主成分分析(PCA)详解(附带详细公式推导)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主成分分析(PCA)详解(附带详细公式推导)
1.假设有一个m维的数据集X,其中每个数据点有n个样本。

需要将
其降维到k维,且k<m。

2. 首先需进行数据的中心化,即对每个维度的数据减去该维度的均值,即X' = X - mean(X)。

3.然后计算协方差矩阵C=(1/n)*X'*X'^T,其中X'^T表示X'的转置。

4.对协方差矩阵C进行特征值分解,得到特征值和对应的特征向量。

5.接下来,将特征值按从大到小的顺序排列,选取前k个最大的特征
值及其对应的特征向量。

6. 最后,将选取的k个特征向量组成一个投影矩阵W =
[e1,e2,...,ek],其中ei表示第i个特征向量。

7.对中心化的数据集进行降维,Y=W*X',其中Y即为降维后的数据。

上述推导过程中,协方差矩阵C的特征值代表了数据的方差,特征向
量则代表了数据的主成分。

选取最大的k个特征值和对应的特征向量,即
实现了数据的降维。

PCA的应用包括但不限于以下几个方面:
1.数据可视化:PCA能够将高维度的数据映射到二维或三维空间,从
而方便数据的可视化展示。

2.数据预处理:PCA能够降低数据的维度,从而减少噪声和冗余信息,提升后续模型的精度和效率。

3.特征提取:PCA能够提取数据中最重要的特征,从而辅助后续建模和特征工程。

4.噪声过滤:PCA能够降低数据的维度,从而过滤掉一些无关的噪声信息。

需要注意的是,PCA只能应用于线性数据,并且假设数据的方差和协方差是固定的。

同时,PCA对于数据中非线性关系的捕捉能力较弱,因此在处理非线性数据时,需考虑使用其他非线性降维方法,如核主成分分析(Kernel PCA)等。

综上所述,PCA是一种常用的多变量数据降维技术,在数据分析和机器学习领域有着广泛的应用。

通过线性变换,PCA将高维度的数据投影到低维空间中,从而减少数据的维度,并保留了数据中的主要信息。

相关文档
最新文档