数学课渗透德育教育案例

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学课渗透德育教育案

集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

数学课渗透德育教育案例

——列方程解应用题

王春秀

数学课渗透德育教育案例

列方程解应用题

王春秀

一、学生起点分析:

通过前几节知识的学习,学生已经学会通过分析简单问题中已知量与未知量的关系列出方程解应用题,初步掌握了运用方程解决实际问题的一般过程,但学生在列方程解应用题时常常会遇到一下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到等量关系但不能列出方程。

二、教学任务分析:

本课以“希望工程”义演为例引入课题,通过学生自主探究、协作交流,教师点拨相结合的方式,引导学生借助列表的方法分析问题,体会用图表语言分析复杂问题表达思维方法的优点,从而抓住等量关系“部分量之和等于总量”展开教学活动,让学生经历抽象的符号变换应用等活动,展现运用方程解决实际问题的一般过程。因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解的合理性。

三、教学目标:

(一)、知识与技能:

借助表格学会分析复杂问题中的数量关系和等量关系,体会间接设未知数的解题思路,从而建立方程解决实际问题。

通过解决实际问题,使学生进一步明确必须检验方程的解是否符合题意。

(二)、过程与方法:通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力。(三)、情感态度与价值观:通过对希望工程义演中的数学问题的探讨,进一步体会方程模型的作用,同时,从情感上认识希望工程,懂得珍惜今天的良好的学习生活环境。

四、教学过程设计:

本节课设计了五个教学环节:第一环节:情景引入;第二环节:活动探究;第三环节:运用巩固;第四环节:课堂小结;第五环节:布置作业。

第一环节:情景引入内容:出示六幅图片如下:

出示教材情境:某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款6950元.成人票与学生票各售出多少张?(图如上)什么是“希望工程”?

“希望工程”是一项扶贫工程,通过社会集资,帮助贫困地区的失学儿童继续学业,改变贫困地区的办学条件,促进贫困地区教育事业的发展。

目的:1.培养学生的爱心;2.通过与贫困地区学生的对比,让学生珍惜时间,努力学习,将来为国家多做贡献。让学生在一个比较熟悉的氛围中接触学习主题,有利于他们启动思维。

第二环节:活动探究

内容:教材中的问题情境。?请两位同学就自己对教材中问题的理解,把这个场景表演一下,并分析题目中的每一句话所包含的含义、数量关系、等量关系,以及在这个问题中,售出1000张票的意义是什么?怎样理解票款6950元?根据题目中所给的条件,你能求出哪些量?

目的:题目以短剧的形式出现,使学生更进一步理解了题意。让学生将应用题中的场景,模拟到现实生活中来,培养学生解决实际问题的能力.感悟数学与生活的紧密联系,了解用数学知识解决生活中的实际问题的必要性.??

活动注意事项:本节内容通过一幅问题情境图展示题目中的一些数量关系,需要学生把书中的文字叙述与卡通图结合起来,才能组成一道应用题,在这里应引导学生学会读图、审题,学生在表演时,教师要关注学生是否真正理解了题意,题目中的已知条件的含义和数量关系等是否交待的清楚、明了,不要只流于热闹的形式。当我们发现一些学生在分析问题的过程中遇到困难时,可以建议他们采用表格的形式加以分析,从而达到列方程、解决问题的目的。由于,在前几节课应用题的学习中,一般采用直接设未知数法,即当问题中的未知量只有一个时,求什么就设什么为x;而这里首次采

用间接设未知数法,即当问题中所求的未知数不止一个,而问题中的等量关系也不止一个,所以一些学生必然会遇到困难,这时,才使学生真正感到,列表分析法对于解题的重要性,从而接受这样一种新的分析应用题的方法,在这个过程中,主要让学生体会间接设未知数解方程的思路,体会方程模型的作用。

进一步的问题:

1.请大家回忆一下,在解决问题的过程中,你遇到了哪些困难,你是如何克服的?

效果:学生的答案主要围绕以下点:1).在前几节课应用题的学习中,求什么就设什么为x;而本题中所求的未知数不止一个,问题中的等量关系也不止一个,比前面的问题复杂,在分析问题时理不清楚数量关系时,是表格帮了忙。

2).发现本题含有两个未知量,两个等量关系,可以把其中一个未知量设为未知数,另一个未知量就用其中的一个等量关系表示为含未知数的代数式,而另一个等量关系则用来列方程.?

通过交流大家发现本题含有两个未知量,两个等量关系,可以把其中一个未知量设为未知数,另一个未知量就用其中的一个等量关系表示为含未知数的代数式,而另一个等量关系则用来列方程.那么,看看刚才我们利用等量关系1设未知数,用等量关系2列方程,还有其他的解题方法吗???

2.比较两种解题方法,你从中学到了什么?

目的:虽然解法一要比解法二优化的多,但仍需让学生通过亲手计算,真正理解其中的含义:前面提到的含有两个未知量,两个等量关系,可以把其中一个未知量设为未知数,另一个未知量就用其中的一个等量关系表示为含未知数的代数式,而另一个等量关系则用来列方程是如何实施的;解法一的求解过程比较简单;不论选择哪种方法,在解题前,首先要明确数量关系,而在这里运用列表法是一种比较有效的工具。

注意事项:学生也许会有这样的认识,解法一是直接设法,而解法二是间接设法,直接设法一定比间接设法简单。其实不然,教师应适时地指导学生,辩证的看待问题,如可以让学生尝试解上题中所得的学生票款和学生票款各多少元,学生通过比较得出,这里运用直接设法,要比用间接设法求解的难度大。同时,让学生体会间接设未知数解方程的思路。

3.在以上问题中,如果票价和票的总数不变,票款能不能是6930元或6932元?如果你认为可能,请你分别求出学生票、成人票各售出多少张呢?如果你认为不可能,请说明为什么?

目的:加强学生在用一元一次方程解决实际问题的过程中,进一步明确必须检验方程的解是否符合实际。

第三环节:运用巩固

内容:提供补充问题:1.一个办公室有五盏灯,其中有40瓦和60瓦两种,总的瓦数是260瓦,?则?40瓦和60瓦的灯泡各有多少个?

相关文档
最新文档