整流电路PPT课件
合集下载
《可控整流电路》课件

开关电源
02
在开关电源中,可控整流电路可以用于实现电源的稳压、稳流
和软启动等功能,提高电源的可靠性和效率。
无功补偿与滤波
03
可控整流电路可以用于无功补偿和滤波电路中,提用电器中的应用
空调
可控整流电路可以用于空调的压 缩机驱动和控制系统中,实现精 确的温度控制和节能效果。
调节方便
通过改变控制信号的占空比或相位,可以方便地调节输出电压的 大小,实现快速响应和精确控制。
适用范围广
可控整流电路适用于各种不同的负载类型和电源系统,能够满足 多种应用场景的需求。
可控整流电路的缺点
成本较高
可控整流电路通常需要使用价格较高的电力电子器件,如可控硅、 IGBT等,导致整体成本较高。
产生谐波
可控整流电路在运行过程中可能会产生谐波,对电网造成污染,影 响其他设备的正常运行。
对控制信号敏感
可控整流电路的控制信号通常比较敏感,容易受到外界干扰的影响, 导致输出电压不稳定。
可控整流电路的改进方向
研究新型电力电子器件
研究新型、高效、低成本的电力电子器件,以降低可控整流电路 的成本。
优化控制策略
可控整流电路
CATALOGUE
目 录
• 整流电路简介 • 可控整流电路的工作原理 • 可控整流电路的元件和参数 • 可控整流电路的应用实例 • 可控整流电路的优缺点和改进方向
01
CATALOGUE
整流电路简介
整流电路的定义和作用
定义
整流电路是一种将交流电转换为 直流电的电子电路。
作用
整流电路广泛应用于各种电子设 备和电力系统,如电源供应、电 机控制、照明系统等,以满足设 备对直流电的需求。
冰箱
整流电路知识PPT课件

i -
Scope4
1 s
Integrator
Scope7
RLC7
VM4 Scope3
+ -
v
RLC5
RLC6
VM3
+ -
v
RLC8
Cl o ck1
Mux2
com2
Mux 2.5*(u(1)-u(2))/0.00002
+ -
ZOH1 Memory1
com3 u(2)-u(1)
v
Mux3
VM2Leabharlann Muxcom5 Saturation1Transfer Fcn2
10. PFC可控整流器
Continuous pow ergui
Scope1
Mux Mux1 V12
u(1)/20 com1
v
+ -
VM1
CM1
+
i -
VS1
Scope5
RLC2
CM2
+
i -
V12
FRD2
D1
D2
+
CM4
i -
RLC1
RLC3 Scope6
D3
D4
RLC4
g EC
IGBT
CM3
+
iL
L
+
D1 D3
uR1 E R uR
D2 D4 _
iS
uS
交流 220V
iL
+L
+
D1 D3
uR1 E
R uR
D2 D4
_
_
分析:电压与电流波形,纹波特征,FFT
L1 WS1
整流滤波电路ppt课件

作业:
1. 测量直流稳压电源纹波电压时,发现接入负载和负载开 路测得的纹波电压大小相差很多,这种现象是否正常? 为什么?
答:正常。 当负载开路时,滤波电容放电速度很慢,故输出电
压比较平稳,纹波电压很小;当接入负载电阻后,滤波 电容放电加快,使输出电压波动增大,所以纹波电压较 大。因此纹波电压大小的测量,应在额定负载下进行。
L
C1
C2 RL
C1、C2 对交流容抗小 L 对交流感抗很大
负载电流小时,
可用R 代替L。
*讨论
1. 测量直流稳压电源纹波电压时,发现接入负载和负载开 路测得的纹波电压大小相差很多,这种现象是否正常? 为什么? 答案
*2. 试比较电容滤波、电感滤波、π型滤波电路的特点与应用 场合。 答案
讨论小结
(3) 选择整流二极管
T 1 f 150 s 0.02 s
取
RLC
4T 2
0.04 s
则得 C 0.04s 1 000 F 40
可选取 1 000 F、耐压 50 V 的电解电容。
二、其它形式的滤波电路
1. 电感滤波 +
~ u2
2. 型滤波 +
~ u2
L RL
L 通直流阻交流
L 越大,负载电阻越小, 滤波效果越好。
0.45 U2
RL
URM 2U2
二、桥式整流电路 续
5. 桥式整流电路的简化画法
~
6. 整流桥
+
RL uo
~~
9.1.2 滤波电路
利用电容、电感的储能 作用,滤除纹波,得到
平滑的直流输出电压。
一、电容滤波电路 1. 工作原理 2. 输出电压
当 RL = 时:
28-单相整流电路PPT模板

来自2.负载上的直流电压和直流电流
负载上的直流电压为:
Uo
1 π
0π
2U 2
sin tdt
22 π
U2
0.9U 2
负载上的直流电流为:
Io
Uo RL
0.9 U 2 RL
3.二极管的选择
每只二极管的平均电流为负载上直流电流的一半,即
ID
1 2
Io
0.45 U 2 RL
每只二极管反向截止时所承受的最高反向电压
U DM 2U 2
电工电子技术
向的脉动电压。由于该电路仅在半个周期内有输出,所以称 为半波整流电路。
2.负载上的直流电压和直流电流
直流电压Uo是指一个周期内电压uo的平均值,即 流过负载的直流电流Io为:
3.二极管的选择
一般应根据流过二极管的平均电流和其所承受的最高反 向电压来选择二极管的型号。
在单相半波整流电路中,流过整流二极管的平均电流与 流过负载的直流电流相等,即
1.工作原理
在电压u2的正半周,VD1、VD3正向导通,VD2、VD4反向截 止,电流的路径是:A→VD1→RL→VD3→B。 在u2的负半周,VD2、VD4正向导通,二极管VD1、VD3反向 截止,电流的路径是:B→VD2→RL→VD4→A。
电路中负载电阻RL两端的电压uo、流过RL的电流io及流过 二极管的电流iD的波形如下图所示。
二极管截止时承受的最高反向电压与变压器次级电压的 最大值相等,即
一般情况下,允许电网电压有±10%的波动,因此在选 择二极管时,对于最大整流电流IF和最大反向工作电压URM应 至少留有10%的余地,以保证二极管安全工作,即
1.2 单相桥式整流电路
单相桥式整流电路是工程中最常用的一种单相全波整流 电路。它由四只二极管组成,如图(a)图所示,图(b)图 所示是它的简化画法。
负载上的直流电压为:
Uo
1 π
0π
2U 2
sin tdt
22 π
U2
0.9U 2
负载上的直流电流为:
Io
Uo RL
0.9 U 2 RL
3.二极管的选择
每只二极管的平均电流为负载上直流电流的一半,即
ID
1 2
Io
0.45 U 2 RL
每只二极管反向截止时所承受的最高反向电压
U DM 2U 2
电工电子技术
向的脉动电压。由于该电路仅在半个周期内有输出,所以称 为半波整流电路。
2.负载上的直流电压和直流电流
直流电压Uo是指一个周期内电压uo的平均值,即 流过负载的直流电流Io为:
3.二极管的选择
一般应根据流过二极管的平均电流和其所承受的最高反 向电压来选择二极管的型号。
在单相半波整流电路中,流过整流二极管的平均电流与 流过负载的直流电流相等,即
1.工作原理
在电压u2的正半周,VD1、VD3正向导通,VD2、VD4反向截 止,电流的路径是:A→VD1→RL→VD3→B。 在u2的负半周,VD2、VD4正向导通,二极管VD1、VD3反向 截止,电流的路径是:B→VD2→RL→VD4→A。
电路中负载电阻RL两端的电压uo、流过RL的电流io及流过 二极管的电流iD的波形如下图所示。
二极管截止时承受的最高反向电压与变压器次级电压的 最大值相等,即
一般情况下,允许电网电压有±10%的波动,因此在选 择二极管时,对于最大整流电流IF和最大反向工作电压URM应 至少留有10%的余地,以保证二极管安全工作,即
1.2 单相桥式整流电路
单相桥式整流电路是工程中最常用的一种单相全波整流 电路。它由四只二极管组成,如图(a)图所示,图(b)图 所示是它的简化画法。
《整流电路》课件

智能化
随着人工智能和大数据技术的应用,整流电路的设计和优化也正朝着智能化方向发展,实现更精准、高效的能源管理。
随着电动汽车市场的不断扩大,整流电路在车载充电器和充电桩等领域的应用前景广阔,为电动汽车的发展提供稳定、高效的能源供给。
电动汽车领域
在风能、太阳能等可再生能源的利用中,整流电路能够实现高效、稳定的能源转换,促进可再生能源的广泛应用。
效率
温升
噪声与干扰
整流电路的效率越高,说明其能量转换效率越好,损失的能量越少。
整流电路在工作过程中温度升高的情况,温升越低越好,以保证元件的寿命和稳定性。
整流电路在工作过程中产生的噪声和干扰越小越好,以保证系统的稳定性和可靠性。
03
CHAPTER
整流电路的应用与实例
整流电路用于音频设备中,将交流电转换为直流电,为放大器和扬声器提供能源。
可再生能源领域
智能电网的建设需要大量高性能的整流设备,整流电路在智能电网的能源调度和管理中具有重要作用,有助于实现节能减排和能源的高效利用。
智能电网领域
THANKS
感谢您的观看。
半波整流器
现代电子设备中经常使用集成整流芯片,它们集成了整流电路和其他功能,具有高效、紧凑和可靠的特点。
集成整流芯片
04
CHAPTER
整流电路的调试与维护
确保所有电路连接正确,检查电源、电阻、电容等元件是否正常。
调试前准备
按照电路图逐步检查每个元件的电压、电流是否正常,确保电路工作在正常范围内。
02
CHAPTER
整流电路的元件与电路分析
整流电路中的核心元件,单向导电性使电流只能在一个方向上流动。常用的有硅管和锗管。
二极管
滤波电容,用于吸收二极管导通时的管压降,使输出电压更加平滑。
随着人工智能和大数据技术的应用,整流电路的设计和优化也正朝着智能化方向发展,实现更精准、高效的能源管理。
随着电动汽车市场的不断扩大,整流电路在车载充电器和充电桩等领域的应用前景广阔,为电动汽车的发展提供稳定、高效的能源供给。
电动汽车领域
在风能、太阳能等可再生能源的利用中,整流电路能够实现高效、稳定的能源转换,促进可再生能源的广泛应用。
效率
温升
噪声与干扰
整流电路的效率越高,说明其能量转换效率越好,损失的能量越少。
整流电路在工作过程中温度升高的情况,温升越低越好,以保证元件的寿命和稳定性。
整流电路在工作过程中产生的噪声和干扰越小越好,以保证系统的稳定性和可靠性。
03
CHAPTER
整流电路的应用与实例
整流电路用于音频设备中,将交流电转换为直流电,为放大器和扬声器提供能源。
可再生能源领域
智能电网的建设需要大量高性能的整流设备,整流电路在智能电网的能源调度和管理中具有重要作用,有助于实现节能减排和能源的高效利用。
智能电网领域
THANKS
感谢您的观看。
半波整流器
现代电子设备中经常使用集成整流芯片,它们集成了整流电路和其他功能,具有高效、紧凑和可靠的特点。
集成整流芯片
04
CHAPTER
整流电路的调试与维护
确保所有电路连接正确,检查电源、电阻、电容等元件是否正常。
调试前准备
按照电路图逐步检查每个元件的电压、电流是否正常,确保电路工作在正常范围内。
02
CHAPTER
整流电路的元件与电路分析
整流电路中的核心元件,单向导电性使电流只能在一个方向上流动。常用的有硅管和锗管。
二极管
滤波电容,用于吸收二极管导通时的管压降,使输出电压更加平滑。
《晶闸管整流电路》课件

实验设备 晶闸管整流电路实验箱
电源
实验设备与测试方法
示波器 万用表
测试方法
实验设备与测试方法
使用示波器观察整流电路的输出波形
记录实验数据和波形,以便后续分析
使用万用表测量各点的电压和电流值
调试步骤与注意事项
调试步骤 1. 检查实验设备是否完好,确保电源、导线等正常工作。
2. 根据实验要求连接电路,确保连接正确无误。
启动条件
需要满足一定的电压和电 流条件,以确保晶闸管能 够正常启动。
正常工作过程
电流流向
工作状态
在正常工作状态下,电流从阳极流向 阴极,同时维持一定的电压和电流值 。
晶闸管整流电路处于稳态工作状态时 ,各参数保持恒定,系统稳定运行。
控制方式
通过调节触发信号的相位角,可以控 制输出电压和电流的大小,从而实现 整流功能。
2. 总结实验中的问题和不足之处,提出改进措施 。
THANKS.
电感器
总结词:特性
详细描述:电感器是一种储能元件,具有隔交通直的特 性。在整流电路中,它能够有效地将交流分量转化为磁 场能储存起来并在需要时释放出来。
03
晶闸管整流电路的
工作过程
启动过程
启动方式
通过在阳极和阴极之间施 加正向电压,使晶闸管从 截止状态进入导通状态。
触发信号
在启动过程中,需要施加 一个触发信号,使晶闸管 内部的电子发生跃迁,从 而导通电流。
设计原则与步骤
电路仿真
利用仿真软件对设计的电路进行模拟,验证其性能和可 靠性。
优化改进
根据仿真结果,对电路进行优化和改进,提高其性能和 可靠性。
元件选择与参数计算
1 2
元件选择
根据电路的工作环境和性能要求,选择合适的元 件型号和规格。
电源
实验设备与测试方法
示波器 万用表
测试方法
实验设备与测试方法
使用示波器观察整流电路的输出波形
记录实验数据和波形,以便后续分析
使用万用表测量各点的电压和电流值
调试步骤与注意事项
调试步骤 1. 检查实验设备是否完好,确保电源、导线等正常工作。
2. 根据实验要求连接电路,确保连接正确无误。
启动条件
需要满足一定的电压和电 流条件,以确保晶闸管能 够正常启动。
正常工作过程
电流流向
工作状态
在正常工作状态下,电流从阳极流向 阴极,同时维持一定的电压和电流值 。
晶闸管整流电路处于稳态工作状态时 ,各参数保持恒定,系统稳定运行。
控制方式
通过调节触发信号的相位角,可以控 制输出电压和电流的大小,从而实现 整流功能。
2. 总结实验中的问题和不足之处,提出改进措施 。
THANKS.
电感器
总结词:特性
详细描述:电感器是一种储能元件,具有隔交通直的特 性。在整流电路中,它能够有效地将交流分量转化为磁 场能储存起来并在需要时释放出来。
03
晶闸管整流电路的
工作过程
启动过程
启动方式
通过在阳极和阴极之间施 加正向电压,使晶闸管从 截止状态进入导通状态。
触发信号
在启动过程中,需要施加 一个触发信号,使晶闸管 内部的电子发生跃迁,从 而导通电流。
设计原则与步骤
电路仿真
利用仿真软件对设计的电路进行模拟,验证其性能和可 靠性。
优化改进
根据仿真结果,对电路进行优化和改进,提高其性能和 可靠性。
元件选择与参数计算
1 2
元件选择
根据电路的工作环境和性能要求,选择合适的元 件型号和规格。
《相全波整流电路》课件

目前相全波整流电路技术已经 相当成熟,能够满足大多数应 用需求。
相全波整流电路在技术发展上 已经取得了许多突破,如高效 能、高稳定性、小型化等。
技术发展趋势
相全波整流电路将向更高频率、 更高效率、更小体积方向发展。
新型材料和工艺的应用将进一步 优化相全波整流电路的性能。
智能化和自动化的控制技术将进 一步提高相全波整流电路的稳定
负载
连接在整流电路的输出端,为用电设备提供直流 电源。
03 相全波整流电路的工作过程
工作阶段
启动阶段
电路开始工作时,输入信号从零开始逐渐增 大,输出信号也从零开始逐渐增大。
截止阶段
正常工作阶段
当输入信号增大到一定值时,电路进入正常 工作状态,输出信号保持稳定。
当输入信号减小到一定值时,电路进入截止 状态,输出信号减小到零。
03
使用专用的检测仪器或程序,对相全波整流电路进行全 面的检测。通过程序自动检测各项参数和波形,快速定 位故障点并给出相应的故障提示和解决方案。这种方法 能够快速准确地诊断故障,提高维修效率。
故障排除步骤
步骤一:断开负载,检查电源
首先断开相全波整流电路的负载,检 查输入电源是否正常。
断开相全波整流电路的负载,测量输 入电源的电压是否在正常范围内。如 果电源异常,需要检查电源线路和电 源设备是否正常工作。排除电源故障 后,再接入负载进行后续检查。
特点
能够将交流电转换为直流电,输 出电压较高,适用于需要直流电 源的场合。
工作原理
01
交流电输入
相全波整流电路的输入为交流电,通常为市电或变压器 输出的交流电。
02
整流过程
整流二极管在交流电的正半周期内导通,负半周期内截 止,从而实现整流。
电力电子技术教学_整流电路PPT课件

第3章 整流电路
3.1 单相可控整流电路 3.2 三相可控整流电路 3.3 变压器漏感对整流电路的影响 3.4 电容滤波的不可控整流电路 3.5 整流电路的谐波和功率因数 3.6 大功率可控整流电路 3.7 整流电路的有源逆变工作状态 3.8 相控电路的驱动控制
本章小结
引言
■整流电路(Rectifier)是电力电子电路中出现最早的一种,它 的作用是将交流电能变为直流电能供给直流用电设备。
Id Id
wt
☞wt=p+a时刻,触发VT2和VT3,VT2和VT3导通,
w t u2通过VT2和VT3分别向VT1和VT4施加反压使VT1和
w t VT4关断,流过VT1和VT4的电流迅速转移到VT2和VT3
上,此过程称为换相,亦称换流。
wt
图3-6 单相桥式全控整流电流带阻感负载时 的电路及波形
(3-4)
8/21
3.1.1 单相半波可控整流电路
√若为定值,a角大,q越小。 若a为定值,越大,q越大 ,且 平均值Ud越接近零。为解决上述矛 盾,在整流电路的负载两端并联一
个二极管,称为续流二极管,用 VDR表示。 ◆有续流二极管的电路 ☞电路分析 √u2正半周时,与没有续流二极管 时的情况是一样的。 √当u2过零变负时,VDR导通,ud 为零,此时为负的u2通过VDR向VT 施加反压使其关断,L储存的能量保 证了电流id在L-R-VDR回路中流通, 此过程通常称为续流。 √若L足够大,id连续,且id波形接
a)
u2
b)
uOd
w t1
wt
c)
O
wt
id
d)
Id
O
wt
i VT
Id
e)
3.1 单相可控整流电路 3.2 三相可控整流电路 3.3 变压器漏感对整流电路的影响 3.4 电容滤波的不可控整流电路 3.5 整流电路的谐波和功率因数 3.6 大功率可控整流电路 3.7 整流电路的有源逆变工作状态 3.8 相控电路的驱动控制
本章小结
引言
■整流电路(Rectifier)是电力电子电路中出现最早的一种,它 的作用是将交流电能变为直流电能供给直流用电设备。
Id Id
wt
☞wt=p+a时刻,触发VT2和VT3,VT2和VT3导通,
w t u2通过VT2和VT3分别向VT1和VT4施加反压使VT1和
w t VT4关断,流过VT1和VT4的电流迅速转移到VT2和VT3
上,此过程称为换相,亦称换流。
wt
图3-6 单相桥式全控整流电流带阻感负载时 的电路及波形
(3-4)
8/21
3.1.1 单相半波可控整流电路
√若为定值,a角大,q越小。 若a为定值,越大,q越大 ,且 平均值Ud越接近零。为解决上述矛 盾,在整流电路的负载两端并联一
个二极管,称为续流二极管,用 VDR表示。 ◆有续流二极管的电路 ☞电路分析 √u2正半周时,与没有续流二极管 时的情况是一样的。 √当u2过零变负时,VDR导通,ud 为零,此时为负的u2通过VDR向VT 施加反压使其关断,L储存的能量保 证了电流id在L-R-VDR回路中流通, 此过程通常称为续流。 √若L足够大,id连续,且id波形接
a)
u2
b)
uOd
w t1
wt
c)
O
wt
id
d)
Id
O
wt
i VT
Id
e)
第二章三相可控整流电路ppt课件

3个晶闸管(VT4, VT6,VT2)
2.2 三相桥式全控整流电路
1)带电阻负载时的工作情况
当a≤60时,ud波形均连续,对于电阻负载,id波 形与ud波形形状一样,也连续
波形图: a =0 (图1) a =30 (图2) a =60 (图3)
当a>60时,ud波形每60中有一段为零,ud波形
不能出现负值 波形图: a =90 (图4)
2.1 三相半波可控整流电路 2.2 三相桥式全控整流电路 2.3 变压器漏感对整流电路的影响 2.4 晶闸管相控整流电路供电的直流电动机机械
特性
2.1 三相可控整流电路·引言
交流测由三相电源供电。 负载容量较大,或要求直流电压脉动较小、 容易滤波。 基本的是三相半波可控整流电路,三相桥 式全控整流电路应用最广 。
2.1 三相半波可控整流电路
负载电流平均值为
Id
Ud R
(2-20)
晶闸管承受的最大反向电压,为变压器二次线电压峰值,
即
URM 2 3U2 6U2 2.45U2 (2-21)
晶闸管阳极与阴极间的最大正向电压等于变压器二 次相电压的峰值,即
UFM 2U 2
(2-22)
2.1 三相半波可控整流电路
晶闸管及输出整流电压的情况如表2-1所示
时段
I
II
III
IV
V
VI
共阴极组中导通 VT1 VT1 VT3 VT3 VT5 VT5 的晶闸管
共阳极组中导通 VT6 VT2 VT2 VT4 VT4 VT6 的晶闸管
整流输出电压ud
请参照图1
ua-ub
=uab
ua-uc =uac
ub-uc =ubc
ub-ua =uba
2.2 三相桥式全控整流电路
1)带电阻负载时的工作情况
当a≤60时,ud波形均连续,对于电阻负载,id波 形与ud波形形状一样,也连续
波形图: a =0 (图1) a =30 (图2) a =60 (图3)
当a>60时,ud波形每60中有一段为零,ud波形
不能出现负值 波形图: a =90 (图4)
2.1 三相半波可控整流电路 2.2 三相桥式全控整流电路 2.3 变压器漏感对整流电路的影响 2.4 晶闸管相控整流电路供电的直流电动机机械
特性
2.1 三相可控整流电路·引言
交流测由三相电源供电。 负载容量较大,或要求直流电压脉动较小、 容易滤波。 基本的是三相半波可控整流电路,三相桥 式全控整流电路应用最广 。
2.1 三相半波可控整流电路
负载电流平均值为
Id
Ud R
(2-20)
晶闸管承受的最大反向电压,为变压器二次线电压峰值,
即
URM 2 3U2 6U2 2.45U2 (2-21)
晶闸管阳极与阴极间的最大正向电压等于变压器二 次相电压的峰值,即
UFM 2U 2
(2-22)
2.1 三相半波可控整流电路
晶闸管及输出整流电压的情况如表2-1所示
时段
I
II
III
IV
V
VI
共阴极组中导通 VT1 VT1 VT3 VT3 VT5 VT5 的晶闸管
共阳极组中导通 VT6 VT2 VT2 VT4 VT4 VT6 的晶闸管
整流输出电压ud
请参照图1
ua-ub
=uab
ua-uc =uac
ub-uc =ubc
ub-ua =uba
第7章直流电源ppt课件

1. 电路
2.工作原理 上升阶段:电源给负载 供 电,同时又给电容器C充 电,形成om段波形。
第七章 直流电源
下降阶段:在m点之后,电压下降,在n点之后,二极 管承受反向电压而截止,电容对负载电阻放电, 按放 电曲线nh下降,直到 的下一个半周 电源电压大于电 容电压时,二极管导通,电容器再次被充电。
二、工作原理
正常工作状态时 UF=UREF uA 0 放大器B的输出 只与三角波发生器产生的三角波有关,即放大器B的 输出脉冲电压的占空比q=50%;
UI的增加使输出电压增加时,UF UREF 放大器A输 出负电压 , T的导通时间变短了,输出电压下降。
第七章 直流电源
第五节 可控硅整流电路
一、可控硅的结构与导通条件 二、单结晶体管及触发电路 三、单相桥式可控整流电路
第七章 直流电源
一、可控硅的结构与导通条件
可控硅 (thyristor) 也称晶闸管 1.结构 四层半导体材料组成,
形成三个PN结
2.导通条件
①阳极和阴极之间加 正向电压UAK。 ②控制极和阴极之间 加正向触发电压UG。
第七章 直流电源
可控硅导通后,控制极便失去作用,依靠正反馈 仍可维持导通状态。 3. 关断的条件:
第七章 直流电源
2.单结晶体管的伏安特性曲线
突变点P称峰点,对应P点的电压UE称峰点电压 UP、电流IE称峰点电流IP。
曲线中的最低点V 称谷点,对应的电压和 电流分别称谷点电压UV 和谷点电流IV。 截止区、负阻区、饱和区
第七章 直流电源
3.单结晶体管振荡电路
接通电源后,经电阻R1和RP充电,电容电压uC 逐渐升高。
三、工作原理
当 uA >uT时,T导通,电源 通过调整管T向负载供电和 给电容C充电,同时电感L 储存能量。二极管D承受反 向电压而截止。
2.工作原理 上升阶段:电源给负载 供 电,同时又给电容器C充 电,形成om段波形。
第七章 直流电源
下降阶段:在m点之后,电压下降,在n点之后,二极 管承受反向电压而截止,电容对负载电阻放电, 按放 电曲线nh下降,直到 的下一个半周 电源电压大于电 容电压时,二极管导通,电容器再次被充电。
二、工作原理
正常工作状态时 UF=UREF uA 0 放大器B的输出 只与三角波发生器产生的三角波有关,即放大器B的 输出脉冲电压的占空比q=50%;
UI的增加使输出电压增加时,UF UREF 放大器A输 出负电压 , T的导通时间变短了,输出电压下降。
第七章 直流电源
第五节 可控硅整流电路
一、可控硅的结构与导通条件 二、单结晶体管及触发电路 三、单相桥式可控整流电路
第七章 直流电源
一、可控硅的结构与导通条件
可控硅 (thyristor) 也称晶闸管 1.结构 四层半导体材料组成,
形成三个PN结
2.导通条件
①阳极和阴极之间加 正向电压UAK。 ②控制极和阴极之间 加正向触发电压UG。
第七章 直流电源
可控硅导通后,控制极便失去作用,依靠正反馈 仍可维持导通状态。 3. 关断的条件:
第七章 直流电源
2.单结晶体管的伏安特性曲线
突变点P称峰点,对应P点的电压UE称峰点电压 UP、电流IE称峰点电流IP。
曲线中的最低点V 称谷点,对应的电压和 电流分别称谷点电压UV 和谷点电流IV。 截止区、负阻区、饱和区
第七章 直流电源
3.单结晶体管振荡电路
接通电源后,经电阻R1和RP充电,电容电压uC 逐渐升高。
三、工作原理
当 uA >uT时,T导通,电源 通过调整管T向负载供电和 给电容C充电,同时电感L 储存能量。二极管D承受反 向电压而截止。
精密整流电路ppt课件

认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
当输入电压 >0时,D1导通,D2截止,此时A1构 成电压跟随器,此电压通过Rf1和R2加到A2的反相端; 所以A2的输出电压为:
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
实验目的 :
•运用运算放大器实现半波整流和全波整流。 •掌握单向全波整流电路工作原理。 •掌握精密半波整流电路工作原理。
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
当输入电压<0时,D1截止,D2导通,此时A1为同相放 大器,有:
而A2的输出电压为:
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
图3.2 精密全波整流电压传输特性
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
图3.3 输入输出波形
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
❖半波整流
《精密整流电路》课件

工作原理
利用二极管的单向导电性,将交流电 的正半周和负半周分别整流为直流电 的正极和负极输出。
整流电路的类型
01
02
03
半波整流电路
只利用交流电的正半周或 负半周,输出直流电压的 幅值较低。
全波整流电路
利用交流电的正半周和负 半周,输出直流电压的幅 值较高。
桥式整流电路
通过桥式电路将交流电的 正半周和负半周进行整流 ,输出直流电压的幅值高 且稳定。
01
元件选择、布局
元件选择
02
根据电路需求和性能指标,选择合适的整流元件,如二极管、
晶体管等,确保元件的参数和性能符合设计要求。
元件布局
03
合理安排元件的位置和分布,考虑散热、电磁干扰等因素,以
提高电路的可靠性和性能。
电路板的布线与优化
总结词
布线、优化
布线
根据电路设计和元件布局,合理规划电路板的布线,确保线路清 晰、简洁,降低线路的电感和电阻。
03
记录测试数据,与预期结果进行对比。
测试设备与环境
设备
万用表、示波器、电源、必要的电子元件。
环境
实验室或具备安全供电和良好通风的环境。
测试结果分析与改进
01
数据分析
对测试数据进行整理,绘制图表, 分析性能指标。
改进措施
针对问题提出改进方案,如更换元 件、调整电路参数等。
03
02
问题定位
根据测试结果,定位可能存在的问 题或瓶颈。
PART 05
精密整流电路的设计与优 化
REPORTING
设计原则与步骤
总结词
设计原则、步骤
设计原则
确保电路性能稳定、可靠,提高能源转换效率,降低电磁干扰和热 损耗。
利用二极管的单向导电性,将交流电 的正半周和负半周分别整流为直流电 的正极和负极输出。
整流电路的类型
01
02
03
半波整流电路
只利用交流电的正半周或 负半周,输出直流电压的 幅值较低。
全波整流电路
利用交流电的正半周和负 半周,输出直流电压的幅 值较高。
桥式整流电路
通过桥式电路将交流电的 正半周和负半周进行整流 ,输出直流电压的幅值高 且稳定。
01
元件选择、布局
元件选择
02
根据电路需求和性能指标,选择合适的整流元件,如二极管、
晶体管等,确保元件的参数和性能符合设计要求。
元件布局
03
合理安排元件的位置和分布,考虑散热、电磁干扰等因素,以
提高电路的可靠性和性能。
电路板的布线与优化
总结词
布线、优化
布线
根据电路设计和元件布局,合理规划电路板的布线,确保线路清 晰、简洁,降低线路的电感和电阻。
03
记录测试数据,与预期结果进行对比。
测试设备与环境
设备
万用表、示波器、电源、必要的电子元件。
环境
实验室或具备安全供电和良好通风的环境。
测试结果分析与改进
01
数据分析
对测试数据进行整理,绘制图表, 分析性能指标。
改进措施
针对问题提出改进方案,如更换元 件、调整电路参数等。
03
02
问题定位
根据测试结果,定位可能存在的问 题或瓶颈。
PART 05
精密整流电路的设计与优 化
REPORTING
设计原则与步骤
总结词
设计原则、步骤
设计原则
确保电路性能稳定、可靠,提高能源转换效率,降低电磁干扰和热 损耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流输出电压平均值为:
U d 2 1 2 U 2 sitn ( d t)2 2 U 2 ( 1 co ) 0 s .4 U 2 5 1 c 2o(s 3-1)
直流输出电压平均值为:
U d 2 1 2 U 2 sitn ( d t)2 2 U 2( 1 co ) 0 s .4 U 2 5 1 c 2o(s 3-1)
ug
0
ud
0
uVT
0
VT
uVT u d
2
分析时认为晶闸管为理想器件。
id
晶闸管开通关断条件。
R
T为整流变压器,其二次电压为:
u2 2U2si nt
t
① 在电源的正半周,晶闸管VT t ② 承受正向电压。在被触发导通
③ 前,晶闸管处于正向阻断状态, t ④ 电源电压全部加在晶闸管上,
⑤ 负载上的电压为零,流过负载 ⑥ 的电流也为零。
3.1.1 单相半波可控整流电路 3.1.2 单相桥式全控整流电路 3.1.4 单相桥式半控整流电路
3.1.1 单相半波可控整流电路 3.1.2 单相桥式全控整流电路 3.1.4 单相桥式半控整流电路
■整流电路(Rectifier)是电力电子电路中出现最早 的一种,它的作用是将交流电能变为直流电能供给直 流用电设备。
0
u VT 1, 4
0
i2
0
当电源电压下降至零时,负 载电流id也降至零,VT1、 t VT4自然关断。
在电源电压的正半周,晶闸 t 管VT2、VT3始终承受反向电
压而处于截止状态。
t
图3-5 单相桥式全控整流带电阻负载时的电路及波形
ud id
0
u VT 1, 4
③ 在u2的负半周,b点电位高于
④ a点电位,晶闸管VT2、VT3同
④ 在u2负半周,晶闸管承受反 ⑤ 向电压,处于反向截止状态,
⑥ u2全部加在晶闸管两端,负载
⑦ 上的电压为零。至此,电路完 ⑧ 成一个工作周期,
基本数量关系
首先,引入两个重要的基本概念: 触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发 脉冲止的电角度,用a表示,也称触发角或控制角。 导通角:晶闸管在一个电源周期中处于通态的电角度,用θ 表示 。
时
⑤ 承受正向电压。
在t时触发VT2、VT3,
VT2、VT3导通,电流从b端流 t 出经VT3、R、VT2回到电源a
端,负载获得与u2正半周相同 的整流电压和电流波形,
0
t 这期间,VT1、VT4均承受反
3.1.1 单相半波可控整流电路 3.1.2 单相桥式全控整流电路 3.1.4 单相桥式半控整流电路
1.带电阻负载的工作情况
ud id
0
t
u VT 1, 4
0
t
i2
0
t
图3-5 单相桥式全控整流带电阻负载时的电路及波形
VT1、VT4和VT2、VT3 组成两个桥臂。
① 当交流电源电压进入正 ② 半周时,a点电位高于b点 ③ 电位,两个晶闸管VT1、 ④ VT4同时承受正向电压。
只要改变控制角α,即可改变整流输出电压的平均值,达到 可控整流的目的。 整流输出电压的平均值从最大值变化到零时所对应的α的变 化范围,称为移相范围。图3-1所示电路的移相范围为π 。 这种通过控制触发脉冲的相位来控制直流输出电压大小的方 式称为相控方式。
整流输出电压有效值为:
U 2 1 2 U 2 s it2 n d ( t) U 24 1 s2 in 2
41 si2n2
当 0 时 co , 0 .s 0 7 , 7 时 co , 0 。 s
尽管是电阻负载,电源功率因数也不为1,这是单相半波电路 的缺陷。
单相半波可控整流电路的特点是简单,但输出脉动大,变压器 二次侧电流中含直流分量,造成变压器铁芯直流磁化。为使变 压 器铁芯不饱和,需增大铁芯截面积,增大了设备的容量。
t
b)
1)带电阻负载的工作情况VT来自Tu1u2
uVT u d
id R
a)
u2
0 t1
2
t
ug
0
t
ud
0
t
uVT
0
t
b)
② t时刻给晶闸管施加
③ 触发脉冲ug,则晶闸管导通。 晶闸管导通期间,电源电压 u2全部加到负载上,负载电压 ud=u2。
③ t,电压u2过零,电流
④ 下降至小于晶闸管的维持电流, ⑤ 晶闸管关断,此时,ud、id均为 ⑥ 零。
■整流电路的分类 ◆按组成的器件可分为不可控、半控、全控三种。 ◆按电路结构可分为桥式电路和零式电路。 ◆按交流输入相数分为单相电路和多相电路。 ◆按变压器二次侧电流的方向是单向或双向,分为单 拍电路和双拍电路。
在研究可控整流电路的工作原理时,所采用 的基本方法是根据整流元件的特性和负载的性 质,分析各元件的导通、关断的物理过程,从 而得到各元件的电压和电流波形,在此基础上 得出有关电量与移相控制角的关系,重点掌握 波形分析法。
如果此时门极无触发信号, 则两个晶闸管处于正向阻 断状态,电源电压u2将全 部加在VT1、VT4上,两个 晶闸管各自承受电源电压 u2的一半,负载电压ud为 零。
② 在 t时,给VT1、VT4同
③ 时施加触发脉冲,VT1、VT4 即 ④ 时导通,电源电压通过VT1、VT4 ⑤ 加在负载上。
ud id
基本要求
1.理解和掌握单相桥式、三相半波、三相桥式等整流 电路的电路结构、工作原理、工作波形、电气性能、 分析方法和参数计算。
2.重点:波形分析和基本电量计算方法。
波形分析和计算:
① 输出侧的电压、电流; ② 晶闸管的电压、电流; ③ 输入侧的电流。
1)带电阻负载的工作情况
T
u1
u2
a)
u2
0 t1
u2
0 t1
2
ug
0
ud
0
uVT
0
整流输出电流平均值:
t
IdV TU R d0.4U 5R21c2os
t 整流输出电流有效值:
t I2IVT IU RU R 2 4 1 si2 n 2
t
电源侧的输入功率为: SS2U2I2
电源供给的有功功率为: PI2RU2I
功率因数为:
co sPIR
S U2
3.1 单相可控整流电路 3.2 三相可控整流电路 3.3 变压器漏感对整流电路的影响 3.4 电容滤波的不可控整流电路 3.7 整流电路的有源逆变工作状态
3.1 单相可控整流电路 3.2 三相可控整流电路 3.3 变压器漏感对整流电路的影响 3.4 电容滤波的不可控整流电路 3.7 整流电路的有源逆变工作状态
U d 2 1 2 U 2 sitn ( d t)2 2 U 2 ( 1 co ) 0 s .4 U 2 5 1 c 2o(s 3-1)
直流输出电压平均值为:
U d 2 1 2 U 2 sitn ( d t)2 2 U 2( 1 co ) 0 s .4 U 2 5 1 c 2o(s 3-1)
ug
0
ud
0
uVT
0
VT
uVT u d
2
分析时认为晶闸管为理想器件。
id
晶闸管开通关断条件。
R
T为整流变压器,其二次电压为:
u2 2U2si nt
t
① 在电源的正半周,晶闸管VT t ② 承受正向电压。在被触发导通
③ 前,晶闸管处于正向阻断状态, t ④ 电源电压全部加在晶闸管上,
⑤ 负载上的电压为零,流过负载 ⑥ 的电流也为零。
3.1.1 单相半波可控整流电路 3.1.2 单相桥式全控整流电路 3.1.4 单相桥式半控整流电路
3.1.1 单相半波可控整流电路 3.1.2 单相桥式全控整流电路 3.1.4 单相桥式半控整流电路
■整流电路(Rectifier)是电力电子电路中出现最早 的一种,它的作用是将交流电能变为直流电能供给直 流用电设备。
0
u VT 1, 4
0
i2
0
当电源电压下降至零时,负 载电流id也降至零,VT1、 t VT4自然关断。
在电源电压的正半周,晶闸 t 管VT2、VT3始终承受反向电
压而处于截止状态。
t
图3-5 单相桥式全控整流带电阻负载时的电路及波形
ud id
0
u VT 1, 4
③ 在u2的负半周,b点电位高于
④ a点电位,晶闸管VT2、VT3同
④ 在u2负半周,晶闸管承受反 ⑤ 向电压,处于反向截止状态,
⑥ u2全部加在晶闸管两端,负载
⑦ 上的电压为零。至此,电路完 ⑧ 成一个工作周期,
基本数量关系
首先,引入两个重要的基本概念: 触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发 脉冲止的电角度,用a表示,也称触发角或控制角。 导通角:晶闸管在一个电源周期中处于通态的电角度,用θ 表示 。
时
⑤ 承受正向电压。
在t时触发VT2、VT3,
VT2、VT3导通,电流从b端流 t 出经VT3、R、VT2回到电源a
端,负载获得与u2正半周相同 的整流电压和电流波形,
0
t 这期间,VT1、VT4均承受反
3.1.1 单相半波可控整流电路 3.1.2 单相桥式全控整流电路 3.1.4 单相桥式半控整流电路
1.带电阻负载的工作情况
ud id
0
t
u VT 1, 4
0
t
i2
0
t
图3-5 单相桥式全控整流带电阻负载时的电路及波形
VT1、VT4和VT2、VT3 组成两个桥臂。
① 当交流电源电压进入正 ② 半周时,a点电位高于b点 ③ 电位,两个晶闸管VT1、 ④ VT4同时承受正向电压。
只要改变控制角α,即可改变整流输出电压的平均值,达到 可控整流的目的。 整流输出电压的平均值从最大值变化到零时所对应的α的变 化范围,称为移相范围。图3-1所示电路的移相范围为π 。 这种通过控制触发脉冲的相位来控制直流输出电压大小的方 式称为相控方式。
整流输出电压有效值为:
U 2 1 2 U 2 s it2 n d ( t) U 24 1 s2 in 2
41 si2n2
当 0 时 co , 0 .s 0 7 , 7 时 co , 0 。 s
尽管是电阻负载,电源功率因数也不为1,这是单相半波电路 的缺陷。
单相半波可控整流电路的特点是简单,但输出脉动大,变压器 二次侧电流中含直流分量,造成变压器铁芯直流磁化。为使变 压 器铁芯不饱和,需增大铁芯截面积,增大了设备的容量。
t
b)
1)带电阻负载的工作情况VT来自Tu1u2
uVT u d
id R
a)
u2
0 t1
2
t
ug
0
t
ud
0
t
uVT
0
t
b)
② t时刻给晶闸管施加
③ 触发脉冲ug,则晶闸管导通。 晶闸管导通期间,电源电压 u2全部加到负载上,负载电压 ud=u2。
③ t,电压u2过零,电流
④ 下降至小于晶闸管的维持电流, ⑤ 晶闸管关断,此时,ud、id均为 ⑥ 零。
■整流电路的分类 ◆按组成的器件可分为不可控、半控、全控三种。 ◆按电路结构可分为桥式电路和零式电路。 ◆按交流输入相数分为单相电路和多相电路。 ◆按变压器二次侧电流的方向是单向或双向,分为单 拍电路和双拍电路。
在研究可控整流电路的工作原理时,所采用 的基本方法是根据整流元件的特性和负载的性 质,分析各元件的导通、关断的物理过程,从 而得到各元件的电压和电流波形,在此基础上 得出有关电量与移相控制角的关系,重点掌握 波形分析法。
如果此时门极无触发信号, 则两个晶闸管处于正向阻 断状态,电源电压u2将全 部加在VT1、VT4上,两个 晶闸管各自承受电源电压 u2的一半,负载电压ud为 零。
② 在 t时,给VT1、VT4同
③ 时施加触发脉冲,VT1、VT4 即 ④ 时导通,电源电压通过VT1、VT4 ⑤ 加在负载上。
ud id
基本要求
1.理解和掌握单相桥式、三相半波、三相桥式等整流 电路的电路结构、工作原理、工作波形、电气性能、 分析方法和参数计算。
2.重点:波形分析和基本电量计算方法。
波形分析和计算:
① 输出侧的电压、电流; ② 晶闸管的电压、电流; ③ 输入侧的电流。
1)带电阻负载的工作情况
T
u1
u2
a)
u2
0 t1
u2
0 t1
2
ug
0
ud
0
uVT
0
整流输出电流平均值:
t
IdV TU R d0.4U 5R21c2os
t 整流输出电流有效值:
t I2IVT IU RU R 2 4 1 si2 n 2
t
电源侧的输入功率为: SS2U2I2
电源供给的有功功率为: PI2RU2I
功率因数为:
co sPIR
S U2
3.1 单相可控整流电路 3.2 三相可控整流电路 3.3 变压器漏感对整流电路的影响 3.4 电容滤波的不可控整流电路 3.7 整流电路的有源逆变工作状态
3.1 单相可控整流电路 3.2 三相可控整流电路 3.3 变压器漏感对整流电路的影响 3.4 电容滤波的不可控整流电路 3.7 整流电路的有源逆变工作状态