状一样,开口方向相同,∴a=﹣2,将点A(﹣1,4),B(﹣3,﹣8)代入y1=﹣2x2+bx+c,得,解得,∴y1=﹣2x2﹣2x+4;∵y1=﹣2x2﹣2x+4=﹣2(x2+x)+4=﹣2(x+)2+,∴顶点坐标为(﹣,).故这个函数的解析式为y1=﹣2x2﹣2x+4,顶点坐标为(﹣,).54.(1)∵二次函数的图象与x轴的两交点的横坐标为1和﹣7,且经过点(﹣3,8),∴两交点的横坐标为:(1,0),(﹣7,0),且经过点(﹣3,8),∴代入解析式:y=a(x﹣1)(x+7),8=a(﹣3﹣1)×(﹣3+7),解得:a=﹣,∴y=﹣(x﹣1)(x+7);(2)∵将点A(﹣1,2)此函数的解析式,∴左边=2,右边=﹣(﹣1﹣1)(﹣1+7)=6;∴左边≠右边,∴点A(﹣1,2)不在此函数的图象上.55.(1)∵二次函数的对称轴为y轴,即x=0,∴b=0,即二次函数解析式为y=ax2+c,又二次函数的图象经过点(0,﹣9)、(1,﹣8),∴,解得:,则二次函数的解析式为y=x2﹣9;(2)由平移规律得:二次函数向右平移2个单位的解析式为:y=(x﹣2)2﹣9,即y=x2﹣4x﹣5,令x=0,解得:y=﹣5,∴C(0,﹣5),即OC=5,又平移后抛物线的顶点P的坐标为(2,9),即P的横坐标为2,则S△POC =OC?x P的横坐标=×5×2=5.56.1)解:由题意得,解得;∴该抛物线的解析式为:y=﹣x2+2x;(2)证明:过点B作BC⊥x轴于点C,则OC=BC=AC=2;∴∠BOC=∠OBC=∠BAC=∠ABC=45°;∴∠OBA=90°,OB=AB;∴△OAB是等腰直角三角形;57.(1)将A(﹣1,0)代入抛物线y=x2+bx﹣2得,×(﹣1)2﹣b﹣2=0,解得,b=﹣,则函数解析式为y=x2﹣x﹣2.配方得,y=(x ﹣)2﹣,可见,顶点坐标为(,﹣).(2)将上述抛物线先向下平移3个单位,再向右平移2个单位,可得,y=(x ﹣﹣2)2﹣﹣3=(x ﹣)2﹣=x2﹣x.58.(1)把(2,0)、(0,﹣6)代入二次函数解析式,可得,解得,故解析式是y=﹣x2+4x﹣6;(2)∵对称轴x=﹣=4,∴C点的坐标是(4,0),∴AC=2,OB=6,AB=2,BC=2,∴S△ABC =AC?OB=×2×6=6,△ABC的周长=AC+AB+BC=2+2+2.59.(1)A坐标是(﹣1,﹣1),B点的坐标是(3,﹣9),代入y=ax2﹣4x+c得:解得:a=1,c=﹣6.则二次函数表达式是:y=x2﹣4x﹣6(2)y=x2﹣4x﹣6=(x﹣2)2﹣10,因此对称轴为直线x=2,顶点坐标为(2,﹣10)60.(1)把A(2,2),B(5,2)分别代入y=x2+bx+c,可得,解得;(2)由b=﹣7,c=12,知y=x2﹣7x+12令y=0,得x2﹣7x+12=0,∴x=3或x=4,∴C(3,0)或C(4,0);(3)∵A(2,2)B(5,2)∴AB=|2﹣5|=3,且△ABC的AB边上的高h=2,∴S△ABC=AB?h=×3×2=3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数解析式的求法练习题
例1.一条抛物线经过点与。

求这条抛物线的解析式。

y x mx n =
++142()032,(432,例2. 4.已知:抛物线的对称轴为
()20y ax bx c a =++≠与轴交于两点,与轴交于点C 其中1x =-,
x A B ,y 、()30A -,()02C -,.(1)求这条抛物线的函数表达式.
(2)已知在对称轴上存在一点P ,使得的周长最
PBC △小.
请求出点P 的坐标.
例3.已知抛物线经过A ,B ,C 三点,当y ax bx c =++2时,其图象如图所示。

求抛物线的解析式,写出顶
x ≥0点坐标。

例4.:如图,小明的父亲在相距2米的两棵树间拴了一根
绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5
子的最低点距地面的距离为多少米?例5.. 有这样一个问题:
已知:二次函数的图象经过A (
0,a ),B
(1,2),,求证:y ax bx c =++2这个二次函数图象的对称轴是直线,题目中的矩形框部分是一段被墨水覆盖而无法x =2辨认的文字。

(1)根据现有的信息,你能否求出题目中二次函数的关系式?若能,写出求解过程,若不能,说明理由。

(2)请你根据已有信息,在原题中的矩形框内,填加一个适当的条件,把原题补充完整。


根据下列条件,求二次函数的解析式
1、图象经过点(-1,3),(1,3),(2,6)
2、抛物线顶点坐标为(-1,9),并且与y 轴交于(0,-8)
3、抛物线的对称轴是直线,与x 轴的一个交点为(-2,0),与y 轴交于点x =1(0,12)
4、图象顶点坐标是(2,-5),且过原点
5、图象与x 轴的交点坐标是(-1,0),(-3,0)且函数有最小值-5。

6、当x =2时,函数的最大值是1,且图象与x 轴两个交点之间的距离为2。

7、已知:抛物线在x 轴上所截线段为4,顶点坐标为(2,4),求这个函数的关系式
8、已知抛物线经过点(-1,0),(2,3),并与y 轴交于点(0,3) ,请求出此抛
物线解析式。

9、已知二次函数的最大值是零,求此函数的解析y m x mx m m =-++-()()()123212≠式。

10、已知某抛物线是由抛物线经过平移而得到的,且该抛物线经过点A (1,1),y x =22B (2,4),求其函数关系式。

相关文档
最新文档