压缩感知与冗余字典

合集下载

压缩感知

压缩感知

压缩感知,又称压缩采样,压缩传感。

它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号[1]。

压缩感知理论一经提出,就引起学术界和工业界的广泛关注。

他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,[2]并被美国科技评论评为2007年度十大科技进展。

编辑本段基本知识现代信号处理的一个关键基础是Shannon 采样理论:一个信号可以无失真重建所要求的离散样本数由其带宽决定。

但是Shannon 采样定理是一个信号重建的充分非必要条件。

在过去的几年内,压缩感知作为一个新的采样理论,它可以在远小于Nyquist 采样率的条件下获取信号的离散样本,保证信号的无失真重建。

压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。

[3]压缩感知理论的核心思想主要包括两点。

第一个是信号的稀疏结构。

传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。

但是,现实生活中很多广受关注的信号本身具有一些结构特点。

相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。

换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。

所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。

另外一点是不相关特性。

稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。

理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。

这些波形要求是与信号所在的稀疏空间不相关的。

压缩感知方法抛弃了当前信号采样中的冗余信息。

它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。

这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。

压缩感知综述_尹宏鹏

压缩感知综述_尹宏鹏

第28卷第10期V ol.28No.10控制与决策Control and Decision2013年10月Oct.2013压缩感知综述文章编号:1001-0920(2013)10-1441-05尹宏鹏a,刘兆栋a,柴毅a,b,焦绪国a(重庆大学a.自动化学院,b.输配电装备及系统安全与新技术国家重点实验室,重庆400044)摘要:压缩感知理论的诞生使得采样速率与信号的结构和内容相关,并以低于奈奎斯特采样定理要求的频率采样、编码和重构.在实际应用中,为解决数据冗余和资源浪费的瓶颈问题开拓了一条新道路,也为其他学科发展提供了新的契机.从发展历史和研究现状等方面入手,对稀疏表示、测量矩阵的构造、稀疏重构算法和主要应用方面进行了详细的梳理和研究.对当前研究的热点、难点作了分析和探讨,并指出了未来的发展方向和应用前景.关键词:压缩感知;稀疏表示;测量矩阵;稀疏重构算法中图分类号:TP13文献标志码:ASurvey of compressed sensingYIN Hong-peng a,LIU Zhao-dong a,CHAI Yi a,b,JIAO Xu-guo a(a.College of Automation,b.State Key Laboratory of Power Transmission Equipment and System Security and New Technology,Chongqing University,Chongqing400044,China.Correspondent:YIN Hong-peng,E-mail: yinhongpeng@)Abstract:The presence of compressed sensing theory makes the sample rate relate to the signal structure and content.The sample rate of compressed sensing for the signal sample,coding and reconstruction is less than the Nyquist theorem methods. Therefore,a method is proposed to solve the bottleneck problem of data redundancy and resource-wasting.Moreover,it offers new developing chances for other researchfields.The development and current situation of compressed sensing theory are involved.A detailed carding and research on the sparse representation,measurement matrix design,reconstruction algorithm and application aspects is discussed.Therefore,the current hot spots and difficulties are analyzed and discussed.Finally,the direction of future development and application prospect are discussed.Key words:compressed sensing;sparse representation;measurement matrix;reconstruction algorithm0引言信号处理中基本的原理依据是奈奎斯特采样定理,在信号采样时,只有满足大于信号最高频率两倍的频率进行信号采样,才能精确地重构原始信号.信号采样过程中产生大量的冗余数据,最终只有部分重要的信息被应用,造成了大量资源的浪费和在特殊环境中数据使用的限制.由此学者们提出,可否利用被采样数据精确地重构原始信号或图像,这部分重要数据是可以直接采集到的.最初,Mistretta等[1]提出:能否利用有限的采样数据使得原始信号或图像被精确或近似精确地重构,以缩减核磁共振成像的时间.Mistretta等依据此观念进行模拟实验,实验采用经典的图像重构算法.实验结构证明重构的图像边缘模糊,且分辨率低.之后, Candes等[2]利用有限的采样数据精确地重构了原始信号,但采用的是惩罚思想,实验结果证明,在图像的稀疏表示中,随机选取的稀疏系数只有不少于2K个(K是非零稀疏系数的个数),原始信号或图像才能被精确地重构,且具有惟一性的特点,由此诞生了压缩传感理论.针对可稀疏压缩信号,Donoho等[3-6]在稀疏分解和信号恢复等思想的基础上提出压缩感知(CS)理论框架,随后该理论迅速发展,为解决瓶颈问题提供了理论基础.在此基础上,Donoho[3]正式提出了“压缩传感”这一术语,此后文献[2-3,6-7]针对稀疏表示的稀疏性和不相干性、稳健的压缩采样、随机测量等方收稿日期:2012-10-16;修回日期:2013-01-25.基金项目:国家自然科学基金项目(61203321);中国博士后基金项目(2012M521676);中央高校基金科研业务费项目(106112013CD-JZR170005).作者简介:尹宏鹏(1981−),男,副教授,博士,从事压缩感知、计算机视觉等研究;刘兆栋(1985−),男,硕士生,从事压缩感知、计算机视觉的研究.DOI:10.13195/j.kzyjc.2013.10.0131442控制与决策第28卷面进行了许多研究,并将压缩感知作为测量技术应用于天文学、核磁共振、模式识别等领域,取得了良好的发展.压缩感知引起了国外众多学者和组织机构的关注,被美国科技评为2007年度十大科技进展之一,如Waheed等[8]提出了网络数据的压缩传感;西雅图Intel、贝尔实验室、Google等知名公司也开始研究压缩感知;莱斯大学提出了一种利用光域压缩的新颖的压缩图像照相机框架和新的数字图像/视频照相机以直接获取随机映射,并建立CS专业网站,涵盖了理论和应用的各个方面[9].在国内,近几年对CS理论和实际应用的研究也成为热门的研究方向.以压缩感知为检索主题词在国家自然科学基金网络信息系统(ISIS)[10]中查询近3年的项目资助情况,其资助力度呈逐年递增趋势(2010年资助39项,合计1627万元; 2011年资助54项,合计2691万元;2012年资助77项,合计4135万元).以上结果显示,对压缩感知的研究已经受到国家层面的大力重视,也吸引了越来越多的优秀学者参与.国内众多学者对压缩感知进行了深入研究,其中具有代表性的有:文献[11]针对压缩感知稀疏重建算法进行了研究;文献[12]详细探讨了压缩传感的理论框架及其关键技术问题;文献[13]深入研究了压缩感知的理论框架和基本思想,并讨论了未来的应用前景;文献[14]探索了在探地雷达三维成像中压缩感知理论的应用;文献[15]将压缩感知理论应用于无线传感网,并在分布式压缩传感理论基础上提出了一种数据抽样压缩和重构的方法;文献[16]将可压缩传感理论运用于实际传感器网络数据恢复问题.在各个领域,压缩传感虽然已经取得了显著的成果,但是国内外学者认为仍存在很多问题需要研究[12]:1)对于越来越完善的重构算法,如何使构造的确定性测量矩阵是最好的;2)如何探索稳定的重构算法,使得原始可压缩信号或图像被精确地重构,且所构造的重构算法要求计算复杂度低、对观测次数限制少;3)如何在冗余字典或非正交分解下找到一种快速有效的稀疏分解算法;4)如何运用压缩感知理论设计有效的软硬件解决大量的实际问题;5)针对p-范数的最优化求解问题,如何深入研究;6)如何在含噪信号的重构或采样过程中收入噪声后寻求最优的信号重构算法.此外,将压缩感知理论应用于其他领域,如医学信号检测、特征提取、故障诊断、图像融合等,也是众多学者研究的难点和热点.压缩感知理论是新颖的理论,是对经典信号处理领域的补充和完善,其研究成果显著影响了图像处理、数据融合等其他领域,然而专家学者认为还有许多问题有待研究.1压缩感知研究方向在信号处理过程中,抽样的目的是运用最少的抽样点数获得有效的信息.在设计抽样系统时,完整恢复信号所需的最少抽样点数是必须考虑的问题,经典奈奎斯特定理给出了关于带限信号的答案,而在经典理论的基础上提出的压缩传感理论,由于低于奈奎斯特采样定理要求的频率采样、编码和重构,适用于更广泛的信号类型.CS理论主要涉及信号的稀疏表示、稀疏测量和重构3个基本核心问题.1.1稀疏表示稀疏表示的基本思想是假设自然信号可以被压缩表示,从数学角度而言,是对多维数据进行线性分解的一种表示方法.稀疏表示具有两个特征:过完备性和稀疏性.字典的过完备性表示字典的行数大于列数,即信号的维数小于原子的个数.相比于正交变换基,构造的过完备字典含有的原子数目更多,能提供更稳定的稀疏表示.因此,稀疏表示(即构造具有稀疏表示能力的基或者设计过完备字典Ψ)的目的是希望信号非零元个数足够少,即令Ψ足够稀疏以确保信号或图像“少采样”.目前较流行的信号稀疏表示方法多数基于稀疏变换,对信号的Fourier变换、小波变换、Gabor变换等都具有一定的稀疏性.多尺度几何分析为一些特殊形态提供了最稀疏的表示,如Curvelet变换、Bandelet变换、Contourlet变换等.部分学者研究了在混合基下的信号稀疏表示,如文献[17]将其应用于形态成分分析,文献[11]应用于图像CS重构,文献[18]应用于MRI(magnetic resonance imaging)重构等,均取得了比单一稀疏表示下更好的效果.传统的信号分解方法都是将信号分解到一组完备的正交基上,有较大的局限性.在表达任意信号时,当选用某个特定函数作为基时,基函数便决定了信号的展开形式.伴随着信息技术不断发展,信号或图像处理的理论也日新月异,更有效的非正交分解方法也因此产生.非正交分解日益引起专家学者们的重视,给信号的稀疏分解指明了一个新方向.信号在冗余字典下的稀疏分解是稀疏表示的研究热点,而构造稀疏字典的研究热点是过完备字典.冗余字典设计或学习必须遵循的基本准则是:对于信号本身的各种固有特征,在构造字典的过程中各元素应尽可能匹配.在稀疏基或字典的构造过程中,选择合适的稀疏字典能够确保信号的表示系数足够稀疏,进而确保直接与非零系数相关的压缩测量数目足够少,同时能够高概率地重构信号或图像.第10期尹宏鹏等:压缩感知综述1443经过对国内外众多优秀学者的研究和理论进行梳理,常用的稀疏表示算法主要包括基追踪算法(BP)[19]、贪婪匹配追踪算法(MP)[20]、正交匹配追踪算法(OMP)[21]等.在稀疏分解算法研究中,大多数只从原子库构造或分解算法角度出发,然后对稀疏分解算法进行各种改进.未来利用原子库自身结构特性的稀疏分解算法是压缩感知理论研究的热点之一.从现有的文献来看,众多学者对稀疏表示的研究重点主要集中在两个方面:如何找到信号的最佳稀疏基和如何从这些基或字典中找到最佳的K项组合来逼近源信号;针对已有算法如何实现冗余字典的快速计算或者设计新的低复杂度的稀疏分解算法.1.2稀疏测量为了保证精确地重构原始信号,对信号的线性投影采用一个与稀疏变换矩阵不相关的测量矩阵,从而得到感知测量值,即所谓的稀疏测量.因此,稀疏测量主要集中在两个方面:如何构造随机测量矩阵使得测量值的数目尽可能的少和如何使构造的测量矩阵与系统不相关.从原理角度看,测量矩阵的选择需要满足非相干性和限制等容性(RIP)两个基本原则.文献[22]给出并证明了测量矩阵必须满足RIP条件;文献[23]给出了测量矩阵的一个等价条件是测量矩阵与稀疏基之间不相关,即若运用与稀疏变换基不相关的测量矩阵对信号压缩测量,则原始信号可以经过某种变换后稀疏表示.构造一个与稀疏矩阵不相关的M×N(M≪N)测量矩阵Φ对信号进行线性投影,获取感知测量值y=Φf,y是M×1矩阵,使测量对象从N维降为M维[22-23].稀疏测量过程是非自适应的,即测量矩阵Φ的选择不依赖于信号f.构造的测量矩阵要求信号从f转换为y的过程中获取的K个测量值能够保留原始信号的全部信息,以保证信号的精确重构.在测量矩阵的设计过程中,有y=Φf=ΦΨα=Aα,其中A需满足有限等距性质[22-23],即对于任意K值的稀疏信号f和常数δk∈(0,1),有1−δk⩽∥Af∥22∥f∥22⩽1+δk,(1)由此K个系数可根据M个感知测量值准确重构.依据测量矩阵的限制性条件,专家学者提出的随机性测量矩阵有随机高斯测量矩阵[2-4,7]、随机贝努力矩阵[2-4]、部分正交矩阵[2]、稀疏随机矩阵[24].当前,随机性测量矩阵的劣势是存在一定的不确定性,若要消除压缩测量的不确定性,则必须进行后续处理.此外,利用实际硬件生成随机测量矩阵也较为困难.针对随机测量矩阵的不确定性和不易用硬件实现两大缺点,学者展开了对确定性测量矩阵的研究.确定性测量矩阵有利于降低内存、设计快速的恢复算法,主要分为托普利兹和循环矩[25-29]、轮换矩阵[30-31]、哈达玛矩阵[4]、改进的轮换矩阵的构造[32]等.目前,一些学者提出了通过QR分解、正交变换改进的随机测量矩阵和改进非线性相关性的确定性测量矩阵的方法.通常,压缩测量过程中存在难以在硬件上实现和采样过程中数据多等难题,测量矩阵的构造还不够完善,因此,将压缩传感理论推向实际应用的关键是构造高效且在硬件上易于实现的测量矩阵.1.3信号重构信号重构算法是指运用压缩测量的低维数据精确地重构高维的原始信号或图像,即利用M维测量值重建N(M≪N)维信号的过程.重构是压缩感知研究中最为重要且关键的部分,在信号重构方面,最初研究的是对最小化l2范数约束求解的优化问题,获取的解通常是不稀疏的,于是转而对最小化l0范数和l1范数约束求解.目前,重构算法主要分为3类:1)基于l1范数的凸优化算法;2)基于l0范数的贪婪算法;3)组合算法.对于大规模的数据问题,重构速度有时候会很快,但是原始信号的采样要支持快速分组测试重建.凸松弛算法有基追踪算法[25]、梯度投影法[30]、凸集交替投影算法[5-6]和内点迭代法[31]等;贪婪算法有匹配追踪算法[20]、正交匹配追踪算法[33]、分段式正交匹配追踪算法[34]和一些改进算法等;组合算法有链式追踪算法[35]、HHS(heavy hitter on steroids)追踪算法[36]和I-wen算法[37]等.凸优化方法是基于l1范数最小进行求解的方法,相比于其他算法,重建效果较好.因其计算量大、时间复杂度高,在大规模信号处理中不便广泛应用.然而,近些年来,一些凸优化方法在重建稀疏信号方面获得了较快的重构速度,例如交替方向算法等[38].该算法不同于其他算法将凸优化问题视为一般的极小化问题而忽略了其可分离结构,在求解凸优化问题时将各变量分离求解,极大地提高了算法的速度.相对基于l1范数最小的凸优化算法模型而言,贪婪追踪算法计算速度很快,但精度稍差,然而也能满足实际应用的一般要求.因此,基于l0范数最小的贪婪追踪算法很实用,应用广泛.此类算法针对l0范数最小化问题求解,但是改进系列算法允许在重建过程中存在一定的误差.此外,迭代阈值法也得到了广泛的应用,此类算法也较易实现,计算量适中,在贪婪算法和凸优化算法中都有应用.但是,迭代阈值法对于迭代初值和阈值的选取均较为敏感,且不能保证求出的解是稀疏的.1444控制与决策第28卷Gilbert等[35-36]提出链追踪、HHS追踪等组合优化算法,采用结构式采样矩阵线性投影,利用群测试实现精确重构.此类算法运算速度高,但采样测量矩阵复杂,现实中难以推广应用.目前,重构算法可以精确地重构原始信号或图像,但这些稀疏重构算法都存在一些无法改善的缺点.此外,现有的算法对含有噪声信号或采样过程中收入噪声信号的重构效果较差,鲁棒性也较差,如何改善有待进一步研究.2压缩感知理论的应用压缩感知理论可以高效地采集稀疏信号的信息,通过非相关性感知测量值,此特性使得压缩传感广泛地应用于现实生活中.CS理论解决了信息采集和处理技术目前遇到的瓶颈,带来了革命性的突破,受到各国学者的广泛关注,从医学成像和信号编码到天文学和地球物理学均有所应用.其中代表性的有“单像素”压缩数码照相机[9]、MRI RF脉冲设备[39]、超谱成像仪[40]、DNA微阵列传感器[41]、MPST(multi-pixel but single time)相机[42]等.此外,压缩感知表现出强大的生命力,已发展形成了分布式CS理论、贝叶斯CS理论、无限维CS理论等,并得到广泛应用,如文献[43]利用分布式CS理论实现视频的压缩和联合重构;文献[44]利用贝叶斯CS理论改善了分布式认知网络中频谱感知的精度.目前,压缩感知理论在数据压缩、信道编码、数据获取等方面获得了广泛应用,然而其自身理论还不够完善,在应用方面也是新兴学科,未来的研究中尚有许多难点问题需要解决和突破.3结论压缩感知理论的应用已经引起众多学者的高度重视,其采样速率与信号的结构和内容相关,以低于奈奎斯特采样定理要求的频率采样、编码和重构.压缩感知理论在压缩成像系统、医学成像、信息转换、雷达成像、天文和通讯等[45]领域均获得了较好的应用.通过对国内外众多学者文献的梳理和研究,总结了压缩感知理论进一步的研究方向:1)算法层面.在非正交分解或适合某一类冗余字典中,探索更有效更快速的稀疏分解算法;在多信息、多误差、多故障融合的情况下,研究新的复杂度低、精确率高的重构算法,并在测量次数、重建误差和重建速度上达到最优的平衡.2)理论层面.在随机测量矩阵方面,提高列向量之间的非线性相关性和类似噪声的独立随机性,构造一个平稳观测矩阵寻求占用存储空间小、测量数和信号长度最优的确定性测量矩阵,并给出相应的理论条件验证方法.3)应用层面.针对现实生活中噪声等实际问题,探索基于压缩感知的软硬件设计;结合现有的贝叶斯、分布式等压缩感知理论的优点,进一步探讨压缩感知与其他领域的融合.参考文献(References)[1]Marple S L.Digital spectral analysis with applications[M].Englewood Cliffs:Prentice-Hall,1987:35-101.[2]Candès E J,Romberg J,Tao T.Robust uncertaintyprinciples:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans on Information Theory,2006,52(2):489-509.[3]Donoho D pressed sensing[J].IEEE Trans onInformation Theory,2006,52(4):1289-1306.[4]Donoho D L,Tsaig Y.Extensions of compressedsensing[J].Signal Processing,2006,86(3):533-548. [5]Candès pressive sampling[C].Proc of the IntCongress of Mathematicians.Madrid,2006,3:1433-1452.[6]Candès E,Romberg J.Quantitative robust uncertaintyprinciples and optimally sparse decompositions[J].Foundations of Computational Mathematics,2006,6(2): 227-254.[7]Candès E,Romberg J,Tao T.Stable signal recovery fromincomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006, 59(8):1207-1223.[8]Waheed Bajwa,Jarvis Haupt,Akbar pressivewireless sensing[C].Proc of the5th Int Conf on Information Processing in Sensor Networks.New York: Nashville,2006:134-142.[9]Duarte M F,Davenport M A,Takhar D,et al.Single-pixel imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):83-91.[10]国家自然科学基金网络信息系统(ISIS)[EB/OL].[2012-12-27]./portal/Proj-List.asp. [11]王艳,练秋生,李凯.基于联合正则化及压缩传感的MRI图像重构[J].光学技术,2010,36(3):350-355.(Wang Y,Lian Q S,Li K.Based on joint regularization and compressed sensing MRI image reconstruction[J].Beijing: Optical Technology,2010,36(3):350-355.)[12]石光明,刘丹华,高大化,等.压缩感知理论及其研究发展[J].电子学报,2009,37(5):1070-1081.(Shi G M,Liu D H,Gao D pressive sensing theory and its research and development[J].Beijing:Acta Electronica Sinica,2009,37(5):1070-1081.)[13]戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3)425-434.(Dai Q H,Fu C J,Ji X pressive sensing research[J].Chinese J of Computers,2011,34(3):425-434.)第10期尹宏鹏等:压缩感知综述1445[14]余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报,2010,1(32):12-16.(Yu H M,Fang G Y.The application of compressive sensing in the ground penetrating radar three dimensional imaging[J].J of Electronics and Information Technology, 2010,1(32):12-16.)[15]Du Bing,Liu Liang,Zhang Jun.Multisensor informationcompression and reconstruction[C].Proc of Society of Photo Optical Instrumentation Engineers,Multisensor, Multisource Information Fusion:Architectures, Algorithms and Applications.Orlando,2009,7345:1-11.[16]Guo Di,Qu Xiao-bo,Xiao parativeanalysis on transform and reconstruction of compressed sensing in sensor networks[C].World Resources Institute International Conf.Kunming,2009,1:441-445.[17]Starck J L,Elad M,Donoho D.Redundant multiscaletransforms and their application for morphological component analysis[J].Advances in Imaging and Electron Physics,2004,132(82):287-348.[18]Qu Xiao-bo,Guo Di,Ning Ben-de.Undersampled MRIreconstruction with the patch-based directional wavelets[J].Magnetic Resonance Imaging,2012,30(7):964-977. [19]Chen S S,Donoho D L,Saunders M A.Atomicdecomposition by basis pursuit[J].Society for Industrial and Applied Mathematics J of Scientific Computing,1999, 20(1):33-61.[20]Mallat S,Zhang Z.Matching pursuits with time frequencydictionaries[J].IEEE Trans on Signal Process,1993, 41(12):3397-3415.[21]Pati Y,Rezaiifar R,Krishnaprasad P.Orthogonal matchingpursuit:Recursive function approximation with applications to wavelet decomposition[C].IEEE Proc of the27th Annual Asilomar Conf on Signals,Systems and Computers.Los Alamitos,1993,1(11):40-44.[22]Candès E.The restricted isometry property and itsimplications for compressed sensing[J].Computers Rendus Mathematique,2008,346(9/10):589-592.[23]Richard Baraniuk,Mark Davenport,Ronald DeV ore,et al.A simple proof of the restricted isometry property forrandom matrices[J].Constructive Approximation,2008, 28(3):253-263.[24]方红,章权兵,韦穗.基于非常稀疏随机投影的图像重构方法[J].计算机工程与应用,2007,43(22):25-27.(Fang H,Zhang B Q,Wei S.Image reconstruction methods based on the very sparse random projection[J].Beijing: Computer Engineering and Applications,2007,43(22):25-27.)[25]Yin W T,Morgan S P,Yang J F,et al.Practicalcompressive sensing with toeplitz and circulant matrices[C].Proc of Visual Communications and Image Processing.Huangshan,2010,7744:1-10.[26]Bajwa W,Haupt J,Raz G,et al.Toeplitz structuredcompressed sensing matrices[C].Proc of the IEEE Workshop on Statistical Signal Processing.Washington, 2007:294-298.[27]Sebert F,Zou Y M,Ying L.Toeplitz block matrices incompressed sensing and their Applications in imaging[C].Proc of Int Conf on Technology and Applications in Biomedicine.Washington,2008:47-50.[28]Holger Rauhut.Circulant and toeplitz matrices incompressed sensing[C].Proc of Signal Processing with Adaptive Sparse Structured Representations.Saint Malo, 2009:1-6.[29]Berinde R,Piotr Indyk.Sparse recovery using sparserandom matrices[R].Cambridge:MIT’s Computer Science and Artificial Intelligence Laboratory,2008.[30]Lorne Applebaum,Stephen Howard,Stephen Searle,et al.Chirp sensing codes:Deterministic compressed sensing measurements for fast recovery[J].Applied and Computational Harmonic Analysis,2009,26(2):283-290.[31]Romberg pressive sensing by randomconvolution[J].Society for Industrial and Applied Mathematics(SIAM)J on Imaging Sciences,2009,2(4): 1098-1128.[32]付强,李琼.压缩感知中构造测量矩阵的研究[J].电脑与电信,2011,7(1):39-41.(Fu Q,Li Q.The research of constructing the measurement matrix in compressive sensing[J].Computer and Telecommunication,2011,7(1):39-41.)[33]Trop J A,Gilbert A C.Signal recovery from randommeasurements via orthogonal matching pursuit[J].IEEE Trans on Information Theory,2007,53(12):4655-4666.[34]Donoho D L,Tsaig Y,Drori I,et al.Sparse solution ofunderdetermined linear equations by stagewise orthogonal matching pursuit[R].Standford,2006.[35]Gilbert A,Strauss M,Tropp J,et al.Algorithmic lineardimension reduction in the norm for sparse vectors[C].Proc of the44th Annual Allerton Conf on Communication.Allerton,2006:9.[36]Gilbert A,Strauss M,Tropp J,et al.One sketch for all:Fast algorithms for compressed sensing[C].Proc of39th Association for Computing Machinery(ACM)Symposium: Theory of Computing.San Diego,2007,7:237-246.(下转第1453页)第10期简惠云等:“报童问题”中风险偏好下的条件风险值及其优化1453for“company+farmer”contract-farming with CVaR criterion[J].Systems Engineering-Theory&Practice, 2011,31(3):450-460.)[8]马利军,李四杰,严厚民.具有风险厌恶零售商的供应链合作博弈分析[J].运筹与管理,2010,19(2):12-21.(Ma L J,Li S J,Yan H M.Channel bargaining with risk-averse retailer[J].Operations Research and Management Science,2010,19(2):12-21.)[9]Gan Xiang-hua,Suresh P Sethi,Yan Hou-min.Channelcoordination with a risk-neutral supplier and a downside-risk-averse retailer[J].Production and Operations Management,2005,14(1):80-89.[10]许明辉,于刚,张汉勤.带有缺货惩罚的报童模型中的CVaR研究[J].系统工程理论与实践,2006,26(10):1-8.(Xu M H,Yu G,Zhang H Q.CVaR in a newsvendor model with lost sale penalty cost[J].Systems Engineering -Theory&Practice,2006,26(10):1-8.)[11]Gotoh Jun-ya,Takano Yui-chi.Newsvendor solutions viaconditional value-at-risk minimization[J].European J ofOperational Research,2007,179(1):80-96.[12]Hsieh Chung-chi,Lu Yu-ting.Manufacturer’s returnpolicy in a two-stage supply chain with two risk-averse retailers and random demand[J].European J of Operational Research,2010,207(1):514-523.[13]Worner Jammernegg,Peter Kischka.Risk-arerse andrisk-taking newsvendor:A conditional expected value approach[J].Review of Managerial Science,2007,1(4): 93-110.[14]邱若臻,黄小原.基于条件风险值准则的供应链回购契约协调策略[J].运筹与管理,2011,20(4):10-16.(Qiu R Z,Huang X Y.The supply chain buyback contract coordination strategy based on conditional value-at-risk criterion[J].Operations Research and Management Science,2011,20(4):10-16.)[15]Tyrrell Rockafellar R,Stanislav Uryasev.Optimization ofconditional value-at-risk[J].J of risk,2000,2(3):21-42. [16]Tyrrell Rockafellar R,Stanislav Uryasev.Conditionalvalue-at-risk for general loss distributions[J].J of Banking &Finance,2002,26(7):1443-1471.(上接第1445页)[37]Iwen Mark.A deterministic sublinear time sparseforier algorithm via non-adaptive compressed seining methods[C].Proc of ACM-SIAM Symposium on Discrete Algorithms Society for Industrial and Applied Mathematics.Philadelphia,2008:20-29.[38]Yang J F,Zhang Y.Alternating direction algorithmsfor l1−problems in compressive sensing[J].Society for Industrial and Applied Mathematics(SIAM)J on Scientific Computing,2011,33(1):250-278.[39]Zelinski A C,Wald L L,Setsompop K.Sparsity-enforcedslice-selective MRI RF excitation pulse design[J].IEEE Trans on Medical Imaging,2008,27(9):1213-1229. [40]Willett R M,Gehm M E,Brady D J.Multiscalereconstruction for computational spectral imaging[C].Proc of Society of Photo-Optical Instrumentation Engineers (SPIE)and Electronic Imaging-computational Imaging.Bellingham,2007,6498:64980L.[41]Dai W,Sheikh M,Milenkovic O,et pressivesensing DNA microbarrays[J].EURASIP J on Bioinformatics and Systems Biology,2009,162824:12.[42]Zhang Y,Mei S,Chen Q,et al.A novel image/videocoding method based on compressed sensing theory[C].IEEE Int Conf on Acoustics,Speech and Signal Processing(ICASSP).Las Vegas,2008:1361-1364. [43]Prades-Nebot J,Ma Y,Htlang T.Distributed video codingusing compressive sampling[C].Proc of the27th Conf on Picture Coding SymPosium.Chicago,2009:165-168. [44]汪振兴,杨涛,胡波.基于互信息的分布式贝叶斯压缩感知[J].中国科学技术大学学报,2009,39(10):1045-1051.(Wang Z X,Yang T,Hu B.Bayesian compressive sensing based on mutual information[J].J of University of Science and Technology of China,2009,39(10):1045-1051.) [45]朱丰,张群.一种新的基于遗传算法的压缩感知重构方法及其在SAR高分辨距离像重构中的应用[J].控制与决策,2012,27(11):1669-1675.(Zhu F,Zhang Q.A novel compressive sensing reconstruction method based on genetic algorithm and its application in high resolution range of SAR image reconstruction[J].Control and Decision,2012,27(11): 1669-1675.)。

压缩感知数学模型

压缩感知数学模型

压缩感知数学模型
压缩感知数学模型主要由两个过程组成:稀疏变换和投影测量。

稀疏变换的主要目的是找到一个基或者过完备字典Ψ,使得信号X在Ψ域是稀疏的。

换句话说,就是要找到一种表示方法,使得信号的大部分系数为零或接近零,满足下面的公式:因为是规范正交基,所以实现变换系数也就是压缩信号的等价或逼近的稀疏表示。

投影测量则是观测矩阵对信号进行降维和压缩的过程,同时也是对在Ψ域上的稀疏投影Y进行投影测量。

观测矩阵也叫测量矩阵,感知矩阵,需要满足的性质是保证稀疏向量Y从N维降到K维时重要信息不被破坏。

当得到了已经压缩完的采样信号A后,还需要根据确定的固定性观测矩阵Φ和稀疏矩阵Ψ的先验信息进行恢复。

如果N=M,正定方程有唯一解;而M<<N,欠定方程一般可以抽象为如下求解任务:
以上就是压缩感知数学模型的基本内容,如需了解更多信息,建议查阅数学类书籍或文献。

压缩感知原理

压缩感知原理

压缩感知原理(附程序)1压缩感知引论传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图2.1。

图2.1 传统的信号压缩过程在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。

由于带宽的限制,许多信号只包含少量的重要频率的信息。

所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Candes和Donoho等人于2004年提出了压缩感知理论。

该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。

即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。

压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。

核心概念在于试图从原理上降低对一个信号进行测量的成本。

压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。

2压缩感知原理压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。

或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。

压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。

CS理论利用到了许多自然信号在特定的基 上具有紧凑的表示。

即这些信号是“稀疏”的或“可压缩”的。

由于这一特性,压缩感知理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。

对于一个实值的有限长一维离散时间信号X ,可以看作为一个N R 空间N ×1的维的列向量,元素为[]n ,n ,=1,2,…N 。

N R 空间的任何信号都可以用N ×1维的基向量{}1i Ni =ψ的线性组合表示。

基于 OMP 算法的极化敏感阵列多参数估计

基于 OMP 算法的极化敏感阵列多参数估计

基于 OMP 算法的极化敏感阵列多参数估计谢菊兰;许欣怡;李会勇【摘要】基于压缩感知的 DOA 估计方法在小快拍数下性能优越,并且具有天然的解相干能力,但在极化敏感阵列中运用很少。

基于极化敏感阵列研究一种改进的OMP 算法,能够成功估计出空域和极化域参数。

该算法首先将极化敏感阵列信号接收矩阵重新建模,随后采用所提的改进 OMP 算法得到空域到达角估计结果。

然后将求解出来的空域到达角代入到根据模值约束条件构造出来的代价函数中,通过闭合式解得到极化参数估计,从而实现了自动配对的空域和极化域的参数估计。

仿真结果表明,该方法无论信号相干与否都能够得到良好的估计结果,并且在非相干情况下,估计性能总体优于极化 ESPRIT 算法及模值约束 MUSIC 算法。

%The DOA estimation algorithm based on compressive sensing has superior performance in small snapshot and the natural ability of decorrelation,but it is rarely used in the polarization sensitive array. In this paper,an improved OMP algorithm based on polarization sensitive array is studied to estimate the pa-rameters of the air domain and the polarization domain.First,this algorithm remodels the signal receiving matrix of the polarization sensitive array,followed by using the proposed improved OMP algorithm to obtain the estimation results of spatial arrival angle.Then,the polarization parameters are estimated via the closed solution to a cost function of the mold constructor constraint,in which the estimated spatial arrival angle is substituted.Simulation results show that the proposed method can obtain good results in both coherent and incoherent signals and the estimation performance in the case of incoherent signals isgenerally better than the polarization ESPRIT algorithm and the modulus constraint MUSIC algorithm.【期刊名称】《雷达科学与技术》【年(卷),期】2016(014)005【总页数】7页(P453-458,465)【关键词】极化敏感阵列;压缩感知;OMP 算法;模值约束【作者】谢菊兰;许欣怡;李会勇【作者单位】电子科技大学电子工程学院,四川成都 611731;电子科技大学电子工程学院,四川成都 611731;电子科技大学电子工程学院,四川成都 611731【正文语种】中文【中图分类】TN911.70 引言压缩感知(Compressive Sensing, CS)[1]是近几年提出的一种稀疏信号重构技术,它突破了奈奎斯特采样定理对采样频率的制约,可以以低频率进行欠采样,然后以高概率、高精度重构原始信号,降低数据采样、存储和处理的成本。

基于压缩感知的LFM雷达信号回波盲稀疏度估计

基于压缩感知的LFM雷达信号回波盲稀疏度估计

ha t n a s t o p t h r e s h o l d,t he t h r e s h o l d c o u l d t e r mi n a t e s p a r s e d e c o mp o s i t i o n a d a p t i v e l y ,t h u s he t AOMP a l g o i r t h m c o u l d r e c o n s t r u c t he t e c h o s i na g l a c c u r a t e l y.B y t h e o r e t i c l a a n ly a s i s a n d s i mu l a t i o n,w h i l e
p u t f o r w a r d. Wh e n t h e s p a r s i t y i s u n k n o n ,a w r e d u n d a n t d i c t i o n a r y i s c o n s t r u c t e d b y a d d i n g u p t o t h e
发射 信号 通过 延 时进 而相加 来构 造 冗余 字典 。A O MP算 法是 依 据残 差之 差的 相 对能 量 小 于设
定 的停止 门限来 自适应 终止 稀疏 分 解过程 。理 论分 析和 仿 真结 果表 明 , 存 在噪 声 时, A O M P算 法优 于 O MP算法 , 明显提 高重构 算 法的重 建概 率。 当回波信 号的距 离分 辨率 匹配 字典 的距 离
ቤተ መጻሕፍቲ ባይዱ
分辨率 , 冗余字典结合 A O M P 算法可有效处理 L F M雷达回波信号, 具有广泛的应用价值。 关键 词 : 压缩 感知 ; 线性 调频 ; 冗余 字典 ; 自适应 正 交 匹配追踪 算 法

分段正交匹配追踪(StOMP)算法改进研究

分段正交匹配追踪(StOMP)算法改进研究

分段正交匹配追踪(StOMP)算法改进研究汪浩然;夏克文;牛文佳【摘要】信号重构是压缩感知的核心技术之一,而其重构精度和所耗时长直接影响其应用效果.现今分段正交匹配追踪算法(StOMP)因耗时短而得到广泛应用,但也存在着重构精度差、稳定性低的缺点.提出一种基于粒子群优化(PSO)算法且同时具有回溯特性的StOMP改进算法(ba-IWPSO-StOMP),即首先在StOMP算法的一次原子选择上,引入回溯策略,实现原子的二次筛选;在每次迭代计算中,使用具有惯性权重指数递减的PSO(IWPSO)算法对传感矩阵中部分原子进行优化,从而实现更高精度,更少迭代次数的信号重构.对一维信号和二维图像的重构结果表明,在稀疏条件相同的情况下,算法在收敛时间较短的情况下,其重构精度明显优于StOMP等同类算法.%Signal reconstruction is one of the core technologies of compressed sensing, and the reconstruction accuracy and time-consuming directly affects its application effect. Nowadays, Stagewise Orthogonal Matching Pursuit(StOMP) algorithm has been widely used for short running time, but its reconstruction accuracy is unsatisfactory. To make up for the defects of the StOMP algorithm, this paper presents a variant of StOMP, called backtracking-based adaptive and iner-tia weight index decreasing particle swarm optimization-based StOMP(ba-IWPSO-StOMP)algorithm. As an extension of the StOMP algorithm, in each iteration, the proposed ba-IWPSO-StOMP algorithm incorporates a backtracking tech-nique to select atoms by the second screening, then uses the IWPSO algorithm to optimize atoms in the measurement matrix. Through these modifications, the ba-IWPSO-StOMP algorithm achieves superior reconstruction accuracyand less times of iteration compared with other OMP-type algorithms. Moreover, unlike its predecessors, the ba-IWPSO-StOMP algorithm does not require to know the sparsity level in advance. The experiments demonstrate the performance of ba-IWPSO-StOMP algorithm is superior to several other OMP-type algorithms.【期刊名称】《计算机工程与应用》【年(卷),期】2017(053)016【总页数】7页(P55-61)【关键词】压缩感知;分段正交匹配追踪;粒子群优化【作者】汪浩然;夏克文;牛文佳【作者单位】河北工业大学电子与信息工程学院,天津 300401;河北工业大学电子与信息工程学院,天津 300401;河北工业大学电子与信息工程学院,天津 300401【正文语种】中文【中图分类】TP391压缩感知(CS)理论是由Donoho和Candes等在2005年提出的一种从信号稀疏分解和逼近理论发展而来的新的信号处理理论[1-3]。

基于压缩感知理论的二维DOA估计

基于压缩感知理论的二维DOA估计

第47卷第3期2021年3月北京工业大学学报JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGYVol.47No.3Mar.2021基于压缩感知理论的二维DOA估计窦慧晶,梁霄,张文倩(北京工业大学信息学部,北京100124)摘要:二维波达方向(direction of arrival,DOA)估计在雷达探测、电子对抗、医学成像等领域有着广泛的应用.针对现有算法估计精度不足、计算量巨大的问题,在基于压缩感知理论的背景下提出一种二维均匀L型阵列信号的DOA估计算法.该算法首先对阵列信号的俯仰角和方位角构建空间合成角,并对空间合成角构建过完备冗余字典;再利用正交化高斯随机矩阵构造观测矩阵;最后通过改进RM-FOCUSS算法和求解三角函数的方法还原出方位角和俯仰角.理论研究表明,该方法在高信噪比、多快拍条件下比传统算法具有更高的估计精度和分辨力,且通过压缩采样降低了运算量.仿真实验验证了上述结论.关键词:DOA估计;压缩感知;过完备冗余字典;稀疏表示;压缩采样;测量矩阵中图分类号:TN911文献标志码:A文章编号:0254-0037(2021)03-0231-08doi:10.11936/bjutxb2019100002Two-dimensional DOA Estimation Based onCompressed Sensing TheoryDOU Huijing,LIANG Xiao,ZHANG Wenqian(Faculty of Information Technology,Beijing University of Technology,Beijing100124,China)Abstract:Two-dimensional direction of arrival(DOA)estimation has been widely used in radar detection,electronic reconnaissance,medical imaging and other fields.Aiming at the problems of inadequate estimation accuracy and enormous computational load of existing algorithms,a DOA estimation algorithm for two-dimensional uniform L-shaped array signals was presented in this paper based on compressed sensing theory.First,an over-complete redundant dictionary was established by using the space frequency of the azimuth angle and pitch angle.Then the orthogonal Gaussian random matrix was used to construct the measurement matrix.Finally,azimuth and elevation were restored by improving RM -FOCUSS algorithm and solving trigonometric function.The theoretical research shows that the proposed method has higher estimation accuracy and resolution than the traditional algorithm under the conditions of high SNR and multi-snapshot,and it reduces the computational complexity by compressing sampling.The simulation results verify the effectiveness and correctness.Key words:direction of arrival(DOA)estimation;compressed sensing(CS);over-complete redundant dictionary;spare representation;compressed sampling;measurement matrix二维波达方向(direction of arrival,DOA)估计在阵列信号处理领域有着重要的研究意义,与一维收稿日期:2019-10-11基金项目:国家自然科学基金资助项目(61171137);北京市教育委员会科研发展计划资助项目(KM201210005001)作者简介:窦慧晶(1969—),女,副教授,主要从事数字信号处理、信号参量估计阵列信号处理、语音信号处理方面的研究, E-mail:dhuijing@232北京工业大学学报2021年DOA估计相比,该估计算法能够更精确描述目标的空间特性,因此DOA估计在二维信号领域更具实际应用价值[1-2].二维多重信号分类(two-dimensional multiple signal classification,2-D MUSIC)算法是目前已有的二维阵列信号DOA估计算法中最为经典的估计算法之一,该算法核心思想是将传统的一维MUSIC估计算法在二维空间进行直接推广,由于该算法需要二维谱峰搜索因而导致计算量巨大,且需要各信源的中心频率已知,因此很难满足实际应用⑶.为了解决上述缺陷,有学者提出一种无须谱峰搜索的二维旋转不变子空间(two-dimensional estimating signal parameter via rotational invariance techniques,2-D ESPRIT)算法以及二维传播算子(two-dimensional propagation method,2-D PM)算法⑷.这些算法的相继问世使阵列信号的处理性能得到一定的提高,但因其在小快拍数及低信噪比情况下估计性能严重下降而无法推广到实际应用中.在众多阵列结构中,由于L型阵列具有结构简单、实施容易、估计性能佳等优点而被广泛用于工程领域.为解决二维信号角度匹配精度不高且计算复杂的问题,文献[5]提出一种基于L型阵列的无须手动配对的二维DOA估计算法,通过引入新的合成角度计算出新的导向矢量,进而获得原信号的俯仰角和方位角.尽管该方法能够自动完成角度配对,但需要多次谱峰搜索及特征值分解导致计算复杂度过高.文献[6]提出一种新的二维DOA估计方法,该算法首先将方位角和俯仰角分别估计出来,再通过阵列输出的互相关和信号功率对2个角度进行匹配,由于需要大量的采样信号使得该方法不可有效避免大量的数值计算.为降低运算量有学者提出利用阵列数据的协方差矩阵进行二维角度估计的算法[7-8].文献[9]提出一种利用多相干信号对方位角和俯仰角进行配对的方法,通过利用协方差矩阵最小化构造的代价函数从而实现角度配对,该算法存在的最大弊端是在构造协方差矩阵的过程中可能会引入外界噪声,从而影响其估计性能.压缩感知(comprehensive sensing,CS)理论的出现为现代信号处理带来一种更高效、更精确的方法,文献[10]提出基于该理论的£-SVD算法,该算法通过对接收信号进行奇异值分解(singular value decomposition,SVD)来降低算法复杂度和对噪声的敏感性,然后利用二阶锥规划的方法求解相应的优化问题,该算法在小快拍数和低信噪比时有很好的性能,并且可以直接用于相干信号[11].该方法摆脱了传统奈奎斯特采样定理带来超大计算量的束缚.基于此,众多学者将压缩感知理论引入到DOA估计中来,从而达到降低计算量的目的.文献[12]提出一种基于协方差矩阵联合稀疏重构的降维波达方向估计算法,该算法充分利用阵列孔径,无须预先估计目标数目,参数估计性能在低信噪比及小快拍数据长度下优势明显,但在其他方面尚有改进余地.本文在基于压缩感知理论的背景下提出一种二维L 型阵列信号的DOA估计算法.该方法在高信噪比、多快拍条件下相较于传统算法具有更高的估计精度和分辨力,且具有较低的运算量.1信号模型本文试验采用L型均匀阵列,该模型中2个子阵互相垂直,成90。

压缩感知理论及应用

压缩感知理论及应用

x在
k N
时就称向量 是稀疏的。对应于公式(1)而言,若 是一个稀疏向量,则
称信号 x 可以在 域进行稀疏表示或 x 是可压缩的。
[1]R Baraniuk.A lecture on comperessive sensing[J].IEEE Signal Processing Magazine ,2007,24(4):118-121.
目前,CS理论与应用研究在不断进行:
在美国、欧洲等许多国家的知名大学如麻省理工学院、莱斯大学、斯坦 福大学、杜克大学等成立了专门课题组对CS进行研究;如莱斯大学建立的 专门的Compressive Sensing网站 /cs ,里面有关于该 理论大量资源和该方向的最新研究成果。
由正交基扩展到有多个正交基构成的正交基字典:即在某个正交基字典里, 自适应地寻找可以逼近某一种信号特征的最优正交基,根据不同的信号寻找 最适合信号特性的一个正交基,对信号进行变换以得到最稀疏的信号表示。
用超完备的冗余函数库取代基函数,称之为冗余字典:字典中的元素被称 为原子.字典的选择应尽可能好地符合被逼近信号的结构,其构成可以没有 任何限制.从冗余字典中找到具有最佳线性组合的K项原子来表示一个信号, 称作信号的稀疏逼近或高度非线性逼近。
于是可提出问题: 存不存在新的数据采集和处理的方法,使得在保证信 息不损失的况下,远低于奈奎斯特采样定理要求的速率采样信号,获取 少量的数据就可以重构信号?
近些年出现的一种新的理论——压缩感知(Compressed Sensing,CS) 表明这种实现是可能的。
压缩感知理论指出:如果信号是可压缩的或在某个变换域是稀疏的, 那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投 影到一个低维空间上,然后通过求解一个优化问题就可以从这些少量 的投影中以高概率重构出原信号。

压缩感知(Compressive Sensing)总结,毕设小节

压缩感知(Compressive Sensing)总结,毕设小节

压缩传感总结报告摘 要 随着信息技术的不断发展,人们对信息需求量越来越大,这给信号采样、传输和存储的实现带来的压力越来越大。

传统的采样方法容易造成信息的冗余,因此,人们寻求新的方法避免信息的冗余。

压缩传感的问世,打破了常规的信号处理的思路,它将压缩和采样合并进行,突破了香农采样定理的瓶颈。

本文主要围绕稀疏表示、编码测量、重构算法三个方面对压缩传感进行基本的介绍。

最后介绍了压缩传感的应用以及展望。

关键词 压缩传感,稀疏表示,编码测量,重构算法1 引言传统的信号获取和处理过程主要包括采样、压缩、传输和解压缩四个部分。

其采样过程必须满足香农采样定理, 即采样频率不能低于模拟信号频谱中最高频率的2倍。

在信号压缩中,先对信号进行某种变换,如离散余弦变换或小波变换, 然后对少数绝对值较大的系数进行压缩编码, 舍弃零或接近于零的系数。

通过对数据进行压缩,舍弃了采样获得的大部分数据, 但不影响“感知效果”[1]。

但是,信号压缩实际上是一种严重的资源浪费,因为大量的采样数据在压缩过程中被丢弃了,而它们对于信号来说是不重要的或者只是冗余信息。

从这个意义而言,可得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist 采样机制是冗余的或者说是非信息的。

如果信号本身是可压缩的, 那么是否可以直接获取其压缩表示(即压缩数据),从而略去对大量无用信息的采样呢?换句话说,是否存在一种基于信息的采样理论框架,使得采样过程既能保持信号信息,又能只需远少于Nyquist 采样定理所要求的采样数目就可精确或近似精确重建原始信号?Cand és 在2006年从数学上证明了可以从部分傅立叶变换系数精确重构原始信号, 为压缩传感奠定了理论基础。

Cand és 和Donoho 在相关研究基础上于2006年正式提出了压缩传感的概念。

其核心思想是将压缩与采样合并进行,首先采集信号的非自适应线性投影(测量值), 然后根据相应重构算法由测量值重构原始信号[7]。

压缩感知

压缩感知

§1.2 压缩感知理论及其研究现状1.2.1 压缩感知理论的提出背景现实世界的模拟化和信号处理工具的数字化决定了信号采样是从模拟信源获取数字信息的必经之路。

在信号/ 图像处理领域,凡是涉及到计算机作为处理工具的场合,所面临的首要问题就是模拟信号的数字化问题,然后再对得到的离散的样本进行各种处理。

连续信号转化为离散的数字化信号的过程称为采样。

对模拟信号采样所得的离散数字信号能否代表并恢复成原来的连续模拟信号呢?如能恢复应具备什么样的条件呢?这个问题直接关系到是否可以用数字处理工具和数字化的方法处理模拟信号。

奈奎斯特采样定理给我们提供了如何采样的重要理论基础。

它指出,如果信号是带限的,采样速率必须达到信号带宽的两倍以上才能精确重构信号[46]。

事实上,在音频和可视电子设备、医学图像设备、无线接收设备等设备中的所有信号采样协议都隐含了这样的限制。

奈奎斯特采样定理至出现以来一直是数字信号和图像处理领域的重要理论基础,它支撑着几乎所有的信号/ 图像处理过程,包括,信号/ 图像的获取、存储、处理、传输等。

该定理的出现一方面为模拟信号的数字化处理奠定了基础;同时,另一方面,基于该定理的宽带信号处理的困难在日益加剧。

在生物医学图像中,例如核磁共振成像,采集和未知像素数目一样多的观察数目同样是不能想象的。

再例如高分辨率地理资源观测,其巨量数据传输和存储是一个艰难的工作。

近年来,以奈奎斯特采样定理为基础的信号处理框架开始遭遇瓶颈。

具体来讲,主要表现在以下几个方面:(1 )数据采集方面。

高采样率带来的高成本。

通常,奈奎斯特采样理论只能解决带宽有限信号的采样。

在一些实际应用中,例如,超宽带信号处理,CT成像,核磁共振,空间探测等,奈奎斯特采样率太高会产生太多的采样样本,而且在某些情况下甚至技术上无法实现高速率采样。

在其它一些应用中,如成像系统(临床成像仪或雷达)和高速A/D 转换器,在现有技术工艺基础上提高采样率代价非常高。

一种基于空间稀疏重构的匹配场定位方法

一种基于空间稀疏重构的匹配场定位方法

一种基于空间稀疏重构的匹配场定位方法陈迎春;蒋亚立【摘要】针对传统匹配场声源定位方法不适用于阵元数较少、低快拍场合且分辨率低的问题,本文提出了一种基于空间稀疏重构的匹配场声源定位方法.在分析水下目标空间稀疏性的基础上,通过建立水下目标的稀疏数学模型,对目标源信号进行压缩采样,然后利用联合稀疏重构算法精准重构出原信号,实现水下目标的匹配场源定位.通过仿真实验结果可以看出:与传统方法相比,本文方法能够在阵元数少以及低快拍的情况下获得更高精度的水下目标定位.%The traditional MFP (Matched Field Processing,MFP) methods of underwater acoustic target localization often have low positioning accuracy and are not suitable for few receiving array elemen ts andfew snapshots.Considering these problems,this paper proposed a new high-accuracy matched field localization method based on sparse spatial reconstruction.Firstly,establish the spatial sparse model of underwater target and conduct compressive sampling.Then,achieve the matched field localization of underwater acoustic using the joint sparse reconstruction algorithm.The simulation results show that this method can increase the accuracy of positioning in the case of few array elements and few snapshots.【期刊名称】《电子设计工程》【年(卷),期】2018(026)007【总页数】5页(P77-81)【关键词】水声目标定位;压缩感知;匹配场源定位;稀疏重构【作者】陈迎春;蒋亚立【作者单位】江苏科技大学电子信息学院,江苏镇江212003;江苏科技大学电子信息学院,江苏镇江212003【正文语种】中文【中图分类】TN91水下声源定位分为主动与被动声纳定位。

压缩感知-----介绍

压缩感知-----介绍

18
2、压缩感知理论介绍
2.3 压缩感知要解决的问题
1、信号的稀疏表示 稀疏表示是信息优化建模的终极目标, 也是信息处理中一个古老 而又崭新的课题, 利用稀疏性可以解决信号处理中许多复杂的问题, 各种数学分析和信号处理的理论为字典的构建提供了许多良好的工具, 如下图所示。稀疏表示的研究兴起于二十世纪九十年代,在本世纪初得
T T
,展开系数向量为
( , ,..., )
1 2 N
T
假设系数向量θ 是K稀疏的,即其中非零系数的个数K<<N,那么采用另一个 与正交基不相关的矩阵Φ:M×N(M<<N)(这里Φ的每一行可以看作是
一个传感器,它与系数相乘,获取了信号的部分信息),对信号Ⅹ执行一个
压缩观测:
y x
2014-2-24 9
1、背景现状
1.2 研究现状 西安电子科技大学石光明教授在《电子学报》发表综述 文章,系统地阐述了压缩传感的理论框架以及其中涉及到 的关键技术问题。燕山大学练秋生教授的课题组针对压缩 感知的稀疏重建算法进行了系统深入的研究,提出一系列 高质量的图像重建算法。中科院电子所的方广有研究员等 ,探索了压缩感知理论在探地雷达三维成像中的应用。 除此之外,还有很多国内学者在压缩感知方面做了重要 的工作,如清华大学、天津大学、国防科技大学、厦门大 学、湖南大学、西南交通大学、南京邮电大学、华南理工 大学、北京理工大学、北京交通大学等等单位,在此不一 一列举。
缩性),就能以较低的频率(远低于奈奎斯特采样频率) 采样该信号,并可能以高概率重建该信号。
2014-2-24
7
1、背景现状
1.2 研究现状 2006《Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information》 Terence Tao、Emmanuel Candè s 2006《Compressed Sensing》David Donoho 2007《Compressive Sensing》Richard Baraniuk 上述文章奠定了压缩感知的理论基础。

【江苏省自然科学基金】_语音信号处理_期刊发文热词逐年推荐_20140816

【江苏省自然科学基金】_语音信号处理_期刊发文热词逐年推荐_20140816
2008年 序号 1 2 3 4 5 6 7
科研热词 推荐指数 语音增强 1 语音信号处理 1 改进最小统计量控制递归平均 1 子带 1 噪声估计 1 主客观映射 1 mos分 1
2009年 序号 1 2 3 4 5 6 7 8 9
科研热词 语音编码 语音信号处理 清浊音分类 差错隐藏 完美重构子带滤波器组 响度补偿 参数冗余 人耳听觉特征 melp
推荐指数 1 1 1 1 1 1 1 1 1
2010年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
科研热词 语音情感识别 诱发语音 神经网络 特征层融合 特征优化 混沌 混合蛙跳算法 情感识别 情感数据库 实用语音情感 多模态 变异 刺激评估表 判决融合 判决层融合
2012年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14
科研热词 非负矩阵分解 非平稳 语音增强 语音信号处理 话音激活检测 经验模式分解 时频原子 总体平均经验模式分解 幅度谱 带噪语音 字典 增强算法 噪声能量 eemd域统计模型
推荐指数 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2014年 科研热词 语音增强 频谱重建 非负矩阵 阈值函数 过完备字典 说话人识别 语音信号处理 观测矩阵 稀疏表示 稀疏因子 稀疏卷积 确定性随机序列 盲源分离 独立成分分析 最小均方误差 时间结构 教学平台 嵌入式系统 小波分析 字典训练 字典学习 合同变换矩阵 去噪 压缩感知 信噪比 二次开发 mfcc参数 推荐指数 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
推荐指数 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

压缩感知介绍PPT

压缩感知介绍PPT

2 压缩感知应用
分布式压缩感知(DCS)与MIMO雷达
基于MIMO雷达体系的DCS变换基构造
2 压缩感知应用
联合稀疏表示 构造压缩测量矩阵 对接收信号 进行联合稀疏表示,即是充分利用接收信号自身以及接收信号之间的相关性信息,对变换域系数进行联合编码,对接收信号进行降低冗余度的信息融合 。 分布式压缩感知(DCS)与MIMO雷达 压缩感知应用
相参MIMO雷达系统通过多发多收形成大数量的虚拟阵列,在发射机、目标以及接收机之间构成对目标的分布式探测系统,这与分布式压缩感知(DCS)的思想不谋而合。
如果多个信号都在某个变换基下是稀疏的,并且这些信号彼此相关,那么每个信号都能够通过测量矩阵进行联合压缩测量,利用优化方法对待测量进行联合重构。 分布式压缩感知(Distributed Compressive Sensing, DCS)与MIMO雷达
2.2 CS图像融合
2 压缩感知应用
图像融合结果图:
压缩感知应用
单像素CS相机
运用压缩感知原理,RICE大学成功研制了单像素CS相机。 传统百万像素的相机需要百万个探测传感器,而压缩传感数码相机只使用一个探测器来采光,然后跟捕获后的计算相结合来重构图像。这种样机的镜头由两部分组成:一个光电二极管和一个微镜阵列。 该相机直接获取的是M次随机线性测量值而不是获取原始信号的N 个像素值,为低像素相机拍摄高质量图像提供了可能。
E.Candes等人证明了:信号的稀疏性是CS的必备条件。
信号是可压缩的或在某个变换域是稀疏的,这个条件的限制等同于信号带宽对于Nyquist采样定理的约束。


1 压缩感知理论分析
1 压缩感知理论分析
1.2 压缩感知流程介绍
如同信号带宽对于Nyquist,信号的稀疏性是CS的必备条件;

压缩感知理论综述

压缩感知理论综述

压缩感知理论综述摘要:信号采样是模拟的物理世界通向数字的信息世界之必备手段。

多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理,但其产生的大量数据造成了存储空间的浪费。

压缩感知(Compressed Sen si ng)提出一种新的采样理论,它能够以远低于Nyquist采样速率采样信号。

本文详述了压缩感知的基本理论,着重介绍了信号稀疏变换、观测矩阵设计和重构算法三个方面的最新进展,并介绍了压缩感知的应用及仿真,举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。

关键词:压缩感知;稀疏表示;观测矩阵;编码;解码一、引言Nyquist采样定理指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。

可见,带宽是Nyquist采样定理对采样的本质要求。

然而随着人们对信息需求量的增加,携带信息的信号带宽越来越宽,以此为基础的信号处理框架要求的采样速率和处理速度也越来越高。

解决这些压力常见的方案是信号压缩。

但是,信号压缩实际上是一种资源浪费,因为大量的不重要的或者只是冗余信息在压缩过程中被丢弃。

从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist采样机制是冗余的或者说是非信息的。

于是很自然地引出一个问题:能否利用其它变换空间描述信号,建立新的信号描述和处理的理论框架,使得在保证信息不损失的情况下,用远低于Nyquist 采样定理要求的速率采样信号,同时又可以完全恢复信号。

与信号带宽相比,稀疏性能够直观地而且相对本质地表达信号的信息。

事实上,稀疏性在现代信号处理领域起着至关重要的作用。

近年来基于信号稀疏性提出一种称为压缩感知或压缩采样的新兴采样理论,成功实现了信号的同时采样与压缩。

简单地说,压缩感知理论指出:只要信号是可压缩的或在某个变换域是稀疏的,那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投影到一个低维空间上,然后通过求解一个优化问题就可以从这些少量的投影中以高概率重构出原信号,可以证明这样的投影包含了重构信号的足够信息。

压缩感知在磁共振成像中的应用研究_钟晓燕

压缩感知在磁共振成像中的应用研究_钟晓燕
在矩阵分析 、概率统计理论及泛函分析等基础上的一种新颖的信号获取方式 ,
它可以以低于传统 Nyquist 采样定理所需的采样数据准确重建原始信号 。本文在压缩感知基本理论的基础之上 论述了其与磁共振成像相结合的基本原理 ,包括磁共振图像的稀疏表示 、K 空间采样轨迹的设计、 优质重建算 法的选择,并简要介绍了压缩感知在磁共振成像中其他方面的一些应用 。 〔关键词〕 压缩感知; 磁共振成像; 稀疏表示; 图像重建
收稿日期: 2015 - 02 - 11 医疗装备 2015 第 6 期
[1 ] [2 ] 由 Donoho 与 Candes 等人 2006 年提出的压 缩感知 技 术 ( Compressed Sensing,CS ) 是 近 年 来
新兴的一个研究方向。该理论表明,当信号具有稀 疏性或者可压缩时, 设计随机测量矩阵在 K 空间 稀疏采样,通过稀疏重建算法就可以获得高质量的 重建图像。 1 1. 1 基于压缩感知的磁共振成像原理 基本理论
0
引言
磁 共 振 成 像 ( Magnetic Resonance Imaging, MRI) 是一种利用生物原子核自旋特性, 通过激励 静磁场中的物体产生磁共振信号 ,然后对其进行空 间信息编码,最后由傅立叶变换获得图像数据的技 术。由于该技术具有无辐射、 不需要使用造影剂、 较高的人体组织分辨率以及可任意方向断层等特 点,已经成为一项重要的医学辅助诊断技术 。 然 而,磁共振成像仍然存在成像时间较长的不足 。因 此,缩短数据采集时间仍然是磁共振成像发展的核 心目标之一。 目前,从硬件性能提升的角度来讲,成像速度 的加快基本上已经达到了极限。因此,研究人员开 始更多地关注磁共振成像的重建算法 ,通过研究更 快速的 K 空间采集方案来达到减少磁共振扫描时 间的目的。缩短扫描时间的途径主要有以下三种: 一是高速扫描序列的设计,该方法通过设计高速扫 描序列,实现在一次激发内获得整幅图像的信息。 然而这种技术受硬件条件的制约 ,已经接近达到可 以改善的极限。二是并行成像技术,该方法采用相 控阵线圈同时接受感应信号,并通过相控阵线圈对 空间灵敏度的差异来编码空间信息 ,减少了相位方 向梯度编码的次数, 从而实现大幅度缩短扫描时 间,提高成 像 速 度。 三 是 部 分 K 空 间 采 样 方 法, 该方法利用 K 空间数据的共轭对称性, 只采集部 分 K 空间数据,以达到缩短扫描时间的目的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

reconstruct a signal from its (compressed) measurements.
f is an unknown signal in R
n
Measurement matrix A : R n -> R m Noisy measurements y = Af + z
A Curvelet frame has some properties of an ONB
but is overcomplete. Curvelets approximate well the curved singularities in images and are thus used widely in image processing. Again, this means D is an overcomplete dictionary → current CS does not apply.
often succeeds:
ˆ arg min D* f f
f R n
1
s.t
Af y 2
Let s be the union of all subspaces spanned by all
subsets of s columns of D.
D-RIP We say that the measurement matrix A obeys the
Roll NO. xxx, Nov 2010
The issue Traditional data acquisition is wasteful.
The idea Combine acquisition and compression.
The solution
Compressed sensing allows us to do this →
Problem Reconstruct signal f from measurements y
Without further assumptions, this problem is ill-
posed.
Why will this work? Most signals of interest contain far less information
than their dimension n suggests.
Assume f is sparse
In practice, we encounter compressible signals
Restricted Isometry Property (RIP) A satisfies the restricted isometry property (RIP) with
Bernoulli matrices satisfy the D-RIP with m ≈ s log(d/s)
Matrices with a fast multiply (DFT with random
signs) also satisfy the D-RIP with m approximately of this order.
Gabor frame:
Gk , , t g t a e
j 2kbt
Radar, sonar, and imaging system applications use
Gabor frames and wish to recover signals in this basis. Then D is an overcomplete frame with possibly highly coherent columns → current CS does not apply.
parameters (s, δ) (or with RIC δs ) if
1 x 2
2
Ax 2 1 x
2
2 2
wherever x 0 s
For Gaussian or Bernoulli measurement matrices, with high probability
Theorem Let D be an arbitrary tight frame and let A be a
measurement matrix satisfying D-RIP with δ2s < 0.08. Then the solution fˆ to ℓ1-analysis satisfies
s arg min

s
1
s.t
y As 2
L1-Minimization [Cand`es-Romberg-Tao]
To give the reconstruct error upper bound w.r.t RIP
mesurment matrix
Good Many methods hold for signals f which are sparse
n × n DFT:
d k t
Sparse in the DFT = superpositions of sinusoids
1 e j 2kt / n n
with frequencies in the lattice. Instead, use the oversampled DFT: frequencies may be over even smaller intervals or intervals of varying length. Then D is an overcomplete frame with highly coherent columns → current CS does not apply.
the case in applications using the Oversampled DFT, Gabor frames, Undecimated WT, and Curvelet frames (and many others). This will not necessarily be the case when using concatenations of two ONBs → ℓ1-analysis not the right method.
Thanks!
restricted isometry property adapted to D (D-RIP) with constant δs if
1 s v 2
2
Av 2 1 s v 2
2 2
hold for all
v sBiblioteka Similarly to the RIP, Gaussian, sub-Gaussian, and
in the coordinate basis or in some other orthonormal basis Bad There are many applications for which the signal f is sparse not in an ONB, but in some overcomplete dictionary! This means that f = Dx ,where D is a redundant dictionary. When D is not an ONB, AD is not at all likely to satisfy the RIP (or be incoherent).
The undecimated wavelet transform has a
translation invariance property that is missing in the DWT. The UWT is overcomplete and this redundancy has been found to be helpful in image processing. Again, this means D is a redundant dictionary → current CS does not apply.
c 1
when m s logn
Random Fourier and others with fast multiply have similar property.
The literature has provided us with many
algorithms for recovery. One of these is ℓ1minimization:
ˆ f f
δ2s
2
C0 C1
D* f D* f s s


1
where the constants C0 and C1 may only depend on
In other words Our result says that ℓ1-analysis is very accurate when D* f has rapidly decaying coefficients. This is
In many applications, a signal may be sparse in
several ONBs. Correlations between the bases mean current CS techniques do not apply.
Proposed Method It has been observed (empirically) that ℓ1-analysis
相关文档
最新文档