【最新整理】广西百色2019中考试题数学卷(解析版)

合集下载

广西百色市中考数学试题(word版,含答案)

广西百色市中考数学试题(word版,含答案)

2019年广西百色中考数学试题(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分。

)每小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑。

1.(2019年广西百色3分)-2019的相反数是【】A.-2019 B.2013 C.12013D.12013【答案】B。

2.(2019年广西百色3分)已知∠A=65°,则∠A的补角的度数是【】A.15°B.35°C.115°D.135°【答案】C。

3.(2019年广西百色3分)百色市人民政府在2019年工作报告中提出,今年将继续实施十项为民办实事工程。

其中教育惠民工程将投资2.82亿元,用于职业培训、扩大农村学前教育资源、农村义务教育学生营养改善计划、学生资助等项目。

那么数据282 000 000用科学记数法(保留两个有效数字)表示为【】A.2.82×108B.2.8×108C.2.82×109 D.2.8×109【答案】B。

4.(2019年广西百色3分)下列运算正确的是【】A.2a+3b=5ab B.3x2y-2x2y=1 C.(2 a2)3=6a6 D.5x3÷x2=5x【答案】D。

5.(2019年广西百色3分)一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为【】A.6cm2B.4πcm2C.6πcm2 D.9πcm2【答案】B。

6.(2019年广西百色3分)在反比例函数m中,当x>0时,yyx随x的增大而增大,则二次函数y=m x2+m x的图象大致是下图中的【】[来A.B.C.D.【答案】A。

7.(2019年广西百色3分)今年我市某县6月1日到10日的每一天最高气温变化如折线图所示,则这10个最高气温的中位数和众数分别是【】A.33℃33℃B.33℃32℃C.34℃33℃D .35℃ 33℃【答案】A 。

2019年广西省中考数学试卷及答案【精编版】

2019年广西省中考数学试卷及答案【精编版】

2019年广西省中考数学试卷一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×1065.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+17.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y110.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×3011.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是.14.(3分)因式分解:3ax2﹣3ay2=.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC 于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a 为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c 是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【分析】根据正数与负数的表示方法,可得解;【解答】解:上升2℃记作+2℃,下降3℃记作﹣3℃;故选:D.【点评】本题考查正数和负数;能够根据实际问题理解正数与负数的意义和表示方法是解题的关键.2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.【点评】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106【分析】根据科学记数法的表示方法a×10n(1≤a<9),即可求解;【解答】解:700000=7×105;故选:B.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.【点评】主要考查了一副三角板所对应的角度是60°,45°,30°,90°和三角形外角的性质.本题容易,解法很灵活.6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1【分析】利用完全平分公式,幂的乘方与积的乘方,合并同类项的法则进行解题即可;【解答】解:2a+3b不能合并同类项,B错误;5a2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.【点评】本题考查整式的运算;熟练掌握完全平分公式,幂的乘方与积的乘方,合并同类项的法则是解题的关键.7.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°【分析】利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B 和三角形内角和计算出∠ACB,从而得到∠BCG的度数.【解答】解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG=∠ACB=50°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率==.故选:A.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【分析】k<0,y随x值的增大而增大,(﹣1,y1)在第二象限,(2,y2),(3,y3)在第四象限,即可解题;【解答】解:∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=﹣1时,y1>0,∵2<3,∴y2<y3<y1故选:C.【点评】本题考查反比函数图象及性质;熟练掌握反比函数的图象及x与y值之间的关系是解题的关键.10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:D.【点评】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.11.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【分析】过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=x tan65°,∴BD=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.【分析】延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,先求得BG,再求BH,进而DH,运用相似三角形得,便可得解.【解答】解:延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,则OC⊥BD,OC=,∵OB•BC=OC•BG,∴,∴BD=2BG=,∵OD2﹣OH2=DH2=BD2﹣BH2,∴,∴BH=,∴,∵DH∥BF,∴,∴,故选:A.【点评】本题是圆的综合题,主要考查了切线长定理,切线的性质,相似三角形的性质与判定,勾股定理,将军饮马问题,问题较复杂,作的辅助线较多,正确作辅助线是解决问题的关键.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是x≥﹣4.【分析】根据被开数x+4≥0即可求解;【解答】解:x+4≥0,∴x≥﹣4;故答案为x≥﹣4;【点评】本题考查二次根式的意义;熟练掌握二次根式中被开方数是非负数的条件是解题的关键.14.(3分)因式分解:3ax2﹣3ay2=3a(x+y)(x﹣y).【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.【解答】解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【分析】先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.【解答】解:甲的平均数=(9+8+9+6+10+6)=8,所以甲的方差=[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.【解答】解:∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,∵S菱形ABCD=AC×BD=24,∴AC=6,∴OC=AC=3,∴BC==5,∵S菱形ABCD=BC×AH=24,∴AH=;故答案为:.【点评】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC是解题的关键.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为AB2=AC2+BD2.【分析】过点A作AE∥CD,截取AE=CD,连接BE、DE,则四边形ACDE是平行四边形,得出DE=AC,∠ACD=∠AED,证明△ABE为等边三角形得出BE=AB,求得∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=90°,由勾股定理得出BE2=DE2+BD2,即可得出结果.【解答】解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,∴DE=AC,∠ACD=∠AED,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,∴BE=AB,∵∠ACD+∠ABD=210°,∴∠AED+∠ABD=210°,∴∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=360°﹣210°﹣60°=90°,∴BE2=DE2+BD2,∴AB2=AC2+BD2;故答案为:AB2=AC2+BD2.【点评】本题考查了勾股定理、平行四边形的判定与性质、等边三角形的判定与性质、平行线的性质、四边形内角和等知识,熟练掌握平行四边形的性质、通过作辅助线构建等边三角形与直角三角形是解题的关键.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【分析】分别运算每一项然后再求解即可;【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.【点评】本题考查实数的运算;熟练掌握实数的运算法则是解题的关键.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.【分析】分别解两个不等式得到x<3和x≥﹣2,再根据大小小大中间找确定不等式组的解集.然后利用数轴表示其解集.【解答】解:解①得x<3,解②得x≥﹣2,所以不等式组的解集为﹣2≤x<3.用数轴表示为:【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(﹣2,﹣1).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【分析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)由题意知a=4,b=×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c==85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×=76(张),答:估计需要准备76张奖状.【点评】本题主要考查众数、平均数、中位数,掌握众数、平均数、中位数的定义及其意义是解题的关键.23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC 于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).【分析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接OD,根据平角定义得到∠AEC=55°,根据圆周角定理得到∠ACE=90°,求得∠CAE=35°,得到∠BOD=2∠BAD=70°,根据弧长公式即可得到结论.【解答】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.【点评】本题考查了三角形的外接圆与外心,圆周角定理,弧长的计算,正确的识别图形是解题的关键.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【分析】(1)设每袋国旗图案贴纸为x元,则有,解得x=15,检验后即可求解;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a;(3)如果没有折扣,W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【解答】解:(1)设每袋国旗图案贴纸为x元,则有,解得x=15,经检验x=15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a,答:购买小红旗a袋恰好配套;(3)如果没有折扣,则W=15a+20×a=40a,依题意得40a≤800,解得a≤20,当a>20时,则W=800+0.8(40a﹣800)=32a+160,即W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【点评】本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【分析】(1)先判断出∠GCB+∠CBG=90,再由四边形ABCD是正方形,得出∠CBE=90°=∠A,BC=AB,即可得出结论;(2)设AB=CD=BC=2a,先求出EA=EB=AB=a,进而得出CE=a,再求出BG=a,CG═a,再判断出△CQD≌△BGC(AAS),进而判断出GQ=CQ,即可得出结论;(3)先求出CH=a,再求出DH=a,再判断出△CHD∽△DHM,求出HM=a,再用勾股定理求出GH=a,最后判断出△QGH∽△GCH,得出HN==a,即可得出结论.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG•CE=CB•EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=a,∴GQ=CG﹣CQ=a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DH⊥CE于H,S△CDG=•DQ=CH•DG,∴CH==a,在Rt△CHD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠QGH=∠HCG,∴△QGH∽△GCH,∴,∴HN==a,∴MN=HM﹣HN=a,∴=【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△DGQ≌△CDQ是解本题的关键.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c 是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.【分析】(1)由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c,求得y2=﹣+x+2,B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,E(6,﹣1);②若A为直角顶点,AE⊥AB,E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)不符合题意;(3)由y1≤y2,得﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,S1=,设AB 交MN于点P,易知P(t,t+1),S2=2﹣,所以S=S1+S2=4t+8,当t=2时,S的最大值为16.【解答】解:由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2=﹣+x+2,∴B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,k BE•k AB=﹣1,∴k BE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);②若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)由AE⊥BE得k BE•k AE=﹣1,即,解得m=2或﹣2(不符合题意舍去),∴点E的坐标∴E(6,﹣1)或E(10,﹣13);(3)∵y1≤y2,∴﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,则Q(),S1=QM•|y F﹣y A|=设AB交MN于点P,易知P(t,t+1),S2=PN•|x A﹣x B|=2﹣S=S1+S2=4t+8,当t=2时,S的最大值为16.【点评】本题考查了二次函数,熟练运用二次函数的性质、直角三角形的性质以及一次函数的性质是解题的关键.。

2019年广西省中考数学试卷及答案

2019年广西省中考数学试卷及答案

2019年广西省中考数学试卷一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×1065.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+17.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y110.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×3011.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是.14.(3分)因式分解:3ax2﹣3ay2=.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC 于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a 为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c 是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【分析】根据正数与负数的表示方法,可得解;【解答】解:上升2℃记作+2℃,下降3℃记作﹣3℃;故选:D.【点评】本题考查正数和负数;能够根据实际问题理解正数与负数的意义和表示方法是解题的关键.2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.【点评】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106【分析】根据科学记数法的表示方法a×10n(1≤a<9),即可求解;【解答】解:700000=7×105;故选:B.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.【点评】主要考查了一副三角板所对应的角度是60°,45°,30°,90°和三角形外角的性质.本题容易,解法很灵活.6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1【分析】利用完全平分公式,幂的乘方与积的乘方,合并同类项的法则进行解题即可;【解答】解:2a+3b不能合并同类项,B错误;5a2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.【点评】本题考查整式的运算;熟练掌握完全平分公式,幂的乘方与积的乘方,合并同类项的法则是解题的关键.7.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°【分析】利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B 和三角形内角和计算出∠ACB,从而得到∠BCG的度数.【解答】解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG=∠ACB=50°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率==.故选:A.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【分析】k<0,y随x值的增大而增大,(﹣1,y1)在第二象限,(2,y2),(3,y3)在第四象限,即可解题;【解答】解:∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=﹣1时,y1>0,∵2<3,∴y2<y3<y1故选:C.【点评】本题考查反比函数图象及性质;熟练掌握反比函数的图象及x与y值之间的关系是解题的关键.10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:D.【点评】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.11.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【分析】过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=x tan65°,∴BD=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.【分析】延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,先求得BG,再求BH,进而DH,运用相似三角形得,便可得解.【解答】解:延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,则OC⊥BD,OC=,∵OB•BC=OC•BG,∴,∴BD=2BG=,∵OD2﹣OH2=DH2=BD2﹣BH2,∴,∴BH=,∴,∵DH∥BF,∴,∴,故选:A.【点评】本题是圆的综合题,主要考查了切线长定理,切线的性质,相似三角形的性质与判定,勾股定理,将军饮马问题,问题较复杂,作的辅助线较多,正确作辅助线是解决问题的关键.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是x≥﹣4.【分析】根据被开数x+4≥0即可求解;【解答】解:x+4≥0,∴x≥﹣4;故答案为x≥﹣4;【点评】本题考查二次根式的意义;熟练掌握二次根式中被开方数是非负数的条件是解题的关键.14.(3分)因式分解:3ax2﹣3ay2=3a(x+y)(x﹣y).【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.【解答】解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【分析】先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.【解答】解:甲的平均数=(9+8+9+6+10+6)=8,所以甲的方差=[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.【解答】解:∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,∵S菱形ABCD=AC×BD=24,∴AC=6,∴OC=AC=3,∴BC==5,∵S菱形ABCD=BC×AH=24,∴AH=;故答案为:.【点评】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC是解题的关键.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为AB2=AC2+BD2.【分析】过点A作AE∥CD,截取AE=CD,连接BE、DE,则四边形ACDE是平行四边形,得出DE=AC,∠ACD=∠AED,证明△ABE为等边三角形得出BE=AB,求得∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=90°,由勾股定理得出BE2=DE2+BD2,即可得出结果.【解答】解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,∴DE=AC,∠ACD=∠AED,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,∴BE=AB,∵∠ACD+∠ABD=210°,∴∠AED+∠ABD=210°,∴∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=360°﹣210°﹣60°=90°,∴BE2=DE2+BD2,∴AB2=AC2+BD2;故答案为:AB2=AC2+BD2.【点评】本题考查了勾股定理、平行四边形的判定与性质、等边三角形的判定与性质、平行线的性质、四边形内角和等知识,熟练掌握平行四边形的性质、通过作辅助线构建等边三角形与直角三角形是解题的关键.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【分析】分别运算每一项然后再求解即可;【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.【点评】本题考查实数的运算;熟练掌握实数的运算法则是解题的关键.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.【分析】分别解两个不等式得到x<3和x≥﹣2,再根据大小小大中间找确定不等式组的解集.然后利用数轴表示其解集.【解答】解:解①得x<3,解②得x≥﹣2,所以不等式组的解集为﹣2≤x<3.用数轴表示为:【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(﹣2,﹣1).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【分析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)由题意知a=4,b=×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c==85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×=76(张),答:估计需要准备76张奖状.【点评】本题主要考查众数、平均数、中位数,掌握众数、平均数、中位数的定义及其意义是解题的关键.23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC 于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).【分析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接OD,根据平角定义得到∠AEC=55°,根据圆周角定理得到∠ACE=90°,求得∠CAE=35°,得到∠BOD=2∠BAD=70°,根据弧长公式即可得到结论.【解答】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.【点评】本题考查了三角形的外接圆与外心,圆周角定理,弧长的计算,正确的识别图形是解题的关键.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【分析】(1)设每袋国旗图案贴纸为x元,则有,解得x=15,检验后即可求解;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a;(3)如果没有折扣,W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【解答】解:(1)设每袋国旗图案贴纸为x元,则有,解得x=15,经检验x=15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a,答:购买小红旗a袋恰好配套;(3)如果没有折扣,则W=15a+20×a=40a,依题意得40a≤800,解得a≤20,当a>20时,则W=800+0.8(40a﹣800)=32a+160,即W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【点评】本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【分析】(1)先判断出∠GCB+∠CBG=90,再由四边形ABCD是正方形,得出∠CBE=90°=∠A,BC=AB,即可得出结论;(2)设AB=CD=BC=2a,先求出EA=EB=AB=a,进而得出CE=a,再求出BG=a,CG═a,再判断出△CQD≌△BGC(AAS),进而判断出GQ=CQ,即可得出结论;(3)先求出CH=a,再求出DH=a,再判断出△CHD∽△DHM,求出HM=a,再用勾股定理求出GH=a,最后判断出△QGH∽△GCH,得出HN==a,即可得出结论.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG•CE=CB•EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=a,∴GQ=CG﹣CQ=a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DH⊥CE于H,S△CDG=•DQ=CH•DG,∴CH==a,在Rt△CHD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠QGH=∠HCG,∴△QGH∽△GCH,∴,∴HN==a,∴MN=HM﹣HN=a,∴=【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△DGQ≌△CDQ是解本题的关键.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c 是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.【分析】(1)由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c,求得y2=﹣+x+2,B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,E(6,﹣1);②若A为直角顶点,AE⊥AB,E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)不符合题意;(3)由y1≤y2,得﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,S1=,设AB 交MN于点P,易知P(t,t+1),S2=2﹣,所以S=S1+S2=4t+8,当t=2时,S的最大值为16.【解答】解:由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2=﹣+x+2,∴B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,k BE•k AB=﹣1,∴k BE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);②若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)由AE⊥BE得k BE•k AE=﹣1,即,解得m=2或﹣2(不符合题意舍去),∴点E的坐标∴E(6,﹣1)或E(10,﹣13);(3)∵y1≤y2,∴﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,则Q(),S1=QM•|y F﹣y A|=设AB交MN于点P,易知P(t,t+1),S2=PN•|x A﹣x B|=2﹣S=S1+S2=4t+8,当t=2时,S的最大值为16.【点评】本题考查了二次函数,熟练运用二次函数的性质、直角三角形的性质以及一次函数的性质是解题的关键.。

2019年广西省中考数学试卷及答案【精编】

2019年广西省中考数学试卷及答案【精编】

2019年广西省中考数学试卷一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×1065.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+17.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y110.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×3011.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是.14.(3分)因式分解:3ax2﹣3ay2=.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC 于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a 为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c 是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【分析】根据正数与负数的表示方法,可得解;【解答】解:上升2℃记作+2℃,下降3℃记作﹣3℃;故选:D.【点评】本题考查正数和负数;能够根据实际问题理解正数与负数的意义和表示方法是解题的关键.2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.【点评】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106【分析】根据科学记数法的表示方法a×10n(1≤a<9),即可求解;【解答】解:700000=7×105;故选:B.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.【点评】主要考查了一副三角板所对应的角度是60°,45°,30°,90°和三角形外角的性质.本题容易,解法很灵活.6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1【分析】利用完全平分公式,幂的乘方与积的乘方,合并同类项的法则进行解题即可;【解答】解:2a+3b不能合并同类项,B错误;5a2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.【点评】本题考查整式的运算;熟练掌握完全平分公式,幂的乘方与积的乘方,合并同类项的法则是解题的关键.7.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°【分析】利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B 和三角形内角和计算出∠ACB,从而得到∠BCG的度数.【解答】解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG=∠ACB=50°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率==.故选:A.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【分析】k<0,y随x值的增大而增大,(﹣1,y1)在第二象限,(2,y2),(3,y3)在第四象限,即可解题;【解答】解:∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=﹣1时,y1>0,∵2<3,∴y2<y3<y1故选:C.【点评】本题考查反比函数图象及性质;熟练掌握反比函数的图象及x与y值之间的关系是解题的关键.10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:D.【点评】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.11.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【分析】过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=x tan65°,∴BD=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.【分析】延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,先求得BG,再求BH,进而DH,运用相似三角形得,便可得解.【解答】解:延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,则OC⊥BD,OC=,∵OB•BC=OC•BG,∴,∴BD=2BG=,∵OD2﹣OH2=DH2=BD2﹣BH2,∴,∴BH=,∴,∵DH∥BF,∴,∴,故选:A.【点评】本题是圆的综合题,主要考查了切线长定理,切线的性质,相似三角形的性质与判定,勾股定理,将军饮马问题,问题较复杂,作的辅助线较多,正确作辅助线是解决问题的关键.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是x≥﹣4.【分析】根据被开数x+4≥0即可求解;【解答】解:x+4≥0,∴x≥﹣4;故答案为x≥﹣4;【点评】本题考查二次根式的意义;熟练掌握二次根式中被开方数是非负数的条件是解题的关键.14.(3分)因式分解:3ax2﹣3ay2=3a(x+y)(x﹣y).【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.【解答】解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【分析】先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.【解答】解:甲的平均数=(9+8+9+6+10+6)=8,所以甲的方差=[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.【解答】解:∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,∵S菱形ABCD=AC×BD=24,∴AC=6,∴OC=AC=3,∴BC==5,∵S菱形ABCD=BC×AH=24,∴AH=;故答案为:.【点评】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC是解题的关键.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为AB2=AC2+BD2.【分析】过点A作AE∥CD,截取AE=CD,连接BE、DE,则四边形ACDE是平行四边形,得出DE=AC,∠ACD=∠AED,证明△ABE为等边三角形得出BE=AB,求得∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=90°,由勾股定理得出BE2=DE2+BD2,即可得出结果.【解答】解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,∴DE=AC,∠ACD=∠AED,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,∴BE=AB,∵∠ACD+∠ABD=210°,∴∠AED+∠ABD=210°,∴∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=360°﹣210°﹣60°=90°,∴BE2=DE2+BD2,∴AB2=AC2+BD2;故答案为:AB2=AC2+BD2.【点评】本题考查了勾股定理、平行四边形的判定与性质、等边三角形的判定与性质、平行线的性质、四边形内角和等知识,熟练掌握平行四边形的性质、通过作辅助线构建等边三角形与直角三角形是解题的关键.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【分析】分别运算每一项然后再求解即可;【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.【点评】本题考查实数的运算;熟练掌握实数的运算法则是解题的关键.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.【分析】分别解两个不等式得到x<3和x≥﹣2,再根据大小小大中间找确定不等式组的解集.然后利用数轴表示其解集.【解答】解:解①得x<3,解②得x≥﹣2,所以不等式组的解集为﹣2≤x<3.用数轴表示为:【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(﹣2,﹣1).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【分析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)由题意知a=4,b=×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c==85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×=76(张),答:估计需要准备76张奖状.【点评】本题主要考查众数、平均数、中位数,掌握众数、平均数、中位数的定义及其意义是解题的关键.23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC 于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).【分析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接OD,根据平角定义得到∠AEC=55°,根据圆周角定理得到∠ACE=90°,求得∠CAE=35°,得到∠BOD=2∠BAD=70°,根据弧长公式即可得到结论.【解答】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.【点评】本题考查了三角形的外接圆与外心,圆周角定理,弧长的计算,正确的识别图形是解题的关键.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【分析】(1)设每袋国旗图案贴纸为x元,则有,解得x=15,检验后即可求解;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a;(3)如果没有折扣,W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【解答】解:(1)设每袋国旗图案贴纸为x元,则有,解得x=15,经检验x=15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a,答:购买小红旗a袋恰好配套;(3)如果没有折扣,则W=15a+20×a=40a,依题意得40a≤800,解得a≤20,当a>20时,则W=800+0.8(40a﹣800)=32a+160,即W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【点评】本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【分析】(1)先判断出∠GCB+∠CBG=90,再由四边形ABCD是正方形,得出∠CBE=90°=∠A,BC=AB,即可得出结论;(2)设AB=CD=BC=2a,先求出EA=EB=AB=a,进而得出CE=a,再求出BG=a,CG═a,再判断出△CQD≌△BGC(AAS),进而判断出GQ=CQ,即可得出结论;(3)先求出CH=a,再求出DH=a,再判断出△CHD∽△DHM,求出HM=a,再用勾股定理求出GH=a,最后判断出△QGH∽△GCH,得出HN==a,即可得出结论.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG•CE=CB•EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=a,∴GQ=CG﹣CQ=a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DH⊥CE于H,S△CDG=•DQ=CH•DG,∴CH==a,在Rt△CHD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠QGH=∠HCG,∴△QGH∽△GCH,∴,∴HN==a,∴MN=HM﹣HN=a,∴=【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△DGQ≌△CDQ是解本题的关键.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c 是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.【分析】(1)由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c,求得y2=﹣+x+2,B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,E(6,﹣1);②若A为直角顶点,AE⊥AB,E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)不符合题意;(3)由y1≤y2,得﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,S1=,设AB 交MN于点P,易知P(t,t+1),S2=2﹣,所以S=S1+S2=4t+8,当t=2时,S的最大值为16.【解答】解:由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2=﹣+x+2,∴B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,k BE•k AB=﹣1,∴k BE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);②若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)由AE⊥BE得k BE•k AE=﹣1,即,解得m=2或﹣2(不符合题意舍去),∴点E的坐标∴E(6,﹣1)或E(10,﹣13);(3)∵y1≤y2,∴﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,则Q(),S1=QM•|y F﹣y A|=设AB交MN于点P,易知P(t,t+1),S2=PN•|x A﹣x B|=2﹣S=S1+S2=4t+8,当t=2时,S的最大值为16.【点评】本题考查了二次函数,熟练运用二次函数的性质、直角三角形的性质以及一次函数的性质是解题的关键.。

2019年广西省百色市中考数学试题(word版,含答案)

2019年广西省百色市中考数学试题(word版,含答案)

2019年广西百色中考数学考试试卷(word 版,含答案)第Ⅰ卷(选择题)一、选择照(本大题共12小题,每小题3分,共6分,在每小题给出的四个选项中只有一项是符合要求的)1.三角形的内角和等于A.90°B.180°C.270°D.360° 2.如图,已知a//b ,∠1=58°,则∠2的大小是 A.122° B.85° C.58° D.323.一组数据2,6,4,10,8,12的中位数是 A.6 B.7 C.8 D.94.方程111=+x 的解是 A.无解 B.x =-1 C.x =0 D.x =1 5.下列几何体中,俯视图不是圆的是6.一周时间有604 800秒,604 800用科学记数法表示为A.6048×102B.6.048×105C.6.048×106D.0.6048×106 7.下列图形,既是轴对称图形又是中心对称图形的是A.正三角形B.正五边形C.等腰直角三角形D.矩形 8.不等式组⎩⎨⎧≤--06320212x x <的解集是yA.-4<x ≤6B.x ≤-4或x >2C.-4<x ≤2D. 2≤x <4 9.抛物线y =x 2+6x +7可由抛物线y =x 2如何平移得到的 A.先向左平移3个单位,再向下平移2个单位 B.先向左平移6个单位,再向上平移7个单位 C.先向上平移2个单位,再向左平移3个单位 D.先回石平移3个单位,再向上平移2个单位10.小书和小黄进行射击比赛,各射击6次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是A.小黄的成绩比小韦的成绩更稳定B.两人成绩的众数相同C.小韦的成绩比小黄的成绩更稳定D.两人的平均成绩不相同 11.下列四个命题:①两直线平行,内错角相等; ②对顶角相等;③等腰三角形的两个底角相等; ④菱形的对角线互相重真 其中逆命题是真命题的是A.①②③④B.①③④C.①③D.① 12.阅读理解:已知两点M (x 1,y 4),N (x 2,y 2),则线段MN 的中点K (x ,y )的坐标公式为:221x x x +=,221y y y +=。

【精选】2019年广西省中考数学试卷及答案

【精选】2019年广西省中考数学试卷及答案

2019年广西省中考数学试卷一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×1065.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+17.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y110.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×3011.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是.14.(3分)因式分解:3ax2﹣3ay2=.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC 于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a 为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c 是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【分析】根据正数与负数的表示方法,可得解;【解答】解:上升2℃记作+2℃,下降3℃记作﹣3℃;故选:D.【点评】本题考查正数和负数;能够根据实际问题理解正数与负数的意义和表示方法是解题的关键.2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.【点评】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106【分析】根据科学记数法的表示方法a×10n(1≤a<9),即可求解;【解答】解:700000=7×105;故选:B.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.【点评】主要考查了一副三角板所对应的角度是60°,45°,30°,90°和三角形外角的性质.本题容易,解法很灵活.6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1【分析】利用完全平分公式,幂的乘方与积的乘方,合并同类项的法则进行解题即可;【解答】解:2a+3b不能合并同类项,B错误;5a2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.【点评】本题考查整式的运算;熟练掌握完全平分公式,幂的乘方与积的乘方,合并同类项的法则是解题的关键.7.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°【分析】利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B 和三角形内角和计算出∠ACB,从而得到∠BCG的度数.【解答】解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG=∠ACB=50°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率==.故选:A.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【分析】k<0,y随x值的增大而增大,(﹣1,y1)在第二象限,(2,y2),(3,y3)在第四象限,即可解题;【解答】解:∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=﹣1时,y1>0,∵2<3,∴y2<y3<y1故选:C.【点评】本题考查反比函数图象及性质;熟练掌握反比函数的图象及x与y值之间的关系是解题的关键.10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:D.【点评】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.11.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【分析】过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=x tan65°,∴BD=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.【分析】延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,先求得BG,再求BH,进而DH,运用相似三角形得,便可得解.【解答】解:延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,则OC⊥BD,OC=,∵OB•BC=OC•BG,∴,∴BD=2BG=,∵OD2﹣OH2=DH2=BD2﹣BH2,∴,∴BH=,∴,∵DH∥BF,∴,∴,故选:A.【点评】本题是圆的综合题,主要考查了切线长定理,切线的性质,相似三角形的性质与判定,勾股定理,将军饮马问题,问题较复杂,作的辅助线较多,正确作辅助线是解决问题的关键.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是x≥﹣4.【分析】根据被开数x+4≥0即可求解;【解答】解:x+4≥0,∴x≥﹣4;故答案为x≥﹣4;【点评】本题考查二次根式的意义;熟练掌握二次根式中被开方数是非负数的条件是解题的关键.14.(3分)因式分解:3ax2﹣3ay2=3a(x+y)(x﹣y).【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.【解答】解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【分析】先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.【解答】解:甲的平均数=(9+8+9+6+10+6)=8,所以甲的方差=[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.【解答】解:∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,∵S菱形ABCD=AC×BD=24,∴AC=6,∴OC=AC=3,∴BC==5,∵S菱形ABCD=BC×AH=24,∴AH=;故答案为:.【点评】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC是解题的关键.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为AB2=AC2+BD2.【分析】过点A作AE∥CD,截取AE=CD,连接BE、DE,则四边形ACDE是平行四边形,得出DE=AC,∠ACD=∠AED,证明△ABE为等边三角形得出BE=AB,求得∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=90°,由勾股定理得出BE2=DE2+BD2,即可得出结果.【解答】解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,∴DE=AC,∠ACD=∠AED,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,∴BE=AB,∵∠ACD+∠ABD=210°,∴∠AED+∠ABD=210°,∴∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=360°﹣210°﹣60°=90°,∴BE2=DE2+BD2,∴AB2=AC2+BD2;故答案为:AB2=AC2+BD2.【点评】本题考查了勾股定理、平行四边形的判定与性质、等边三角形的判定与性质、平行线的性质、四边形内角和等知识,熟练掌握平行四边形的性质、通过作辅助线构建等边三角形与直角三角形是解题的关键.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【分析】分别运算每一项然后再求解即可;【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.【点评】本题考查实数的运算;熟练掌握实数的运算法则是解题的关键.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.【分析】分别解两个不等式得到x<3和x≥﹣2,再根据大小小大中间找确定不等式组的解集.然后利用数轴表示其解集.【解答】解:解①得x<3,解②得x≥﹣2,所以不等式组的解集为﹣2≤x<3.用数轴表示为:【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(﹣2,﹣1).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【分析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)由题意知a=4,b=×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c==85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×=76(张),答:估计需要准备76张奖状.【点评】本题主要考查众数、平均数、中位数,掌握众数、平均数、中位数的定义及其意义是解题的关键.23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC 于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).【分析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接OD,根据平角定义得到∠AEC=55°,根据圆周角定理得到∠ACE=90°,求得∠CAE=35°,得到∠BOD=2∠BAD=70°,根据弧长公式即可得到结论.【解答】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.【点评】本题考查了三角形的外接圆与外心,圆周角定理,弧长的计算,正确的识别图形是解题的关键.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【分析】(1)设每袋国旗图案贴纸为x元,则有,解得x=15,检验后即可求解;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a;(3)如果没有折扣,W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【解答】解:(1)设每袋国旗图案贴纸为x元,则有,解得x=15,经检验x=15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a,答:购买小红旗a袋恰好配套;(3)如果没有折扣,则W=15a+20×a=40a,依题意得40a≤800,解得a≤20,当a>20时,则W=800+0.8(40a﹣800)=32a+160,即W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【点评】本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【分析】(1)先判断出∠GCB+∠CBG=90,再由四边形ABCD是正方形,得出∠CBE=90°=∠A,BC=AB,即可得出结论;(2)设AB=CD=BC=2a,先求出EA=EB=AB=a,进而得出CE=a,再求出BG=a,CG═a,再判断出△CQD≌△BGC(AAS),进而判断出GQ=CQ,即可得出结论;(3)先求出CH=a,再求出DH=a,再判断出△CHD∽△DHM,求出HM=a,再用勾股定理求出GH=a,最后判断出△QGH∽△GCH,得出HN==a,即可得出结论.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG•CE=CB•EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=a,∴GQ=CG﹣CQ=a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DH⊥CE于H,S△CDG=•DQ=CH•DG,∴CH==a,在Rt△CHD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠QGH=∠HCG,∴△QGH∽△GCH,∴,∴HN==a,∴MN=HM﹣HN=a,∴=【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△DGQ≌△CDQ是解本题的关键.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c 是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.【分析】(1)由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c,求得y2=﹣+x+2,B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,E(6,﹣1);②若A为直角顶点,AE⊥AB,E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)不符合题意;(3)由y1≤y2,得﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,S1=,设AB 交MN于点P,易知P(t,t+1),S2=2﹣,所以S=S1+S2=4t+8,当t=2时,S的最大值为16.【解答】解:由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2=﹣+x+2,∴B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,k BE•k AB=﹣1,∴k BE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);②若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)由AE⊥BE得k BE•k AE=﹣1,即,解得m=2或﹣2(不符合题意舍去),∴点E的坐标∴E(6,﹣1)或E(10,﹣13);(3)∵y1≤y2,∴﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,则Q(),S1=QM•|y F﹣y A|=设AB交MN于点P,易知P(t,t+1),S2=PN•|x A﹣x B|=2﹣S=S1+S2=4t+8,当t=2时,S的最大值为16.【点评】本题考查了二次函数,熟练运用二次函数的性质、直角三角形的性质以及一次函数的性质是解题的关键.。

2019年广西省中考数学试卷及答案【优选新版】

2019年广西省中考数学试卷及答案【优选新版】

2019年广西省中考数学试卷一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×1065.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+17.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y110.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×3011.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是.14.(3分)因式分解:3ax2﹣3ay2=.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC 于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a 为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c 是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【分析】根据正数与负数的表示方法,可得解;【解答】解:上升2℃记作+2℃,下降3℃记作﹣3℃;故选:D.【点评】本题考查正数和负数;能够根据实际问题理解正数与负数的意义和表示方法是解题的关键.2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.【点评】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106【分析】根据科学记数法的表示方法a×10n(1≤a<9),即可求解;【解答】解:700000=7×105;故选:B.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.【点评】主要考查了一副三角板所对应的角度是60°,45°,30°,90°和三角形外角的性质.本题容易,解法很灵活.6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1【分析】利用完全平分公式,幂的乘方与积的乘方,合并同类项的法则进行解题即可;【解答】解:2a+3b不能合并同类项,B错误;5a2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.【点评】本题考查整式的运算;熟练掌握完全平分公式,幂的乘方与积的乘方,合并同类项的法则是解题的关键.7.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°【分析】利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B 和三角形内角和计算出∠ACB,从而得到∠BCG的度数.【解答】解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG=∠ACB=50°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率==.故选:A.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【分析】k<0,y随x值的增大而增大,(﹣1,y1)在第二象限,(2,y2),(3,y3)在第四象限,即可解题;【解答】解:∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=﹣1时,y1>0,∵2<3,∴y2<y3<y1故选:C.【点评】本题考查反比函数图象及性质;熟练掌握反比函数的图象及x与y值之间的关系是解题的关键.10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:D.【点评】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.11.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【分析】过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=x tan65°,∴BD=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.【分析】延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,先求得BG,再求BH,进而DH,运用相似三角形得,便可得解.【解答】解:延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,则OC⊥BD,OC=,∵OB•BC=OC•BG,∴,∴BD=2BG=,∵OD2﹣OH2=DH2=BD2﹣BH2,∴,∴BH=,∴,∵DH∥BF,∴,∴,故选:A.【点评】本题是圆的综合题,主要考查了切线长定理,切线的性质,相似三角形的性质与判定,勾股定理,将军饮马问题,问题较复杂,作的辅助线较多,正确作辅助线是解决问题的关键.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是x≥﹣4.【分析】根据被开数x+4≥0即可求解;【解答】解:x+4≥0,∴x≥﹣4;故答案为x≥﹣4;【点评】本题考查二次根式的意义;熟练掌握二次根式中被开方数是非负数的条件是解题的关键.14.(3分)因式分解:3ax2﹣3ay2=3a(x+y)(x﹣y).【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.【解答】解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【分析】先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.【解答】解:甲的平均数=(9+8+9+6+10+6)=8,所以甲的方差=[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.【解答】解:∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,∵S菱形ABCD=AC×BD=24,∴AC=6,∴OC=AC=3,∴BC==5,∵S菱形ABCD=BC×AH=24,∴AH=;故答案为:.【点评】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC是解题的关键.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为AB2=AC2+BD2.【分析】过点A作AE∥CD,截取AE=CD,连接BE、DE,则四边形ACDE是平行四边形,得出DE=AC,∠ACD=∠AED,证明△ABE为等边三角形得出BE=AB,求得∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=90°,由勾股定理得出BE2=DE2+BD2,即可得出结果.【解答】解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,∴DE=AC,∠ACD=∠AED,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,∴BE=AB,∵∠ACD+∠ABD=210°,∴∠AED+∠ABD=210°,∴∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=360°﹣210°﹣60°=90°,∴BE2=DE2+BD2,∴AB2=AC2+BD2;故答案为:AB2=AC2+BD2.【点评】本题考查了勾股定理、平行四边形的判定与性质、等边三角形的判定与性质、平行线的性质、四边形内角和等知识,熟练掌握平行四边形的性质、通过作辅助线构建等边三角形与直角三角形是解题的关键.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【分析】分别运算每一项然后再求解即可;【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.【点评】本题考查实数的运算;熟练掌握实数的运算法则是解题的关键.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.【分析】分别解两个不等式得到x<3和x≥﹣2,再根据大小小大中间找确定不等式组的解集.然后利用数轴表示其解集.【解答】解:解①得x<3,解②得x≥﹣2,所以不等式组的解集为﹣2≤x<3.用数轴表示为:【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(﹣2,﹣1).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【分析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)由题意知a=4,b=×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c==85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×=76(张),答:估计需要准备76张奖状.【点评】本题主要考查众数、平均数、中位数,掌握众数、平均数、中位数的定义及其意义是解题的关键.23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC 于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).【分析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接OD,根据平角定义得到∠AEC=55°,根据圆周角定理得到∠ACE=90°,求得∠CAE=35°,得到∠BOD=2∠BAD=70°,根据弧长公式即可得到结论.【解答】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.【点评】本题考查了三角形的外接圆与外心,圆周角定理,弧长的计算,正确的识别图形是解题的关键.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【分析】(1)设每袋国旗图案贴纸为x元,则有,解得x=15,检验后即可求解;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a;(3)如果没有折扣,W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【解答】解:(1)设每袋国旗图案贴纸为x元,则有,解得x=15,经检验x=15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a,答:购买小红旗a袋恰好配套;(3)如果没有折扣,则W=15a+20×a=40a,依题意得40a≤800,解得a≤20,当a>20时,则W=800+0.8(40a﹣800)=32a+160,即W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【点评】本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【分析】(1)先判断出∠GCB+∠CBG=90,再由四边形ABCD是正方形,得出∠CBE=90°=∠A,BC=AB,即可得出结论;(2)设AB=CD=BC=2a,先求出EA=EB=AB=a,进而得出CE=a,再求出BG=a,CG═a,再判断出△CQD≌△BGC(AAS),进而判断出GQ=CQ,即可得出结论;(3)先求出CH=a,再求出DH=a,再判断出△CHD∽△DHM,求出HM=a,再用勾股定理求出GH=a,最后判断出△QGH∽△GCH,得出HN==a,即可得出结论.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG•CE=CB•EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=a,∴GQ=CG﹣CQ=a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DH⊥CE于H,S△CDG=•DQ=CH•DG,∴CH==a,在Rt△CHD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠QGH=∠HCG,∴△QGH∽△GCH,∴,∴HN==a,∴MN=HM﹣HN=a,∴=【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△DGQ≌△CDQ是解本题的关键.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c 是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.【分析】(1)由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c,求得y2=﹣+x+2,B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,E(6,﹣1);②若A为直角顶点,AE⊥AB,E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)不符合题意;(3)由y1≤y2,得﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,S1=,设AB 交MN于点P,易知P(t,t+1),S2=2﹣,所以S=S1+S2=4t+8,当t=2时,S的最大值为16.【解答】解:由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2=﹣+x+2,∴B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,k BE•k AB=﹣1,∴k BE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);②若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)由AE⊥BE得k BE•k AE=﹣1,即,解得m=2或﹣2(不符合题意舍去),∴点E的坐标∴E(6,﹣1)或E(10,﹣13);(3)∵y1≤y2,∴﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,则Q(),S1=QM•|y F﹣y A|=设AB交MN于点P,易知P(t,t+1),S2=PN•|x A﹣x B|=2﹣S=S1+S2=4t+8,当t=2时,S的最大值为16.【点评】本题考查了二次函数,熟练运用二次函数的性质、直角三角形的性质以及一次函数的性质是解题的关键.。

【中考真题】2019年广西百色市中考数学真题试卷(附答案)

【中考真题】2019年广西百色市中考数学真题试卷(附答案)
所以 的相反数是16,
故答案为:16.
【点睛】
本题考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“-”.
14. .
【解析】
【分析】
根据被开方数是非负数,可得答案.
【详解】
由 在实数范围内有意义,得 ,
解得 ,
【解析】
【分析】
根据分式除法运算的法则先转化为分式的乘法运算,化简后将m的数值代入化简后的式子进行计算即可.
【详解】
原式

当 时,
原式

【点睛】
本题考查了分式的除法运算,熟练掌握分式除法运算的法则以及分式乘法运算的法则是解题的关键.
21.(1)k=2,直线OB解析式为 ;(2)四边形 的周长为 .
【解析】
【详解】
∵点 ,点 ,点 为弦 的中点,
∴ , ,
∴ ,
又 满足等式: ,
∴ ,
故选D.
【点睛】
本题考查了坐标与图形性质,解题的关键是理解中点坐标公式.
13.16.
【解析】
【分析】
根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“-”,据此解答即可.
【详解】
在-16的前面添加“-”后变为-(-16)=16,
【详解】
∵ 与 是以坐标原点 为位似中心的位似图形,
若点 , ,
∴位似比为: ,
∵ , ,
∴ ,
∴ 的面积为: ,
故答案为:18.
【点睛】
本题考查了位似变换以及三角形面积求法,正确得出对应点位置是解题关键.
18. .
【解析】

2019年广西百色市中考数学试题(含答案解析)

2019年广西百色市中考数学试题(含答案解析)

2019年广西百色中考数学考试试卷第Ⅰ卷(选择题)一、选择照(本大题共12小题,每小题3分,共6分,在每小题给出的四个选项中只有一项是符合要求的) 1.三角形的内角和等于A.90°B.180°C.270°D.360° 2.如图,已知a//b ,∠1=58°,则∠2的大小是 A.122° B.85° C.58° D.323.一组数据2,6,4,10,8,12的中位数是 A.6 B.7 C.8 D.94.方程111=+x 的解是 A.无解 B.x =-1 C.x =0 D.x =1 5.下列几何体中,俯视图不是圆的是6.一周时间有604 800秒,604 800用科学记数法表示为A.6048×102B.6.048×105C.6.048×106D.0.6048×106 7.下列图形,既是轴对称图形又是中心对称图形的是A.正三角形B.正五边形C.等腰直角三角形D.矩形 8.不等式组⎩⎨⎧≤--06320212x x <的解集是yA.-4<x ≤6B.x ≤-4或x >2C.-4<x ≤2D. 2≤x <4 9.抛物线y =x 2+6x +7可由抛物线y =x 2如何平移得到的 A.先向左平移3个单位,再向下平移2个单位 B.先向左平移6个单位,再向上平移7个单位 C.先向上平移2个单位,再向左平移3个单位 D.先回石平移3个单位,再向上平移2个单位10.小书和小黄进行射击比赛,各射击6次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是A.小黄的成绩比小韦的成绩更稳定B.两人成绩的众数相同C.小韦的成绩比小黄的成绩更稳定D.两人的平均成绩不相同 11.下列四个命题:①两直线平行,内错角相等; ②对顶角相等;③等腰三角形的两个底角相等; ④菱形的对角线互相重真 其中逆命题是真命题的是A.①②③④B.①③④C.①③D.① 12.阅读理解:已知两点M (x 1,y 4),N (x 2,y 2),则线段MN 的中点K (x ,y )的坐标公式为:221x x x +=,221y y y +=。

2019年广西省各地市数学中考试卷合集(14套含答案解析)

2019年广西省各地市数学中考试卷合集(14套含答案解析)

D. 先回右平移 3 个单位,再向上平移 2 个单位
10. 小韦和小黄进行射击比赛,各射击 6 次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是( )
第 1 页,共 210 页
A. 小黄的成绩比小韦的成绩更稳定 B. 两人成绩的众数相同
C. 小韦的成绩比小黄的成绩更稳定
D. 两人的平均成绩不相同
B. 7
C. 8
4. 方程 =1 的解是( )
A. 无解
B.
C.
5. 下列几何体中,俯视图不是圆的是( )
D. 32 D. 9
D.
A.
四面体
B.
圆锥
C.

D.
圆柱
6. 一周时间有 604800 秒,604800 用科学记数法表示为( )
A.
B.
C.
D.
7. 下列图形,既是轴对称图形又是中心对称图形的是( )
26. 已知抛物线 y=mx2 和直线 y=-x+b 都经过点 M(-2,4),点 O 为坐标原点,点 P 为抛物线上的动点,直线 y=-x+b 与 x 轴、y 轴分别交于 A、B 两点.
第 5 页,共 210 页
(1)求 m、b 的值; (2)当△PAM 是以 AM 为底边的等腰三角形时,求点 P 的坐标; (3)满足(2)的条件时,求 sin∠BOP 的值.
四、解答题(本大题共 7 小题,共 60.0 分) 20. 计算:(-1)3+ -(π-112)0-2 tan60°
21. 如图,已如平行四边形 OABC 中,点 O 为坐标顶点,点 A(3,0),C(1,2),函数 y= (k≠0)的图象经过点 C. (1)求 k 的值及直线 OB 的函数表达式: (2)求四边形 OABC 的周长.

2019年百色市中考数学试卷(解析版)

2019年百色市中考数学试卷(解析版)

2019年百色市中考数学试卷(解析版)一、选择照(本大题共12小题,每小题3分,共6分)1.(3分)三角形的内角和等于()A.90°B.180°C.270°D.360°【解答】解:因为三角形的内角和等于180度,故选:B.2.(3分)如图,已知a∥b,∠1=58°,则∠2的大小是()A.122°B.85°C.58°D.32【解答】解:∵a∥b,∴∠1=∠2,∵∠1=58°,∴∠2=58°,故选:C.3.(3分)一组数据2,6,4,10,8,12的中位数是()A.6B.7C.8D.9【解答】解:将数据重新排列为2、4、6、8、10、12,所以这组数据的中位数为=7,故选:B.4.(3分)方程=1的解是()A.无解B.x=﹣1C.x=0D.x=1【解答】解:=1,∴移项可得﹣1==0,∴x=0,经检验x=0是方程的根,∴方程的根是x=0;故选:C.5.(3分)下列几何体中,俯视图不是圆的是()A.四面体B.圆锥C.球D.圆柱【解答】解:A、俯视图是三角形,故此选项正确;B、俯视图是圆,故此选项错误;C、俯视图是圆,故此选项错误;D、俯视图是圆,故此选项错误;故选:A.6.(3分)一周时间有604800秒,604800用科学记数法表示为()A.6048×102 B.6.048×105C.6.048×106D.0.6048×106【解答】解:数字604800用科学记数法表示为6.048×105.故选:B.7.(3分)下列图形,既是轴对称图形又是中心对称图形的是()A.正三角形B.正五边形C.等腰直角三角形D.矩形【解答】解:A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形;故选:D.8.(3分)不等式组的解集是()A.﹣4<x≤6B.x≤﹣4或x>2C.﹣4<x≤2D.2≤x<4【解答】解:解不等式12﹣2x<20,得:x>﹣4,解不等式3x﹣6≤0,得:x≤2,则不等式组的解集为﹣4<x≤2.故选:C.9.(3分)抛物线y=x2+6x+7可由抛物线y=x2如何平移得到的()A.先向左平移3个单位,再向下平移2个单位B.先向左平移6个单位,再向上平移7个单位C.先向上平移2个单位,再向左平移3个单位D.先回右平移3个单位,再向上平移2个单位【解答】解:因为y=x2+6x+7=(x+3)2﹣2.所以将抛物线y=x2先向左平移3个单位,再向下平移2个单位即可得到抛物线y=x2+6x+7.故选:A.10.(3分)小韦和小黄进行射击比赛,各射击6次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是()A.小黄的成绩比小韦的成绩更稳定B.两人成绩的众数相同C.小韦的成绩比小黄的成绩更稳定D.两人的平均成绩不相同【解答】解:A,由折线统计图知,小黄的成绩波动幅度小,成绩更稳定,此选项正确,C选项错误;B.小韦成绩的众数为10环,小黄成绩的众数为9环,此选项错误;D.小韦成绩的平均数为=,小黄的平均成绩为=,此选项错误;故选:A.11.(3分)下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直其中逆命题是真命题的是()A.①②③④B.①③④C.①③D.①【解答】解:①两直线平行,内错角相等;其命题:内错角相等两直线平行是真命题;②对顶角相等,其逆命题:相等的角是对顶角是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形是真命题;④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形是假命题;故选:C.12.(3分)阅读理解:已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x=,y=.如图,已知点O为坐标原点,点A(﹣3,0),⊙O经过点A,点B为弦P A的中点.若点P(a,b),则有a,b满足等式:a2+b2=9.设B(m,n),则m,n满足的等式是()A.m2+n2=9B.()2+()2=9C.(2m+3)2+(2n)2=3D.(2m+3)2+4n2=9【解答】解:∵点A(﹣3,0),点P(a,b),点B(m,n)为弦P A的中点,∴m=,n=.∴a=2m+3,b=2n.又a,b满足等式:a2+b2=9,∴(2m+3)2+4n2=9.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)﹣16的相反数是16.【解答】解:﹣16的相反数是16.故答案为:1614.(3分)若式子在实数范围内有意义,则x的取值范围是x≥108.【解答】解:由在实数范围内有意义,得x﹣108≥0.解得x≥108,故答案是:x≥108.15.(3分)编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是.【解答】解:在这5个乒乓球中,编号是偶数的有3个,所以编号是偶数的概率为,故答案为:.16.(3分)观察一列数:﹣3,0,3,6,9,12,…,按此规律,这一列数的第21个数是57.【解答】解:由题意知,这列数的第n个数为﹣3+3(n﹣1)=3n﹣6,当n=21时,3n﹣6=3×21﹣6=57,故答案为:57.17.(3分)如图,△ABC与△A'B'C'是以坐标原点O为位似中心的位似图形,若点A(2,2),B(3,4),C(6,1),B'(6,8),则△A'B'C'的面积为18.【解答】解:∵△ABC与△A'B'C'是以坐标原点O为位似中心的位似图形,点A(2,2),B(3,4),C (6,1),B'(6,8),∴A′(4,4),C′(12,2),∴△A'B'C'的面积为:6×8﹣×2×4﹣×6×6﹣×2×8=18.故答案为:18.18.(3分)四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=30°.【解答】解:∵,∴平行四边形A'B'C'D'的底边AD边上的高等于AD的一半,∴∠A'=30°.故答案为:30°三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.(6分)计算:(﹣1)3+﹣(π﹣112)0﹣2tan60°【解答】解:原式=﹣1+3﹣1﹣2×=1﹣2×3=﹣5;20.(6分)求式子÷的值,其中m=﹣2019.【解答】解:原式=•=(m+3),当m=2019时,原式=×(﹣2019+3)=×(﹣2016)=﹣1512.21.(6分)如图,已如平行四边形OABC中,点O为坐标顶点,点A(3,0),C(1,2),函数y=(k ≠0)的图象经过点C.(1)求k的值及直线OB的函数表达式:(2)求四边形OABC的周长.【分析】(1)根据函数y=(k≠0)的图象经过点C,可以求得k的值,再根据平行四边形的性质即可求得点B的坐标,从而可以求得直线OB的函数解析式;(2)根据题目中各点的坐标,可以求得平行四边形各边的长,从而可以求得平行四边形的周长.【解答】解:(1)依题意有:点C(1,2)在反比例函数y=(k≠0)的图象上,∴k=xy=2,∵A(3,0)∴CB=OA=3,又CB∥x轴,∴B(4,2),设直线OB的函数表达式为y=ax,∴2=4a,∴a=,∴直线OB的函数表达式为y=x;(2)作CD⊥OA于点D,∵C(1,2),∴OC=,在平行四边形OABC中,CB=OA=3,AB=OC=,∴四边形OABC的周长为:3+3+=6+2,即四边形OABC的周长为6+2.【点评】本题考查待定系数法求反比例函数解析式和一次函数解析式,反比例函数图象上点的坐标特征、平行四边形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(8分)如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.【分析】(1)由“AAS”可证△AEB≌△BFC,可得AE=BF;(2)由线段垂直平分线的性质可得BD=AB=2.【解答】(1)证明:四边形ABCD是菱形∴AB=BC,AD∥BC∴∠A=∠CBF∵BE⊥AD、CF⊥AB∴∠AEB=∠BFC=90°∴△AEB≌△BFC(AAS)∴AE=BF(2)∵E是AD中点,且BE⊥AD∴直线BE为AD的垂直平分线∴BD=AB=2【点评】本题考查了菱形的性质,全等三角形的判定和性质,线段垂直平分线的性质,熟练运用菱形的性质是本题的关键.23.(8分)九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:编号一二三四五人数a152010b已知前面两个小组的人数之比是1:5.解答下列问题:(1)a+b=5.(2)补全条形统计图:(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)【分析】(1)由题意知a+b=50﹣(15+20+10)=5;(2)a=3,b=50﹣(3+15+20+10)=2,a+b=5;(3)一共有20种等可能的结果,其中两名同学是同一组的有8种,所求概率是:P=.【解答】解:(1)由题意知a+b=50﹣(15+20+10)=5,故答案为:5;(2)∵a=3,∴b=50﹣(3+15+20+10)=2,∴a+b=5,故答案为5;(2)补全图形如下:(3)由题意得a=3,b=2设第一组3位同学分别为A1、A2、A3,设第五组2位同学分别为B1、B2,由上图可知,一共有20种等可能的结果,其中两名同学是同一组的有8种,所求概率是:P=.【点评】本题考查了统计图与概率,熟练掌握列表法与树状图求概率是解题的关键.24.(10分)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?【分析】(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,根据路程=速度×时间,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距a千米,则乙、丙两地相距(90﹣a)千米,根据时间=路程÷速度,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,依题意,得:,解得:.答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时.(2)设甲、丙两地相距a千米,则乙、丙两地相距(90﹣a)千米,依题意,得:=,解得:a=.答:甲、丙两地相距千米.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.25.(10分)如图,已知AC、AD是⊙O的两条割线,AC与⊙O交于B、C两点,AD过圆心O且与⊙O交于E、D两点,OB平分∠AOC.(1)求证:△ACD∽△ABO;(2)过点E的切线交AC于F,若EF∥OC,OC=3,求EF的值.[提示:(+1)(﹣1)=1]【分析】(1)由题意可得∠BOE=∠AOC=∠D,且∠A=∠A,即可证△ACD∽△ABO;(2)由切线的性质和勾股定理可求CD的长,由相似三角形的性质可求AE=3,由平行线分线段成比例可得,即可求EF的值.【解答】证明:(1)∵OB平分∠AOC∴∠BOE=∠AOC∵OC=OD∴∠D=∠OCD∵∠AOC=∠D+∠OCD∴∠D=∠AOC∴∠D=∠BOE,且∠A=∠A∴△ACD∽△ABO(2)∵EF切⊙O于E∴∠OEF=90°∵EF∥OC∴∠DOC=∠OEF=90°∵OC=OD=3∴CD==3∵△AC D∽△ABO∴∴∴AE=3∵EF∥OC∴∴∴EF=6﹣3【点评】本题考查了相似三角形的判定和性质,圆的有关知识,勾股定理,求出AE的长是本题的关键.26.(12分)已知抛物线y=mx2和直线y=﹣x+b都经过点M(﹣2,4),点O为坐标原点,点P为抛物线上的动点,直线y=﹣x+b与x轴、y轴分别交于A、B两点.(1)求m、b的值;(2)当△P AM是以AM为底边的等腰三角形时,求点P的坐标;(3)满足(2)的条件时,求sin∠BOP的值.【分析】(1)根据点M的坐标,利用待定系数法可求出m,b的值;(2)由(1)可得出抛物线及直线AB的解析式,利用一次函数图象上点的坐标特征可求出点A的坐标,设点P的坐标为(x,x2),结合点A,M的坐标可得出P A2,PM2的值,再利用等腰三角形的性质可得出关于x的方程,解之即可得出结论;(3)过点P作PN⊥y轴,垂足为点N,由点P的坐标可得出PN,PO的长,再利用正弦的定义即可求出sin∠BOP的值.【解答】解:(1)将M(﹣2,4)代入y=mx2,得:4=4m,∴m=1;将M(﹣2,4)代入y=﹣x+b,得:4=2+b,∴b=2.(2)由(1)得:抛物线的解析式为y=x2,直线AB的解析式为y=﹣x+2.当y=0时,﹣x+2=0,解得:x=2,∴点A的坐标为(2,0),OA=2.设点P的坐标为(x,x2),则P A2=(2﹣x)2+(0﹣x2)2=x4+x2﹣4x+4,PM2=(﹣2﹣x)2+(4﹣x2)2=x4﹣7x2+4x+20.∵△P AM是以AM为底边的等腰三角形,∴P A2=PM2,即x4+x2﹣4x+4=x4﹣7x2+4x+20,整理,得:x2﹣x﹣2=0,解得:x1=﹣1,x2=2,∴点P的坐标为(﹣1,1)或(2,4).(3)过点P作PN⊥y轴,垂足为点N,如图所示.当点P的坐标为(﹣1,1)时,PN=1,PO==,∴sin∠BOP==;当点P的坐标为(2,4)时,PN=2,PO==2,∴sin∠BOP==.∴满足(2)的条件时,sin∠BOP的值的值为或.。

2019年广西百色市中考数学试卷

2019年广西百色市中考数学试卷

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前广西省百色市2019年初中学业水平考试数 学一、选择题(本大题共12小题,每小题3分,共6分,在每小题给出的四个选项中只有一项是符合要求的) 1.三角形的内角和等于( ) A .90︒B .180︒C .270︒D .360︒ 2.如图,已知a b ∥,158︒∠=,则2∠的大小是( )A .122︒B .85︒C .58︒D .32︒ 3.一组数据2,6,4,10,8,12的中位数是( ) A .6 B .7 C .8 D .9 4.方程111x =+的解是( )A .无解B .1x =-C .0x =D .1x = 5.下列几何体中,俯视图不是圆的是( )A .四面体B .圆锥C .球D .圆柱 6.一周时间有604 800秒,604 800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯7.下列图形,既是轴对称图形又是中心对称图形的是( )A .正三角形B .正五边形C .等腰直角三角形D .矩形 8.不等式组12220360x x -⎧⎨-⎩<≤的解集是( )A .46x -<≤B .4x -≤或2x >C .42x -<≤D .24x ≤<9.抛物线267y x x =++可由抛物线2y x =如何平移得到的( )A .先向左平移3个单位,再向下平移2个单位B .先向左平移6个单位,再向上平移7个单位C .先向上平移2个单位,再向左平移3个单位D .先回右平移3个单位,再向上平移2个单位10.小韦和小黄进行射击比赛,各射击6次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是( )A .小黄的成绩比小韦的成绩更稳定B .两人成绩的众数相同C .小韦的成绩比小黄的成绩更稳定D .两人的平均成绩不相同11.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直 其中逆命题是真命题的是( )A .①②③④B .①③④C .①③D .①毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)12.阅读理解:已知两点()11,M x y ,()22,N x y ,则线段MN 的中点(,)K x y 的坐标公式为:122x x x =+,122y y y +=.如图,已知点O 为坐标原点,点()3,0A -,O 经过点A ,点B 为弦P A 的中点.若点()22,N x y ,则有a ,b 满足等式:229a b +=.设()B m n ,,则m ,n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭C .()()222323m n ++=D .()222349m n ++=二、填空题(本大题共6小题,每小题3分,共18分) 13.16-的相反数是 .14.x 的取值范围是 .15.编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是 .16.观察一列数:3-,0,3,6,9,12,……,按此规律,这一列数的第21个数是 .17.如图,ABC △与'''A B C △是以坐标原点O 为位似中心的位似图形,若点()22A ,,()3,4B ,()6,1C ,()'6,8B ,则'''A B C △的面积为 .18.四边形具有不稳定性.如图,矩形ABCD 按箭头方向变形成平行四边形''''A B C D ,当变形后图形面积是原图形面积的一半时,则'A =∠ .三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.(6分)计算:30(1)(112)π︒---.20.(6分)求式子23439m m ÷--的值,其中2019m =-.21.(6分)如图,已如平行四边形OABC 中,点O 为坐标顶点,点()3,0A ,()1,2C ,函数(0)ky k x=≠的图象经过点C . (1)求k 的值及直线OB 的函数表达式: (2)求四边形OABC 的周长.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)22.(8分)如图,菱形ABCD 中,作BE AD ⊥、CF AB ⊥,分别交AD 、AB 的延长线于点E 、F .(1)求证:AE BF =;(2)若点E 恰好是AD 的中点,2AB =,求BD 的值.23.(8分)九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:解答下列问题: (1)a b += . (2)补全条形统计图:(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)24.(10分)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时. (1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?25.(10分)如图,已知AC 、AD 是O 的两条割线,AC 与O 交于B 、C 两点,AD 过圆心O 且与O 交于E 、D 两点,OB 平分AOC ∠. (1)求证:ACD ABO △∽△;(2)过点E 的切线交AC 于F ,若EF OC ∥,3OC =,求EF 的值.[提示:(21)1-=]26.(12分)已知抛物线2y mx =和直线y x b =-+都经过点()2,4M -,点O 为坐标原点,点P 为抛物线上的动点,直线y x b =-+与x 轴、y 轴分别交于A 、B 两点. (1)求m 、b 的值;(2)当PAM 是以AM 为底边的等腰三角形时,求点P 的坐标; (3)满足(2)的条件时,求sin BOP ∠的值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________ 考生号________________ ________________ _____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(本大题共12小题,每小题3分,共36分)1.三角形的内角和等于()A.90° B.180° C.300° D.360°【答案】B【解析】试题分析:利用三角形的内角和定理:三角形的内角和为180°即可解本题考点:三角形内角和定理.2.计算:23=()A.5 B.6 C.8 D.9【答案】C【解析】试题分析:根据立方的计算法则计算即可求解.23=8.考点:有理数的乘方.3.如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠7【答案】B考点:平行线的判定.4.在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是()A. B. C. D.【答案】C【解析】试题分析:用红球的个数除以所有球的个数即可求得抽到红球的概率.考点:概率公式.5.今年百色市九年级参加中考人数约有38900人,数据38900用科学记数法表示为( )A .3.89×102B .389×102C .3.89×104D .3.89×105【答案】C【解析】考点:科学记数法—表示较大的数.6.如图,△ABC 中,∠C=90°,∠A=30°,AB=12,则BC=( )A .6B .62C .63D .12【答案】A【解析】试题分析:根据30°所对的直角边等于斜边的一半求解.∵∠C=90°,∠A=30°,AB=12, ∴BC=12sin30°=12×21=6 考点:含30度角的直角三角形.7.分解因式:16﹣x 2=( )A .(4﹣x )(4+x )B .(x ﹣4)(x+4)C .(8+x )(8﹣x )D .(4﹣x )2【答案】A【解析】试题分析:直接利用平方差公式分解因式得出答案.16﹣x 2=(4﹣x )(4+x ).考点:因式分解-运用公式法.8.下列关系式正确的是( )A .35.5°=35°5′B .35.5°=35°50′C .35.5°<35°5′D .35.5°>35°5′【答案】D考点:度分秒的换算.9.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/0 1 2 3 4周)人数(单位:人) 1 4 6 2 2A.中位数是2 B.平均数是2 C.众数是2 D.极差是2【答案】D【解析】试题分析:根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;极差为4﹣0=4;所以A、B、C正确,D错误考点:(1)、极差;(2)、加权平均数;(3)、中位数;(4)、众数.10.直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A.x≤3 B.x≥3 C.x≥﹣3 D.x≤0【答案】A【解析】试题分析:首先把点A(2,1)代入y=kx+3中,可得k的值,再解不等式kx+3≥0即可.∵y=kx+3经过点A(2,1),∴1=2k+3,解得:k=﹣1,∴一次函数解析式为:y=﹣x+3,﹣x+3≥0,解得:x≤3.考点:一次函数与一元一次不等式.11.A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30 B.﹣= C.﹣= D. +=30【答案】B【解析】考点:由实际问题抽象出分式方程.12.如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是()A.4 B.32C.23D.2+3【答案】C【解析】试题分析:连接CC′,连接A′C交y轴于点D,连接AD,此时AD+CD的值最小,根据等边三角形的性质即可得出四边形CBA′C′为菱形,根据菱形的性质即可求出A′C的长度,从而得出结论.连接CC′,连接A′C交l于点D,连接AD,此时AD+CD的值最小,如图所示.∵△ABC与△A′BC′为正三角形,且△ABC与△A′BC′关于直线l对称,∴四边形CBA′C′为边长为2的菱形,且∠BA′C′=60°,∴A′C=2×A′B=2.考点:(1)、轴对称-最短路线问题;(2)、等边三角形的性质.二、填空题(本大题共6小题,每小题3分,共18分) 13.31的倒数是 . 【答案】3考点:倒数.14.若点A (x ,2)在第二象限,则x 的取值范围是 .【答案】x <0【解析】试题分析:根据第二象限内点的横坐标小于零,可得答案.由点A (x ,2)在第二象限,得x <0考点:点的坐标.15.如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C=25°,则∠D= .【答案】65°【解析】试题分析:先根据圆周角定理求出∠A 的度数,再由垂径定理求出∠AED 的度数,进而可得出结论.∵∠C=25°, ∴∠A=∠C=25°. ∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD , ∴∠AED=90°, ∴∠D=90°﹣25°=65°考点:圆周角定理16.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是 .【答案】5考点:由三视图判断几何体.17.一组数据2,4,a ,7,7的平均数=5,则方差S 2= . 【答案】3.6【解析】试题分析:根据平均数的计算公式:-x =n x x x n 21,先求出a 的值,再代入方差公式S 2=n1 [(x 1﹣-x )2+(x 2﹣-x )2+…+(x n ﹣-x )2]进行计算即可.∵数据2,4,a ,7,7的平均数-x =5, ∴2+4+a+7+7=25,解得a=5, ∴方差s 2=51 [(2﹣5)2+(4﹣5)2+(5﹣5)2+(7﹣5)2+(7﹣5)2]=3.6; 考点:方差;算术平均数.18.观察下列各式的规律:(a ﹣b )(a+b )=a 2﹣b 2(a ﹣b )(a 2+ab+b 2)=a 3﹣b 3(a ﹣b )(a 3+a 2b+ab 2+b 3)=a 4﹣b 4…可得到(a ﹣b )(a 2016+a 2015b+…+ab 2015+b 2016)= .【答案】a 2017﹣b 2017【解析】试题分析:根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可. (a ﹣b )(a+b )=a 2﹣b 2;(a ﹣b )(a 2+ab+b 2)=a 3﹣b 3;(a ﹣b )(a 3+a 2b+ab 2+b 3)=a 4﹣b 4;…可得到(a ﹣b )(a 2016+a 2015b+…+ab 2015+b 2016)=a 2017﹣b 2017考点:(1)、平方差公式;(2)、多项式乘多项式.三、解答题(本大题共8小题,共66分)19.计算:9 +2sin60°+|3﹣3|﹣(2016﹣π)0.【答案】5考点:(1)、实数的运算;(2)、零指数幂;(3)、特殊角的三角函数值.20.解方程组:.【答案】11y x 【解析】试题分析:方程组利用加减消元法求出解即可.试题解析:, ①×8+②得:33x=33,即x=1, 把x=1代入①得:y=1, 则方程组的解为 11y x 考点:解二元一次方程组.21.△ABC 的顶点坐标为A (﹣2,3)、B (﹣3,1)、C (﹣1,2),以坐标原点O 为旋转中心,顺时针旋转90°,得到△A ′B ′C ′,点B ′、C ′分别是点B 、C 的对应点.(1)求过点B ′的反比例函数解析式;(2)求线段CC ′的长.【答案】(1)、y=x 3;(2)、10(2)、∵C (﹣1,2), ∴OC=2212 =5∵△ABC 以坐标原点O 为旋转中心,顺时针旋转90°,∴OC ′=OC=5, ∴CC ′=10.考点:(1)、待定系数法求反比例函数解析式;(2)、坐标与图形变化-旋转.22.已知平行四边形ABCD 中,CE 平分∠BCD 且交AD 于点E ,AF ∥CE ,且交BC 于点F .(1)求证:△ABF ≌△CDE ;(2)如图,若∠1=65°,求∠B 的大小.【答案】(1)、证明过程见解析;(2)、50°(2)、由(1)得:∠1=∠ECB ,∠DCE=∠ECB , ∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考点:(1)、平行四边形的性质;(2)、全等三角形的判定与性质.23.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m 进行分组统计,结果如表所示:组号分组 频数 一6≤m <7 2 二7≤m <8 7 三8≤m <9 a 四 9≤m ≤10 2(1)求a 的值;(2)若用扇形图来描述,求分数在8≤m <9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A 1、A 2,在第四组内的两名选手记为:B 1、B 2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).【答案】(1)、9;(2)、36°;(3)、65试题解析:(1)、由题意可得, a=20﹣2﹣7﹣2=9, 即a 的值是9;(2)、由题意可得,分数在8≤m <9内所对应的扇形图的圆心角为:360°×202=36°; (3)、由题意可得,所有的可能性如下图所示,故第一组至少有1名选手被选中的概率是:1210 =65, 即第一组至少有1名选手被选中的概率是65. 考点:(1)、列表法与树状图法;(2)、频数(率)分布表;(3)、扇形统计图.24.在直角墙角AOB (OA ⊥OB ,且OA 、OB 长度不限)中,要砌20m 长的墙,与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC 的面积为96m 2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m )的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?【答案】(1)、12米;(2)、采用规格为1.00×1.00所需的费用较少(2)、规格为0.80×0.80所需的费用:96×(0.80×0.80)×55=8250(元).规格为1.00×1.00所需的费用:96×(1.00×1.00)×80=7680(元).因为8250<7680,所以采用规格为1.00×1.00所需的费用较少.考点:一元二次方程的应用.25.如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.【答案】(1)、证明过程见解析;(2)、2【解析】试题分析:(1)、由AB为⊙O的直径,AC为⊙O的切线,易证得∠CAD=∠BDO,继而证得结论;(2)、由(1)易证得△CAD∽△CDE,然后由相似三角形的对应边成比例,求得CD的长,再利用勾股定理,求得答案.试题解析:(1)、∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC为⊙O的切线,∴OA⊥AC,∴∠OAD+∠CAD=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠1=∠BDO,∴∠1=∠CAD;(2)、∵∠1=∠CAD,∠C=∠C,∴△CAD∽△CDE,∴CD:CA=CE:CD,∴CD2=CA•CE,∵AE=EC=2, ∴AC=AE+EC=4, ∴CD=22, 设⊙O 的半径为x ,则OA=OD=x , 则Rt △AOC 中,OA 2+AC 2=OC 2, ∴x 2+42=(22+x )2, 解得:x=2. ∴⊙O 的半径为2.考点:切线的性质.26.正方形OABC 的边长为4,对角线相交于点P ,抛物线L 经过O 、P 、A 三点,点E 是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O 、P 、A 三点坐标;②求抛物线L 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.【答案】(1)、点O 的坐标为(0,0),点A 的坐标为(4,0),点P 的坐标为(2,2);y=﹣221x +2x ;(2)、9.试题解析:(1)、以O 点为原点,线段OA 所在的直线为x 轴,线段OC 所在的直线为y 轴建立直角坐标系,如图所示.①∵正方形OABC 的边长为4,对角线相交于点P ,∴点O 的坐标为(0,0),点A 的坐标为(4,0),点P 的坐标为(2,2).考点:二次函数综合题.。

相关文档
最新文档