2020年广东省中考数学压轴题专题训练(含解析)
广东2020中考数学压轴题训练1(含答案)

广东2020中考数学压轴题训练1(含答案)1. 如图,AB 是半径O 的直径,AB=2.射线AM 、BN 为半圆O 的切线.在AM 上取一点D ,连接BD 交半圆于点C ,连接AC .过O 点作BC 的垂线OE ,垂足为点E ,与BN 相交于点F .过D 点作半圆O 的切线DP ,切点为P ,与BN 相交于点Q . (1)求证:△ABC ∽△OFB ;(2)当△ABD 与△BFO 的面枳相等时,求BQ 的长; (3)求证:当D 在AM 上移动时(A 点除外),点Q 始终是线段BF 的中点2.如图①,在平面直角坐标系中,等腰直角△AOB 的斜边OB 在x 轴上,顶点A 的坐标为(3,3),AD 为斜边上的高.抛物线y =ax 2+2x 与直线y = 12x 交于点O 、C ,点C 的横坐标为6.点P 在x 轴的正半轴上,过点P 作PE ∥y 轴,交射线OA 于点E .设点P 的横坐标为m ,以A 、B 、D 、E 为顶点的四边形的面积为S . (1)求OA 所在直线的解析式.(2)当m ≠3时,求S 与m 的函数关系式.(3)如图②,设直线PE 交射线OC 于点R ,交抛物线于点Q .以RQ 为一边,在RQ 的右侧作矩形RQMN ,其中RN = 32.直接写出矩形RQMN 与△AOB 重叠部分为轴对称图形时m 的取值范围.答案:1.(1) 设直线OA 的解析式为y=kx ,则有:3k=3,k=1; ∴直线OA 的解析式为y=x ; (2)当x=6时,y=12x=3, ∴C (6,3);将C (6,3)代入抛物线的解析式中, 得:36a+12=3,a=-14; 即a 的值为--14;根据题意,D (3,0),B (6,0).∵点P 的横坐标为m ,PE ∥y 轴交OA 于点E , ∴E (m ,m ). 当0<m<3时,如图1, S=S △OAB -S △OED =12×6×3- 12×m ×3=9- 32m当m>3时,如图2, S=S △OBE -S △ODA=12×6×m- 12×3×3=3m- 92如图3、RQ=RN 时,m- 12m=32m=3如图4、AD 所在的直线为矩形RQMN 的对称轴时,3-m=32×12m=94如图5、RQ 与AD 重合时,重叠部分为等腰直角三角形,m=3; 如图6、当点R 落在AB 上时,m=4,所以3≤m<4.。
2020年广东省揭阳市中考数学压轴题二次函数题库及答案解析(共100题)

2020年广东省揭阳市中考数学压轴题题库及答案解析(二次函数综合共100题)1.若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的同一点,且抛物线L的顶点在直线l上,则称次抛物线L与直线l具有“一带一路”关系,并且将直线l叫做抛物线L的“路线”,抛物线L叫做直线l的“带线”.(1)若“路线”l的表达式为y=2x﹣4,它的“带线”L的顶点的横坐标为﹣1,求“带线”L的表达式;(2)如果抛物线y=mx2﹣2mx+m﹣1与直线y=nx+1具有“一带一路”关系,求m,n 的值;(3)设(2)中的“带线”L与它的“路线”l在y轴上的交点为A.已知点P为“带线”L上的点,当以点P为圆心的圆与“路线”l相切于点A时,求出点P的坐标.【分析】(1)找出直线与抛物线的交点坐标,由此设出抛物线的解析式,再由直线的解析式找出直线与x轴的交点坐标,将其代入抛物线解析式中即可得出结论;(2)找出直线y=nx+1与y轴的交点坐标,将其代入抛物线解析式中即可求出m的值;再根据抛物线的解析式找出顶点坐标,将其代入直线解析式中即可得出结论;(3)设抛物线的顶点为B,则点B坐标为(1,﹣1),过点B作BC⊥y轴于点C,根据点A坐标为(0,1)得到AO=1,BC=1,AC=2.然后根据“路线”l是经过点A、B 的直线且⊙P与“路线”l相切于点A,连接P A交x轴于点D,则P A⊥AB,然后求解交点坐标即可.【解答】解:(1)∵“带线”L的顶点横坐标是﹣1,且它的“路线”l的表达式为y=2x ﹣4∴y=2×(﹣1)﹣4=﹣6,∴“带线”L的顶点坐标为(﹣1,﹣6).设L的表达式为y=a(x+1)2﹣6,∵“路线”y=2x﹣4与y轴的交点坐标为(0,﹣4)∴“带线”L也经过点(0,﹣4),将(0,﹣4)代入L的表达式,解得a=2∴“带线”L的表达式为y=2(x+1)2﹣6=2x2+4x﹣4;(2)∵直线y=nx+1与y轴的交点坐标为(0,1),∴抛物线y=mx2﹣2mx+m﹣1与y轴的交点坐标也为(0,1),得m=2,∴抛物线表达式为y=2x2﹣4x+1,其顶点坐标为(1,﹣1)∴直线y=nx+1经过点(1,﹣1),解得n=﹣2,∴“带线”L的表达式为y=2x2﹣4x+1“路线”l的表达式为y=﹣2 x+1;(3)设抛物线的顶点为B,则点B坐标为(1,﹣1),过点B作BC⊥y轴于点C,又∵点A坐标为(0,1),∴AO=1,BC=1,AC=2.∵“路线”l是经过点A、B的直线且⊙P与“路线”l相切于点A,连接P A交x轴于点D,则P A⊥AB,显然Rt△AOD≌Rt△BCA,∴OD=AC=2,D点坐标为(﹣2,0)则经过点D、A、P的直线表达式为y=x+1,∵点P为直线y=x+1与抛物线L:y=2x2﹣4x+1的交点,解方程组得(即点A舍去),即点P的坐标为(,).【点评】本题考查了反比例函数与一次函数的交点问题已经二次函数的应用,解题的关键是:(1)设出抛物线的顶点式解析式;(2)根据“一带一路”关系找出两函数的交点坐标.2.如图,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC,点D在函数图象上,CD∥x轴且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图1,连BE,线段OC上的点F关于直线l的对称点F’恰好在线段BE上,求点F的坐标;(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理由.【分析】(1)由条件可求得抛物线对称轴,则可求得b的值;由OB=OC,可用c表示出B点坐标,代入抛物线解析式可求得c的值;(2)可设F(0,m),则可表示出F′的坐标,由B、E的坐标可求得直线BE的解析式,把F′坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标;(3)设点P坐标为(n,0),可表示出P A、PB、PN的长,作QR⊥PN,垂足为R,则可求得QR的长,用n可表示出Q、R、N的坐标,在Rt△QRN中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n的值,则可求得Q点的坐标,【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴﹣=1,b=2.。
2020年广东中考数学压轴题:动点问题

2020年广东省中考数学压轴题:动点问题如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3).(1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图2满分解答(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3).(3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD .由于3tan4GAF∠=,tan5DQ tPQDQP t∠==-,所以345tt=-.解得207t=.图3 图4。
2020年广东省湛江市中考数学压轴题二次函数题库及答案解析(共100题)

2020年广东省湛江市中考数学压轴题题库及答案解析(二次函数综合共100题)1.如图,在平面直角坐标系中,抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C,对称轴为直线l,点D(﹣4,n)在抛物线上.(1)求直线CD的解析式;(2)E为直线CD下方抛物线上的一点,连接EC,ED,当△ECD的面积最大时,在直线l上取一点M,过M作y轴的垂线,垂足为点N,连接EM,BN,若EM=BN时,求EM+MN+BN的值.(3)将抛物线y=x2+2x﹣3沿x轴正方向平移得到新抛物线y′,y′经过原点O,y′与x轴的另一个交点为F,设P是抛物线y′上任意一点,点Q在直线l上,△PFQ能否成为以点P为直角顶点的等腰直角三角形?若能,直接写出点P的坐标,若不能,请说明理由.【分析】(1)求出C、D两点坐标,利用待定系数法即可解决问题;(2)如图1中,过点E作EG∥y轴交直线CD于G.设E(m,m2+2m﹣3).则G(m,﹣2m﹣3),GE=﹣m2﹣4m.根据S△EDC=•EG•|D x|=(﹣m2﹣4m)×4=﹣2(m+2)2+8,可知m=﹣2时,△DEC的面积最大,此时E(﹣2,﹣3),再证明Rt△EHM≌Rt △BON即可解决问题;(3)存在.如图2中.作P1M⊥x轴于M,P1N⊥对称轴l于N.对称轴l交OA于K,由△P1MF≌△P1NQ,推出P1M=P1N,推出点P在∠MKN的角平分线上,只要求出直线KP1的解析式,构建方程组即可解决问题,同法可求P3,P4.【解答】解:(1)由题意C(0,﹣3),D(﹣4,5),设直线CD的解析式为y=kx+b,则有解得,∴直线CD的解析式为y=﹣2x﹣3.(2)如图1中,过点E作EG∥y轴交直线CD于G.设E(m,m2+2m﹣3).则G(m,﹣2m﹣3),GE=﹣m2﹣4m.∴S△EDC=•EG•|D x|=(﹣m2﹣4m)×4=﹣2(m+2)2+8,∵﹣2<0,∴m=﹣2时,△DEC的面积最大,此时E(﹣2,﹣3),∵C(0,﹣3),∴EC∥AB,设CE交对称轴于H,∵B(1,0),∴EH=OB=1,∵EM=BN,∴Rt△EHM≌Rt△BON,∴MH=ON=OC=,∴EM=BN==,∴EM+MN+BN=1+.(3)存在.如图2中.作P1M⊥x轴于M,P1N⊥对称轴l于N.对称轴l交OA于K,由P1Q=P1F,∠QP1F=90°,可得△P1MF≌△P1NQ,∴P1M=P1N,∴点P在∠MKN的角平分线上,∵直线KP1的解析式为y=﹣x﹣1,抛物线y′的解析式为y=x2﹣4x,由,解得或∴P1(,),P2(,),同法可知,直线y=x+1与抛物线的交点P3,P4也符合条件.由,解得或,∴P3(,),P4(,),综上所述,满足条件的点P坐标为(,)或(,)或(,)或(,).【点评】本题考查二次函数综合题、平移变换、一次函数的应用、全等三角形的判定和。
2020年广东省江门市中考数学压轴题二次函数题库及答案解析(共100题)

2020年广东省江门市中考数学压轴题题库及答案解析(二次函数综合共100题)1.如图,已知抛物线y=x2+3x﹣8的图象与x轴交于A,B两点(点A在点B的右侧),与y轴交于点C.(1)求直线BC的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,在抛物线的对称轴上找一点P,使得△BFP的周长最小,请求出点F的坐标和点P的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.【分析】(1)利用待定系数法求出B、C两点坐标即可解决问题;(2)如图1中,作FN∥y轴交BC于N.设F(m,m2+3m﹣8),则N(m,﹣m﹣8),构建二次函数,利用二次函数的性质求出点F坐标,因为点B关于对称轴的对称点是A,连接AF交对称轴于P,此时△BFP的周长最小,求出直线AF的解析式即可解决问题;(3)如图2中,分三种情形①当FQ1=FB时,Q1(0,0).②当BF=BQ时,易知Q2(0,﹣4),Q3(0,4).③当Q4B=Q4F时,设Q(0,m),构建方程即可解决问题;【解答】解:(1)对于抛物线y=x2+3x﹣8,令y=0,得到x2+3x﹣8=0,解得x=﹣8或2,∴B(﹣8,0),A(2,0),令x=0,得到y=﹣8,∴A(2,0),B(﹣8,0),C(0,﹣8),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=﹣x﹣8.(2)如图1中,作FN∥y轴交BC于N.设F(m,m2+3m﹣8),则N(m,﹣m﹣8)∴S△FBC=S△FNB+S△FNC=•FN×8=4FN=4[(﹣m﹣8)﹣(m2+3m﹣8)]=﹣2m2﹣16m=﹣2(m+4)2+32,∴当m=﹣4时,△FBC的面积有最大值,此时F(﹣4,﹣12),∵抛物线的对称轴x=﹣3,点B关于对称轴的对称点是A,连接AF交对称轴于P,此时△BFP的周长最小,设直线AF的解析式为y=ax+b,则有,解得,∴直线AF的解析式为y=2x﹣4,∴P(﹣3,﹣10),∴点F的坐标和点P的坐标分别是F(﹣4,﹣12),P(﹣3,﹣10).(3)如图2中,∵B(﹣8,0),F(﹣4,﹣12),∴BF==4,①当FQ1=FB时,Q1(0,0)或(0,﹣24)(虽然FB=FQ,但是B、F、Q三点一线应该舍去).②当BF=BQ时,易知Q2(0,﹣4),Q3(0,4).③当Q4B=Q4F时,设Q4(0,m),则有82+m2=42+(m+12)2,解得m=﹣4,∴Q4(0,﹣4),∴Q点坐标为(0,0)或(0,4)或(0,﹣4)或(0,﹣4).【点评】本题考查二次函数综合题、一次函数的应用、待定系数法、轴对称最短问题等知识,解题的关键是学会构建二次函数,利用二次函数的性质解决问题,学会利用轴对称解决最短问题,属于中考压轴题.2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B (4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存。
2020年广东省广州市中考数学压轴题二次函数题库及答案解析(共100题)

2020年广东省广州市中考数学压轴题题库及答案解析(二次函数综合共100题)1.如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c与x轴交于点A(4,0),点B(﹣1,0),与y轴交于点C,连接AC、BC.(1)求抛物线的表达式;(2)判断△ABC的形状,并说明理由;(3)①如图2,点D从点B出发沿线段BC向点C运动,到达点C停止,连接AD,过点D作DE⊥AB于点E,作DF⊥AC于点F,当=时,求点D的坐标;②如图3,设点P是线段AD的中点,连接PE、PF、EF,在点D由起点到终点的运动过程中,写出点P的运动路程和△PEF周长的最小值.【分析】(1)用交点式抛物线表达式,即可求解;(2)点C(0,﹣3),则AC=5,AC=AB=5,即可求解;(3)①△DCF∽△DBE,则==,设DB=m,则BC=3m=,则m=,BE=,OE=,DE=1,即可求解;②A、E、D、F四点共圆,AD为⊙O的直径,∠BAC是定角,则∠EPF也是定角,当AD⊥BC时,直径AD最短,从而弦EF也最短,即可求解.【解答】解:(1)用交点式抛物线表达式可得:y=(x+1)(x﹣4)=x2﹣x﹣3;(2)点C(0,﹣3),则AC=5,AC=AB=5,△ABC的是等腰三角形;(3)①∵∠DBE=∠DCF,∴△DCF∽△DBE,∴==,设DB=m,则BC=3m=,∴m=,BE=,OE=,DE=1,∴D(﹣,﹣1);②∵DE⊥AB E,DF⊥AC,∴A、E、D、F四点共圆,AD为⊙O的直径,∵∠BAC是定角,∴∠EPF也是定角,当AD⊥BC时,直径AD最短,从而弦EF也最短.此时,AD=AB sin∠OBC=5×==2R,EF=2R sin∠EPD=2R sin∠OAC=×=,△PEF的周长最小值=EF+2R=+,点P的轨迹为△ABC的中位线:BC=.【点评】本题主要考查的是二次函数综合运用,涉及到一次函数、解直角三角形、圆的基本知识等,其中(3)②,确定A、E、D、F四点共圆,是本题的突破点和难点.2.如图,抛物线y=x2+bx+c交x轴于点A(1,0)和点B,交y轴于点C(0,3).(1)求抛物线的解析式;(2)在抛物线上找出点P,使PC=PO,求点P的坐标;(3)将直线AC沿x轴的正方向平移,平移后的直线交y轴于点M,交抛物线于点N.当四边形ACMN为等腰梯形时,求点M、N的坐标.【分析】(1)把点A(1,0)、C(0,3)代入二次函数表达式,即可求解;(2)过P作PH⊥OC,垂足为H,PO=PC,PH⊥OC,则:CH=OH=,即:x2﹣4x+3=,即可求解;(3)四边形ACMN为等腰梯形,且AC∥MN,则GA=GC,在Rt△OGA中,OA2+OG2=AG2,则G(0,),即可求解.【解答】解:(1)把点A(1,0)、C(0,3)代入二次函数表达式得:,解得:,则抛物线的表达式为:y=x2﹣4x+3;(2)如下图,过P作PH⊥OC,垂足为H,∵PO=PC,PH⊥OC,则:CH=OH=,∴x2﹣4x+3=,解得:x=2,故点P(2+)或(2﹣);(3)如下图,连接NA并延长交OC于G∵四边形ACMN为等腰梯形,且AC∥MN,。
2020年广东省云浮市中考数学压轴题二次函数题库及答案解析(共100题)

2020年广东省云浮市中考数学压轴题题库及答案解析(二次函数综合共100题)1.如图1,抛物线y=x2+bx+c交x轴于点A(﹣3,0),B(2,0),交y轴于点C.(1)求抛物线的解析式;(2)如图2,D点坐标为(2,0),连结DC.若点H是线段DC上的一个动点,求OH+HC的最小值.(3)如图3,连结AC,过点B作x轴的垂线l,在第三象限中的抛物线上取点P,过点P作直线AC的垂线交直线l于点E,过点E作x轴的平行线交AC于点F,已知PE=CF.①求点P的坐标;②在抛物线y=x2+bx+c上是否存在一点Q,使得∠QPC=∠BPE成立?若存在,求出Q点坐标;若不存在,请说明理由.【分析】(1)把交点坐标代入抛物线交点式表达式,即可求解;(2)作点O关于直线BC的对称点O′,过点O′作O′G⊥y轴交DC与点H、交y 轴与点G,在图示的位置时,OH+HC为最小值,即可求解;(3)①PE=CF,则PE cosβ=SF cosβ,即:PE=FS,即可求解;②求出HP所在的直线表达式与二次函数联立,求得交点即可.【解答】解:(1)设抛物线的表达式为:y=a(x﹣x1)(x﹣x2)=(x+3)(x﹣2)=x2+x ﹣6,抛物线的表达式为:y=x2+x﹣6…①,(2)作点O关于直线DC的对称点O′交CD于点M,过点O′作O′G⊥y轴交DC 与点H、交y轴与点G,∵OD=2,OC=6,则∠OCD=30°,∴GH=HC,在图示的位置时,OH+HC=GH+OH,此时为最小值,长度为GO′,∵O′O⊥DC,∴∠OO′H=∠OCD=30°,∴OM=OC=3=OO′,在Rt△OO′G中,GO′=OO′cos∠OO′G=6cos30°=3,即:OH+HC的最小值为3;(3)①设点P的坐标为(m,n),n=m2+m﹣6,直线AC表达式的k值为﹣2,则直线PE表达式的k值为,设直线PE的表达式为:y=x+b,将点P坐标代入上式并解得:b=n﹣m,则点E的坐标为(2,1+n﹣m),点F的坐标为(m﹣n﹣,1+n﹣m),过点P作x轴的平行线交直线l于点M,过点F作y轴平行线交过C点作x轴的平行线于点S,∵AC⊥PE,∴∠EPM=∠SFC=β,∵PE=CF,则PE cosβ=SF cosβ,即:PE=FS,∴1+n﹣m+6=2﹣m,即:2m2+3m﹣2=0,解得:m=或﹣2(舍去),故点P坐标为(﹣2,﹣4),点E坐标为(2,﹣2);②过点P作x轴的平行线交直线l于点M、交y轴于点R,作EN⊥PB于点N,则:PM=4=BM=4,EM=BM=2,则PE=,EN=BE sin∠NBE=2×sin45°=,设:∠QPC=∠BPE=α,则sin∠BPE===sinα,则tanα=,过点P作y轴的平行线交过C点与x轴的平行线于点L,延长PQ交CL于点H,过点H 作HG⊥PC,则:PL=PR=RC=CL=2,即四边形PRCL为正方形,∴∠PCH=45°,设:GH=GC=m,PG==3m,PC=PG+GC=4m=2,则m=,CH=m=1,即点H坐标为(﹣1,﹣6),则HP所在的直线表达式为:y=﹣2x﹣8…②,①②联立并解得:x=﹣1或﹣2(x=﹣2和点P重合,舍去),故点Q的坐标为(﹣1,﹣6),同理当点Q在第四象限时,点Q(,﹣);综上,点Q(﹣1,﹣6)或(,﹣).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长。
2020年广东省梅州市中考数学压轴题二次函数题库及答案解析(共100题)

2020年广东省梅州市中考数学压轴题题库及答案解析(二次函数综合共100题)1.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M的坐标;(2)求△BCM的面积;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A、P、Q、C为顶点的四边形为平行四边形?若存在请求出Q点的坐标;若不存在,请说明理由.【分析】(1)根据A(﹣1,0),B(3,0),C(0,﹣3),设抛物线解析式为y=a(x+1)(x﹣3),代入(0,﹣3),解方程即可得出抛物线解析式,进而得到顶点M的坐标;(2)连BC、BM、CM,作MD⊥轴于D,根据S△BCM=S梯形OCMD+S△BMD﹣S△BCO进行计算即可;(3)分两种情形讨论:①当Q点在x轴下方时,作QE⊥x轴于E;②当Q点在x轴上方时,作QF⊥x轴于F,分别根据Q的纵坐标,求出点Q的横坐标即可.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线过点C(0,﹣3),∴﹣3=a(0+1)(0﹣3),∴a=1,∴抛物线解析式为y=(x+1)(x﹣3),∵y=(x+1)(x﹣3)=(x﹣1)2﹣4,∴M(1,﹣4);(2)如图1,连BC、BM、CM,作MD⊥轴于D,∴S△BCM=S梯形OCMD+S△BMD﹣S△BCO=(3+4)×1+×2×4﹣×3×3=+4﹣=3;(3)存在这样的点Q,使以A、P、Q、C为顶点的四边形为平行四边形.①如图2,当Q点在轴下方时,作QE⊥轴于E,∵AC∥PQ且AC=PQ,∴OC=EQ=3,当﹣3=x2﹣2x﹣3时,解得:x1=0(舍),x2=2,∴Q(2,﹣3);②如图2,当Q点在轴上方时,作QF⊥轴于F,∵AC∥PQ且AC=PQ,∴Rt△OAC≌Rt△FPQ,∴OC=FQ=3,当3=x2﹣2x﹣3时,解得:x1=1﹣,x2=1+,∴Q(1﹣,3)或(1+,3),综上所述,满足条件的Q点为(2,﹣3)或(1﹣,3)或(1+,3).【点评】本题属于二次函数综合题,主要考查了三角形面积、平行线的性质,全等三角形的判定和性质以及解一元二次方程的综合应用,解题的关键是灵活应用待定系数法确定函数解析式,学会利用分割法求三角形的面积,学会分类讨论的思想解决问题.2.如图①,正方形ABCD,矩形EFGH的中心P,Q都在直线l上,EF⊥l,AC=EF.正方形ABCD以1cm/s的速度沿直线l向矩形EFGH移动,当点C与HG的中点I重合时停止移动.设移动时间为xs时,这两个图形的重叠部分面积为y cm2,y与x的函数图象如图②,其中图象OM与MK是两段抛物线.根据图象解决下列问题.(1)正方形ABCD的边长为2cm;FG=6cm;(2)求m、n、p的值;(3)x为何值时,重叠部分面积不小于7cm2.【分析】(1)根据正方形的对角线相等可得AC=BD,然后根据图②判断出正方形的面积为8,再根据正方形的面积即可求出边长,根据题意,6秒时点A与点I重合,点A移动的距离等于FG的长度;(2)根据m秒时重合部分是等腰直角三角形,P秒时点C刚好进入矩形EFGH,n秒时距离正方形全部移出还有面积3,然后求解即可;(3)分两部分求出面积是7的时间,然后写出x的取值范围即可.【解答】解:(1)∵四边形ABCD是正方形,∴AC=BD,∵AC=EF,∴BD=EF,由图②可知,正方形的面积8,。
2020广州中考数学压轴题

例题讲解
(2020广东广州中考,25)平面直角坐标系xOy中,
抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C
(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,
△OCE的面积为S2,S1=S2+
(1)用含a的式子表示b;
又∵点D(3,− + )
∴直线DE解析式为: = ( + − ) + − −
∵直线DE与直线DF是同一直线,∴=( + − ),∴ = 。
∴抛物线的解析式为: = 2 − 6 + 9
∵1<x<6,∴当x=3时,y取得最小值为0;
二次函数背景下的
含参数问题
以2020年广州中考数学25题为例
导入新课
1.已知二次函数y=x2,在-1≤x≤4这个范围内,
求y的取值范围。
解:∵y=x2的对称轴为y轴,且抛物线
开口向上,所以在-1≤x≤4这个范围
内,
当x=0时,函数取得最小值y=0;
当x=4时,函数取得最大值y=16.
综上,在-1≤x≤4这个范围内,
解:(1)∵抛物线G:y=ax2+bx+c
(0<a<12)过点A(1,c﹣5a),
∴c﹣5a=a+b+c,∴b=﹣6a;
(2)求点E的坐标:
解:(2)如图,设BC的中点为M,
∵B(x1,3),C(x2,3),线段BC上有
一点E,∴ = × × =
= × × =
化,抛物线G的顶点的纵坐标k与横坐标h之间存在一个函数关系,求这个
广东省佛山市,2020~2021年中考数学压轴题精选解析

广东省佛山市,2020~2021年中考数学压轴题精选解析广东省佛山市中考数学压轴题精选~~第1题~~(2020台州.中考模拟) 如图,在矩形ABCD 中,CD =3cm ,BC =4cm ,连接BD ,并过点C 作CN ⊥BD ,垂足为N ,直线l 垂直BC ,分别交BD 、BC 于点P 、Q .直线l 从AB 出发,以每秒1cm 的速度沿BC 方向匀速运动到CD 为止;点M 沿线段D A 以每秒1cm 的速度由点D 向点A 匀速运动,到点A 为止,直线1与点M 同时出发,设运动时间为t 秒(t >0).(1) 线段CN =;(2) 连接PM 和QN ,当四边形MPQN 为平行四边形时,求t 的值;(3) 在整个运动过程中,当t 为何值时△PMN 的面积取得最大值,最大值是多少?~~第2题~~(2020顺德.中考模拟) 如图,直线l :y =﹣m 与y 轴交于点A ,直线a :y =x+m 与y 轴交于点B ,抛物线y =x +mx 的顶点为C ,且与x 轴左交点为D (其中m >0).(1) 当AB =12时,在抛物线的对称轴上求一点P 使得△BOP 的周长最小;(2) 当点C 在直线l 上方时,求点C 到直线l 距离的最大值;(3) 若把横坐标、纵坐标都是整数的点称为“整点”.当m =2020时,求出在抛物线和直线a 所围成的封闭图形的边界上的“整点”的个数.~~第3题~~(2019顺德.中考模拟) 如图,点O 是平面直角坐标系的原点,点A (,3),AC ⊥OA 与x 轴的交点为C .动点M 以每秒个单位长度由点A 向点O 运动.同时,动点N 以每秒3个单位长度由点O 向点C 运动,当一动点先到终点时,另一动点立即停止运动.(1) 写出∠AOC 的值;(2) 用t 表示出四边形AMNC 的面积;(3) 求点P 的坐标,使得以O 、N 、M 、P 为顶点的四边形是特殊的平行四边形?~~第4题~~2(2019禅城.中考模拟) 如图,等腰直角△OAB的斜边OA在坐标轴上,顶点B的坐标为(﹣2,2).点P从点A出发,以每秒1个单位的速度沿x轴向点O运动,点Q从点O同时出发,以相同的速度沿x轴的正方向运动,当点P到达点O时,点P、点Q同时停止运动.连接BP,过P点作∠BPC=45°,射线PC与y轴相交于点C,过点Q作平行于y轴的直线l,连接BC 并延长与直线l相交于点D,设点P运动的时间为t(s).(1)点P的坐标为(用t表示);(2)当t为何值,△PBE为等腰三角形?(3)在点P运动过程中,判断的值是否发生变化?请说明理由.~~第5题~~(2019南海.中考模拟) 如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别为O(0,0),A(3,3 )、B (9,5 ),C(14,0),动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OA﹣AB﹣BC运动,在OA、AB、BC上运动的速度分别为3,,(单位长度/秒),当P、Q中的一点到达C点时,两点同时停止运动.(1)求AB所在直线的函数表达式;(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值;(3)在P、Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.~~第6题~~(2019禅城.中考模拟) 为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买一中树苗的金额,至少应购买甲种树苗多少棵?~~第7题~~(2019佛山.中考模拟) 如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形 .是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.~~第8题~~(2018南海.中考模拟) 如图,抛物线与x轴交于点A(1,0)和B(4,0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C ,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.~~第9题~~(2017顺德.中考模拟) 如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.~~第10题~~(2015佛山.中考真卷) 如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接B E、BF,使它们分别与AO相交于点G、H.(1)(1)求EG:BG的值;(2)(2)求证:AG=OG;(3)(3)设AG=a,GH=b,HO=c,求a:b:c的值.广东省佛山市中考数学压轴题答案解析~~第1题~~答案:解析:~~第2题~~答案:解析:~~第3题~~答案:解析:~~第4题~~答案:解析:~~第5题~~答案:解析:答案:解析:答案:解析:答案:解析:~~第9题~~答案:解析:答案:解析:。
2020广东省中考数学第20题拿分必练(解析版)-2020年中考数学保A必刷压轴题(广东专版)

2020广东省中考数学第20题拿分必练1.(2020春•武川县期中)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证;(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.【解答】(1)证明:∵菱形ABCD,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵平行四边形BECD,∴BD∥CE,∴∠ABO=∠E=50°,又∵菱形ABCD,∴AC丄BD,∴∠BAO=90°﹣∠ABO=40°.【点评】本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键.2.(2020•龙岗区校级模拟)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=6,AB=8,求菱形ADCF的面积.【分析】(1)根据菱形的判定即可证明四边形ADCF是菱形;(3)根据AC=6,AB=8,即可求菱形ADCF的面积.【解答】解:(1)证明:∵E是AD的中点∴AE=DE∵AF∥BC∴∠AFE=∠DBE在△AEF和△DEB中∴△AEF≌△DEB(AAS)∴AF=DB∴四边形ADCF是平行四边形∵∠BAC=90°,D是BC的中点∴AD=CD=BC∴四边形ADCF是菱形;(2)解:法一、设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=.法二、连接DF∵AF=DB,AF∥DB∴四边形ABDF是平行四边形∴DF=AB=8∴S菱形ADCF=AC•DF=.法三、∵三角形ABD与三角形ADC与三角形AFC的面积相等,∴菱形ADCF的面积等于三角形ABC的面积为24.答:菱形ADCF的面积为24.【点评】本题考查了菱形的判定和性质、直角三角形斜边上的中线、三角形中位线定理,解决本题的关键是掌握以上基础知识.3.(2020春•江阴市期中)如图,正方形AOBC的边OB、OA分别在x、y轴上,点C坐标为(8,8),将正方形AOBC绕点A逆时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段BC于点Q,ED的延长线交线段OB于点P,连接AP、AQ.(1)求证:△ACQ≌△ADQ;(2)求∠P AQ的度数,并判断线段OP、PQ、CQ之间的数量关系,并说明理由;(3)连接BE、EC、CD、DB得到四边形BECD,在旋转过程中,四边形BECD能否是矩形?如果能,请求出点P的坐标,如果不能,请说明理由.【分析】(1)由正方形的性质及旋转的性质可得到AD=AC,利用HL即可证得结论;(2)利用(1)的结论,结合条件可证得△AOP≌△ADP,进一步可求得∠P AQ=45°,再结合全等可求得PQ=OP+CQ;(3)利用矩形的性质可得到BQ=EQ=CQ=DQ,设P(x,0),则可表示出BQ、PB的长,在Rt△BPQ 中,利用勾股定理可得到关于x的方程,则可求得P点坐标.【解答】(1)证明:∵正方形AOBC绕点A旋转得到正方形ADEF,∴AD=AC,∠ADQ=∠ACQ=90°,在Rt△ADQ和Rt△ACQ中∴Rt△ACQ≌Rt△ADQ(HL);(2)解:∵△ACQ≌△ADQ,∴∠CAQ=∠DAQ,CQ=DQ,在Rt△AOP和Rt△ADP中∴Rt△AOP≌Rt△ADP(HL),∴∠OAP=∠DAP,OP=OD,∴∠P AQ=∠DAQ+DAP=∠DAC+∠DAO=(∠DAC+∠DAO)=∠OAC=45°,PQ=PD+DQ=OP+CQ;(3)解:四边形BECD可为矩形,如图,若四边形BECD为矩形,则BQ=EQ=CQ=DQ,∵BC=8,∴BQ=CQ=4,设P点坐标为(x,0),则PO=x,∵OP=PD,CQ=DQ,∴PD=x,DQ=4,在Rt△BPQ中,可知PQ=x+4,BQ=4,BP=8﹣x,∴(x+4)2=42+(8﹣x)2,解得x=,∴P点坐标为(,0).【点评】本题为四边形的综合应用,涉及全等三角形的判定和性质、正方形的性质、旋转的性质、矩形的判定和性质、勾股定理及方程思想等知识.在(1)中注意HL的应用,在(2)中证得Rt△AOP≌Rt △ADP是解题的关键,在(3)中注意矩形性质的应用.本题考查知识点较多,综合性较强,难度适中.4.(2020春•硚口区期中)在正方形ABCD中,点E、G分别在AD和CD上.(1)如图1,若BG=CE,求证:BG⊥CE;(2)如图2,点F在DC的延长线上,若AE=CF,BG⊥EF于点H,求证:①AE+AB=AH;②如图3,若P为AB的中点,AB=8,PH=,求FG的长.【分析】(1)先判断出Rt△BCG≌Rt△CDE(HL),得出∠CBG=∠DCE,即可得出结论;(2)①先判断出△BCF≌△BAE(SAS),得出BE=BF,再判断出∠BHA=∠EHM,进而判断出∠ABH =∠MEH,得出△EMH≌△BAH(ASA),得出AB=EM,进而判断出△AHM是等腰直角三角形,即可得出结论;②先判断出∠BHM=∠EHN,进而判断出△BHM≌△EHN(AAS),得出HM=HN,进而得出MH=AM,再根据勾股定理求出x=1,即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCG=∠D=90°,在Rt△BCG和Rt△CDE中,,∴Rt△BCG≌Rt△CDE(HL),∴∠CBG=∠DCE,∵∠DCE+∠BCE=90°,∴∠CBG+∠BCE=90°,∴BG⊥CE;(2)①证明:如图2,连接BE,BF,过点H作HM⊥AH交AD的延长线于M,∵AE=CF,∠BCF=90°=∠BAE,BC=AB,∴△BCF≌△BAE(SAS),∴BE=BF,∴△BEF是等腰直角三角形,∵BG⊥EF,∴BH=HE=FH,∵∠BHE=∠EHG=90°,∴∠BHA=∠EHM,∵∠BAE=∠BHE=90°,∴∠ABH+∠AEH=180°=∠MEH+∠AEH,∴∠ABH=∠MEH,∴△EMH≌△BAH(ASA),∴AB=EM,AH=HM,∵∠AHE+∠AHB=90°=∠MHE+∠AHE,∴△AHM是等腰直角三角形,∴AM=AH,∴AE+AB=AE+EM=AM=AH;②如图3,过点H作HM⊥AB于M,HN⊥AD于N,∴∠AMH=∠ANH=∠A=90°,∴四边形AMHN是矩形,∴∠MHN=90°=∠BHE,∴∠BHM=∠EHN,由①知,BH=HE,∴△BHM≌△EHN(AAS),∴HM=HN,BM=EN∴四边形AMHN是正方形,∴MH=AM,∵P为AB的中点,AB=8,∴AP=AB=4,设PM=x,∴MH=AM=x+4,在Rt△PMH中,PH=,根据勾股定理得,PM2+HM2=PH2,∴x2+(x+4)2=26,∴x=﹣5(舍)或x=1,∴PM=1,∴EN=BM=BP﹣PM=3,∴AE=AN﹣EN=MH﹣EN=5﹣3=2,∴DF=CF+CD=AE+CD=10,设FG=m,则DG=10﹣FG=10﹣m,由①知,EH=FH,∵BG⊥EF,∴EG=FG=m,在Rt△DEG中,根据勾股定理得,m2=62+(10﹣m)2,∴m=,∴FG=.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形判定和性质,等腰直角三角形的性质和判定,勾股定理,判断出BH=HE=FH是解本题的关键.5.(2020•沈河区一模)如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于点E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=12,AD=13,则线段OE的长度是3.【分析】(1)根据菱形的性质得到AD∥BC,推出四边形AECF是平行四边形,根据矩形的判定定理即可得到结论;(2)根据已知条件得到得到CE=18.根据勾股定理得到AC=6,于是得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∵CF∥AE,∴四边形AECF是平行四边形.∵AE⊥BC,∴∠AEC=90°,∴平行四边形AECF是矩形;(2)解:∵AE=12,AD=13,∴AB=13,∴BE=5,∵AB=BC=13,∴CE=18,∴AC===6,∵对角线AC,BD交于点O,∴AO=CO=3.∴OE=3,故答案为:3.【点评】本题考查了矩形的判定和性质,菱形的性质,解直角三角形,正确的识别图形是解题的关键.6.(2020•房山区二模)如图,菱形ABCD中,分别延长DC,BC至点E,F,使CE=CD,CF=CB,连接DB,BE,EF,FD.(1)求证:四边形DBEF是矩形;(2)若AB=5,cos∠ABD=,求DF的长.【分析】(1)根据菱形的性质得出CE=CD,CF=CB,再根据矩形的判定证明即可.(2)连接AC,利用菱形的性质得出AC,进而得出DF即可.【解答】证明:(1)∵CE=CD,CF=CB,∴四边形DBEF是平行四边形.∵四边形ABCD是菱形,∴CD=CB.∴CE=CF,∴BF=DE,∴四边形DBEF是矩形.(2)连接AC,∵四边形ABCD是菱形,∴AC⊥BD,OD=OB,OC=OA,由(1)得四边形DBEF是矩形,∴DF⊥BD,∴AC∥DF,∴OC=DF,∵AB=5,cos∠ABD=,∴OB=3,∴OA=OC=4,∴DF=8.【点评】此题考查菱形的性质,关键是根据菱形的性质和矩形的判定解答.7.(2020春•下陆区校级期中)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE <BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为8,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为8且E为OM的中点知OH=HA=4、HM=8,再根据勾股定理得OM的长,由直角三角形性质知MN=OM问题得解.【解答】解:(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,在△OAM和△OBN中,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为8,∴OH=HA=4,∵E为OM的中点,∴HM=8,则OM==4,∴MN=OM=4.【点评】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.8.(2020•济宁模拟)正方形ABCD中,点P是边CD上的任意一点,连接BP,O为BP的中点,作PE⊥BD于E,连接EO,AE.(1)若∠PBC=α,求∠POE的大小(用含α的式子表示);(2)用等式表示线段AE与BP之间的数量关系,并证明.【分析】(1)先根据正方形的性质得:∠DBC=∠CDB=45°,则∠DBP=45°﹣α,根据直角三角形斜边中线的性质可得EO=BO,由等腰三角形性质和外角的性质可得结论;(2)作辅助线,证明△ABE≌△CBE,则AE=CE,根据直角三角形斜边中线的性质得:OC=OB=OP =OE,证明△EOC是等腰直角三角形,最后由勾股定理可得:BP=,所以BP=.【解答】解:(1)在正方形ABCD中,BC=DC,∠C=90°,∴∠DBC=∠CDB=45°,∵∠PBC=α,∴∠DBP=45°﹣α,∵PE⊥BD,且O为BP的中点,∴EO=BO,∴∠EBO=∠BEO,∴∠EOP=∠EBO+∠BEO=90°﹣2 α;(2)连接OC,EC,在正方形ABCD中,AB=BC,∠ABD=∠CBD,BE=BE,∴△ABE≌△CBE,∴AE=CE,在Rt△BPC中,O为BP的中点,∴CO=BO=,∴∠OBC=∠OCB,∴∠COP=2 α,由(1)知∠EOP=90°﹣2α,∴∠EOC=∠COP+∠EOP=90°,又由(1)知BO=EO,∴EO=CO.∴△EOC是等腰直角三角形,∴EO2+OC2=EC2,∴EC=OC=,即BP=,∴BP=.【点评】本题考查正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识,第(2)问有难度,作辅助线,构建全等三角形和等腰直角三角形是解决问题的关键.。
专题01 尺规作图(解析版)--2020年中考数学保A必刷压轴题(广东广州专版)

专题01 尺规作图一.解答题(共8小题)1.(2019秋•龙华区期末)如图,已知四边形ABCD,请用尺规按下列要求作图.(1)延长BC到E,使CE=CD;(2)在平面内找到一点P,使P到A、B、C、D四点的距离之和最短.【分析】(1)延长BC到E,使CE=CD即可;(2)使点P、D、E共圆在平面内找到一点P,使P到A、B、C、D四点的距离之和最短【解答】解:(1)如图,延长BC到E,使CE=CD;(2)如图,点P即为所求作的点.【点评】本题考查了作图﹣复杂作图,解决本题的关键是准确找到点P.2.(2020•市南区校级模拟)已知△ABC,在△ABC中作一半圆满足以下要求:①圆心在边BC上;②该半圆面积最大.【分析】根据角平分线上的点到角的两边距离相等即可画出满足要求的半圆.【解答】解:根据题意作图,如图,圆O在三角形ABC内部的半圆即为所求.【点评】本题考查了作图﹣复杂作图,解决本题的关键是掌握角平分线的性质.3.(2020•德城区一模)已知:如图,在△ABC中,AD⊥BC.求作:在AD上求作点E,使得点E到AB的距离EF等于DE.(要求:尺规作图,不写作法,保留作图痕迹.)(1)作图的依据是到角两边距离相等的点在这个角的角平分线上;(2)在作图的基础上,若∠ABC=45°,AB⊥AC,DE=1,求CD的长.【分析】(1)作∠ABC的角平分线交AD于E,过点E作EF⊥AB于F,线段EF即为所求.(2)证明△AEF是等腰直角三角形,求出AE即可解决问题.【解答】解:(1)如图线段EF即为所求.作图的依据是:到角两边距离相等的点在这个角的角平分线上.故答案为:到角两边距离相等的点在这个角的角平分线上.(2)∵BE平分∠边长,ED⊥BC,EF⊥AB,∴ED=EF=1,∵AD⊥BC,∠ABC=45°,∴AF=EF=1,∴AE===,∴AD=AE+DE=+1.【点评】本题考查作图﹣复杂作图,等腰直角三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(2019秋•碑林区校级期末)如图,△ABC中,AB=6,AC=8,点D在AB上,AD=3,在边AC上求作一点E使得△DAE的周长为11.(要求:尺规作图,不写作法,保留作图痕迹)【分析】连接CD,作CD的垂直平分线,交AC于E,则CE=DE,依据AD=3,AC=AE+CE=8,即可得到△DAE的周长为3+8=11.【解答】解:如图所示,点E即为所求.【点评】本题主要考查了复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.5.(2019秋•包河区期末)如图,已知△ABC.(1)画出△ABC的高AD;(2)尺规作出△ABC的角平分线BE(要求保留作图痕迹,不用证明).【分析】(1)根据过直线外一点作已知直线的垂线的尺规作图可得;(2)根据角平分线的尺规作图可得.【解答】解:(1)如图,AD即为△ABC的高.(2)如图,BE即为△ABC的角平分线.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握过直线外一点作已知直线的垂线及角平分线的尺规作图.6.(2017秋•聊城期中)已知:如图,直线l极其同侧两点A,B.(1)在图1直线l上求一点P,使到A、B两点距离之和最短;(不要求尺规作图)(2)在图2直线l上求一点O,使OA=OB.(尺规作图,保留作图痕迹)【分析】(1)直接利用对称点求最短路线方法作图即可;(2)结合线段垂直平分线的性质与作法分析得出答案.【解答】解:(1)如图1所示:点P即为所求;(2)如图1所示:点O即为所求.【点评】此题主要考查了基本作图、最短路线问题以及线段垂直平分线的性质,正确掌握相关性质是解题关键.7.(2017秋•滨海新区期末)如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线,P是直线EF上的任意一点.(Ⅰ)P A+PB的最小值为4;(Ⅱ)在直线EF上找一点P,使得∠APE=∠CPE,画图,并简要说明画图方法.(保留画图痕迹,不要求证明)【分析】(Ⅰ)根据题意知点B关于直线EF的对称点为点C,故当点P为AC与EF的交点时,AP+BP 的最小值,依据AC的长度即可得到结论.(Ⅱ)先作射线BA与直线EF的交点即为点P的位置.【解答】解:(Ⅰ)∵EF是BC中垂线,∴点B关于直线EF的对称点为C,当点P为AC与EF的交点时,P A+PB取得最小值,最小值为P A+PC=AC=4,故答案为:4.(Ⅱ)如图所示,延长BA交直线EF于P,连接CP,则∠APE=∠CPE.理由:∵EF是BC的垂直平分线,∴PB=PC,又∵PE⊥BC,∴等腰△PBC中,PE平分∠BPC,∴∠APE=∠CPE.【点评】本题考查基本作图、轴对称变换、最短距离问题等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.8.(2019秋•惠山区校级期中)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD、ED⊥BD,连结AC、EC.已知AB=6,DE=2,BD=15,设CD=x.(1)用含x的代数式表示AC+CE的值;(写出过程)(2)请问点C满足条件点C与点A和B在同一条直线上时,AC+CE的值最小;(3)根据(2)中的结论,画图并标上数据,求代数式的最小值.【分析】(1)根据勾股定理用含x的代数式表示AC+CE的值即可;(2)根据两点之间线段最短可知:点C满足条件与点A、E在同一条直线上时,AC+CE的值最小;(3)根据(2)中的结论,画图并标上数据,即可求代数式的最小值.【解答】解:(1)∵AB=6,DE=2,BD=15,设CD=x则BC=15﹣x,根据勾股定理,得AC+CE=+=+(2)根据两点之间线段最短可知:当点C与点A和点E在同一条直线上时,AC+CE的值最小;故答案为:点C与点A和点E在同一条直线上.(3)如图所示:∵AB⊥BD、ED⊥BD,∴AB∥DE,∴=,即=,解得x=,则4﹣x=,=+=5答:代数式的最小值为5.【点评】本题考查了作图﹣基本作图、列代数式、轴对称﹣最短路线问题,解决本题的关键是求x的值.。
2020广东省中考数学第16题压轴(解析版)-2020年中考数学保A必刷压轴题(广东专版)

2020广东省中考数学第16题压轴1.(2020•成都模拟)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y轴上,OA=6,OC=4,点Q是AB边上一个动点,过点Q的反比例函数y=(x>0)与BC边交于点P.若将△PBQ沿PQ折叠,点B的对应点E恰好落在对角线AC上,则此时反比例函数的解析式是y=(x >0).【分析】设P(,4),Q(6,),求得PC=,AQ=,得到PB=6﹣,BQ=4﹣,根据三角函数的定义得到tan∠BQP=tan∠BAC,求得∠BQP=∠BAC,根据平行线的判定定理得到PQ∥AC,连接BE,根据折叠的性质得到BH=EH,根据平行线分线段成比例定理得到AQ=BQ=2,于是得到结论.【解答】解:∵四边形OABC是矩形,OA=6,OC=4,∴BC=OA=6,AB=OC=4,∴B(6,4),设P(,4),Q(6,),∴PC=,AQ=,∴PB=6﹣,BQ=4﹣,∴tan∠BQP===,∵tan∠BAC===,∴tan∠BQP=tan∠BAC,∴∠BQP=∠BAC,∴PQ∥AC,连接BE,∵将△PBQ沿PQ折叠,点B的对应点E恰好落在对角线AC上,∴BH=EH,∴AQ=BQ=2,∴=2,∴k=12,∴反比例函数的解析式是y=,故答案为:y=.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,折叠的性质,平行线的判定,正确的识别图形是解题的关键.2.(2020•浙江自主招生)如图,动点P在函数的图象上运动,PM⊥x轴于M,PN⊥y轴于N,线段PM、PN分别与直线AB:y=﹣x+1交于点E、F,则AF•BE的值等于1.【分析】要求AF•BE的值,须把AF、BE联系起来,因此过点E、F分别作EC∥OA、FD∥OB,易得AF:AB=DF:OB,BE:AB=CE:OA,又OA=OB=1,AB=,CE•DF=,可得AF•BE=2×=1.【解答】解:如图,过点E、F分别作EC∥OA、FD∥OB,∴AF:AB=DF:OB,BE:AB=CE:OA,两式相乘,得=,∵直线ABy=﹣x+1交坐标轴与A(1,0)B(0,1)两点,∴OA=OB=1,AB=,∵P在的图象上,∴PM•PN=CE•DF=,代入=中,得=,解得AF•BE=2×=1.故答案为:1.【点评】此题难度较大,考查反比例函数性质、一次函数性质及相似三角形性质判定.3.(2020•龙华区二模)如图,已知直线y=﹣2x+4与x轴交于点A,与y轴交于点B,与双曲线y=(x >0)交于C、D两点,且∠AOC=∠ADO,则k的值为.【分析】先利用面积判断出BD=AC,再判断出△AOC∽△ADO,进而建立方程求出AC=BD,再判断出△ACE∽△ABO,进而求出CE,OE,即可得出结论.【解答】解:由已知得OA=2,OB=4,根据勾股定理得出,AB=2,如图,过点C作CE⊥x轴于E,作CG⊥y轴G,过点D作DH⊥x轴于H,作DF⊥y轴于F,连接GH,GD,CH,∵点C,D是反比例图象上的点,∴S矩形FDHO=S矩形GCEO,∴S矩形FDHO=S矩形GOEC.∴S△DGH=S△GHC.∴点C,D到GH的距离相等.∴CD∥GH.∴四边形BDHG和四边形GHAC都是平行四边形.∴BD=GH,GH=CA.即BD=AC;设AC=BD=m,∵∠AOC=∠ADO,CAO=∠DAO,∴△AOC∽△ADO,∴,∴AO2=AC•AD,∴22=m(2﹣m),∴m=±1(舍去+1),过点C作CE⊥x轴于点E,∴△ACE∽△ABO,∴,∴,∴AE=,CE=,∴OE=OA﹣AE=2﹣=∴CE•OE==,故答案为:.【点评】此题是反比例函数与一次函数交点问题,相似三角形的判定和性质,面积的和差,判断出AC =BD是解本题的关键.4.(2020春•鼓楼区校级月考)如图,已知双曲线y=(x<0)和y=(x>0),直线OA与双曲线y=交于点A,将直线OA向下平移与双曲线y=交于点B,与y轴交于点P,与双曲线y=交于点C,S△ABC=6,BP:CP=2:1,则k的值为﹣3.【分析】如图连接OB,OC,作BE⊥OP于E,CF⊥OP于F.根据OA∥BC,得到S△OBC=S△ABC=6,根据已知条件得到S△OPB=4,S△OPC=2,根据相似三角形的性质即可得到结论.【解答】解:如图连接OB,OC,作BE⊥OP于E,CF⊥y轴于F.∵OA∥BC,∴S△OBC=S△ABC=6,∵PB:PC=1:2,∴S△OPB=4,S△OPC=2,∵S△OBE=12=6,∴S△PBE=2,∵△BEP∽△CFP,∴S△CFP=2×=,∴S△OCF=,∴k=﹣3.故答案为:﹣3.【点评】本题考查了反比例函数与一次函数的交点问题,三角形的面积的计算,相似三角形的判定和性质,正确的作出辅助线是解题的关键.5.(2020春•沙坪坝区校级月考)如图,一次函数y=x+3的图象与反比例函数y=(x<0)交于M,N,与坐标轴交于点A,点B,以OM、ON为邻边作平行四边形OMPN.若平行四边形OMPN的面积为6,则k的值为﹣.【分析】解方程组得到M(,),N(,),过M作ME⊥OA于E,过N作NF⊥OA于F,根据三角形和梯形的面积公式即可得到结论.【解答】解:解得,,∴M(,),N(,),过M作ME⊥OA于E,过N作NF⊥OA于F,∵在平行四边形OMPN中.平行四边形OMPN的面积为6,∴S△MON=6=3,∵点M,N在反比例函数y=上,∴S四边形MEFN=×(ME+NF)•(OE﹣OF)=S△MON=3,∴(+)[﹣﹣(﹣)]=3,解得:k=﹣,故答案为:﹣.【点评】本题考查了反比例函数与一次函数的交点问题,平行四边形的性质,正确的作出辅助线是解题的关键.6.(2020•福田区一模)如图,函数y=x(x≥0)的图象与反比例函数y=的图象交于点A,若点A绕点B(,0)顺时针旋转90°后,得到的点A'仍在y=的图象上,则点A的坐标为(2,2).【分析】设点A的坐标为(a,a),过A作AC⊥x轴于C,过A′作A′D⊥x轴于D,于是得到∠ACB =∠A′DB=90°,AC=OC=a,求得BC=﹣a,根据全等三角形的性质得到BD=AC=a,A′D=BC=﹣a,列方程组即可得到结论.【解答】解:设点A的坐标为(a,a),过A作AC⊥x轴于C,过A′作A′D⊥x轴于D,∴∠ACB=∠A′DB=90°,AC=OC=a,∴BC=﹣a,∵点A绕点B(,0)顺时针旋转90°后,得到的点A',∴∠ABA′=90°,AB=A′B,∴∠CAB+∠ABC=∠ABC+∠A′BD=90°,∴∠CAB=∠A′BD,∴△ACB≌△BDA′(AAS),∴BD=AC=a,A′D=BC=﹣a,∵点A'在y=的图象上,∴,解得:k=8,a=2,∴点A的坐标为(2,2),故答案为:(2,2).【点评】本题考查了反比例函数与一次函数的交点问题,反比例函数系数k的几何意义,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.7.(2020•岳麓区校级二模)如图,直线y=kx与双曲线y=交于A、B两点,BC⊥y轴于点C,则△ABC 的面积为3.【分析】根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△BOC=1.5,则易得S△ABC=3.【解答】解:∵直线y=kx与双曲线y=交于A,B两点,∴点A与点B关于原点对称,∴S△BOC=S△AOC,而S△BOC=×3=1.5,∴S△ABC=2S△BOC=3.故答案为:3.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数k的几何意义.8.(2019•锦江区模拟)如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y轴的正半轴上,点B的坐标为(5,6),双曲线y=(x>0)在第一象限中的图象经过BC的中点D,与AB 交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE ∥x轴,则点P的坐标为(0,)或(0,15).【分析】延长EF交CO于G,依据反比例函数图象上点的坐标特征,即可得到点E的横坐标为5,点E 的纵坐标为3,再根据勾股定理可得EF的长,设OP=x,则PG=3﹣x,分两种情况讨论,依据Rt△FGP 中,FG2+PG2=PF2,即可得到x的值,进而得出点P的坐标.【解答】解:如图所示,延长EF交CO于G,∵EF∥x轴,∴∠FGP=90°=∠AEF,∵双曲线y=(k≠0)经过矩形OABC的边BC的中点D,点B的坐标为(5,6),∴点D(,6),∴k=15,又∵点E的横坐标为5,∴点E的纵坐标为=3,即AE=3,①当点F在AB左侧时,由折叠可得,AF=AO=5,∴Rt△AEF中,EF===4,∴GF=5﹣4=1,设OP=x,则PG=3﹣x,∵Rt△FGP中,FG2+PG2=PF2,∴12+(3﹣x)2=x2,解得x=,∴点P的坐标为(0,);②当点F在AB右侧时,同理可得EF=4,∴GF=5+4=9,设OP=x,则PG=x﹣3,∵Rt△FGP中,FG2+PG2=PF2,∴92+(x﹣3)2=x2,解得x=15,∴点P的坐标为(0,15);故答案为:(0,)或(0,15).【点评】本题考查了反比例函数图象上点的坐标特征,翻折变换、勾股定理等知识的综合运用,解题时,常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.。
初中数学中考压轴题及答案详解(广东篇)

专题训练122. 如图,抛物线923212--=x x y 与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC 、AC 。
(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合)。
过点E 作直线l 平行BC ,交AC 于点D 。
设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围; (3)在(2)的条件下,连接CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π)。
参考答案: 解:(1)令y=0,即0923212=--x x , 整理得 01832=--x x , 解得:31-=x ,62=x , ∴ A (—3,0),B (6,0) 令x = 0,得y = —9, ∴ 点C (0,—9)∴ 9)3(6=--=AB ,99=-=OC , (2)281992121=⨯⨯=⋅=∆OC AB S ABC, ∵ l ∥BC ,∴ △ADE ∽△ACB , ∴22ABAE S S ABC=∆,即229281m S = ∴ 221m S =,其中90<<m 。
(3)88129212192122+⎪⎭⎫ ⎝⎛--=-⨯⨯=-=∆∆∆m m m S S S ADEACE CDE , ∵ 021<-∴ 当29=m 时,S △CDE 取得最大值,且最大值是881。
这时点E (23,0),yA OB xElCD题22图∴29236=-=-=OE OB BE ,133962222=+=+=OC OB BC , 作EF ⊥BC ,垂足为F ,∵∠EBF=∠CBO ,∠EFB=∠COB , ∴△EFB ∽△COB ,∴CB BEOC EF =,即133299=EF ∴132627=EF , ∴ ⊙E 的面积为:πππ5272913262722=⎪⎭⎫⎝⎛⨯=⋅=EF S 。
2020年广东省中考数学压轴题专题训练(含解析)

2020年(广东)中考数学压轴题专题训练1.如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.2.已知:矩形ABCD内接于⊙O,连接BD,点E在⊙O上,连接BE交AD于点F,∠BDC+45°=∠BFD,连接ED.(1)如图1,求证:∠EBD=∠EDB;(2)如图2,点G是AB上一点,过点G作AB的垂线分别交BE和BD于点H和点K,若HK=BG+AF,求证:AB=KG;(3)如图3,在(2)的条件下,⊙O上有一点N,连接CN分别交BD和AD于点M和点P,连接OP,∠APO=∠CPO,若MD=8,MC=3,求线段GB的长.3.如图,AB是⊙O的直径,CD⊥AB,交⊙O于C、D两点,交AB点E、F是弧BD上一点,过点F作一条直线,交CD的延长线于点G,交AB的延长线于点M.连结AF,交CD于点H,GF=GH.(1)求证:MG是⊙O的切线;(2)若弧AF=弧CF,求证:HC=AC;(3)在(2)的条件下,若tan G=,AE=6,求GM的值.4.如图,已知AC是半径为2的⊙O的一条弦,且AC=2,点B是⊙O上不与A、C重合的一个动点,(1)请计算△ABC的面积的最大值;(2)当点B在优弧上,∠BAC>∠ACB时,∠ABC的平分线交AC于D,且OD⊥BD,请计算AD的长;(3)在(2)条件下,请探究线段AB、BC、BD之间的数量关系.5.如图,△ABC为⊙O的内接三角形,BC为⊙O的直径,在线段OC上取点D(不与端点重合),作DG⊥BC,分别交AC、圆周于E、F,连接AG,已知AG=EG.(1)求证:AG为⊙O的切线;(2)已知AG=2,填空:①当四边形ABOF是菱形时,∠AEG=°;②若OC=2DC,△AGE为等腰直角三角形,则AB=.6.如图,△ABC内接于⊙O,AB=AC,AD是⊙O的弦,AD=BC,AD与BC相交于点E.(1)求证:CB平分∠ACD;(2)过点B作BG⊥AC于G,交AD于点F.①猜想AC、AG、CD之间的数量关系,并且说明理由;②若S△ABG=S△ACD,⊙O的半径为15,求DF的长.7.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,交y轴于点A,以AC为直角边作等腰Rt△ACD,连接BD分别交y轴和AC于E、F两点,连接AB.(1)求证:AB=AD;(2)若BF=4,DF=6,求线段CD的长;(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.8.如图,在△ABC中,∠ACB=90°,点D在BC边上(不包括端点B,C),过A,C,D 三点的⊙O交AB于另一点E,连结AD,DE,CE,且CE⊥AD于点G,过点C作CF∥DE交AD于点F,连结EF.(1)求证:四边形DCFE是菱形;(2)当tan∠AEF=,AC=4时,求⊙O的直径长.9.如图,抛物线y=x2+mx+n与x轴交于A,B两点,与y轴交于点C,若A(﹣1,0),且OC=3OA.(1)求抛物线的解析式;(2)若点M为抛物线上第四象限内一动点,顺次连接AC,CM,MB,是否存在点M,使四边形MBAC的面积为9,若存在,求出点M的坐标,若不存在,请说明理由.(3)将直线BC沿x轴翻折交y轴于N点,过B点的直线l交y轴、抛物线分别于D、E,且D在N的上方,将A点绕O顺时针旋转90°得M,若∠NBD=∠MBO,试求E的的坐标.10.已知:如图,直线y=﹣x﹣3交坐标轴于A、C两点,抛物线y=x2+bx+c过A、C两点,(1)求抛物线的解析式;(2)若点P为抛物线位于第三象限上一动点,连接P A,PC,试问△P AC的面积是否存在最大值,若存在,请求出△APC面积的最大值,以及此时点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一点,点N为抛物线对称轴上一点,若△NMC是以∠NMC为直角的等腰直角三角形,请直接写出点M的坐标.11.如图,二次函数y=a(x2+2mx﹣3m2)(其中a,m是常数a<0,m>0)的图象与x轴分别交于A、B(点A位于点B的右侧),与y轴交于点C(0,3),点D在二次函数的图象上,CD∥AB,连结AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)求a与m的关系式;(2)求证:为定值;(3)设该二次函数的图象的顶点为F.探索:在x轴的正半轴上是否存在点G,连结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.12.如图,抛物线y=ax2+4ax+与x轴交于点A、B(A在B的左侧),过点A的直线y=kx+3k交抛物线于另一点C.(1)求抛物线的解析式;(2)连接BC,过点B作BD⊥BC,交直线AC于点D,若BC=5BD,求k的值;(3)将直线y=kx+3k向上平移4个单位,平移后的直线交抛物线于E、F两点,求△AEF的面积的最小值.13.如图1,二次函数y=﹣x2+x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH ⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.14.如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y 轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.15.如图,已知抛物线y=a(x+2)(x﹣4)(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)该二次函数图象上有一点P(x,y)使得S△BCD=S△ABP,求点P的坐标;(3)设F为线段BD上一点(不含端点),连接AF,求2AF+DF的最小值.16.二次函数y=x2﹣x﹣与x轴分别交于A、B两点,与y轴交于点C,点D 为抛物线的顶点,连接BD.(1)如图1,点P为抛物线上的一点,且在线段BD的下方(包括线段的端点),连接P A,PC,AC.求△P AC的最大面积;(2)如图2,直线l1过点B、D.过点A作直线l2∥l1交y轴于点E,连接点A、E,得到△OAE,将△OAE绕着原点O顺时针旋转α°(0<α<180)得到△OA1E1,旋转过程中直线OE1与直线l1交于点M,直线A1E1与直线l1交于点N.当△E1MN为等腰三角形时,直接写出点E1的坐标并写出相应的α值.17.如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q 是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.18.如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B 两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为.(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.19.阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC中,∠ACB=90°,AC=BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:△ADC≌△CEB.(1)探究问题:如果AC≠BC,其他条件不变,如图②,可得到结论;△ADC∽△CEB.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y=x与直线CD交于点M(2,1),且两直线夹角为α,且tanα=,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,AB=3,BC=5,点E为BC边上一个动点,连接BE,将线段AE绕点E顺时针旋转90°,点A落在点P处,当点P在矩形ABCD 外部时,连接PC,PD.若△DPC为直角三角形时,请你探究并直接写出BE的长.20.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A(x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH 与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR 为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.参考答案一.解答题(共20小题)1.(1)证明:连接OC,OE,∵OC=OE,∴∠E=∠OCE,∵E是的中点,∴=,∴∠AOE=∠BOE=90°,∴∠E+∠ODE=90°,∵PC=PD,∴∠PCD=∠PDC,∵∠PDC=∠ODE,∴∠PCD=∠ODE,∴∠PCD+∠OCD=∠ODE+∠E=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)证明:连接AC,BE,BC,∵∠ACD=∠DBE,∠CAD=∠DEB,∴△ACD∽△EBD,∴=,∴CD•DE=AD•BD=(AO﹣OD)(AO+OD)=AO2﹣OD2;∵AB为⊙O的直径,∴∠ACB=90°,∵∠PCO=90°,∴∠ACP+∠ACO=∠ACO+∠BCO=90°,∴∠ACP=∠BCO,∵∠BCO=∠CBO,∴∠ACP=∠PBC,∵∠P=∠P,∴△ACP∽△CBP,∴,∴PC2=PB•P A=(PD+DB)(PD﹣AD)=(PD+OD+OA)(PD+OD﹣OA)=(PD+OD)2﹣OA2=PD2+2PD•OD+OD2﹣OA2,∵PC=PD,∴PD2=PD2+2PD•OD+OD2﹣OA2,∴OA2﹣OD2=2OD•PD,∴CD•DE=2OD•PD;(3)解:∵AB=8,∴OA=4,由(2)知,CD•DE=AO2﹣OD2;∵CD•DE=15,∴15=42﹣OD2,∴OD=1(负值舍去),∴AD=3,由(2)知,CD•DE=2OD•PD,∴PD==,∴P A=PD﹣AD=.2.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∠BAD=90°,∴∠BDC=∠DBA,BD是⊙O的直径,∴∠BED=90°,∵∠BFD=∠ABF+∠BAD,∠BFD=∠BDC+45°,∴∠ABF+90°=∠DBA+45°,∴∠DBA﹣∠ABF=45°,∴∠EBD=45°,∴△BED是等腰直角三角形,∴∠EBD=∠EDB;(2)证明:过点K作KS⊥BE,垂足为R,交AB于S,如图2所示:∵KG⊥AB,∴∠BGH=∠KRH=∠SRB=∠KGS=90°,∴∠SBR=∠HKR,∵∠BED=90°,∴∠RBK=∠RKB=45°,∴BR=KR,在△SRB和△HRK中,,∴△SRB≌△HRK(ASA),∴SB=HK,∵SB=BG+SG,HK=BG+AF,∴BG+SG=BG+AF,∴SG=AF,在△ABF和△GKS中,,∴△ABF≌△GKS(AAS),∴AB=KG;(3)解:过点O分别作AD与CN的垂线,垂足分别为Q和T,连接OC,如图3所示:∵∠APO=∠CPO,∴OQ=OT,在Rt△OQD和Rt△OTC中,,∴Rt△OQD≌Rt△OTC(HL),∴DQ=CT,∴AD=CN,∵四边形ABCD是矩形,∴AD=CN=BC,连接ON,在△NOC和△BOC中,,∴△NOC≌△BOC(SSS),∴∠BCO=∠NCO,设∠OBC=∠OCB=∠NCO=α,∴∠MOC=2α,过点M作MW⊥OC于W,在OC上取一点L,使WL=OW,连接ML,∴MO=ML,∴∠MOL=∠MLO=2α,∴∠LCM=∠LMC=α,∴ML=CL,设OM=ML=LC=a,则OD=a+8=OC,∴OL=8,OW=WL=4,∴CW=4+a,由勾股定理得:OM2﹣OW2=MW2=MC2﹣CW2,即a2﹣42=(3)2﹣(4+a)2,整理得:a2+4a﹣45=0,解得:a1=﹣9(不合题意舍去),a2=5,∴OM=5,∴MW=3,WC=9,∴OB=OC=OD=13,BD=26,∵∠GKB=∠CBD=∠ADB=∠BCO=∠MCW,tan∠MCW===,∴tan∠GKB=tan∠CBD=tan∠ADB=tan∠BCO=tan∠MCW=,设AB=b,则AD=3b,由勾股定理得:b2+(3b)2=262,解得b=,∴CD=GK=AB=,在Rt△GKB中,tan∠GKB==,∴GB=GK=×=.3.(1)证明:连接OF.∴AB⊥CD,∴∠AEH=90°,∴∠EAH+∠AHE=90°,∵GF=GH,∴∠GFH=∠GHF=∠AHE,∵OA=OF,∴∠OAF=∠OF A,∴∠OF A+∠GFH=90°,∴OF⊥GM,∴MG是⊙O的切线.(2)证明:∵=,∴OF垂直平分线段AC∵OF⊥MG,∴AC∥GM,∴∠CAH=∠GFH,∵∠CHA=∠GHF,∠HGF=∠GFH,∴∠CAH=∠CHA,∴CA=CH.(3)解:∵AC∥GM,∴∠G=∠ACH,∴tan∠CAH=tan∠G==,∵AE=6,∴EC=8,AC===10,设GF=GH=x,则CG=CH+GH=AC+GH=10+x,∵CD=2EC=16,∴GD=10+x﹣16=x﹣6,∵GF2=GD•GC,∴x2=(x﹣6)(x+10),解得x=15,∴EG=CG﹣CE=25﹣8=17,∵tan∠G==,∴EM=,∴GM===.4.解:(1)如图1中,当点B在优弧AC的中点时,△ABC的面积的最大,连接AB,BC,OB,延长BO交AC于H.∵=,∴BH⊥AC,∴AH=HC=,∴OH==1,∴BH=OB+OH=2+1=3,∴△ABC的最大面积=×AC×BH=×2×3=3.(2)如图2中,延长BD交⊙O于E,连结OE交AC于F,连结OC.由BD平分∠ABC可得,E为弧AC中点,∴OE⊥AC,∴AF=CF=∴OF===1=EF,∴DF垂直平分OE,又∵OD⊥BD,∴△ODE是等腰直角三角形,∴DF=OE=1,∴AD=.(3)如图3,连结AE、CE,由已知得AE=CE,∠AEC=120〫,将△EAB绕点E顺时针旋转120〫得△ECF,∵∠BAE=∠ECF,∠BAE+∠BCE=180〫,∴∠ECF+∠BCE=180〫,∴BF=BC+CF,∵AB=CF,∴BF=AB+BC,∵BE=FE,∠BEF=∠AEC=120〫,∴BF=BE,∵OD⊥BD,∴BE=2BD,∴BF=2BD,∴BA+BC=2BD.5.(1)证明:连接OA.∵OA=OC,∴∠OAC=∠OCA,∵GA=GE,∴∠GAE=∠GEA,∵DG⊥BC,∴∠EDC=90°,∴∠OCA+∠DEC=90°,∵∠CED=∠GEA=∠GAE,∴∠OAC+∠GAE=90°,∴∠OAG=90°,∴OA⊥AG,∴AG是⊙O的切线.(2)①如图2中,连接OA,AF,OF.∵四边形ABOF是菱形,∴AB=BO=OF=AF=OA,∴△ABO是等边三角形,∴∠B=60°,∵BC是直径,∴∠BAC=90°∴∠ACB=90°﹣60°=30°,∵ED⊥BC,∴∠DEC=90°﹣∠ACB=60°,∴∠AEG=∠DEC=60°.故答案为60.②如图3中,当AB=4时,△AGE是等腰直角三角形.理由:连接OA.∵△AGE是等腰直角三角形,∴∠AEG=∠DEC=∠DCE=45°,∴△EDC,△ABC都是等腰直角三角形,∵OB=OC,∴AO⊥OC,∴∠AOD=∠ODG=∠G=90°,∴四边形AODG是矩形,∴AG=OD=2,∴OC=2OD=4,∴BC=2OC=8,∴AB=AC=4,故答案为4.6.(1)证明:如图1中,∵AD=BC,∴=,∴=,∵AB=AC,∴=,∴=,∴∠ACB=∠BCD,∴CB平分∠ACD.(2)①结论:AC﹣2AG=CD.理由:如图2中,连接BD,在GC上取一点H,使得GH=GA.∵BG⊥AH,GA=GH,∴BA=BH,∴∠BAH=∠BHA,∵∠BAH+∠BDC=180°,∠BHG+∠BHC=180°,∴∠BDC=∠BHC,∵∠BCH=∠BCD,CB=CB,∴△BCH≌△BCD(AAS),∴CD=CH,∴AC﹣2AG=AC﹣AH=CH=CD.②如图3中,过点G作GN⊥AB于G,过点D作DM⊥AC交AC的延长线于M,连接AO,延长AO交BC于J,连接OC.∵=,∴∠BAD=∠ADC,∴AB∥CD,∴S△ACD=S△BCD,∵△BCH≌△BCD,∴S△BCH=S△BCD,∵AG=GH,∴S△ABG=S△BGH,∵S△ABG=S△ACD,∴S△ABG=S△BGH=S△BCH,∴AG=GH=CH,设AG=GH=HC=a,则AB=AC=3a,BG===2a,∵BG⊥AC,∴•BG•AG=•AB•GN,∴GN==a,在Rt△BGC中,BC===2a,∵AB=AC,∴=,∴AJ⊥BC,∴BJ=JC=a,∴AJ===a,在Rt△OJC中,∵OC2=OJ2+JC2,∴152=(a﹣15)2+(a)2,∴a=,∵S△ABG=S△ACD,AB=AC,GN⊥AB,DM∠AC,∴DM=GN=a=,∵BC=AD=2a=20,∴AM===,∵FG∥DM,∴=,∴=,∴AF=6,∴DF=AD=AF=20﹣6=14. 7.(1)证明:∵OA⊥BC,且OA过圆心点P,∴OB=OC,在△AOB和△AOC中,,∴△AOB≌△AOC(SAS),∴AB=AC,∵以AC为直角边作等腰Rt△ACD,∴AD=AC,∴AB=AD;(2)如图1,过点A作AM⊥BD于M,由(1)知,AB=AD,∴DM=BD,∵BF=4,DF=6,∴BD=10,∴DM=5,∵∠AMD=90°=∠DAF,∠ADM=∠FDA,∴△ADM∽△FDA,∴,∴,∴AD=,在等腰直角三角形ADC中,CD=AD=2;(3)的值是不发生变化,理由:如图2,过点D作DH⊥y轴于H,作DQ⊥x轴于Q,∴∠AHD=90°=∠COA,∴∠ADH+∠DAH=90°,∵∠CAD=90°,∴∠CAO+∠DAH=90°,∴∠ADH=∠CAO,∵AD=AC,∴△ADH≌△ACO(AAS),∴DH=AO,AH=OC,∵∠OHD=∠QOH=∠OQD=90°,∴四边形OQDH是矩形,DH=OQ,DQ=OH,又∵HO=AH+AO=OC+DH=OB+DH=OB+OQ=BQ,∴DQ=BQ,∴△DBQ为等腰直角三角形,∴∠DBQ=45°,∴∠DEH=∠BEO=45°,∴sin∠DEH=,∴=,∴,∴.8.解:(1)证明:∵CE⊥AD,∴EG=CG,∵CF∥DE,∴∠DEG=∠FCG,∵∠FGC=∠DGE,∴△DEG≌△FCG(ASA),∴ED=FC,∴四边形DCFE为平行四边形,又∵CE⊥DF,∴四边形DCFE是菱形;(2)∵AG⊥EC,EG=CG,∴AE=AC=4,∵四边形AEDC内接于⊙O,∴∠BED=∠BCA=90°,∵四边形DCFE是菱形,∴EF∥DC,DE=DC,∴∠AEF=∠ABC,∴tan∠ABC=tan∠AEF=,在Rt△BED中,设DE=3a,则BE=4a,∴DC=3a,BD==5a,∵BC2+AC2=AB2,∴(5a+3a)2+42=(4a+4)2,解得a=或a=0(舍去),∴DE=DC=2,∴AD===2.即⊙O的直径长为2.9.解:(1)∵A(﹣1,0),∴OA=1,OC=3OA=3,∴C(0,﹣3),将A(﹣1,0)、C(0,﹣3)代入y=x2+mx+n中,得,解得,∴y=x2﹣2x﹣3;(2)存在,理由:令y=0,则x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),∴直线BC的解析式为y=x﹣3,设M(m,m2﹣2m﹣3),过点M作MN∥y轴交BC于N,如图1,∴N(m,m﹣3),∴MN=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S四边形MBAC=S△ABC+S△BCM=AB×OC+MN×OB=×4×3×(﹣m2+3m)×3=9,解得:m=1或2,故点M的坐标为(1,﹣4)或(2,﹣3);(3)∵OB=OC=ON,∴△BON为等腰直角三角形,∵∠OBM+∠NBM=45°,∴∠NBD+∠NBM=∠DBM=45°,∴MB=MF,过点M作MF⊥BM交BE于F,过点F作FH⊥y轴于点H,如图2,∴∠HFM+∠BMO=90°,∵∠BMO+∠OMB=90°,∴∠OMB=∠HFM,∵∠BOM=∠MHF=90°,∴△BOM≌△MHF(AAS),∴FH=OM=1,MH=OB=3,故点F(1,4),由点B、F的坐标得,直线BF的解析式为y=﹣2x+6,联立,解得,∴E(﹣3,12).10.解:(1)y=﹣x﹣3交坐标轴于A、C两点,则点A、C的坐标分别为:(﹣3,0)、(0,﹣3);将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)存在,理由:如图1,过点P作y轴的平行线交AC于点H,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),△APC面积S=S△PHA+S△PHC=×PH×OA=(﹣x﹣3﹣x2﹣2x+3)×3=﹣x2﹣x,∵﹣<0,故S有最大值,当x=﹣时,S的最大值为,此时点P(﹣,﹣);(3)如图2,设点N(﹣1,s),点M(m,n),n=m2+2m﹣3,过点M作y轴的平行线交过点C与x轴的平行线于点H,交过点N与x轴的平行线于点G,∵∠GMN+∠GNM=90°,∠GMN+∠HMC=90°,∴∠HMC=∠GNM,∵∠MGN=∠CHM=90°,MN=MC,∴△MGN≌△CHM(AAS),∴GN=MH,即GN=|﹣1﹣m|=MH=|n+3|,①当﹣1﹣m=n+3时,即m+n+4=0,即m2+3m+1=0,解得:m=,故点P(,);②当﹣1﹣m=﹣(n+3)时,即m=n+2,同理可得:点P(,);故点P的坐标为:(,)或(,)或(,)或(,).11.解:(1)将点C的坐标代入抛物线表达式得:﹣3am2=3,解得:am2=﹣1;(2)对于二次函数y=a(x2+2mx﹣3m2),令y=0,则x=m或﹣3m,∴函数的对称轴为:x=﹣m,∵CD∥AB,∴点D、C的纵坐标相同,故点D(﹣2m,3),故点A、B的坐标分别为:(m,0)、(﹣3m,0),设点E(x,y),y=a(x2+2mx﹣3m2),分别过点D、E作x轴的垂线,垂足分别为M、N,∵AB平分∠DAE,∴∠DAM=∠EAN,∴RtADM△∽Rt△ANE,∴,即,解得:y=,故点E(x,),将点E的坐标代入抛物线表达式并解得:x==﹣4m,则y==﹣5,故点E(﹣4m,﹣5),故===为定值;(3)存在,理由:函数的对称轴为x=﹣m,当x=﹣m时,y=a(x2+2mx﹣3m2)=4,即点F(﹣m,4),由点F、C的坐标得,直线FC的表达式为:y=﹣x+3,令y=0,则x=3m,即点G(3m,0),GF2=(3m+m)2+42=16m2+16,同理AD2=9m2+9,AE2=25m2+25,故AE2=AD2+GF2,GF、AD、AE的长度为三边长的三角形是直角三角形,点G的横坐标为3m.12.解:(1)∵直线y=kx+3k过点A,∴y=0时,0=kx+3k,解得x=﹣3,∴A(﹣3,0),把点A的坐标代入y=ax2+4ax+,得9a﹣12a+=0,解得a=,∴抛物线解析式为y=x2+x+;(2)如图1,过点D作DF⊥x轴于F,过点C作CG⊥x轴于G,∴∠DFB=∠CGO=90°=∠DBC,∴∠DBF+∠BDF=90°,又∵∠DBF+∠CBG=90°,∴∠BDF=∠CBG,∴△BDF∽△CBG,∴,∵CB=5BD,∴CG=5BF,BG=5DF,联立方程组,解得:,(舍去),∴点C(4k﹣1,4k2+2k),∴CG=4k2+2k,OG=4k﹣1,设BF=m,则CG=5m,DF=2k﹣km,BG=5(2k﹣km),∴,解得k=﹣(舍去)或k=0(舍去)或k=1,∴k的值为1;(3)∵将直线y=kx+3k向上平移4个单位,∴平移后解析式为y=kx+3k+4,∴kx+3k+4=x2+x+,∴x E+x F=4k﹣4,x E•x F=﹣12k﹣13,∴|x F﹣x E|==,∵△AEF的面积=×4×,∴当k=﹣时,△AEF的面积的最小值为16.13.解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则﹣x2+x+3=0,解得:x1=﹣4,x2=6,∴A(﹣4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA•OD,∴OD=,∴D(,0).∴E(1,).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=﹣x+.设H(m,﹣m2+m+3),则P(m,﹣m+).∴HG=﹣m2+m+3,HP=y H﹣y P=﹣m2+m﹣.∴S△BHE=(x B﹣x E)•HP=(﹣m2+m﹣)=﹣m2+m﹣.∵FH⊥CD,AC⊥CD,∴AC∥FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴==,∴FG=HG=﹣m2+m+4,∴AF=AG﹣FG=m+4+m2﹣m﹣4=m2+m,∴S△AFC=AF•OC=(m2+m)=m2+m,∵S四边形ACEB=S△ACO+S△OCE+S△OEB=×4×3+×3×1+6×=,∴S五边形FCEHB=S四边形ACEB+S△BHE﹣S△AFC=+(﹣m2+m﹣)﹣(m2+m)∴当m=时,S五边形FCEHB取得最大值.此时,H的横坐标为.(3)∵B(6,0),C(0,3),D(,0),∴CD=BD=,BC=3,∴∠DCB=∠DBC.①如图3﹣1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=,MN=BC=3,∠CMN=∠CNM=∠DBC=∠DCB,∴MN∥AB,∴MN⊥y轴,∴∠CKN=∠COB=90°,MK=NK=MN=,∴△CKN∼△COB,∴==,∴CK=,∴OK=OC+CK=,∴N(,).②如图3﹣2,△MCN≌△DBC,则CN=CB=3,∠MCN=∠DBC,∴CN∥AB,∴N(3,3).③如图3﹣3,△CMN≌△DBC,则∠CMN=∠DCB,CM=CN=DC=DB=,MN=BC=3,∴MN∥CD,作MR⊥y轴于R,则===,∴CR=,RM=,∴OR=3﹣,作MQ∥y轴,NQ⊥MQ于点Q,则∠NMQ=∠DCO,∠NQM=∠DOC=90°,∴△COD∼△MQN,∴==,∴MQ=MN=,NQ=MN=,∴NQ﹣RM=,OR+MQ=,∴N(﹣,).综上所述,满足要标的N点坐标有:(,)、(3,3)、(﹣,).14.解:(1)对称轴为直线x=﹣=4,则CD=4,∵四边形ABDC为平行四边形,∴DC∥AB,DC=AB,∴DC=AB=4,∴A(2,0),B(6,0),把点A(2,0)代入得y=ax2﹣8ax+12得4a﹣16a+6=0,解得a=,∴二次函数解析式为y=x2﹣4x+6;(2)如图1,设E(m,m2﹣4m+6),其中2<m<6,作EN⊥y轴于N,如图2,∵S梯形CDEN﹣S△OCD﹣S△OEN=S△ODE,∴(4+m)(6﹣m2+4m﹣6)﹣×4×6﹣m(﹣m2+4m﹣6)=12,化简得:m2﹣11m+24=0,解得m1=3,m2=8(舍),∴点E的坐标为(3,﹣);(3)Ⅰ、当点Q在对称轴右侧时,如图2,过点E作EF⊥PM于F,MQ交x轴于G,∵∠PQE=∠PME,∴点E,M,Q,P四点共圆,∵PE⊥PQ,∴∠EPQ=90°,∴∠EMQ=90°,∴∠EMF+∠HMG=90°,∵∠HMG+∠HGM=90°,∴∠EMF=∠HGM,在Rt△EFM中,EF=1,FM=,tan∠EMF==2,∴tan∠HGM=2,∴,∴HG=HM=1,∴点G(5,0),∵M(4,﹣2),∴直线MG的解析式为y=2x﹣10①,∵二次函数解析式为y=x2﹣4x+6②,联立①②解得,(舍)或,∴Q(8,6),∴点Q到对称轴的距离为8﹣4=4;Ⅱ、当点Q在对称轴左侧时,如图3,过点E作EF⊥PM于F,过点Q作QD⊥PM于D,∴∠DQP+∠QPD=90°,∵∠EPQ=90°,∴∠DPQ+∠FPE=90°,∴∠DQP=∠FPE,∵∠PDQ=∠EFP,∴△PDQ∽△EFP,∴,由Ⅰ知,tan∠PQE==2,∵EF=1,∴=,∴DP=,PF=2QD,设Q(n,n2﹣4n+6),∴DQ=4﹣n,DH=n2﹣4n+6,∴PF=DH+FH﹣DP=n2﹣4n+6+﹣=n2﹣4n+7,∴n2﹣4n+7=2(4﹣n),∴n=2+(舍)或n=2﹣,∴DQ=4﹣n=2+,即点Q到对称轴的距离为4或2+.15.解:(1)抛物线y=a(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+,当x=﹣5时,y=3,∴D(﹣5,3),∵点D(﹣5,3)在抛物线y=a(x+2)(x﹣4)上,∴a(﹣5+2)(﹣5﹣4)=3,∴a=.∴抛物线的函数表达式为:y=x2﹣x﹣.(2)如图1中,设直线BD交y轴于J,则J(0,).连接CD,BC.∵S△BDC=××9=10,∴S△P AB=10,∴×6×|y P|=10y P=±,当y=时,=x2﹣x﹣,解得x=1±,∴P(,)或(,),当﹣=x2﹣x﹣,方程无解,∴满足条件的点P的坐标为(,)或(,).(3)如图2中,过点D作DM平行于x轴,∵D(﹣5,3),B(4,0),∴tan∠DBA==,∴∠DBA=30°∴∠BDM=∠DBA=30°,过F作FJ⊥DM于J,则有sin30°=,∴HF=,∴2AF+DF=2(AF+)=2(AF+HF),当A、F、H三点共线时,即AH⊥DM时,2AF+DF=2(AF+HF)取最小值为=.16.解:(1)∵y=x2﹣x﹣=(x2﹣2x﹣3)=(x﹣1)2﹣2,∴顶点D的坐标为(1,﹣2),令y=0,则(x2﹣2x﹣3)=0,∴x=﹣1或x=3,∴A(﹣1,0),B(3,0),令x=0,则y=﹣,∴C(0,﹣),∴AC是定值,要△ACP的面积最大,则点P到AC的距离最大,即当点P在点B位置时,点P到AC的距离最大,∴S△ACP最大=S△ABC=AB•OC=(3+1)•=3;(2)由(1)知,B(3,0),D(1,﹣2),∴直线l1的解析式为y=x﹣3,∵l1∥l2,且l1过点A,∴直线l2的解析式为y=x+,∴E(0,),∴OE=,在Rt△AOE中,OA=1,∴tan∠AEO==,∴∠AEO=30°,∵l1∥l2,∴∠DBO=60°,由旋转知,OE1=OE=,∠A1E1O=∠AEO=30°,∴∠ME1N=30°如图,∵△E1MN为等腰三角形,∴①当E1N1=M1N1时,∴∠E1M1N1=∠A1E1O=30°,∴α=∠BOM=60°﹣30°=60°,过点E1作E1F⊥x轴于F,∴E1F=OE1=,∴OF=E1F=,∴E1(,),②当E2M2=E2N2时,∠E2N2M2=∠E2M2N2=(180°﹣30°)=75°,∴∠BOM2=75°﹣60°=15°,∴α=105°,过点E2作E2H⊥x轴,在OH上取一点Q,使OQ=E2Q,∴∠E2QH=30°,设E2H=a,则E2Q=2a,HQ=a,∴OQ=E2Q=2a,OH=(2+)a,在Rt△OHE2中,根据勾股定理得,[(2+)a]2+a2=3,∴a=(舍去负值),∴E2(,﹣).③当E3M3=M3N3时,∠E3N3M3=∠M3E3N3=30,∴∠E3M3N3=120°,∴∠BOM3=60°,∴α=150°,∵∠OBM3=60°,∠E3N3M3=30°,∴∠N3GB=90°,∴OG=,E3G=,∴E3(,﹣).17.解:(1)∵AB=6,点B的坐标为(﹣6,0),∴点A(﹣12,0),如图1,过点D作DE⊥x轴于点D,则ED=AD sin∠DAB=8×=4,同理AE=4,故点D(﹣8,4),则点C(﹣2,4),由中点公式得,点M(﹣4,2);(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),∵点D′M′都在函数上,∴(a﹣8)×4=(a﹣4)×2,解得:a=12,则k=(12﹣8)×4=16,故反比例函数的表达式为=;(3)由(2)知,点M′的坐标为(8,2),点B′、C′的坐标分别为(6,0)、(10,4),设点P(m,2),点Q(s,t);①当B′C′是矩形的边时,如图2,求解的矩形为矩形B′C′PQ和矩形B′C′Q′P′,过点C′作C′H⊥l交于点H,C′H=4﹣2=2,直线B′C′的倾斜角为60°,则∠M′PC′=30°,PH=C′H÷tan∠M′PC′=故点P的坐标为(16,2),由题意得:点P、Q′关于点C′对称,由中点公式得,点Q的坐标为(12,﹣4);同理点Q、Q′关于点M′对称,由中点公式得,点Q′(4,6);故点Q的坐标为:(12,﹣4)或(4,6);②当B′C′是矩形的对角线时,∵B′C′的中点即为PQ的中点,且PQ=B′C′,∴,解得:,,故点Q的坐标为(4,2)或(12,2);综上,点Q的坐标为:(12,﹣4)或(4,6)或(4,2)或(12,2).18.解:(1)∵直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,且点A的横坐标为﹣1,∴点A,点B关于原点对称,∴点B的横坐标为1,∴当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,由图象知,点A,点B关于原点对称,∴OA=OB,∵AC⊥CB,∴∠ACB=90°,∴OC=AB=AO,∴∠OAC=∠OCA,∵AC为∠BAD的平分线,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC,∴S△AEO=S△ACE=,∴AE=DE,∴S△AOD=2S△AOE=3;(3)作EF⊥x轴于F,作AH⊥x轴于H,则EF∥AH,∵AD=2DE,∴DE=EA,∵EF∥AH,∴==1,∴DF=FH,∴EF是△DHA的中位线,∴EF=AH,∵S△OEF=S△OAH=﹣,∴OF•EF=OH•HA,∴OH=OF,∴OH=HF,∴DF=FH=HO=DO,∴S△OAH=S△ADO=3=1,∴﹣=1,∴k=﹣2,∴y=﹣,∵点A在y=﹣的图象上,∴把x=﹣1代入得,y=2,∴A(﹣1,2),∵点A在直线y=mx上,∴m=﹣2,∴P(﹣2,﹣2),在y轴上找到一点M,使得△OMP是直角三角形,当∠OMP=90°时,PM⊥y轴,则OM=2,∴点M的坐标为(0.﹣2);当∠OPM=90°时,过P作PG⊥y轴于G,则△OPM是等腰直角三角形,∴OM=2PG=4,∴点M的坐标为(0.﹣4);综上所述,点M的坐标为(0.﹣2)或(0,﹣4).19.解:(1)理由:∵∠ACB=90°,∴∠ACD=∠BCE=90°,又∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,且∠ADC=∠BEC=90°,∴△ADC∽△CEB;(2)如图,过点O作ON⊥OM交直线CD于点N,分别过M、N作ME⊥x轴NF⊥x轴,由(1)可得:△NFO∽△OEM,∴,∵点M(2,1),∴OE=2,ME=1,∵tanα==,∴,∴NF=3,OF=,∴点N(﹣,3),∵设直线CD表达式:y=kx+b,∴∴∴直线CD的解析式为:y=﹣x+;(3)当∠CDP=90°时,如图,过点P作PH⊥BC,交BC延长线于点H,∵∠ADC+∠CDP=180°,∴点A,点D,点P三点共线,∵∠BAP=∠B=∠H=90°,∴四边形ABHP是矩形,∴AB=PH=3,∵将线段AE绕点E顺时针旋转90°,∴AE=EP,∠AEP=90°,∴∠AEB=∠PEH=90°,且∠BAE+∠AEB=90°,∴∠BAE=∠PEH,且∠B=∠H=90°,AE=EP,∴△ABE≌△EHP(AAS),∴BE=PH=3,当∠CPD=90°时,如图,过点P作PH⊥BC,交BC延长线于点H,延长HP交AD的延长线于N,则四边形CDNH是矩形,∴CD=NH=3,DN=CH,设BE=x,则EC=5﹣x,∵将线段AE绕点E顺时针旋转90°,∴AE=EP,∠AEP=90°,∴∠AEB=∠PEH=90°,且∠BAE+∠AEB=90°,∴∠BAE=∠PEH,且∠B=∠EHP=90°,AE=EP,∴△ABE≌△EHP(AAS),∴PH=BE=x,AB=EH=3,∴PN=3﹣x,CH=3﹣(5﹣x)=x﹣2=DN,∵∠DPC=90°,∴∠DPN+∠CPH=90°,且∠CPH+∠PCH=90°,∴∠PCH=∠DPN,且∠N=∠CHP=90°,∴△CPH∽△PDH,∴,∴∴x=∵点P在矩形ABCD外部,∴x=,∴BE=,综上所述:当BE的长为3或时,△DPC为直角三角形.20.解:(1)∵E(2,3)、F(4,﹣2),∴k EF==﹣,故答案为﹣.(2)∵G(1,3),H(﹣2,1),I(﹣1,6),∴k GH==,k GI==﹣,∴k GH•k GI=﹣1.(3)如图2中,过点K作KM⊥x轴于M,过点S作SN⊥x轴于N,连接KS交OR于J.∴S(6,8),∴ON=6,SN=8,∵四边形OKRS是正方形,∴OK=OS,∠KPS=∠KMO=∠SNO=90°,KJ=JS,JR=JO,∴∠KOM+∠SON=90°,∠SON+∠OSN=90°,∴∠KOM=∠OSN,∴△OMK≌△SNO(AAS),∴KM=ON=6,OM=SN=8,∴K(﹣8,6),∵KJ=JS,∴J(﹣1,7),∵JR=OJ,∴R(﹣2,14),∵k OR==﹣7,∵RT⊥OR,∴k RT=﹣=,设直线RT的解析式为y=x+b.。
2020年广东省中考数学压轴难点突破专题八 几何压轴题综合

2020年广东省中考压轴难点突破专题(八)——几何压轴题综合 命题点一:三角形的综合运用1.如图1,在Rt △ABC 中,AB =AC =42,一动点P 从点B 出发,沿BC 方向以每秒1个单位长度的速度匀速运动,到达点C 即停止.在整个运动过程中,过点P 作PD ⊥BC 与Rt △ABC 的直角边相交于点D ,延长PD 至点Q ,使PD =QD ,以PQ 为斜边在PQ 左侧作等腰直角三角形PQE.设运动时间为t 秒(t>0).(1)在整个运动过程中,判断边PE 与边AB 的位置关系是________.(2)如图2,当t =4时,点D 经过点A ;当t =163时,点E 在边AB 上,请求出当4<t ≤163时,△ABC 与△PQE 重叠部分的面积与时间t 之间的函数关系式,并求出最大值.(3)如图3,当点D 在线段AB 上时,连接AP ,AQ ,是否存在这样的t ,使AP =PQ ?若存在,求出对应的t 的值;若不存在,请说明理由.命题点二:四边形综合题2.如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)求证:无论点P运动到AB上何处时,都有DQ=BQ.(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的16?(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形?命题点三:圆的综合题3.已知在⊙O中,弦AB=AC,点P是∠BAC所对弧上一动点,连接PB,PA.(1)如图①,把△ABP绕点A逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ =180°.(2)如图②,若∠BAC=60°,试探究PA,PB,PC之间的关系.(3)若∠BAC=120°,(2)中的结论是否成立?若成立,请证明;若不成立,请写出它们之间的数量关系.。
2020广东中考数学终极押题卷(含答案)

2020广东中考数学终极押题卷说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.|-3|=( )A.3B.-3C.13D.-132.小明同学在某搜索引擎中输入“新型冠状病毒”,搜索到与之相关的结果条数为608 000,这个数用科学记数法表示为( )A.60.8×104B.6.08×105C.0.608×106D.6.08×1073.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为( )A B C D4.下面计算中,正确的是( )A.3a-2a=1B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x65.下列图形中,既是轴对称图形又是中心对称图形的是( )A.正三角形B.正五边形C.等腰直角三角形D.矩形6.√16的平方根是( )A.±4B.4C.±2D.27.在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数 2 3 9 8 5 3这些男生跳远成绩的众数、中位数分别是( )A.2.10,2.05B.2.10,2.10C.2.05,2.10D.2.05,2.058.点O,A,B,C 在数轴上的位置如图所示,O 为原点,AC=1,OA=OB.若点C 所表示的数为a,则点B 所表示的数为( )A.-(a+1)B.-(a-1)C.a+1D.a-1 9.已知α,β是一元二次方程x 2-6x+5=0的两个实数根,则α+β-αβ的值是( )A.3B.1C.-1D.-310.如图,在▱ABCD 中,CD=2AD,BE⊥AD 于点E,F 为DC 的中点,连接EF,BF,延长EF 交BC 的延长线于G.有下列结论:①∠ABC=2∠ABF;②EF=BF;③S 四边形DEBC =2S △EFB .其中结论正确的共有( )A.0个B.1个C.2个D.3个二、填空题(本大题共7小题,每小题4分,共28分)11.计算:|√83-1|-(12)-1= .12.如图,E 为△ABC 边CA 延长线上一点,过点E 作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B= .第12题图第13题图第15题图13.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的边长是.14.已知2a-3b=7,则8+6b-4a= .15.如图,一轮船在M处观测灯塔P位于南偏西30°方向,该轮船沿正南方向以15海里/时的速度匀速航行2小时后到达N处,再观测灯塔P位于南偏西60°方向,若该轮船继续向南航行至灯塔P最近的位置T处,此时轮船与灯塔之间的距离PT为海里(结果保留根号).16.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品.要生产甲种产品37件,乙种产品18件,则恰好需用A,B两种型号的钢板共块.17.如图,已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为4a+a(可以不合并);第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形;如此继续下去,第6次得到的长方形的周长为.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.解不等式组:{4(x+1)≤7x+13, x-4<x-83.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年(广东)中考数学压轴题专题训练1.如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.2.已知:矩形ABCD内接于⊙O,连接BD,点E在⊙O上,连接BE交AD于点F,∠BDC+45°=∠BFD,连接ED.(1)如图1,求证:∠EBD=∠EDB;(2)如图2,点G是AB上一点,过点G作AB的垂线分别交BE和BD于点H和点K,若HK=BG+AF,求证:AB=KG;(3)如图3,在(2)的条件下,⊙O上有一点N,连接CN分别交BD和AD于点M和点P,连接OP,∠APO=∠CPO,若MD=8,MC=3,求线段GB的长.3.如图,AB是⊙O的直径,CD⊥AB,交⊙O于C、D两点,交AB点E、F是弧BD上一点,过点F作一条直线,交CD的延长线于点G,交AB的延长线于点M.连结AF,交CD于点H,GF=GH.(1)求证:MG是⊙O的切线;(2)若弧AF=弧CF,求证:HC=AC;(3)在(2)的条件下,若tan G=,AE=6,求GM的值.4.如图,已知AC是半径为2的⊙O的一条弦,且AC=2,点B是⊙O上不与A、C重合的一个动点,(1)请计算△ABC的面积的最大值;(2)当点B在优弧上,∠BAC>∠ACB时,∠ABC的平分线交AC于D,且OD⊥BD,请计算AD的长;(3)在(2)条件下,请探究线段AB、BC、BD之间的数量关系.5.如图,△ABC为⊙O的内接三角形,BC为⊙O的直径,在线段OC上取点D(不与端点重合),作DG⊥BC,分别交AC、圆周于E、F,连接AG,已知AG=EG.(1)求证:AG为⊙O的切线;(2)已知AG=2,填空:①当四边形ABOF是菱形时,∠AEG=°;②若OC=2DC,△AGE为等腰直角三角形,则AB=.6.如图,△ABC内接于⊙O,AB=AC,AD是⊙O的弦,AD=BC,AD与BC相交于点E.(1)求证:CB平分∠ACD;(2)过点B作BG⊥AC于G,交AD于点F.①猜想AC、AG、CD之间的数量关系,并且说明理由;②若S△ABG=S△ACD,⊙O的半径为15,求DF的长.7.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,交y轴于点A,以AC为直角边作等腰Rt△ACD,连接BD分别交y轴和AC于E、F两点,连接AB.(1)求证:AB=AD;(2)若BF=4,DF=6,求线段CD的长;(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.8.如图,在△ABC中,∠ACB=90°,点D在BC边上(不包括端点B,C),过A,C,D 三点的⊙O交AB于另一点E,连结AD,DE,CE,且CE⊥AD于点G,过点C作CF∥DE交AD于点F,连结EF.(1)求证:四边形DCFE是菱形;(2)当tan∠AEF=,AC=4时,求⊙O的直径长.9.如图,抛物线y=x2+mx+n与x轴交于A,B两点,与y轴交于点C,若A(﹣1,0),且OC=3OA.(1)求抛物线的解析式;(2)若点M为抛物线上第四象限内一动点,顺次连接AC,CM,MB,是否存在点M,使四边形MBAC的面积为9,若存在,求出点M的坐标,若不存在,请说明理由.(3)将直线BC沿x轴翻折交y轴于N点,过B点的直线l交y轴、抛物线分别于D、E,且D在N的上方,将A点绕O顺时针旋转90°得M,若∠NBD=∠MBO,试求E的的坐标.10.已知:如图,直线y=﹣x﹣3交坐标轴于A、C两点,抛物线y=x2+bx+c过A、C两点,(1)求抛物线的解析式;(2)若点P为抛物线位于第三象限上一动点,连接P A,PC,试问△P AC的面积是否存在最大值,若存在,请求出△APC面积的最大值,以及此时点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一点,点N为抛物线对称轴上一点,若△NMC是以∠NMC为直角的等腰直角三角形,请直接写出点M的坐标.11.如图,二次函数y=a(x2+2mx﹣3m2)(其中a,m是常数a<0,m>0)的图象与x轴分别交于A、B(点A位于点B的右侧),与y轴交于点C(0,3),点D在二次函数的图象上,CD∥AB,连结AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)求a与m的关系式;(2)求证:为定值;(3)设该二次函数的图象的顶点为F.探索:在x轴的正半轴上是否存在点G,连结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.12.如图,抛物线y=ax2+4ax+与x轴交于点A、B(A在B的左侧),过点A的直线y=kx+3k交抛物线于另一点C.(1)求抛物线的解析式;(2)连接BC,过点B作BD⊥BC,交直线AC于点D,若BC=5BD,求k的值;(3)将直线y=kx+3k向上平移4个单位,平移后的直线交抛物线于E、F两点,求△AEF的面积的最小值.13.如图1,二次函数y=﹣x2+x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH ⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.14.如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y 轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.15.如图,已知抛物线y=a(x+2)(x﹣4)(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)该二次函数图象上有一点P(x,y)使得S△BCD=S△ABP,求点P的坐标;(3)设F为线段BD上一点(不含端点),连接AF,求2AF+DF的最小值.16.二次函数y=x2﹣x﹣与x轴分别交于A、B两点,与y轴交于点C,点D 为抛物线的顶点,连接BD.(1)如图1,点P为抛物线上的一点,且在线段BD的下方(包括线段的端点),连接P A,PC,AC.求△P AC的最大面积;(2)如图2,直线l1过点B、D.过点A作直线l2∥l1交y轴于点E,连接点A、E,得到△OAE,将△OAE绕着原点O顺时针旋转α°(0<α<180)得到△OA1E1,旋转过程中直线OE1与直线l1交于点M,直线A1E1与直线l1交于点N.当△E1MN为等腰三角形时,直接写出点E1的坐标并写出相应的α值.17.如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q 是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.18.如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B 两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为.(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.19.阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC中,∠ACB=90°,AC=BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:△ADC≌△CEB.(1)探究问题:如果AC≠BC,其他条件不变,如图②,可得到结论;△ADC∽△CEB.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y=x与直线CD交于点M(2,1),且两直线夹角为α,且tanα=,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,AB=3,BC=5,点E为BC边上一个动点,连接BE,将线段AE绕点E顺时针旋转90°,点A落在点P处,当点P在矩形ABCD 外部时,连接PC,PD.若△DPC为直角三角形时,请你探究并直接写出BE的长.20.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A(x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH 与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR 为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.参考答案一.解答题(共20小题)1.(1)证明:连接OC,OE,∵OC=OE,∴∠E=∠OCE,∵E是的中点,∴=,∴∠AOE=∠BOE=90°,∴∠E+∠ODE=90°,∵PC=PD,∴∠PCD=∠PDC,∵∠PDC=∠ODE,∴∠PCD=∠ODE,∴∠PCD+∠OCD=∠ODE+∠E=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)证明:连接AC,BE,BC,∵∠ACD=∠DBE,∠CAD=∠DEB,∴△ACD∽△EBD,∴=,∴CD•DE=AD•BD=(AO﹣OD)(AO+OD)=AO2﹣OD2;∵AB为⊙O的直径,∴∠ACB=90°,∵∠PCO=90°,∴∠ACP+∠ACO=∠ACO+∠BCO=90°,∴∠ACP=∠BCO,∵∠BCO=∠CBO,∴∠ACP=∠PBC,∵∠P=∠P,∴△ACP∽△CBP,∴,∴PC2=PB•P A=(PD+DB)(PD﹣AD)=(PD+OD+OA)(PD+OD﹣OA)=(PD+OD)2﹣OA2=PD2+2PD•OD+OD2﹣OA2,∵PC=PD,∴PD2=PD2+2PD•OD+OD2﹣OA2,∴OA2﹣OD2=2OD•PD,∴CD•DE=2OD•PD;(3)解:∵AB=8,∴OA=4,由(2)知,CD•DE=AO2﹣OD2;∵CD•DE=15,∴15=42﹣OD2,∴OD=1(负值舍去),∴AD=3,由(2)知,CD•DE=2OD•PD,∴PD==,∴P A=PD﹣AD=.2.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∠BAD=90°,∴∠BDC=∠DBA,BD是⊙O的直径,∴∠BED=90°,∵∠BFD=∠ABF+∠BAD,∠BFD=∠BDC+45°,∴∠ABF+90°=∠DBA+45°,∴∠DBA﹣∠ABF=45°,∴∠EBD=45°,∴△BED是等腰直角三角形,∴∠EBD=∠EDB;(2)证明:过点K作KS⊥BE,垂足为R,交AB于S,如图2所示:∵KG⊥AB,∴∠BGH=∠KRH=∠SRB=∠KGS=90°,∴∠SBR=∠HKR,∵∠BED=90°,∴∠RBK=∠RKB=45°,∴BR=KR,在△SRB和△HRK中,,∴△SRB≌△HRK(ASA),∴SB=HK,∵SB=BG+SG,HK=BG+AF,∴BG+SG=BG+AF,∴SG=AF,在△ABF和△GKS中,,∴△ABF≌△GKS(AAS),∴AB=KG;(3)解:过点O分别作AD与CN的垂线,垂足分别为Q和T,连接OC,如图3所示:∵∠APO=∠CPO,∴OQ=OT,在Rt△OQD和Rt△OTC中,,∴Rt△OQD≌Rt△OTC(HL),∴DQ=CT,∴AD=CN,∵四边形ABCD是矩形,∴AD=CN=BC,连接ON,在△NOC和△BOC中,,∴△NOC≌△BOC(SSS),∴∠BCO=∠NCO,设∠OBC=∠OCB=∠NCO=α,∴∠MOC=2α,过点M作MW⊥OC于W,在OC上取一点L,使WL=OW,连接ML,∴MO=ML,∴∠MOL=∠MLO=2α,∴∠LCM=∠LMC=α,∴ML=CL,设OM=ML=LC=a,则OD=a+8=OC,∴OL=8,OW=WL=4,∴CW=4+a,由勾股定理得:OM2﹣OW2=MW2=MC2﹣CW2,即a2﹣42=(3)2﹣(4+a)2,整理得:a2+4a﹣45=0,解得:a1=﹣9(不合题意舍去),a2=5,∴OM=5,∴MW=3,WC=9,∴OB=OC=OD=13,BD=26,∵∠GKB=∠CBD=∠ADB=∠BCO=∠MCW,tan∠MCW===,∴tan∠GKB=tan∠CBD=tan∠ADB=tan∠BCO=tan∠MCW=,设AB=b,则AD=3b,由勾股定理得:b2+(3b)2=262,解得b=,∴CD=GK=AB=,在Rt△GKB中,tan∠GKB==,∴GB=GK=×=.3.(1)证明:连接OF.∴AB⊥CD,∴∠AEH=90°,∴∠EAH+∠AHE=90°,∵GF=GH,∴∠GFH=∠GHF=∠AHE,∵OA=OF,∴∠OAF=∠OF A,∴∠OF A+∠GFH=90°,∴OF⊥GM,∴MG是⊙O的切线.(2)证明:∵=,∴OF垂直平分线段AC∵OF⊥MG,∴AC∥GM,∴∠CAH=∠GFH,∵∠CHA=∠GHF,∠HGF=∠GFH,∴∠CAH=∠CHA,∴CA=CH.(3)解:∵AC∥GM,∴∠G=∠ACH,∴tan∠CAH=tan∠G==,∵AE=6,∴EC=8,AC===10,设GF=GH=x,则CG=CH+GH=AC+GH=10+x,∵CD=2EC=16,∴GD=10+x﹣16=x﹣6,∵GF2=GD•GC,∴x2=(x﹣6)(x+10),解得x=15,∴EG=CG﹣CE=25﹣8=17,∵tan∠G==,∴EM=,∴GM===.4.解:(1)如图1中,当点B在优弧AC的中点时,△ABC的面积的最大,连接AB,BC,OB,延长BO交AC于H.∵=,∴BH⊥AC,∴AH=HC=,∴OH==1,∴BH=OB+OH=2+1=3,∴△ABC的最大面积=×AC×BH=×2×3=3.(2)如图2中,延长BD交⊙O于E,连结OE交AC于F,连结OC.由BD平分∠ABC可得,E为弧AC中点,∴OE⊥AC,∴AF=CF=∴OF===1=EF,∴DF垂直平分OE,又∵OD⊥BD,∴△ODE是等腰直角三角形,∴DF=OE=1,∴AD=.(3)如图3,连结AE、CE,由已知得AE=CE,∠AEC=120〫,将△EAB绕点E顺时针旋转120〫得△ECF,∵∠BAE=∠ECF,∠BAE+∠BCE=180〫,∴∠ECF+∠BCE=180〫,∴BF=BC+CF,∵AB=CF,∴BF=AB+BC,∵BE=FE,∠BEF=∠AEC=120〫,∴BF=BE,∵OD⊥BD,∴BE=2BD,∴BF=2BD,∴BA+BC=2BD.5.(1)证明:连接OA.∵OA=OC,∴∠OAC=∠OCA,∵GA=GE,∴∠GAE=∠GEA,∵DG⊥BC,∴∠EDC=90°,∴∠OCA+∠DEC=90°,∵∠CED=∠GEA=∠GAE,∴∠OAC+∠GAE=90°,∴∠OAG=90°,∴OA⊥AG,∴AG是⊙O的切线.(2)①如图2中,连接OA,AF,OF.∵四边形ABOF是菱形,∴AB=BO=OF=AF=OA,∴△ABO是等边三角形,∴∠B=60°,∵BC是直径,∴∠BAC=90°∴∠ACB=90°﹣60°=30°,∵ED⊥BC,∴∠DEC=90°﹣∠ACB=60°,∴∠AEG=∠DEC=60°.故答案为60.②如图3中,当AB=4时,△AGE是等腰直角三角形.理由:连接OA.∵△AGE是等腰直角三角形,∴∠AEG=∠DEC=∠DCE=45°,∴△EDC,△ABC都是等腰直角三角形,∵OB=OC,∴AO⊥OC,∴∠AOD=∠ODG=∠G=90°,∴四边形AODG是矩形,∴AG=OD=2,∴OC=2OD=4,∴BC=2OC=8,∴AB=AC=4,故答案为4.6.(1)证明:如图1中,∵AD=BC,∴=,∴=,∵AB=AC,∴=,∴=,∴∠ACB=∠BCD,∴CB平分∠ACD.(2)①结论:AC﹣2AG=CD.理由:如图2中,连接BD,在GC上取一点H,使得GH=GA.∵BG⊥AH,GA=GH,∴BA=BH,∴∠BAH=∠BHA,∵∠BAH+∠BDC=180°,∠BHG+∠BHC=180°,∴∠BDC=∠BHC,∵∠BCH=∠BCD,CB=CB,∴△BCH≌△BCD(AAS),∴CD=CH,∴AC﹣2AG=AC﹣AH=CH=CD.②如图3中,过点G作GN⊥AB于G,过点D作DM⊥AC交AC的延长线于M,连接AO,延长AO交BC于J,连接OC.∵=,∴∠BAD=∠ADC,∴AB∥CD,∴S△ACD=S△BCD,∵△BCH≌△BCD,∴S△BCH=S△BCD,∵AG=GH,∴S△ABG=S△BGH,∵S△ABG=S△ACD,∴S△ABG=S△BGH=S△BCH,∴AG=GH=CH,设AG=GH=HC=a,则AB=AC=3a,BG===2a,∵BG⊥AC,∴•BG•AG=•AB•GN,∴GN==a,在Rt△BGC中,BC===2a,∵AB=AC,∴=,∴AJ⊥BC,∴BJ=JC=a,∴AJ===a,在Rt△OJC中,∵OC2=OJ2+JC2,∴152=(a﹣15)2+(a)2,∴a=,∵S△ABG=S△ACD,AB=AC,GN⊥AB,DM∠AC,∴DM=GN=a=,∵BC=AD=2a=20,∴AM===,∵FG∥DM,∴=,∴=,∴AF=6,∴DF=AD=AF=20﹣6=14. 7.(1)证明:∵OA⊥BC,且OA过圆心点P,∴OB=OC,在△AOB和△AOC中,,∴△AOB≌△AOC(SAS),∴AB=AC,∵以AC为直角边作等腰Rt△ACD,∴AD=AC,∴AB=AD;(2)如图1,过点A作AM⊥BD于M,由(1)知,AB=AD,∴DM=BD,∵BF=4,DF=6,∴BD=10,∴DM=5,∵∠AMD=90°=∠DAF,∠ADM=∠FDA,∴△ADM∽△FDA,∴,∴,∴AD=,在等腰直角三角形ADC中,CD=AD=2;(3)的值是不发生变化,理由:如图2,过点D作DH⊥y轴于H,作DQ⊥x轴于Q,∴∠AHD=90°=∠COA,∴∠ADH+∠DAH=90°,∵∠CAD=90°,∴∠CAO+∠DAH=90°,∴∠ADH=∠CAO,∵AD=AC,∴△ADH≌△ACO(AAS),∴DH=AO,AH=OC,∵∠OHD=∠QOH=∠OQD=90°,∴四边形OQDH是矩形,DH=OQ,DQ=OH,又∵HO=AH+AO=OC+DH=OB+DH=OB+OQ=BQ,∴DQ=BQ,∴△DBQ为等腰直角三角形,∴∠DBQ=45°,∴∠DEH=∠BEO=45°,∴sin∠DEH=,∴=,∴,∴.8.解:(1)证明:∵CE⊥AD,∴EG=CG,∵CF∥DE,∴∠DEG=∠FCG,∵∠FGC=∠DGE,∴△DEG≌△FCG(ASA),∴ED=FC,∴四边形DCFE为平行四边形,又∵CE⊥DF,∴四边形DCFE是菱形;(2)∵AG⊥EC,EG=CG,∴AE=AC=4,∵四边形AEDC内接于⊙O,∴∠BED=∠BCA=90°,∵四边形DCFE是菱形,∴EF∥DC,DE=DC,∴∠AEF=∠ABC,∴tan∠ABC=tan∠AEF=,在Rt△BED中,设DE=3a,则BE=4a,∴DC=3a,BD==5a,∵BC2+AC2=AB2,∴(5a+3a)2+42=(4a+4)2,解得a=或a=0(舍去),∴DE=DC=2,∴AD===2.即⊙O的直径长为2.9.解:(1)∵A(﹣1,0),∴OA=1,OC=3OA=3,∴C(0,﹣3),将A(﹣1,0)、C(0,﹣3)代入y=x2+mx+n中,得,解得,∴y=x2﹣2x﹣3;(2)存在,理由:令y=0,则x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),∴直线BC的解析式为y=x﹣3,设M(m,m2﹣2m﹣3),过点M作MN∥y轴交BC于N,如图1,∴N(m,m﹣3),∴MN=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S四边形MBAC=S△ABC+S△BCM=AB×OC+MN×OB=×4×3×(﹣m2+3m)×3=9,解得:m=1或2,故点M的坐标为(1,﹣4)或(2,﹣3);(3)∵OB=OC=ON,∴△BON为等腰直角三角形,∵∠OBM+∠NBM=45°,∴∠NBD+∠NBM=∠DBM=45°,∴MB=MF,过点M作MF⊥BM交BE于F,过点F作FH⊥y轴于点H,如图2,∴∠HFM+∠BMO=90°,∵∠BMO+∠OMB=90°,∴∠OMB=∠HFM,∵∠BOM=∠MHF=90°,∴△BOM≌△MHF(AAS),∴FH=OM=1,MH=OB=3,故点F(1,4),由点B、F的坐标得,直线BF的解析式为y=﹣2x+6,联立,解得,∴E(﹣3,12).10.解:(1)y=﹣x﹣3交坐标轴于A、C两点,则点A、C的坐标分别为:(﹣3,0)、(0,﹣3);将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)存在,理由:如图1,过点P作y轴的平行线交AC于点H,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),△APC面积S=S△PHA+S△PHC=×PH×OA=(﹣x﹣3﹣x2﹣2x+3)×3=﹣x2﹣x,∵﹣<0,故S有最大值,当x=﹣时,S的最大值为,此时点P(﹣,﹣);(3)如图2,设点N(﹣1,s),点M(m,n),n=m2+2m﹣3,过点M作y轴的平行线交过点C与x轴的平行线于点H,交过点N与x轴的平行线于点G,∵∠GMN+∠GNM=90°,∠GMN+∠HMC=90°,∴∠HMC=∠GNM,∵∠MGN=∠CHM=90°,MN=MC,∴△MGN≌△CHM(AAS),∴GN=MH,即GN=|﹣1﹣m|=MH=|n+3|,①当﹣1﹣m=n+3时,即m+n+4=0,即m2+3m+1=0,解得:m=,故点P(,);②当﹣1﹣m=﹣(n+3)时,即m=n+2,同理可得:点P(,);故点P的坐标为:(,)或(,)或(,)或(,).11.解:(1)将点C的坐标代入抛物线表达式得:﹣3am2=3,解得:am2=﹣1;(2)对于二次函数y=a(x2+2mx﹣3m2),令y=0,则x=m或﹣3m,∴函数的对称轴为:x=﹣m,∵CD∥AB,∴点D、C的纵坐标相同,故点D(﹣2m,3),故点A、B的坐标分别为:(m,0)、(﹣3m,0),设点E(x,y),y=a(x2+2mx﹣3m2),分别过点D、E作x轴的垂线,垂足分别为M、N,∵AB平分∠DAE,∴∠DAM=∠EAN,∴RtADM△∽Rt△ANE,∴,即,解得:y=,故点E(x,),将点E的坐标代入抛物线表达式并解得:x==﹣4m,则y==﹣5,故点E(﹣4m,﹣5),故===为定值;(3)存在,理由:函数的对称轴为x=﹣m,当x=﹣m时,y=a(x2+2mx﹣3m2)=4,即点F(﹣m,4),由点F、C的坐标得,直线FC的表达式为:y=﹣x+3,令y=0,则x=3m,即点G(3m,0),GF2=(3m+m)2+42=16m2+16,同理AD2=9m2+9,AE2=25m2+25,故AE2=AD2+GF2,GF、AD、AE的长度为三边长的三角形是直角三角形,点G的横坐标为3m.12.解:(1)∵直线y=kx+3k过点A,∴y=0时,0=kx+3k,解得x=﹣3,∴A(﹣3,0),把点A的坐标代入y=ax2+4ax+,得9a﹣12a+=0,解得a=,∴抛物线解析式为y=x2+x+;(2)如图1,过点D作DF⊥x轴于F,过点C作CG⊥x轴于G,∴∠DFB=∠CGO=90°=∠DBC,∴∠DBF+∠BDF=90°,又∵∠DBF+∠CBG=90°,∴∠BDF=∠CBG,∴△BDF∽△CBG,∴,∵CB=5BD,∴CG=5BF,BG=5DF,联立方程组,解得:,(舍去),∴点C(4k﹣1,4k2+2k),∴CG=4k2+2k,OG=4k﹣1,设BF=m,则CG=5m,DF=2k﹣km,BG=5(2k﹣km),∴,解得k=﹣(舍去)或k=0(舍去)或k=1,∴k的值为1;(3)∵将直线y=kx+3k向上平移4个单位,∴平移后解析式为y=kx+3k+4,∴kx+3k+4=x2+x+,∴x E+x F=4k﹣4,x E•x F=﹣12k﹣13,∴|x F﹣x E|==,∵△AEF的面积=×4×,∴当k=﹣时,△AEF的面积的最小值为16.13.解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则﹣x2+x+3=0,解得:x1=﹣4,x2=6,∴A(﹣4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA•OD,∴OD=,∴D(,0).∴E(1,).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=﹣x+.设H(m,﹣m2+m+3),则P(m,﹣m+).∴HG=﹣m2+m+3,HP=y H﹣y P=﹣m2+m﹣.∴S△BHE=(x B﹣x E)•HP=(﹣m2+m﹣)=﹣m2+m﹣.∵FH⊥CD,AC⊥CD,∴AC∥FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴==,∴FG=HG=﹣m2+m+4,∴AF=AG﹣FG=m+4+m2﹣m﹣4=m2+m,∴S△AFC=AF•OC=(m2+m)=m2+m,∵S四边形ACEB=S△ACO+S△OCE+S△OEB=×4×3+×3×1+6×=,∴S五边形FCEHB=S四边形ACEB+S△BHE﹣S△AFC=+(﹣m2+m﹣)﹣(m2+m)∴当m=时,S五边形FCEHB取得最大值.此时,H的横坐标为.(3)∵B(6,0),C(0,3),D(,0),∴CD=BD=,BC=3,∴∠DCB=∠DBC.①如图3﹣1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=,MN=BC=3,∠CMN=∠CNM=∠DBC=∠DCB,∴MN∥AB,∴MN⊥y轴,∴∠CKN=∠COB=90°,MK=NK=MN=,∴△CKN∼△COB,∴==,∴CK=,∴OK=OC+CK=,∴N(,).②如图3﹣2,△MCN≌△DBC,则CN=CB=3,∠MCN=∠DBC,∴CN∥AB,∴N(3,3).③如图3﹣3,△CMN≌△DBC,则∠CMN=∠DCB,CM=CN=DC=DB=,MN=BC=3,∴MN∥CD,作MR⊥y轴于R,则===,∴CR=,RM=,∴OR=3﹣,作MQ∥y轴,NQ⊥MQ于点Q,则∠NMQ=∠DCO,∠NQM=∠DOC=90°,∴△COD∼△MQN,∴==,∴MQ=MN=,NQ=MN=,∴NQ﹣RM=,OR+MQ=,∴N(﹣,).综上所述,满足要标的N点坐标有:(,)、(3,3)、(﹣,).14.解:(1)对称轴为直线x=﹣=4,则CD=4,∵四边形ABDC为平行四边形,∴DC∥AB,DC=AB,∴DC=AB=4,∴A(2,0),B(6,0),把点A(2,0)代入得y=ax2﹣8ax+12得4a﹣16a+6=0,解得a=,∴二次函数解析式为y=x2﹣4x+6;(2)如图1,设E(m,m2﹣4m+6),其中2<m<6,作EN⊥y轴于N,如图2,∵S梯形CDEN﹣S△OCD﹣S△OEN=S△ODE,∴(4+m)(6﹣m2+4m﹣6)﹣×4×6﹣m(﹣m2+4m﹣6)=12,化简得:m2﹣11m+24=0,解得m1=3,m2=8(舍),∴点E的坐标为(3,﹣);(3)Ⅰ、当点Q在对称轴右侧时,如图2,过点E作EF⊥PM于F,MQ交x轴于G,∵∠PQE=∠PME,∴点E,M,Q,P四点共圆,∵PE⊥PQ,∴∠EPQ=90°,∴∠EMQ=90°,∴∠EMF+∠HMG=90°,∵∠HMG+∠HGM=90°,∴∠EMF=∠HGM,在Rt△EFM中,EF=1,FM=,tan∠EMF==2,∴tan∠HGM=2,∴,∴HG=HM=1,∴点G(5,0),∵M(4,﹣2),∴直线MG的解析式为y=2x﹣10①,∵二次函数解析式为y=x2﹣4x+6②,联立①②解得,(舍)或,∴Q(8,6),∴点Q到对称轴的距离为8﹣4=4;Ⅱ、当点Q在对称轴左侧时,如图3,过点E作EF⊥PM于F,过点Q作QD⊥PM于D,∴∠DQP+∠QPD=90°,∵∠EPQ=90°,∴∠DPQ+∠FPE=90°,∴∠DQP=∠FPE,∵∠PDQ=∠EFP,∴△PDQ∽△EFP,∴,由Ⅰ知,tan∠PQE==2,∵EF=1,∴=,∴DP=,PF=2QD,设Q(n,n2﹣4n+6),∴DQ=4﹣n,DH=n2﹣4n+6,∴PF=DH+FH﹣DP=n2﹣4n+6+﹣=n2﹣4n+7,∴n2﹣4n+7=2(4﹣n),∴n=2+(舍)或n=2﹣,∴DQ=4﹣n=2+,即点Q到对称轴的距离为4或2+.15.解:(1)抛物线y=a(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+,当x=﹣5时,y=3,∴D(﹣5,3),∵点D(﹣5,3)在抛物线y=a(x+2)(x﹣4)上,∴a(﹣5+2)(﹣5﹣4)=3,∴a=.∴抛物线的函数表达式为:y=x2﹣x﹣.(2)如图1中,设直线BD交y轴于J,则J(0,).连接CD,BC.∵S△BDC=××9=10,∴S△P AB=10,∴×6×|y P|=10y P=±,当y=时,=x2﹣x﹣,解得x=1±,∴P(,)或(,),当﹣=x2﹣x﹣,方程无解,∴满足条件的点P的坐标为(,)或(,).(3)如图2中,过点D作DM平行于x轴,∵D(﹣5,3),B(4,0),∴tan∠DBA==,∴∠DBA=30°∴∠BDM=∠DBA=30°,过F作FJ⊥DM于J,则有sin30°=,∴HF=,∴2AF+DF=2(AF+)=2(AF+HF),当A、F、H三点共线时,即AH⊥DM时,2AF+DF=2(AF+HF)取最小值为=.16.解:(1)∵y=x2﹣x﹣=(x2﹣2x﹣3)=(x﹣1)2﹣2,∴顶点D的坐标为(1,﹣2),令y=0,则(x2﹣2x﹣3)=0,∴x=﹣1或x=3,∴A(﹣1,0),B(3,0),令x=0,则y=﹣,∴C(0,﹣),∴AC是定值,要△ACP的面积最大,则点P到AC的距离最大,即当点P在点B位置时,点P到AC的距离最大,∴S△ACP最大=S△ABC=AB•OC=(3+1)•=3;(2)由(1)知,B(3,0),D(1,﹣2),∴直线l1的解析式为y=x﹣3,∵l1∥l2,且l1过点A,∴直线l2的解析式为y=x+,∴E(0,),∴OE=,在Rt△AOE中,OA=1,∴tan∠AEO==,∴∠AEO=30°,∵l1∥l2,∴∠DBO=60°,由旋转知,OE1=OE=,∠A1E1O=∠AEO=30°,∴∠ME1N=30°如图,∵△E1MN为等腰三角形,∴①当E1N1=M1N1时,∴∠E1M1N1=∠A1E1O=30°,∴α=∠BOM=60°﹣30°=60°,过点E1作E1F⊥x轴于F,∴E1F=OE1=,∴OF=E1F=,∴E1(,),②当E2M2=E2N2时,∠E2N2M2=∠E2M2N2=(180°﹣30°)=75°,∴∠BOM2=75°﹣60°=15°,∴α=105°,过点E2作E2H⊥x轴,在OH上取一点Q,使OQ=E2Q,∴∠E2QH=30°,设E2H=a,则E2Q=2a,HQ=a,∴OQ=E2Q=2a,OH=(2+)a,在Rt△OHE2中,根据勾股定理得,[(2+)a]2+a2=3,∴a=(舍去负值),∴E2(,﹣).③当E3M3=M3N3时,∠E3N3M3=∠M3E3N3=30,∴∠E3M3N3=120°,∴∠BOM3=60°,∴α=150°,∵∠OBM3=60°,∠E3N3M3=30°,∴∠N3GB=90°,∴OG=,E3G=,∴E3(,﹣).17.解:(1)∵AB=6,点B的坐标为(﹣6,0),∴点A(﹣12,0),如图1,过点D作DE⊥x轴于点D,则ED=AD sin∠DAB=8×=4,同理AE=4,故点D(﹣8,4),则点C(﹣2,4),由中点公式得,点M(﹣4,2);(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),∵点D′M′都在函数上,∴(a﹣8)×4=(a﹣4)×2,解得:a=12,则k=(12﹣8)×4=16,故反比例函数的表达式为=;(3)由(2)知,点M′的坐标为(8,2),点B′、C′的坐标分别为(6,0)、(10,4),设点P(m,2),点Q(s,t);①当B′C′是矩形的边时,如图2,求解的矩形为矩形B′C′PQ和矩形B′C′Q′P′,过点C′作C′H⊥l交于点H,C′H=4﹣2=2,直线B′C′的倾斜角为60°,则∠M′PC′=30°,PH=C′H÷tan∠M′PC′=故点P的坐标为(16,2),由题意得:点P、Q′关于点C′对称,由中点公式得,点Q的坐标为(12,﹣4);同理点Q、Q′关于点M′对称,由中点公式得,点Q′(4,6);故点Q的坐标为:(12,﹣4)或(4,6);②当B′C′是矩形的对角线时,∵B′C′的中点即为PQ的中点,且PQ=B′C′,∴,解得:,,故点Q的坐标为(4,2)或(12,2);综上,点Q的坐标为:(12,﹣4)或(4,6)或(4,2)或(12,2).18.解:(1)∵直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,且点A的横坐标为﹣1,∴点A,点B关于原点对称,∴点B的横坐标为1,∴当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,由图象知,点A,点B关于原点对称,∴OA=OB,∵AC⊥CB,∴∠ACB=90°,∴OC=AB=AO,∴∠OAC=∠OCA,∵AC为∠BAD的平分线,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC,∴S△AEO=S△ACE=,∴AE=DE,∴S△AOD=2S△AOE=3;(3)作EF⊥x轴于F,作AH⊥x轴于H,则EF∥AH,∵AD=2DE,∴DE=EA,∵EF∥AH,∴==1,∴DF=FH,∴EF是△DHA的中位线,∴EF=AH,∵S△OEF=S△OAH=﹣,∴OF•EF=OH•HA,∴OH=OF,∴OH=HF,∴DF=FH=HO=DO,∴S△OAH=S△ADO=3=1,∴﹣=1,∴k=﹣2,∴y=﹣,∵点A在y=﹣的图象上,∴把x=﹣1代入得,y=2,∴A(﹣1,2),∵点A在直线y=mx上,∴m=﹣2,∴P(﹣2,﹣2),在y轴上找到一点M,使得△OMP是直角三角形,当∠OMP=90°时,PM⊥y轴,则OM=2,∴点M的坐标为(0.﹣2);当∠OPM=90°时,过P作PG⊥y轴于G,则△OPM是等腰直角三角形,∴OM=2PG=4,∴点M的坐标为(0.﹣4);综上所述,点M的坐标为(0.﹣2)或(0,﹣4).19.解:(1)理由:∵∠ACB=90°,∴∠ACD=∠BCE=90°,又∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,且∠ADC=∠BEC=90°,∴△ADC∽△CEB;(2)如图,过点O作ON⊥OM交直线CD于点N,分别过M、N作ME⊥x轴NF⊥x轴,由(1)可得:△NFO∽△OEM,∴,∵点M(2,1),∴OE=2,ME=1,∵tanα==,∴,∴NF=3,OF=,∴点N(﹣,3),∵设直线CD表达式:y=kx+b,∴∴∴直线CD的解析式为:y=﹣x+;(3)当∠CDP=90°时,如图,过点P作PH⊥BC,交BC延长线于点H,∵∠ADC+∠CDP=180°,∴点A,点D,点P三点共线,∵∠BAP=∠B=∠H=90°,∴四边形ABHP是矩形,∴AB=PH=3,∵将线段AE绕点E顺时针旋转90°,∴AE=EP,∠AEP=90°,∴∠AEB=∠PEH=90°,且∠BAE+∠AEB=90°,∴∠BAE=∠PEH,且∠B=∠H=90°,AE=EP,∴△ABE≌△EHP(AAS),∴BE=PH=3,当∠CPD=90°时,如图,过点P作PH⊥BC,交BC延长线于点H,延长HP交AD的延长线于N,则四边形CDNH是矩形,∴CD=NH=3,DN=CH,设BE=x,则EC=5﹣x,∵将线段AE绕点E顺时针旋转90°,∴AE=EP,∠AEP=90°,∴∠AEB=∠PEH=90°,且∠BAE+∠AEB=90°,∴∠BAE=∠PEH,且∠B=∠EHP=90°,AE=EP,∴△ABE≌△EHP(AAS),∴PH=BE=x,AB=EH=3,∴PN=3﹣x,CH=3﹣(5﹣x)=x﹣2=DN,∵∠DPC=90°,∴∠DPN+∠CPH=90°,且∠CPH+∠PCH=90°,∴∠PCH=∠DPN,且∠N=∠CHP=90°,∴△CPH∽△PDH,∴,∴∴x=∵点P在矩形ABCD外部,∴x=,∴BE=,综上所述:当BE的长为3或时,△DPC为直角三角形.20.解:(1)∵E(2,3)、F(4,﹣2),∴k EF==﹣,故答案为﹣.(2)∵G(1,3),H(﹣2,1),I(﹣1,6),∴k GH==,k GI==﹣,∴k GH•k GI=﹣1.(3)如图2中,过点K作KM⊥x轴于M,过点S作SN⊥x轴于N,连接KS交OR于J.∴S(6,8),∴ON=6,SN=8,∵四边形OKRS是正方形,∴OK=OS,∠KPS=∠KMO=∠SNO=90°,KJ=JS,JR=JO,∴∠KOM+∠SON=90°,∠SON+∠OSN=90°,∴∠KOM=∠OSN,∴△OMK≌△SNO(AAS),∴KM=ON=6,OM=SN=8,∴K(﹣8,6),∵KJ=JS,∴J(﹣1,7),∵JR=OJ,∴R(﹣2,14),∵k OR==﹣7,∵RT⊥OR,∴k RT=﹣=,设直线RT的解析式为y=x+b.。