等离子体基本原理优秀课件

合集下载

第一章 等离子体概述(共50张PPT)

第一章 等离子体概述(共50张PPT)
PECVD ( Plasma Enhanced Chemical Vapor Deposition ) -- 等离子体增强化学气相沉积法 典型的工业应用:等离子体刻蚀、镀膜、表面改性、喷涂、烧结、冶炼、加热、有害物处理
1~4电等子伏,离电流子为1态~10常0安及被以上称。 为“超气态”,它和气体有很多相似之处,
集体效应起主导作用:等离子体中相互作用的电磁 力是长程的。
宇宙中90%物质处于等离子体态
人类类的的生生存存伴伴随随着着水水,,水存水在存的在环的境环是境地是球地文球明得文以明进得化以、进发化展、的发的展热 的力学的环热境力,学这环种境环,境这远种离等环离境子远体离物等态离普子遍体存物在的态状普态遍。存因在而的,状天态然。等 因离子而体,就天只然能等存离在子于远体离就人只群能的存地在方于,远以闪离电人、群极的光地的方形,式以为闪人电们、所极敬 光畏、的所形赞式叹为。人们所敬畏、所赞叹。
温度 (度)
等离子体参数空间
星云
太阳风 星际空间
日冕
霓虹灯 荧光
磁约束 聚变
氢弹
惯性聚变
太阳核心 闪电
气体 液体 固体
北极光
火焰
人类居住环境
密度(cm-3)
等1.按离存在子分:体的分类
天然等离子体:太阳、恒星、星云、极光、雷电等
人工等离子体:日光灯、霓虹灯、电火花、电弧等
2.按电离度分: 等离子体:电子(ne )、正离子(离子 ni)、中性粒子(分子、
Tonks)首先引入等离子体( Plasma )这个名称。
涉及分子间作用力,而等离子体由气态转化时需要克服原 特点是焊缝平整,可以再加工,没有氧化物杂质,焊接速度快。
人类的生存伴随着水,水存在的环境是地球文明得以进化、发展的的热力学环境,这种环境远离等离子体物态普遍存在的状态。

等离子体显示技术课件

等离子体显示技术课件
(1)功耗大,不便于采用电池电源(与LCD相 比)。 (2)与CRT相比,彩色发光效率低。 (3)驱动电压高(与LCD相比)。 (4)大量发光和发热元件向外产生辐射,目前 仍不能有效地在机内较好地解决高频信号处理 问题。同时对输入的视频信号接线也是考验, 差一点的色差线会产生花屏现象。
虽然PDP尚存在一些不足,但随着今后研究 工作的进一步开展,必将使PDP的技术性能不 断改进。
PDP显示屏放电单元
2. PDP显示器件的显示原理
等离子体显示板的像素实际上类似于微小的氖 灯管,它的基本结构是在两片玻璃之间设有一排 一排的点阵式的驱动电极,其间充满惰性气体。 像素单元位于水平和垂直电极的交叉点,要使像 素单元发光,可在两个电极之间加上足以使气体 电离的高电压。颜色是由单元内的荧光粉发出的 光产生的。
6. 散热性能好,低噪声。 7. 采用电子寻址方式,图像失真小,没有聚焦、
会聚问题。色纯一致,不会像CRT那样产生色彩 漂移。
8. 采用了帧驱动方式,消除了行间闪烁和图像大 面积闪烁。
9. 图像惰性小,响应速度快,重显高速运动物体 不会产生拖尾等缺陷。这是LCD所不能比拟的。
• 等离子体显示器件的缺点是:
接口电路所有的控制信号均由中央处理器产 生。实际电路中常使用74F574对24路RGB信号 进行锁存,对同步控制信号则用74F541进行缓 冲
图像数字信号的接口电路
时钟信号、消隐信号、垂直/水平同步信号的接口电路
色彩校正电路的主要作用:
a)进行反γ校正。进行反γ校正是为了弥补 电光转换的非线性,目前的图像信号在传输过程 中应预先进行γ校正。
b)调整PDP三基色的色域。由于PDP荧光粉是 受紫外光激励而发的光,因此其色域与自然光有 差异,为了使PDP显示器的图像更加逼近自然, 设计时必须进行色域调整。具体电路是用EPROM 以查表的方式实现的。

等离子体PPT幻灯片课件

等离子体PPT幻灯片课件
高温等离子体:高度电离的等 离子体,离子温度和电子温度 都很高。
3
4
2、怎样产生等离子体?
等离子体的形成
固体 液体 气体 等离子体
能量
能量
能量
物质的四种状态
5
方法1:对于气态的物质,温度升高到几千度 时,由于物质分子的热运动的加剧,相互间的 碰撞就会使气体的分子产生电离,这样的物质 就变成正离子和电子组成的混合物等离子体。 方法2:
14
等离子体隐身技术
方法一:是利用等离子体发生器产生等离子体,即在 低温下,通过电源以高频和高压的形式提供的高能量 产生间隙放电、沿面放电等形式,将气体介质激活、 电离形成等离子体。 方法二:是在兵器特定部位(如强散射区)涂一层放 射性同位素,它的辐射剂量应确保它的a射线电离空气 所产生的等离子体包层具有足够的电子密度和厚度, 以确保对雷达波有最强的吸收。与前者相比,后者比 较昂贵且维护困难。
15
独特的优点:
(1)吸波频带宽、吸收率高、隐身效果好.使用简便、 使用时间长、价格极其便宜; (2)俄罗斯的实验证明,利用等离子体隐身技术不但不 会影响飞行器的飞行性能.还可以减少30%以上的飞 行阻力。
存在难点:
(1)飞行速度对等离子体的影响; (2) 等离子体是一项十分复杂 的系统工程,涉及到大 气等离子体技术、电磁理论与工程、空气功力学、机 械与电气工程等学科,具有很强的学科交叉性。
6
各种等离子体的密度和温度
7
等离子体工业生产模型
低温等离子体的建立系统;水平式和垂直式
产生低温等离子体系统
8
等离子体主要用于以下3方面:
•离子体冶炼:用于难于冶炼的材料,例如高熔点的锆(Zr) 、钛(Ti)、钽(Ta)、铌(Nb)、钒(V)、钨(W)等金属;还用于 简化工艺过程,例如直接从ZrCl、MoS、TaO和TiCl中分别 等离子体获得Zr、Mo、Ta和Ti;可开发硬的高熔点粉末, 如碳化钨-钴。 •等离子体喷涂:用等离子体沉积快速固化法可将特种材 料粉末喷入热等离子体中熔化,并喷涂到基体(部件)上 ,使之迅速冷却、固化,形成接近网状结构的表层,这可 大大提高喷涂质量。

等离子体物理学导论ppt课件

等离子体物理学导论ppt课件

3、等离子体响应时间: 静态等离子体的德拜长度,主要取决于低温成分的德 拜长度。在较快的过程中,离子不能响应其变化,在 鞘层内不能随时达到热平衡的玻尔兹曼分布,只起到 常数本底作用,此时等离子体的德拜长度只由电子成 份决定。 等离子体的响应时间: 1)、建立德拜屏蔽所需要的时间 2)、等离子体对外加电荷扰动的响应时间 3)、电子以平均的热速度跨越鞘层空间所
)1/ 2 , lD
(lD2i
l ) 2 1/ 2 De
提示:
A1:是的,排空同号电荷,调整粒子密度 A2: 低温成份(稳态过程)、
由电子德拜长度决定(短时间尺度运动过程)
4、德拜屏蔽是一个统计意义上的概念,表现在上述推导过程
中使用的热平衡分布特征,电势的连续性等概念成立的前
提是: 德拜球内存在足够多的粒子
德拜屏蔽概念的几个要点: 1、电屏蔽、维持准中性 2、基本尺度:空间尺度 3、响应时间:时间尺度 4、统计意义:等离子体参数
等离子体概念成立的两个判据: 时空尺度、统计意义
后面还有一个,共同保障集体效应的发挥!
三、 等离子体Langmuir振荡: 等离子体振荡示意图
x=0
物理图像:密度扰动电荷分离(大于德拜半径尺度)电场 驱动粒子(电子、离子)运动“过冲”运动 往返振荡等离子体最重要的本征频率: 电子、离子振荡频率
1. 捕获与约束 逃逸与屏蔽 (反抗约束) 由自由能与捕获能平衡决定! 德拜长度: 1、随数密度增加而减小,即更 小范围内便可获得足够多的屏蔽用的粒子
2、随温度升高而增大:温度代表粒子 自由能,零温度则屏蔽电子缩为薄壳
德拜屏蔽是两个过程竞争的结果: 约束与逃逸 (反抗约束) 屏蔽与准中性 由自由能与相互作用能平衡决定!
消除流行的错误的温度概念: 荧光灯管内的电子温度为20,000K 日冕气体温度高达百万度,却烧不开一杯水

等离子体基本概念PPT课件

等离子体基本概念PPT课件

等离子体物理学科方向 主要研究内容
等离子体物理主要研究等离子体的整体形态和集体 运动规律、等离子体与电磁场及其它形态物质的相 互作用。
等离子体物理研究范围非常广泛:磁约束聚变等离 子体、惯性约束聚变等离子体、空间等离子体、天 体等离子体、低温等离子体、非中性等离子体、尘 埃等离子体、基础等离子体等
D 0Te / ne0e2
方程为 2(r) (r) / 0 / D2 q (r) / 0
方程的解 (r) q er /D 4 0 r
电荷屏蔽效应后中心电荷q的作用势,称
为屏蔽库仑势 参量 具D 有长度的量纲,称为德拜屏蔽长
度,它是反映电荷屏蔽效应的特征长度。
电荷屏蔽效应的特征长度意义
电子密度平衡分布可取势场为φ时的玻尔兹
曼分布
ne
n ee /Te e0
ne0为不受中心电荷影响时的电子密度, Te为电 子温度
电中性(初始): Zni0 ne0
空间电荷分布
(r) ne0e(1 ee /Te ) q (r)
高温条件: e Te ee /Te 1 e / Te
(r) ne0e2 / Te q (r) 0 / D2 q (r)
等离子体物理学研究可促进低温等离子体技术在国 民经济各领域中广泛应用。等离子体处理加工技术 已成为一些重要产业(如微电子、半导体、材料、 航天、冶金等)的关键技术,而在灭菌、消毒、环 境污染处理、发光和激光的气体放电、等离子体显 示、表面改性、同位素分离、开关和焊接技术等方 面的应用已创造了极大的经济效益。
等离子体物理学研究开辟了由高技术开发的新领域。 非中性等离子体的研究产生了一批崭新的具有革命 性意义的高技术项目,如相干辐射源的研制和粒子 加速器新概念的提出。将在能源、国防、通讯、材 料科学和生物医学中发挥重要作用。对基本物理过 程的深入研究已成为推动这些技术取得突破性进展 的关键。

等离子体物理学课件

等离子体物理学课件
解释等离子体发光的物理原理
等离子体的基本性质
电磁性质
• 等离子体在电场和磁场下的行为 • 等离子体的电导率和介电常数
动力学性质
• 等离子体的输运过程 • 等离子体的热力学性质
等离子体在天体物理中的应用
恒星爆炸中的等离子体
讨论等离子体在恒星爆炸和体的研究
探索行星际空间中等离子体的特性和影响
2 等离子体在新能源领域的应用
讨论等离子体技术在太阳能和风能等新能源技术中的应用
3 等离子体在生物医学中的应用
介绍等离子体在癌症治疗和生物材料领域的发展和研究进展
结语
展望等离子体物理学的未来,谢谢阅读!
等离子体物理学课件
本课件将介绍等离子体的基本概念、产生方式、基本性质,以及在天体物理、 实验室研究和前沿领域中的应用。
等离子体的基本概念
• 解释等离子体的概念 • 比较等离子体与其他物态的差异
等离子体的产生
1 切割/焊接技术中的等离子体
探讨等离子体在金属切割和焊接过程中的作用和产生方式
2 等离子体的发光现象
等离子体的实验室研究
1
实验室设备简介
介绍用于研究等离子体的实验室设备,
等离子体实验的基本技术
2
包括等离子体发生器和诊断工具
讨论实验中的主要技术,如等离子体
控制和诊断方法
3
等离子体实验的数据分析方法
介绍分析实验数据的常见方法,以及 结果的解释
等离子体学的前沿领域
1 等离子体在核聚变中的应用
探索等离子体在核聚变反应中的重要性,并解释其在未来能源领域的潜力

等离子体显示ppt课件

等离子体显示ppt课件

R
电源




10
等离子体显示原理
• 所谓等离子体显示板(plasma display panel,PDP),即 利用气体放电发光进行显示的平面显示板,可以看成是由 大量小型并排构成的。
• 日光灯: 水银蒸汽,气体放电,紫外线,荧光粉
• 所谓等离子体(plasma),是指正负电荷共存,处于电 中性的放电气体的状态。稀薄气体放电的正光柱部分,即 处于等离子体状态。
• DC型PDP的电极不加保护层,而是直接暴露在放电空间中, 放电电流为直流(direct current,DC)。为防止电极磨 损、提高寿命,要通过电阻限制放电电流,而且封入气体 的压力也较高。
DC型和AC型PDP中气体放电的区别
AC型PDP:离子向电极入射时,先与介电质层表面积蓄的电 荷发生复合,失去部分能量后,以较低的能量轰击介电质 层的表面;
产生放电。
R
电源




9
气体中的带电粒子,在电场加速下获得足够高的速度 (动能),再与中性气体原子碰撞,使其释放出另一 个电子,失去一个电子的气体原子形成带正电的离子。 离子带正电后受阴极的吸引,而与电子的运动方向相 反,也会与电子一样获得加速运动。最后撞击阴极, 使其发射电子。这样气体中产生大量带电粒子,形成 电流,即气体放电。
DC型PDP:较高能量的离子直接碰撞作为阴极的电极表面, 离子所带的能量全部释放在阴极中,结果离子对阴极表面 产生溅射作用,并造成很大损伤。
16
17
18
放电胞发光机理
• 放电胞发光机理:在2块玻璃基板上分别形成相 互正交的电极,通过在其上施加电压或定时控制 使放电胞放电,产生等离子体发光,见图3-3。 其中行电极为扫描电极,在PDP的横向施加电压; 列电极为信号电极,在PDP的纵向施加电压

等离子体显示器工作原理PPT课件

等离子体显示器工作原理PPT课件

Address action寻址动作
第11页/共47页
Address action寻址动作
第12页/共47页
Address action寻址动作
第13页/共47页
Address action寻址动作
第14页/共47页
Address action寻址动作
第15页/共47页
Address action寻址动作
第25页/共47页
电极(Y) 电极(X)
PDP 电路原理直观图 像素 PDP
发光单元
第26页/共47页
电极导通(Y) 电极导通(X)
PDP 电路原理直观图 发光 PDP 放电
第27页/共47页
PDP 电路原理直观图
导通
PDP 放电消失
导通
电极(Y) 电极(X)
第28页/共47页
PDP 电路原理直观图(二)
sustain pulse time
reset period
address period
sustain period

第23页/共47页
PDP 电路结构原理图
r
R
C
FET ON 保护电阻 电容
Sustain margin 维持边缘放电
第24页/共47页
放电单元
电极(Y) 电极(X)
PDP 电路原理直观图 发光单元 PDP 像素
第44页/共47页
第45页/共47页
第46页/共47页
感谢您的观看!
第47页/共47页
ON OFF
PDP 如何发光形成图形 Y3
Y2 Y1
X1 X2
X3
第5页/共47页
ON OFF
PDP 如何发光形成图形 Y3

一、等离子体基本原理ppt课件

一、等离子体基本原理ppt课件

时间尺度要求:等离子体碰撞时间、存在时间远大于特
征响应时间
p,p
( D )1/2
kTe/me
等离子体参数:在德拜球中粒子数足够多,具有统计意 义
1 , 4n 0D 2 ( T 3 /n 0 ) 1 /2
.
1.4 等离子体分类
天然等离子体
按存在分类
人工等离子体
完全电离等离子体
.
空间天体等离子体 什么保护了地球:等离子体
.
空间天体等离子体
北极光
.
空间天体等离子体
逃离太阳的等离子体
.
空间天星体系等:离巨子体大的聚变反应堆
.
等离子体参数空间
温度 (度)
星云
太阳风 星际空间
日冕
霓虹灯 荧光
磁约束 聚变
氢弹
惯性聚变
太阳核心 闪电
气体 液体 固体
北极光
火焰
人类居住环境
.密度(cm-3)
地球上,人造的等离子体也越来越多地出现在我们的周围。 日常生活中:日光灯、电弧、等离子体显示屏、臭氧发 生器 典型的工业应用:等离子体刻蚀、镀膜、表面改性、喷 涂、烧结、冶炼、加热、有害物处理 高技术应用:托卡马克、惯性约束聚变、氢弹、高功率 微波器件、离子源、强流束、飞行器鞘套与尾迹
.
聚变等离子体
一个密度几乎相等,每立方米n0个粒子的电子和单 电荷正离子构成的含能等离子体,在半径为r的球形区域 内,此体积内的静电能由其所包围的剩余电荷量决定, 此球表面的静电位为:
V Q
4 0r .
Q=eδn,为球内静电荷,其中e为电子电荷,此时球表
面的静电位为
V
4r3
3
en
r2en

(东南大学)等离子体显示PPT课件-电子书

(东南大学)等离子体显示PPT课件-电子书

3.离子体具有很高的温度。一般说来,即使温 度在 1 万℃左右,物质中等离子体所占的比例约 为1%。因此,在我们生存的空间,等离子体现象 很少见。然而宇宙中大量的物质均以等离子体的形 式存在,等离子体约占宇宙物质的99%,甚至更 多,这是因为宇宙中大部分物质都集中在恒星内, 而恒星的温度都比较高,如太阳中心的温度高达1 千万℃,那里的物质显然都以等离子体的形式存在。 离子体物理是研究等离子体的性质及其和外界相 互作用的学科。
等离子体又被称为物质的第四态,它是由电子 和正离子组成的一种物质的聚集态。众所周知, 物质的聚集态随着物质温度的升高会发生由固态 到液态最后到气态的变化。然而,这只是常温状 态下的情况,如果温度升高,达到几万度甚至几 十万度,则分子和原子之间已难以相互束缚,原 子中的电子也会摆脱核的束缚而成为自由电子, 这样原来的气体就变成了一团由电子和核离子组 成的混合物。这种混合物就称为等离子体。等离 子体是一种全新的物质的状态,它与气体有本质 的区别。
五、降低功耗 功耗大是PDP的一个弱点,对此,世界各 PDP厂家都做了许多工作。例如美国Plasma公 司通过采用减少PDP用电容的恢复支持电路, PDP 使其研制的21英寸彩色PDP的功耗减少了100W。 日本先锋公司在其PDP产品中使用了4个先进的 系统集成电路,也有效地降低了功耗。 世界各 PDP厂家的近期目标是把目前的300~500W功 耗降到200~300W的水平。
七、改进对比度
在彩色PDP中,需要利用预放电信号光(背景辉光)稳定 PDP的发光。但是这样,在显示暗场时,屏上会出现模糊 的光,从而降低了对比度。这就需要降低这种背景光,以 确保PDP的暗场对比度。日本富士通公司已对此提出了一 种子场寻址技术,用以降低PDP的背景辉光。这种技术就 是把显示的每一帧图像分成一系列与灰度密度相对应的子 场,以显示连续灰度的图像。在对选中的子场进行写入操 作时,需要擦除前面子场的信息,并建立正常的壁电荷, 而这个擦除与建立的过程是由能减少背景辉光的子场发微 光微弱气体放电完成的。采用这种技术,美国Plasma公司 在其PDP产品上实现了200∶1的暗场对比度。

等离子体物理学导论L课件

等离子体物理学导论L课件

05 等离子体物理学 的挑战与前景
等离子体物理学的挑战
实验难度大
等离子体物理实验通常需要在极 端条件下进行,如高温、高压、 强磁场等,这给实验设计和实施
带来了很大的挑战。
理论模型复杂
等离子体是一种高度复杂的系统, 其理论模型涉及到多个物理过程和 相互作用,这使得理论分析变得非 常困难。
数值模拟难度高
描述等离子体中粒子的运 动规律。
碰撞理论
等离子体中粒子间的碰撞 过程和碰撞频率的计算。
03 等离子体的产生 与维持
高温等离子体的产生方式
核聚变
利用氢核聚变反应产生 高温等离子体,是实现 可控核聚变的关键步骤

核裂变
利用重核裂变反应产生 高温等离子体,是核能 利用的重要方式之一。
电弧放电
通过高电压、大电流产 生电弧放电,使气体加 热至高温等离子体状态
3
等离子体物理与地球科学的交叉
等离子体物理在地球科学中有广泛的应用,如电 离层和磁层的研究、太阳风和地球磁场的相互作 用研究等。
THANKS
感谢观看
等离子体在材料科学中的应用
总结词
等离子体在材料科学中广泛应用于表面处理、材料合成和刻蚀等领域,具有高效、环保 等优点。
详细描述
等离子体通过高能粒子和活性基团对材料表面进行轰击和化学反应,实现表面清洗、刻 蚀、镀膜和合成等功能。与传统的机械或化学方法相比,等离子体处理具有更高的效率
和更好的环保性。在金属、玻璃、塑料等各种材料的表面处理和加工中有广泛应用。

激光诱导
利用高能激光束照射气 体,通过激光与气体的 相互作用产生高温等离
子体。
低温等离子体的产生与特性
电晕放电

等离子体物理学课件

等离子体物理学课件

计算机模拟技术是研究等离子体的有力工具,通过建立数学模型和数值算法,可以模拟等离子体的演化过程和行为,为实验研究和理论分析提供重要支持。
粒子模拟技术通过跟踪等离子体中每个粒子的运动轨迹,可以详细模拟等离子体的微观行为和演化过程。流体模拟技术将等离子体视为连续介质,通过求解流体方程组来描述等离子体的宏观行为。混合模拟技术则结合了粒子模拟和流体模拟的优点,能够同时考虑等离子体的微观和宏观行为,提供更准确的模拟结果。
等离子体物理学课件
目录
CONTENTS
等离子体物理学概述等离子体的基本理论等离子体的实验技术等离子体物理学的应用实例等离子体物理学的未来展望
等离子体物理学概述
总结词
等离子体是一种由自由电子和带正电的离子组成的气态物质,具有导电性和热传导性。
详细描述
等离子体是一种高度电离的气态物质,其中包含大量的自由电子和带正电的离子。这些粒子在空间中广泛分布,可以导电并传递热量。等离子体的状态可以通过温度、压力和成分等参数进行描述。
等离子体物理学的未来展望
等离子体物理学的实验研究需要高能物理设备,且等离子体的控制和稳定性也是一大挑战。此外,等离子体的理论模型和数值模拟也需要更深入的研究。
随着科技的不断进步,等离子体物理学的应用领域越来越广泛。例如,等离子体在材料科学、环境保护、新能源等领域的应用前景广阔,这为等离子体物理学的发展提供了更多的机遇。
光谱诊断技术利用等离子体发射或吸收光谱的特征,可以测量等离子体的电子温度、密度、化学成分等参数。粒子测量技术通过测量等离子体中的粒子速度、能量等参数,可以了解等离子体的动力学行为。电磁测量技术可以用来测量等离子体的电磁场强度和分布,进一步揭示等离子体的电磁行为和演化过程。
诊断技术

等离子技术原理ppt课件

等离子技术原理ppt课件
等离子弧按导电方式可分为非转移型﹑转移型和混合型 3种(见上图 )。
转移型等离子弧温度高(10000~52000℃)﹐有效热利用率高﹐主要用于切割﹑焊
接和熔炼金属。切割的金属有铜﹑铝及其合金﹑不锈钢﹑各种合金钢﹑低碳钢﹑铸铁﹑ 钼和钨等。常用的切割气体为O2、N2、H35 、Air等。常用的电极为铈钨或钍钨电极﹐ 采用压缩空气切割时使用的电极为金属锆或铪。
-
尖端快速的被冷却 = 弧压缩 电弧中心的温度 (15,000 to 35,000°C) = 融化金属材料
高速等离子射流 = 融化的金属材料通过割缝喷出
Slide 6
等离子弧处理过程
等离子弧压缩
20 000 K
_
_
10 000 K自由弧
5 000 K
等离子弧压缩
2000 K 300 k
+
+
Slide 7
Slide 13
飞马特XT系列割枪及消耗件
飞马特的切割喷嘴采用了较小的喷嘴孔径、较高的工作气压来提高 喷嘴有效断面内通过的电流,同样达到了增大电弧的功率密度之目的并 大大减少了电弧的功率损失,从而实现了更经济的切割。
Slide 14
飞马特等离子割枪
XT-300 XT-301
SL100SV
Slide 15
Slide 4
普通等离子弧的基本原理
飞马特等离子弧的原理﹕首先,让连续通气放电的电弧通过一个喷嘴孔﹐使其在
孔道中产生机械压缩效应﹔同时﹐喷嘴中心安装有一个涡流环﹐等离子气在电离前就已 产生强烈的涡流收缩效应﹐使等离子气聚焦成一束很细的气柱从喷中心喷出;最后,为 了确保等离子弧的温度不致持续升高而使等离子弧柱膨胀扩散,割枪内的循环冷却液又 对喷嘴进行冷却,通过降低温度对弧柱再一次进行压缩并最终达到一种平衡。这3种效 应对弧柱进行强烈压缩﹐在与弧柱内部膨胀压力保持平衡的条件下﹐使弧柱中心气体达 到高度的电离﹐而构成电子﹑离子以及部分原子和分子的混合物﹐即等离子弧。

等离子体产生原理ppt课件

等离子体产生原理ppt课件
本反应过程 激发: XY + e XY*+e 退激:XY*XY+hv(光子)
离解: XY + e X + Y + e
电离: XY + e XY+ + 2e X+ + Y + 2e
电子和离子在电场中受加速 粒子间的碰撞产生热效应、粒 子和固体表面的碰撞
等离子体特性应用
发光特性 <光学应用> 化学活性 <化学应用> 导电性 <电气应用> 高速粒子 <力学应用> 产生高温 <热学应用>
2
• 若碰撞电子能量足够高,电子吸收的能量就可以使其 脱离核的束缚而成为自由电子,也就是分子发生了 “电离”,用XY+表示 。
• 电子对分子XY的碰撞也可以使之分解成为X原子和Y 原子(离解/裂解)。用“:”表示分子中成键的电子 对,离解过程可以表示为X:YX + Y。这样带有未成 对电子 的X,Y就容易发生化学反应,故称为化学活 性或基团。
等离子体的应用
反应离子刻蚀:RIE、ICP
薄膜沉积: 等离子体增强化学气相沉积 (PECVD) 微波增强化学气相沉积 (MPECVD)
1
等离子体的产生
在等离子体气体中,以电子碰撞双原子分子XY为例,若 碰撞能量小,则会发生弹性碰撞,电子的动能不会改变。若 碰撞能量很高,分子中绕核运动的低能电子,就会在碰撞中 获得足够的能量,被激发至离核较远的高能级轨道上运动。 我们把这种高能级状态的分子称为激发态分子,用XY*表示。 激发态分子中的电子从高能级跳回到低能级时,便以发光的 形式发出多余能量(辉光放电),这个过程称为“退激”。
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
blue yellowwhite
blue
Positive Column
Red-pink red-brown dark-red blue-purple
whitegreen pink red-yellow red-yellow red-yellow
7
介质阻挡放电(DBD)
8
滑动电弧放电等离子体
9
激光
密度(cm-3)
17
地球上,人造的等离子体也越来越多地出现在我们的周围。 日常生活中:日光灯、电弧、等离子体显示屏、臭氧发 生器 典型的工业应用:等离子体刻蚀、镀膜、表面改性、喷 涂、烧结、冶炼、加热、有害物处理 高技术应用:托卡马克、惯性约束聚变、氢弹、高功率 微波器件、离子源、强流束、飞行器鞘套与尾迹
12
空间天体等离子体 什么保护了地球:等离子体
13
空间天体等离子体
北极光
14
空间天逃体离等太离阳子体的等离子体
15
空间天星体系等:离巨子体大的聚变反应堆
16
等离子体参数空间
温度 (度)
星云
太阳风 星际空间
日冕
霓虹灯 荧光
磁约束 聚变
氢弹
惯性聚变
太阳核心 闪电
气体 液体 固体
北极光
火焰
人类居住环境


在等离子体内部,正、负电荷数几乎相等——准中性 ne ni
30
就等离子体本身而言,它具有变成为电中性的强烈 倾向,故离子和电子的电荷密度几乎相等,此种情况称 为准中性,是带相反电荷粒子间的强电作用的结果。
等离子体中电荷分离仅可能由外加电场或等离子体 本身的内能(热能)来维持,可由等离子体动力学温度 维持的对电中性的最大偏离估算出来。
ne0ni0n0
当 ekT e1, ekT i <<1,有
3
霓虹灯
4
太阳等离子体喷流
5
电晕放电实例
6
部分气体辉光放电的颜色
Gas
Cathode Layer
He Ne(neo
n) Ar Kr Xe H2 N2 O2 Air
red yellow pink
red-brown pink red pink
Negative Glow
pink orange dark-blue green orangegreen thin-blue
11
1.1.1 等离子体存在处: 宇宙中90%物质处于等离子体态。由地球表面
向外,等离子体是几乎所有可见物质的存在形式, 它与众所周知的物质三态也就是气态、液态、固 态并列称为物质的第四态,即等离子体态。如大气 外侧的电离层、日地空间的太阳风、太阳日冕、 太阳内部、星际空间、闪电、极光、星云及星团, 毫无例外的都是等离子体。
10
第一章 等离子体基本原理
1.1 等离子体概念:由大量的带电的正粒子、负粒子(其中包括正 离子、负离子、电子、自由基和各种活性基团等)组成的集合体, 其中正电荷和负电荷电量相等,故称等离子体。
注意: 非束缚性:异类带电粒子之间相互“自由”,等离子体的 基本粒子元是正负荷电的粒子(电子、离子),而不是其 结合体。 粒子与电磁场的不可分割性:等离子体中粒子的运动与电 磁场(外场及粒子产生的自洽场)紧密耦合,不可分割。 集体效应起主导作用:等离子体中相互作用的电磁力是长 程的。
固体 冰
液体 水
气体
水汽
等离子体
电离气体
00C
1000C
100000C
温度
26
放电是使气体转变成等离子体的一种常见形式
普通气体
等离子体
放电 需要有足够的电离度的电离气体才具有等离子体 性质。
“电性”比“中性”更重要 ( 电离度 >10-4 ) 27
1.2 等离子体特征
1.2.1 等离子体的整体特征 等离子体是一种导电流体。 对于洛仑兹等离子体,把等离子体看作微观粒子
等离子体应用技 术
1
参考教材: 1. 等离子体技术与应用 许根慧等 化学工业出版社 2.等离子体技术及应用 赵青 刘述章 童宏辉 国防工业出版社
2
目录
等离子体基本原理 等离子体的化学行为 等离子体发生技术 介质阻挡放电等离子体技术与应用 电晕和辉光放电等离子体技术与应用 微波放电等离子体技术与应用 等离子体在薄膜制备中的应用 等离子体在高分子化学中的应用 等离子体显示技术 等离子体在隐身技术中的应用 等离子体应用技术进展
一个密度几乎相等,每立方米n0个粒子的电子和单 电荷正离子构成的含能等离子体,在半径为r的球形区域 内,此体积内的静电能由其所包围的剩余电荷量决定, 此球表面的静电位为:
V Q
4 0r 31
Q=eδn,为球内静电荷,其中e为电子电荷,此时球表
面的静电位为
V
4r3
3
en
r2en
(V)
被推进净负电荷小球区域4的一0r个电子3所得0 到的能量可由
33
德拜屏蔽鞘层 设想在等离子体中插入一电极,试图在等离子体中建立电场
电子将向电极处移动,离子则被排斥,电极所引入的电场仅局限 在较小尺度的 “鞘层” 中
静电势满足 Poisson 方程:2e源自0neni
热平衡时电子、离子密度满足 Boltzmann 分布:
ne xne0eexkT e ni xni0eexkT i
18
聚变等离子体
核聚变反应
D + T = n + 4He D + T = p + 3He
19
聚变等离子体
实现聚变的三种途径
20
聚变等托离卡子马体克装置( JET )
21
美国激光聚变装置
22
美国国家点火(NIF)激光聚变装置
23
激光聚变电站
24
神光II、星光II激光聚变装置 25
1.1.2 等离子体是物质第四态
上式的静电位乘以电荷得到:
U
eV
r2e2n
30
此能量仅来自与有限的动力学温度T有关的动能
U 1KT 1eT 22
可得到与电中性的相对偏离: n 3T 0
n 2er 2n0
32
1.2.3 等离子体鞘层
特征响应时间:τp= λ D/vT


屏蔽层厚度:德拜长度 λD
在等离子体中引入电场,经过一定的时间,等离子体中 的电子、离子将移动,屏蔽电场——德拜屏蔽
的集合,可以把等离子体的整体导电率σ写为
e2ne 1 mevce
28
对于电子只与每个电荷数均为z的带电粒子碰撞的 情况,等离子体整体电导率σs为
s
51.602()12(kTe)32
e2z me ln
ln 为库仑对数, lnln12z(2e03knTe1e2)32
29
1.2.2 等离子体的准电中性
相关文档
最新文档