不等式单元测试

合集下载

《不等式》单元测试卷(含详解答案)

《不等式》单元测试卷(含详解答案)

试卷第1页,总4页 不等式测试卷(各位同学,请自己安排2个小时考试,自己批阅统计好分数,在班级小程序拍照发给老师检查。

)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若0a b <<,则下列不等式不能成立的是( )A .11a b >B .11a b a >-C .|a|>|b|D .22a b >2.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( )A .[7,26]-B .[1,20]-C .[4,15]D .[1,15]3.关于x 的不等式22280x ax a --<(0a >)的解集为()12,x x ,且2115x x -=,则a = A .154 B .72 C .52 D .1524.设集合{}220A x x x =-->,{}2log 2B x x =≤,则集合()R C A B =I A .{}12x x -≤≤ B .{}02x x <≤ C .{}04x x <≤ D .{}14x x -≤≤ 5.若关于x 的不等式ax b 0->的解集是(),2∞--,则关于x 的不等式2ax bx 0+>的解集为( )A .()2,0-B .()(),02,∞∞-⋃+C .()0,2D .()(),20,∞∞--⋃+ 6.已知关于x 的不等式101ax x -<+的解集是11,2骣琪-琪桫,则a 的值为( ) A .2 B .2- C .12 D .12- 7.不等式20ax x c -+>的解集为}{|21x x -<<,函数2y ax x c =-+的图象大致为( ) A . B .。

不等式单元测试(B)

不等式单元测试(B)

不等式单元测试(B )一.选择题1.设,0,0>>b a 下列不等式中不正确的是 ( ) A. 2≥+b a a b B. ab b a 222≥+ C. b a b a a b +≥+22 D. ba b a ++≤+2211 2.设0<<b a ,给出四个结论:()()();113;2;13322b a b a b a ><>().14>ba 其中正确的有 ( )A. 1个B. 2个C. 3个D. 4个3.给出四个命题:()x x 11+的最小值是2;()12222++x x 的最小值是2;()45322++x x 的最小值是2;()xx 4324--的最小值是2;其中正确命题的个数是 ( ) A. 1个 B. 2个 C. 3个 D. 4个4.设,0>>a b 且,1=+b a ,则四个数:22,2,,21b a ab b +中最大的是( ) A. 22b a + B. ab 2 C. b D.21 5.设b a ⋅0<,那么下列不等式中正确的是 ( ) A. b a b a ->+ B. b a b a -<+ C. b a b a -<- D. b a b a +<-6.已知x y x 2422=+,则22y x +的最大值是 ( ) A. 34 B. 1 C. 31 D. 41 7.方程x x x x x x 323222++=++的解集是 ( ) A. ()(]2,3,0--⋃+∞ B. (]2,3-- C. ()+∞,0 D. ()0,3-8.若()()()()013112<-+--+=m x m x m x f 对一切实数x 恒成立,则m 的取值范围是 ( )A. ()+∞,1B. ()1,-∞-C. ⎪⎭⎫ ⎝⎛-∞-1113, D.()+∞⋃⎪⎭⎫ ⎝⎛-∞-,11113,△9.设,0,0>>y x 且y x ≠,记,21,1xyb y x a =+= ,1121⎪⎪⎭⎫ ⎝⎛+=y xc ()2221y x d +=则d c b a ,,,中最小的是 ( ) A. a B. b C. c D. d△10.设,0,0>>y x 且,191=+yx 则y x +的最小值是 ( ) A. 6 B. 12 C. 16 D.24 11.函数()xx x y -+=4lg 的定义域是 ( ) A. ()0,4- B. ()()+∞⋃-,11,4 C. ()+∞,0 D. 非上述情形△12.已知,10<<x ,则16log log 2x x +的最大值是 ( )A. 4-B. 22-C. 22D. 4二.填空题13.不等式5232<-≤x 的解集为_____________.△14.已知方程()02lg 222=-+-a a x x 有一正根和一个负根,则实数a 的取值范围是 ____________.15.不等式x x ->+51的解集是____________. △16.如果01>-+-a x x 对任意的实数x 总成立,则a 的取值范围是_____________.三.解答题17.设c b a ,,是不全相等的正数.求证:33c b a ca bc ab ++<++.18.设().0,412≥+=x x f xx(1) 证明:()x f 为减函数;(2)求()x f 的值域△19.求函数()⎪⎪⎭⎫ ⎝⎛+-=x x x x f 29lg 的定义域△20.1份印刷品,其排版面积(矩形)为4322cm ,它的左,右两边都留有4cm 的空白,上,下底部都留有3cm 的空白,问长,宽各设计成多少cm 时,用纸最省?(左右为长)△21.已知,0>a 且1≠a ,解关于x 的不等式()()1log 2log4log 2-≥--x x a a a☆22.已知函数()()01222<+++=b x c bx x x f 的值域为[]3,1 (1) 求c b ,的值;(2) 判断函数()()x f x F lg =,当[]1,1-∈x 时的单调性,并证明你的结论(3) 若R t ∈,求证:.513lg 616157lg ≤⎪⎪⎭⎫ ⎝⎛+--≤t t F答案:1D 2D 3B 4C 5B 6C 7A 8C 9D 10C 11A 12A13 211|{≤<-x x 或}425<≤x 14 021<<-a 或121<<a 15 }3|{>x x 16 1-<a 17 略 18 略;]21,0( 19 022|{<<-x x 或}30≤<x 20 长18,24宽21 当10<<a 时,{}42|<≤x x ,当1>a 时,{}21|≤<x x22 (1)2,2=-=c b (2)减函数(3)略。

不等式与不等式组单元测试卷

不等式与不等式组单元测试卷

不等式与不等式组综合检测题一、选择题1、下列各式中不是一元一次不等式组的是( ) A.1,35y y ⎧<-⎪⎨⎪>-⎩ B.350,420x x ->⎧⎨+<⎩ C.10,20a b -<⎧⎨+>⎩ D.50,20,489x x x ->⎧⎪+<⎨⎪+<⎩2、不等式组52110x x -≥-⎧⎨->⎩的解集是( ) A .3≤x B .31≤<x C .3≥x D .1>x3、如图.不等式5234x x -≤-⎧⎨-<⎩的两个不等式的解集在数轴上表示正确的为( )4、把一个不等式组的解集表示在数轴上.如图所示.则该不等式组的解集为( ) A.102x <≤ B.12x ≤ C.102x <≤ D.0x >5、不等式12>-x 的解集是( ) A .13<>x x 或 B .33-<>x x 或 C .31<<x D .33<<-x6.某种商品的价格第一年上升了%10第二年下降了()()5%5>-m m 后,仍不低于原价.则m 的值应为( )A.、111555≤<m B 、111555≤≤m C 、111555<<m D 、111555<≤m 7、若三角形三条边长分别是8,21,3a -,则a 的取值范围是( )A .5->aB .25-<<-aC .25-≤≤-aD .52-<->a a 或8、如果不等式组8x x m <⎧⎨>⎩无解.那么m 的取值范围是( ) A 、8>m B 、8≥m C 、8<m D 、8≤m9、一种灭虫药粉30kg.含药率是15100.现在要用含药率较高的同种灭虫药粉50kg 和它混合.使混合后含药率大于30%而小于35%.则所用药粉的含药率x 的范围是( )A .15%<x<28%B .15%<x<35%C .39%<x<47%D .23%<x<50%1210、韩日“世界杯”期间.重庆球迷一行56人从旅馆乘出租车到球场为中国队加油.现有A、B两个出租车队.A队比B队少3辆车.若全部安排乘A队的车.每辆坐5人.车不够.每辆坐6人.有的车未满;若全部安排B队的车.每辆车4人.车不够.每辆坐5人.•有的车未满.则A队有出租车()A.11辆B.10辆C.9辆D.8辆二、填空题11、不等式组123xx-≤⎧⎨-<⎩的解集是___.12、不等式组310,27xx+>⎧⎨<⎩的整数解的个数是___.13、不等式组32482xx x⎧>-⎪⎨⎪-≤-⎩的最小整数解是__________.14、若x=23+a.y=32+a.且x>2>y.则a的取值范围是________.15、如果2m、m、1-m这三个实数在数轴上所对应的点从左到右依次排列.那么m的取值范围是 .16、某旅游团有48人到某宾馆住宿.若全安排住宾馆的底层.每间住4人.房间不够;每间住5人.有一个房间没有住满5人.则该宾馆底层有客房间.17、已知关于x的不等式组2123x ax b-<⎧⎨->⎩的解集是11<<-x,那么()()21-+ba的值等于______.18、把一篮苹果分组几个学生.若每人分4个.则剩下3个;若每人分6个.则最后一个学生最多得3个.求学生人数和苹果数?设有x个学生.依题意可列不等式组为.19、若不等式组1,21x mx m<+⎧⎨>-⎩无解.则m的取值范围是______.20、若关于x的不等式组211,3xxx k-⎧>-⎪⎨⎪-<⎩的解集为2<x,则k的取值范围是_______.三、解答题21.解不等式组.并把解集在数轴上表示出来.(1)3(1)(3)8,2111.32x xx x-+--<⎧⎪+-⎨-≤⎪⎩(2)4100,54,11213.xx xx x-<⎧⎪+>⎨⎪-≥+⎩(3)-7≤2(13)7x+≤9. (4)3(1)2(9),3 3.5 1.414.0.50.7x xx x->+⎧⎪-+⎨-≤-⎪⎩22、如果方程组325x y ax y-=+⎧⎨+=⎩的解x、y满足0,0<>yx,求a的取值范围.23、4个男生和6个女生到图书馆参加装订杂志的义务劳动.管理员要求每人必须独立装订.而且每个男生的装订数是每个女生的2倍.在装订过程中发现.女生们装订的总数肯定超过30本.男、女生们装订的总数肯定不到98本.问:男、女生平均每人装订多少本?24、.小亮妈妈下岗后开了一家糕点店.现有10.2千克面粉.10.2千克鸡蛋.计划加工一般糕点和精制糕点两种产品共50盒.已知加工一盒一般糕点需0.3千克面粉和0.1千克鸡蛋;加工一盒精制糕点需0.1千克面粉和0.3千克鸡蛋.(1)有哪几种符合题意的加工方案?请你帮助设计出来;(2)若销售一盒一般糕点和一盒精制糕点的利润分别为1.5元和2元.那么按哪一个方案加工.小亮妈妈可获得最大利润?最大利润是多少?25、.(2008年山东省青岛市)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?。

集合与不等式单元测试

集合与不等式单元测试

集合与不等式单元检测卷(全卷三个大题,共20个小题;满分100分,考试时间100分)题号 一 二 三 总分 得分一、选择题(每小题5分,共60分)1.{0,1}A {0,1,2,3},则集合A 的个数() A 、2B 、3C 、4D 、52.不等式|3X —2|﹥4的解集是()A 、(2,)B 、(-,2)C 、()(2,)D 、(,-2)(,)3.下列各式中,不正确的是( )4.不等式x 2+2x+3>0的解集是() A 、{x|} B 、C 、{x|}D 、R 5.设集合A={x|x 2≤4},B={x|x <1},则A B 等于()A 、{}B 、{}C 、{}D 、{}6.设集合M={1},S={1,2},P={1,2,3},则(M S ) P 等于()A 、{1,2,3}B 、{1,2}C 、{1}D 、{3}7.满足条件M {1}={1,2,3}的集合M 的个数是()A 、4B 、3C 、2D 、1 8.如果判别式=b 2-4ac >0方程有()个实数根A 、1B 、2C 、3D 、4 9.判别式b 2-4ac =0,ax 2+bx+c >0(a >0)的解是()A 、{x|x ≠1}、B 、{x|≠x 1}C 、{x| x =x 2}D 、{x|x ≠-ab 2} 10.绝对值|x|<a(a >0)的解集是()A 、{x|x >a}B 、{x|x <a}C 、{x|-a <x <a}D 、{x|x ≠a}11.设全集U={x|x <9, x N},A={1,2,3},则集合A 的补集是()A 、{1,2,3,4,5,6}B 、{2,3,4,5,6,7,8} C{4,5,6,7,8,0}、 D 、{4,5,6,7,9}12.集合{a,b,c}的真子集个数是()A 、3B 、6C 、7D 、8二、填空题(每小题2分,共10分)13、已知集合A={x|42+-x x ≤0},B={x|x -34≥1},则A B_________________14、将集合A={1,2,3,4,5,6}用描述法表示,则A=___________________________ 15、2______{1,3,4}, {2}_______{2,4,6}, 0________, {0}_______16、不等式|x+1|的 解集_____________________17、已知A={0,1,3,5},B={2,3,0,8},则A三、解答题(每小题10分,共30分)18、写出集合{a,b,c}所有子集数,并指出哪些是真子集。

2020最新名校课堂单元测试(二)一元一次不等式与一元一次不等式组

2020最新名校课堂单元测试(二)一元一次不等式与一元一次不等式组

单元测试(二)一元一次不等式与一元一次不等式组一、选择题(每小题3分, 共30分)1.甲种蔬菜保鲜适宜的温度是 , 乙种蔬菜保鲜适宜的温度是 , 将这两种蔬菜放在一起同时保鲜, 适宜的温度是( )A.2C ~3C ︒︒B.2C ~8C ︒︒C.3C ~6C ︒︒D.6C ~8C ︒︒2.不等式213x ->的解集为( )A.2x >B.1x >C.2x >-D.2x <3.不等式组12342x x +>⎧⎨-⎩,的解集表示在数轴上正确的是( ) A. B. C.D. 4.已知 , 若对任意实数a, 以下结论: 甲: ;乙: ;丙: ;丁: , 其中一定正确的是( ) A.甲 B.乙 C.丙 D.丁5.如图, 分别表示苹果、梨、桃子的质量, 同类水果质量相等, 则下列关系正确的是( )A.a c b >>B.b a c >>C.a b c >>D.c a b >>6.如图是一次函数 的图象, 当 时, x 的取值范围是( )A.3x< B.3x> C.1x< D.1x>7.不等式组395xx⎧⎨<⎩,的整数解共有()A.1个B.2个C.3个D.4个8.如果点在第二象限, 那么关于x的不等式的解集是()A.1x>- B.1x<- C.1x> D.1x<9.某商品进价10元, 标价15元, 为了促销, 现决定打折销售, 但每件利润不少于2元, 则最多打几折销售()A.6折B.7折C.8折D.9折10.如图, 射线OA是第三象限的角平分线, 若点在第三象限内且在射线OA的下方, 则k的取值范围是()A.12k< B.132k<< C.1423k<< D.433k<<二、填空题(每小题4分, 共20分)11.已知, 则x的取值范围是_________.12.要使关于x的方程的解满足, 则m的取值范围是__________.13.若关于x的一元一次不等式组无解, 则的取值范围是________.14.对一个实数x按如图所示的程序进行操作, 规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止, 那么x的取值范围是__________.15.有3人携带会议材料乘坐电梯, 这三人的体重共, 每捆材料重, 电梯最大负荷为, 则该电梯在此3人乘坐的情况下最多还能搭载_____捆材料.三、解答题(共50分)16.(8分)解不等式: .17.(12分)放学时, 小刚问小东今天数学作业是哪几题, 小东回答说: “不等式组的整数解就是今天数学作业的题号”, 聪明的你知道今天的数学作业是哪几题吗?18.(14分)某校实行学案式教学, 需印制若干份数学学案, 印刷厂有甲、乙两种收费方式, 除按印数收取印刷费外, 甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空: 甲种收费的函数关系式是____________;乙种收费的函数关系式是__________;活页卷(2)该校某年级每次需印制(含100和450)份学案, 选择哪种印刷方式较合算?19.(16分)某公交公司有型两种客车, 它们的载客量和租金如下表:红星中学根据实际情况, 计划租用型客车共5辆, 送七年级师生到基地参加社会实践活动, 设租用A型客车x辆, 根据要求回答下列问题:(1)用含x的式子填写下表:(2)若要保证租车费用不超过1900元, 求x的最大值;(3)在(2)的条件下, 若七年级师生共有195人, 写出所有可能的租车方案, 并确定最省钱的租车方案.参考答案1.C2.A3.C4.D5.C6.A7.B8.B9.C 10.D11.12x12.7744m-<<13.1a14.49x>15.4216.解:17.解: 不等式组的解集为数学作业是第1题和第2题.18.解: (1)(2)当时, 选择乙种印刷方式较合算;当时, 甲、乙两种印刷方式一样合算;当时, 选择甲种印刷方式较合算.19.解: (1)(2)x的最大值为4.(3)有2种方案: ①租A型客车3辆, B型客车2辆, 租车费用为1760元;②租A型客车4辆, B型客车1辆, 租车费用为1880元.故最省钱的方案是租A型客车3辆, B型客车2辆.。

不等式与不等式组单元测试题

不等式与不等式组单元测试题

不等式与不等式组单元测试题一、选择题1.下列不等式表示正确的是()A. 3<2B. −5>−3C. a+b>a(其中b>0)D. 2x2<x(对所有实数x都成立)2.若a<b,则下列不等式不一定成立的是()A. a+2<b+2B. 2a<2bC. a−c<b−cD. ca<cb(其中c=0)3.下列关于不等式组的说法正确的是()A. 若x满足不等式组{x>3x<2,则x取任意实数B. 不等式组{x≥0x<1 的解集是x=0.5C. 不等式组{x≤−1x>−2 无解D. 若x满足不等式组{x−1<0x+2>0,则x的取值范围是−2<x<1二、填空题1.若3x−5<2x+1,则x的取值范围是 _______。

2.不等式组{2x−1≥32x−1<2 的解集是 _______。

3.若关于x的不等式组{x−a≥03−2x>−1 有解,则a的取值范围是_______。

三、解答题1.解不等式:5x−3<2(x+5)。

2.解不等式组:{2x+1>13(x−2)≥x−4,并判断其解集是否为空集。

3.某工厂计划生产A、B两种配套产品,其中每天生产x吨A产品,需生产x+2吨B产品。

若原料供应商每天能提供12吨原料,且每吨A产品需3吨原料,每吨B 产品需2吨原料。

求该工厂每天最多能生产多少吨A产品?四、应用题1.某班级组织了一次春游活动,计划租用若干辆大巴车。

若每辆车乘坐24人,则有15人无座位;若每辆车乘坐29人,则最后一辆车只坐了19人。

求该班级共有多少名学生?2.某水果店购进了一批苹果和香蕉,其中苹果每千克进价5元,售价8元;香蕉每千克进价3元,售价5元。

若该店计划用不超过1000元的资金购进这两种水果共200千克,且希望获得的利润不低于400元,则该店应如何购进这两种水果?参考答案一、选择题1. C解析:A选项显然错误;B选项中,负数绝对值大的反而小,所以−5<−3;C选项中,由于b>0,所以a+b>a;D选项中,取x=3时,2x2=18>x=3,所以D选项错误。

不等式单元测试

不等式单元测试

不等式检测题一.选择题1.已知0,0<>+b b a ,则的大小关系是( )A .b a b a ->->>B .b b a a ->>->C .a b b a ->>->D .b a b a >>->-2.设5.1348.029.01)21(,8,4-===y y y ,则( ) A .213y y y >> B .312y y y >>C .321y y y >>D .231y y y >>7、R c b a ∈,,且b a >,则下列各式中恒成立的是( )A .c b c a ->+B .bc ac >C .02>-ba c D .0)(2≥-cb a .已知0<x <1,则x(3-3x)取得最大值时x 的值为( ) A.31 B.21 C.43 D.32 3.不等式0)31)(21(>--x x 的解集为( ) A .}2131|{<<x x B .}21|{>x x C .}31|{<x x D .}21,31|{><x x x 或 4.关于x 的不等式01)1()1(22<----x a x a 的解集为R ,则实数a 的取值范围是( )A .]1,53(-B .)1,1(-C .]1,1(-D .)1,53(-5.下列各点中不在623<+y x 表示的平面区域内的点是( )A .)0,0(B .)1,1(C .)2,0(D .)0,2(6.给出平面区域如图,若使目标函数)0(>+=a y ax z 取得最大值的最优解有无穷多个,则a 的值为( )A .41B .53C .4D .35 二.填空题7.已知01,0<<-<b a ,则2,,ab ab a8.函数1212-+=x x y 的定义域是9.若实数,x y 满足不等式组2,24,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则23x y +的最小值是三.解答题10.已知6024,3420<<<<b a ,求ba b a b a ,,-+的取值范围11.已知4632>+-x ax 不等式的解集为},1|{b x x x ><或(1)求b a ,;(2)解不等式0)(2<++-bc x b ac ax 。

湘教版八年级数学上册《第四章一元一次不等式(组)》单元测试卷及答案

湘教版八年级数学上册《第四章一元一次不等式(组)》单元测试卷及答案

湘教版八年级数学上册《第四章一元一次不等式(组)》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1已知3>2,两边都乘x ,则正确的是() A .3x>2x B .3x ≥2xC .3x ≤2xD .以上都不正确2下列不等式组求解正确的是()A .不等式组{x >3,x >5的解集是x>3B .不等式组{x ≥3,x <5的解集是3≤x<5C . 不等式组{x <3,x <5的解集是x<5D . 不等式组{x >3,x <5无解3不等式-2x<1的两边都除以-2得 .4代数式3x -4的值不小于代数式5-x 的值,列不等式为 .5若不等式(3m -2)x<7的解集为x<12,则m= .6x 同时满足不等式2(x+2)<x+5和不等式3(x -2)+8<2x ,则x 的取值范围是 . 7不等式-3≤2x -13<5的解集是 .8解不等式:3x+2(2-4x )<19.9求不等式组{2(x +8)≤10−4(x -3),x+12-6x+73<1的整数解.10若不等式5(x -2)+8<6(x -1)+7的最小整数解为方程3x -ax=4的解,求a 的值.【能力巩固】11已知a>0 ,且b 是有理数,那么一定有()A .-b 2<aB .-a 2<bC .a -b>0D .a -b 2<012一元一次不等式组{x >a,x <b,且a ≠b ,若它无解,则a 与b 的关系为 () A .a>b B .a<b C .a>b>0 D .a<b<013某商店以每件9元的进价购进一批商品,希望每件获毛利(毛利=销售价-进货价)不少于1元,但上级规定毛利不超过销售价的20%,设这件商品的销售价为x 元,根据题意列不等式组是()A .{x -9≥1,x -9≤20%xB . {x -9≤1,x -9≤20%xC . {x -9≥1,x -9≤20%D . {x -9≤1,x -9≥20%x14若不等式组{x >2m +1,x >7−m的解集为x>7-m ,则m 2 . 15求同时满足不等式x -3<4(x+3)和5(2x -1)≤3x -4的最大整数和最小整数.16已知|3x-2|+(6x-y+4k)2=0,若y>2k-1,求k的取值范围.【素养拓展】17.2024年4月18日,以“上春山寻好茶干净黔茶全球共享”为主题的2024中国好绿茶大会暨第16届贵州茶产业博览会在遵义湄潭中国茶城广场开幕,全国各地客商齐聚于此.一采购商看中了湄潭翠芽和都匀毛尖这两种优质茶叶,并得到信息如下:湄潭翠芽都匀毛尖总价/元251800质量/千克311270(1)求每千克湄潭翠芽和都匀毛尖的进价.(2)若湄潭翠芽和都匀毛尖这两种茶叶的销售单价分别是450元/千克和260元/千克,该采购商准备购进这两种茶叶共30千克,进价总支出不超过1万元,全部售完后,总利润不低于2660元,该采购商共有几种进货方案?(均购进整千克数)(利润=售价-进价)参考答案基础达标作业1.【答案】D2.【答案】B3.【答案】x>-124.【答案】3x-4≥5-x5.【答案】1636.【答案】x<-27.【答案】-4≤x<88.【答案】解:去括号,得3x+4-8x<19移项,得-5x<15∴x>-3.9.【答案】解:不等式组化简得{x≤1, x>−179,∴不等式组的解集为-179<x≤1∴不等式组的整数解为-1,0,1.10.【答案】解:解不等式得x>-3,∴最小整数解为x=-2.∴3×(-2)-(-2)a=4,∴a=5.能力巩固作业11.【答案】A12.【答案】A13.【答案】A14.【答案】≤15.【答案】解:由题意得{x-3<4(x+3), 5(2x-1)≤3x-4,解得{x>−5, x≤17,∴不等式组的解集为-5<x≤17∴符合题意的最大整数是0,最小整数是-4.16.【答案】解:由题意得{3x-2=0,6x-y+4k=0,解得{x=23,y=4k+4.又∴y>2k -1,∴4k+4>2k -1,∴k>-52素养拓展作业17.【答案】解:(1)设每千克湄潭翠芽的进价是x 元,每千克都匀毛尖的进价是y 元根据题意得{2x +5y =1800,3x +y =1270,解得{x =350,y =220. 答:每千克湄潭翠芽的进价是350元,每千克都匀毛尖的进价是220元.(2)设购进m 千克湄潭翠芽,则购进(30-m )千克都匀毛尖根据题意得{350m +220(30−m)≤10000,(450-350)m +(260−220)(30−m)≥2660,解得733≤m ≤34013.∴m 为正整数,∴m 可以为25,26.答:该采购商共有2种进货方案.。

不等式单元测验

不等式单元测验

第九章 不等式与不等式组测试题一、选择题:(每小题3分,共30分)1.如果不等式ax <b 的解集是x <ab,那么a 的取值范围是( ) A 、a ≥0 B 、a ≤0 C 、a >0 D 、a <0 2.若0<a <1,则下列四个不等式中正确的是( ) A .a <1<1a B .a <1a <1 C .1a <a <1 D .1<1a<a 3.若不等式组841x x x m +<-⎧⎨>⎩,的解集为3x >,则m 的取值范围是( )A.3m ≥ B.3m = C.3m < D.3m ≤4. 关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( )。

A 、0 B 、-3 C 、-2 D 、-15.不等式组x 1042x 0>-⎧⎨-≥⎩①②的解集在数轴上表示为( )6.以下所给的数值中,为不等式-2x + 3<0的解的是( ). A .-2 B .-1 C . D .2 7.若b a <,则下列各式中不一定成立的是( )A .11-<-b aB .33ba <C . b a ->-D . bc ac < 8. 已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )B9.王老师带领学生到植物园参观,门票每张5元,购票才发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是王老师买了50张票,结果发现所带的钱还有剩余,那么王老师和他的学生至少有( )人。

A 40B 41C 42D 4310.如果关于x 的不等式组{x 13m x m <+>-无解,那么m 的取值范围是( )A m >1B m ≥1C m <1D m ≤1二、填空题 :(每小题3分,共24分)11. 2≥x 的最小值是a ,6-≤x 的最大值是b ,则.___________=+b a12. 不等式2(x -3)≤2a +1的自然数解只有0、1、2三个,则a 的取值范围是_______________。

高中数学必修5《不等式》单元测试题

高中数学必修5《不等式》单元测试题

高中数学必修5《不等式》单元测试题一. 选择题:(每小题5分)1. 已知a,b,c ∈R,下列命题中正确的是A 、22bc ac b a >⇒>B 、b a bc ac >⇒>22C 、ba b a 1133<⇒> D 、||22b a b a >⇒> 2.若b <0<a,d <c <0则下列各不等式中必成立的是( )A 、ac >bdB 、db c a < C 、a+c >b+d D 、a-c >b-d 3.不等式(x-3)(2-x )>0的解集是 ( )A 、{x|x <2或x >3}B 、{x|2<x <3}C 、{x|x≠2且x≠3}D 、{x|x≠2或x≠3}4.不等式(a-2)x 2+2(a-2)x-4<0对x ∈R 成立,则a 的取值范围是( )A 、]2,(--∞B 、)2,(--∞C 、]2,2(-D 、)2,2(-5.函数)20(),24(22<<-=x x x y 的最大值是( )A 、0B 、21 C 、2 D 、4 6. 已知+∈R b a ,,且3=+b a ,则b a 22+的最小值是( )A 、8B 、6C 、24D 、627. 设b a <<0,且1=+b a ,在下列四个数中最大的是( )A 、21 B 、b C 、ab2 D 、22b a + 8.不等式2x+y+1<0表示的平面区域在直线2x+y+1=0( )A 、右上方B 、右下方C 、左上方D 、右下方9. 目标函数y x z +=2,变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,则有 ( )A 、3,12min max ==z zB 、,12max =z z 无最小值C 、z z ,3min =无最大值D 、z 既无最大值,也无最小值10.有甲、乙两个粮食经销商每次在同一粮食生产地以相同的价格购进粮食,他们共购进粮食两次,各次的粮食价格不同,甲每次购粮10000千克,乙每次购粮食10000元,在两次统计中,购粮的平均价格较低的是( )A 、甲B 、乙C 、一样低D 、不确定二. 填空题:(每小题5分)11. 若角α,β满足-2π<α<β<2π,则2α-β的取值范围是 。

2024-2025学年浙教版数学八年级上册第三章 一元一次不等式 单元测试卷(含答案)

2024-2025学年浙教版数学八年级上册第三章 一元一次不等式 单元测试卷(含答案)

一元一次不等式单元测试一、选择题1.下列命题是真命题的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若a >b ,则ac >bcD .若a >b ,则−5a <−5b2.若x <y 成立,则下列不等式成立的是( )A .x 2>y 2B .x−2>y−2C .−2x >−2yD .x−y >03.将不等式组{x <1x ≥2的解集表示在数轴上,下列正确的是( )A .B .C .D .4. 若一个三角形的三条边长分别为3,2a-1,6,则整数a 的值可能是( )A .2,3B .3,4C .2,3,4D .3,4,55.下列各式:①x 2+2>5;②a +b ;③x 3≥2x−15;④x−1;⑤x +2≤3.其中是一元一次不等式的有( )A .2个B .3个C .4个D .5个6. 若关于x 的不等式组{2x +3>12x−a <0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7≤a <8C .7<a ≤8D .7≤a ≤87.已知0≤a ﹣b ≤1且1≤a +b ≤4,则a 的取值范围是( )A .1≤a ≤2B .2≤a ≤3C .12⩽a⩽52D .32⩽a⩽528.若x <y ,且ax >ay ,当x ≥−1时,关于x 的代数式ax−2恰好能取到两个非负整数值,则a 的取值范围是( )A .−4<a ≤−3B .−4≤a <−3C .−4<a <0D .a ≤−39.若整数m 使得关于x 的方程m x−1=21−x+3的解为非负整数,且关于y 的不等式组{4y−1<3(y +3)y−m⩾0至少有3个整数解,则所有符合条件的整数m 的和为( )A .7B .5C .0D .-210.对于任意实数p 、q ,定义一种运算:p@q =p-q +pq ,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x 的不等式组{2@x <4x@2≥m 有3个整数解,则m 的取值范围为是 ( )A .-8≤m<-5B .-8<m≤-5C .-8≤m≤-5D .-8<m<-5二、填空题11.关于x 的不等式3⩾k−x 的解集在数轴上表示如图,则k 的值为  .12.小明用200元钱去购买笔记本和钢笔共30件,已知每本笔记本4元,每支钢笔10元,则小明至少能买笔记本 本.13.在数轴上存在点M =3x 、N =2−8x ,且M 、N 不重合,M−N <0,则x 的取值范围是 .14.关于x 的不等式组{x >m−1x <m +2的整数解只有0和1,则m = .15.关于x 的不等式组{a−x >3,2x +8>4a 无解,则a 的取值范围是  .16.若数a 既使得关于x 、y 的二元一次方程组{x +y =63x−2y =a +3有正整数解,又使得关于x 的不等式组{3x−52>x +a 3−2x 9≤−3的解集为x ≥15,那么所有满足条件的a 的值之和为 .三、计算题17.(1)解一元一次不等式组:{x +3(x−2)⩽6x−1<2x +13.(2)解不等式组:{3(x +1)≥x−1x +152>3x,并写出它的所有正整数解.四、解答题18.先化简:a 2−1a 2−2a +1÷a +1a−1−a a−1; 再在不等式组{3−(a +1)>02a +2⩾0的整数解中选取一个合适的解作为a 的取值,代入求值.19.解不等式组{2−3x ≤4−x ,①1−2x−12>x 4.②下面是某同学的部分解答过程,请认真阅读并完成任务:解:解不等式①,得−3x +x ≤4−2 第1步合并同类项,得−2x ≤2第2步两边都除以−2,得x ≤−1 第3步任务一:该同学的解答过程中第 ▲ 步出现了错误,这一步的依据是▲ ,不等式①的正确解是▲ .任务二:解不等式②,并写出该不等式组的解集.20. 由于受到手机更新换代的影响,某手机店经销的甲种型号手机二月份售价比一份月每台降价500元.如果卖出相同数量的甲种型号手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月甲种型号手机每台售价为多少元?(2)为了提高利润,该店计划三月购进乙种型号手机销售,已知甲种型号每台进价为3500元,乙种型号每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?21.新定义:若某一元一次方程的解在某一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x−1=3的解为x =4,而不等式组 {x−1>2x +2<7的解集为3<x <5,不难发现x =4在3<x <5的范围内,所以方程x−1=3是不等式组 {x−1>2x +2<7的“关联方程”.(1)在方程①3(x +1)−x =9;②4x−8=0;③x−12+1=x 中,关于x 的不等式组 {2x−2>x−13(x−2)−x ≤4的“关联方程”是;(填序号)(2)若关于x 的方程2x +k =6是不等式组{3x +1≤2x2x +13−2≤x−12的“关联方程”,求k 的取值范围;22.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②“容纳”,其中不等式(组)①与不等式(组)②均有解.例如:不等式x >1被不等式x >0“容纳”;(1)下列不等式(组)中,能被不等式x <−3“容纳”的是________;A .3x−2<0 B .−2x +2<0C .−19<2x <−6D .{3x <−84−x <3(2)若关于x 的不等式3x−m >5x−4m 被x ≤3“容纳”,求m 的取值范围;(3)若关于x 的不等式a−2<x <−2a−3被x >2a +3“容纳”,若M =5a +4b +2c 且a +b +c =3,3a +b−c =5,求M 的最小值.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】A9.【答案】A10.【答案】B11.【答案】212.【答案】1713.【答案】x<21114.【答案】015.【答案】a≥116.【答案】−1517.【答案】解:解不等式x+3(x﹣2)≤6,x+3x-6≤6,4x≤12,x≤3,∴不等式x+3(x﹣2)≤6的解为:x≤3,解不等式x﹣1 <2x+13,3(x-1)<2x+1,3x-3<2x+1,x<4,∴ 不等式x ﹣1 <2x +13的解为:x <4,∴ 不等式组的解集为x≤3.(2)【答案】解:{3(x +1)≥x−1①x +152>3x②,由①得,x ≥−2,由②得,x <3,∴不等式组的解集为−2≤x <3,所有正整数解有:1、2.18.【答案】解:解不等式3-(a+1)>0,得:a <2,解不等式2a+2≥0,得:a≥-1,则不等式组的解集为-1≤a <2,其整数解有-1、0、1,∵a≠±1,∴a=0,则原式=1.19.【答案】解:任务一:该同学的解答过程中第3步出现了错误,这一步的依据是不等式的基本性质3,不等式①的正确解是故答案为:3,不等式的基本性质3,x ≥−1任务二:解不等式②,得x <65,∴不等式组的解为−1≤x <65.20.【答案】(1)解:设一份月甲种型号手机每台售价为x 元.由题意得90000x=80000x−500解得x =4500经检验x =4500是方程的解.答:一份月甲种型号手机每台售价为4500元.(2)解:设甲种型号进a 台,则乙种型号进(20−a)台.由题意得75000≤3500a +4000(20−a)≤76000解得8≤a ≤10⸪a为整数,⸫a为8,9,10⸫有三种进货方案:甲型号8台,乙型号12台;甲型号9台,乙型号11台;甲型号10台,乙型号10台.21.【答案】(1)①②(2)k≥822.【答案】(1)C(2)m≤2(3)19。

中职不等式单元测试题一

中职不等式单元测试题一

不等式单元测试题一一、选择题:本大题共12小题,每小题3分,共36分 1、不等式的解集的数轴表示为ABC D 2、设,A=0,+∞,B=-2,3,则A ∩B= A-2,+∞B-2,0C0,3D0,33、已知a 、b 、c 满足c <b <a ,且a c <0,则下列选项中一定成立的是 A 、a b >a c B 、c b -a <0C 、c 2b <a 2b D 、ac a -c >04、不等式|x +1|2x -1≥0的解集为A 、{x |x ≥21}B 、{x |x ≤-1或x ≥21}C 、{x |x =-1或x ≥21}D 、{x |-1≤x ≤21}5、若a <b <0,则下列不等式中不能成立的是A 、a 1>b 1B 、b a -1>a1C 、a ->b -D 、|a |>b -6、不等式x 2>x 的解集是 A -∞,0 B0,1 C1,+∞ D -∞,0∪1,+∞ 7、已知0a b +>,0b <,那么,,,a b a b --的大小关系是A .a b b a >>->-B .a b a b >->->C .a b b a >->>-D .a b a b >>->-8、已知下列不等式:①x 2+3>2x ;②a 5+b 5>3223b a b a +;③22b a +≥2a -b -1,其中正确的个 数为A 、0B 、1C 、2D 、39、已知A ={x |-1≤x ≤1},B ={x |1-a ≤x ≤2a -1},若B ⊇A ,则a 的范围为 A 、-∞,1B 、1,+∞C 、2,+∞D 、1,210、下列不等式中,对任意x ∈R 都成立的是 A .244x x +≤1B .x 2+1>2xC .lgx 2+1≥lg2xD .2111x <+ 11、不等式的解集是 A2,4BC-4,-2D12.在R 上定义运算:xy =x 1-y .若不等式x -ax +a <1对任意实数x 恒成立,则A .-1<a <1B .0<a <2C .-<a <D .-<a < 二、填空题:本大题共6小题,每小题3分;13、如果a <0,-1<b <0,则a ,2ab ,ab 的大小关系是. 14、不等式|1-x |0)4(2≥-x 的解集是. 15、若不等式a 2x +b x +2>0的解集为-21,31,则a +b =. 16、不等式204xx ->+的解集是. 17、022=+b a 是0=a 条件18、设A=-1,3,B=3,6,则A ∩B=;三、解答题:本大题共6小题,共36分;19、解下列不等式:1|3x -5|<8,23|2x -1|≤2. 20、解下列不等式:1;2.21、已知6<a <8,2<b <3,求1a -b 的取值范围;2ba的取值范围. 22、比较与的大小.23、已知关于x 的不等式32--x ax <0的解集为M .1当a =4时,求集合M ;2若3∈M 且5∉M ,求a 的取值范围.24、行驶中的汽车,在刹车时由于惯性的作用要继续向前滑行一段距离才能停下,这段距离叫做刹车距离.在某路面上,某种型号的汽车刹车距离y 米与汽车车速x 千米/小时满足下列关系:y =4001002x nx +n 为常数,n ∈N .经过实验,当车速为40千米/小时时,刹车距离1y ∈5,7,当车速为70千米/小时时,刹车距离2y ∈13,15. 1求出n 的值;2若要求刹车距离不超过米,则行驶的最大速度应为多少。

《不等式》 单元测试7

《不等式》 单元测试7

《不等式》 单元测试7一、选择题1.如果0,0a b <>,那么,下列不等式中正确的是( ) (A )11a b< (B<(C )22a b < (D )||||a b > 2.“a >b >0”是“ab <222b a +”的( )(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不允分也不必要条件 3.不等式112x <的解集是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .(,0)-∞⋃(2,)+∞4.下列结论正确的是( ) A .当2lg 1lg ,10≥+≠>xx x x 时且 B .21,0≥+>x x x 时当C .x x x 1,2+≥时当的最小值为2 D .当xx x 1,20-≤<时无最大值 5.若x ,y 是正数,则22)21()21(xy y x +++的最小值是( ) A .3 B .27 C .4 D .29 6.若a >0,b >0,则不等式-b <1x<a 等价于( ) A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a7.设f (x )= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f (x )>2的解集为 ( ) (A)(1,2)⋃(3,+∞) (B)(10,+∞) (C)(1,2)⋃ (10 ,+∞) (D)(1,2)8.若关于x 的不等式x k )1(2+≤4k +4的解集是M ,则对任意实常数k ,总有( )(A )2∈M ,0∈M ; (B )2∉M ,0∉M ; (C )2∈M ,0∉M ; (D )2∉M ,0∈M 9.若b a c b a >∈,R 、、,则下列不等式成立的是( ) (A )b a 11<. (B )22b a >. (C )1122+>+c bc a .(D )||||c b c a >. 10.若,,0a b c >且222412a ab ac bc +++=,则a b c ++的最小值是( )(A) (B )3 (C )2 (D11.已知函数f(x)=ax 2+2ax+4(0<a<3),若x 1<x 2,x 1+x 2=1-a,则( )A.f(x 1)<f(x 2)B.f(x 1)=f(x 2)C.f(x 1)>f(x 2)D.f(x 1)与f(x 2)的大小不能确定12.若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( )(A )3-1 (B) 3+1 (C) 23+2 (D) 23-2 二 填空题13.不等式0121>+-x x的解集是 . 14.已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于B A 、两点,O 为坐标原点,则三角形OAB 面积的最小值为 .15.非负实数x 、y 满足y x y x y x 3,03042+⎩⎨⎧≤-+≤-+则的最大值为16.已知实数,x y 满足3025000x y x y x y +-≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,则2y x -的最大值是_________.三、解答题17.设函数)32lg()(-=x x f 的定义域为集合M ,函数121)(--=x x g 的定义域为集合N .求: (1)集合M ,N ;(2)集合N M I ,N M Y .18已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为(1,3). (1)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式; (2)若)(x f 的最大值为正数,求a 的取值范围.19.设f(x)=3ax 22.0bx c a b c ++++=若,f(0)>0,f(1)>0,求证:(Ⅰ)a >0且-2<ba<-1;(Ⅱ)方程f(x)=0在(0,1)内有两个实根.20.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x . (Ⅰ)求函数g (x )的解析式;(Ⅱ)若h (x )=g (x )-λf (x )+1在[-1,1]上是增函数,求实数λ的取值范围 .《不等式》 单元测试7参考答案一选择题1A 2A 3D 4B 5C 6D 7C 8A9C 10A 11A 12D8解:选(A )方法1:代入判断法,将2,0x x ==分别代入不等式中,判断关于k 的不等式解集是否为R ; 方法2:求出不等式的解集:x k )1(2+≤4k +4422min 222455(1)2[(1)2]252111k x k x k k k k +⇒≤=++-⇒≤++-=-+++; 二填空题13解:应用结论: .不等式等价于(1-2x)(x+1)>0,也就是,所以,从而应填.14解:设直线 l 为,则有关系. 对应用2元均值不等式,得,即ab ≥8 .于是,△OAB 面积为.从而应填4.15 916解析:实数,x y 满足3025000x y x y x y +-≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,在坐标系中画出可行域,得三个交点为A(3,0)、B(5,0)、C(1,2),则2y x -的最大值是0. 三解答题17本小题主要考查集合的基本知识,考查逻辑思维能力和运算能力.满分12分.解:(Ⅰ)};23|{}032|{>=>-=x x x x M}13|{|}013|{}0121|{<≥=≥--=≥--=x x x x x x x x N 或(Ⅱ)};3|{≥=⋂x x N M }231|{><=⋂x x x N M 或.18本小题主要考查二次函数、方程的根与系数关系,考查运用数学知识解决问题的能力.满分12分.解:(Ⅰ)).3,1(02)(的解集为>+x x f Θ因而且.0),3)(1(2)(<--=+a x x a x x f.3)42(2)3)(1()(2a x a ax x x x a x f ++-=---=①由方程.09)42(06)(2=++-=+a x a ax a x f 得 ②因为方程②有两个相等的根,所以094)]42([2=⋅-+-=∆a a a ,即 .511.01452-===--a a a a 或解得由于51.1,0-==<a a a 将舍去代入①得)(x f 的解析式.535651)(2---=x x x f(Ⅱ)由aa a a a x a a x a ax x f 14)21(3)21(2)(222++-+-=++-= 及.14)(,02aa a x f a ++-<的最大值为可得由⎪⎩⎪⎨⎧<>++-,0,0142a a a a 解得 .03232<<+---<a a 或 故当)(x f 的最大值为正数时,实数a 的取值范围是).0,32()32,(+----∞Y 19解:本题主要考查二次函数的基本性质与不等式的应用等基础知识。

不等式与不等式组单元测试题(含答案)

不等式与不等式组单元测试题(含答案)

不等式与不等式组单元测试题一、填空题(每题3分,共30分)1、不等式组12x x <⎧⎨>-⎩的解集是2、将下列数轴上的x 的范围用不等式表示出来3、34125x +-<≤的非正整数解为 4、a>b,则-2a -2b.5、3X ≤12的自然数解有 个.6、不等式12x >-3的解集是 。

7、用代数式表示,比x 的5倍大1的数不小于x 的21与4的差 。

8、若(m-3)x<3-m 解集为x>-1,则m .9、三角形三边长分别为4,a ,7,则a 的取值范围是10、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。

在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛二、选择题(每小题2分,共20分)11、在数轴上表示不等式x ≥-2的解集,正确的是( )A B C D12、下列叙述不正确的是( )A 、若x<0,则x2>xB 、如果a<-1,则a>-aC 、若43-<-a a ,则a>0D 、如果b>a>0,则ba 11-<-13、如图1,设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小....的顺序排列为 A 、 ○□△ B 、 ○△□C 、 □○△D 、 △□○图114、如图2天平右盘中的每个砝码的质量都是1g ,则物体A的质量m(g)取值范围,在数轴上可表示为( )15、代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( ).13.31.22.22A m B m C m D m -<≤-≤<-≤<-<≤ 16、不等式45111x -<的正整数解为( ) A.1个 B.3个 C.4个 D.5个17、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩的解集是(.1.0.01.21A x B x C x D x >-><<-<<18、如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是A.-4<a<5B.a>5C.a<-4D.无解19、若关于x 的不等式组()202114x a x x ->⎧⎪⎨+>-⎪⎩的解集是x>2a,则a 的取值范围是 A. a>4 B. a>2 C. a=2 D.a ≥20、若方程组2123x y m x y +=+⎧⎨+=⎩中,若未知数x 、y 满足x+y>0,则m 的取值范围是 .4.4.4.4A m B m C m D m >-≥-<-≤-三、解答题(第1题20分,第2、3各5分,第4、5题各10分,共50分) 0 0 1 2 B 0 A A 图2 0 12 A 2 1C 1 D21、解下不等式(或不等式组)并在数轴上表示解集。

高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)

高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)

高中数学必修一第二章一、单选题1.已知集合A ={x‖x ―2|<1}, B ={x |x 2―2x ―3<0}.则A ∩B =A .{x |1<x <3}B .{x |―1<x <3}C .{x |―1<x <2}D .{x |x >3}2.下列结论成立的是( )A .若ac >bc ,则a >bB .若a >b ,则a 2>b 2C .若a >b ,c <d ,则a+c >b+dD .若a >b ,c >d ,则a ﹣d >b ﹣c3.已知关于 x 的不等式 a x 2―2x +3a <0 在 (0,2] 上有解,则实数 a 的取值范围是( )A .(―∞,33)B .(―∞,47)C .(33,+∞)D .(47,+∞)4.当x >3时,不等式x+1x ―1≥a 恒成立,则实数a 的取值范围是( ) A .(﹣∞,3]B .[3,+∞)C .[ 72,+∞)D .(﹣∞, 72]5.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a +b ≥―2|ab |C .a 2+b 2≥―2abD .a +b ≤2|ab |6.已知 x >2 ,函数 y =4x ―2+x 的最小值是( ) A .5B .4C .8D .67.设正实数x ,y ,z 满足x 2―3xy +4y 2―z =0,则当xy z取得最大值时,2x +1y ―2z 的最大值是( )A .0B .1C .94D .38.已知正数x ,y 满足x+y =1,且 x 2y +1+y 2x +1≥m ,则m 的最大值为( ) A .163B .13C .2D .4二、多选题9.设正实数a ,b 满足a +b =1,则( )A .a 2b +b 2a ≥14B .1a +2b +12a +b ≥43C .a 2+b 2≥12D .a 3+b 3≥1410.若a ,b ∈(0,+∞),a +b =1,则下列说法正确的有( )A .(a +1a)(b +1b )的最小值为4B .1+a +1+b 的最大值为6C.1a +2b的最小值为3+22D.2aa2+b+ba+b2的最大值是3+23311.已知a,b是正实数,若2a+b=2,则( )A.ab的最大值是12B.12a+1b的最小值是2C.a2+b2的最小值是54D.14a+b+2a+b的最小值是3212.已知a,b,c为实数,则下列命题中正确的是( )A.若a c2<bc2,则a<b B.若ac>bc,则a>bC.若a>b,c>d,则a+c>b+d D.若a<b<0,则1a >1 b三、填空题13.不等式﹣2x(x﹣3)(3x+1)>0的解集为 .14.已知正实数x,y满足xy―x―2y=0,则x+y的最小值是 . 15.已知a,b均为正数,且ab―a―2b=0,则a24+b2的最小值为 .16.以max A表示数集A中最大的数.已知a>0,b>0,c>0,则M=max{1c +ba,1ac+b,ab+c}的最小值为 四、解答题17.已知U=R且A={x∣x2―5x―6<0},B={x∣―4≤x≤4},求:(1)A∪B;(2)(C U A)∩(C U B).18.解下列关于x的不等式:(1)x2―2x―3≤0;(2)―x2+4x―5>0;(3)x2―ax+a―1≤019.已知关于x的不等式2x2+x>2ax+a(a∈R).(1)若a=1,求不等式的解集;(2)解关于x的不等式.20.某县一中计划把一块边长为20米的等边三角形ABC的边角地辟为植物新品种实验基地,图中DE 需把基地分成面积相等的两部分,D在AB上,E在AC上.(1)设AD=x(x≥10),ED=y,试用x表示y的函数关系式;(2)如果DE是灌溉输水管道的位置,为了节约,则希望它最短,DE的位置应该在哪里?如果DE 是参观线路,则希望它最长,DE的位置又应该在哪里?说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】A4.【答案】D5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】B,C,D10.【答案】B,C,D11.【答案】A,B12.【答案】A,C,D13.【答案】(﹣∞,﹣1)∪(0,3)314.【答案】3+2215.【答案】816.【答案】217.【答案】(1)解:因为A={x∣x2―5x―6<0}=(―1,6),且B={x∣―4≤x≤4}=[―4,4],则A ∪B=[―4,6).(2)解:由(1)可知,A=(―1,6),B=[―4,4],则C U A=(―∞,―1]∪[6,+∞),C U B=(―∞,―4)∪(4,+∞),所以(C U A)∩(C U B)=(―∞,―4)∪[6,+∞).18.【答案】(1)解:x2―2x―3≤0,(x―3)(x+1)≤0⇒x≤―1或x≥3,故解集为: (―∞,―1]∪[3,+∞).(2)解:―x2+4x―5>0,∴x2―4x+5<0⇒(x―2)2+1<0⇒x无解,故解集为: ∅(3)解:x2―ax+a―1≤0,∴[x―(a―1)](x―1)≤0,当a―1<1,即a<2时,解集为[a―1,1],当a―1=1,即a=2时,解集为x=1,当 a ―1>1 ,即 a >2 时,解集为 [1,a ―1] .所以:当 a <2 时,解集为 [a ―1,1] ,当 a =2 时,解集为 x =1 ,当 a >2 时,解集为 [1,a ―1] .19.【答案】(1)解:2x 2+x >2ax +a ,∴x (2x +1)>a (2x +1),∴(x ―a )(2x +1)>0,当a =1时,可得解集为{x |x >1或x <―12}.(2)对应方程的两个根为a ,―12,当a =―12时,原不等式的解集为{x |x ≠―12},当a >―12时,原不等式的解集为{x |x >a 或x <―12},当a <―12时,原不等式的解集为{x |x <a 或x >―12}.20.【答案】(1)解:∵△ABC 的边长是20米,D 在AB 上,则10≤x≤20,S △ADE = 12S △ABC ,∴12 x•AEsin60°= 12 • 34 •(20)2,故AE= 200x,在三角形ADE 中,由余弦定理得:y= x 2+4⋅104x 2―200 ,(10≤x≤20);(2)解:若DE 作为输水管道,则需求y 的最小值, ∴y= x 2+4⋅104x 2―200 ≥ 400―200 =10 2 ,当且仅当x 2= 4⋅104x 2即x=10 2 时“=”成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单选题(共10题;共19分)1.(2015•长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A. 562.5元B. 875元 C. 550元 D. 750元2.已知 3x +4x 2-x -2 = A x -2 - B x +1 ,其中A,B 为常数,则4A-B 的值为( )A. 13B. 9C. 7D. 53.若二元一次方程3x ﹣y=7,2x+3y=1,y=kx ﹣9有公共解,则k 的取值为( )A. 3B.﹣3 C. ﹣4 D. 44.为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a ,b ,c ,d 对应的密文为a+b ,b+c ,c+d ,d+2a .例如:明文1,2,3,4对应的密文为3,5,7,6.当接收方收到密文8,11,15,15时,则解密得到的明文应为________.5.把不等式组 的解集表示在数轴上,正确的是( )A. B. C.D.6.关于x 的不等式 x −3>3x+a2 的解集在数轴上表示如图所示,则a 的值是( )A. ﹣6 B. ﹣12 C. 6D. 127.关于x 的不等式组 {x >a x >1的解集为x >1,则a 的取值范围是( ) A. a >1 B. a <1 C. a≥1D. a≤18.若关于x的不等式(2﹣m)x<1的解为x>1,则m的取值范围是()2−mA. m>0B. m<0 C. m>2 D. m<29.在实数范围内定义一种新运算“*”,其规则是a*b=a2-b2,如果(x+2)*5>(x-5)(5+x),则x的取值范围是( )A. x>-1B. x<-1C. x>46D. x<4610.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,则她至少要答对()A. 10道题B. 12道题 C. 13道题 D. 16道题二、填空题(共4题;共4分)11.某单位招聘员工采取笔试与面试相结合的方式进行,两项成绩满分均为100分.根据规定,笔试成绩和面试成绩分别按一定的百分比折合综合成绩(综合成绩的满分仍为100分).已知小明应聘的笔试成绩为85分,面试成绩为90分,现得知小明的最后综合成绩为88分.设小明的笔试成绩所占的百分比为x,面试成绩所占的百分比为y,根据题意列方程组得________12.如果不等式组{x>3x<m无解,那么m的取值范围是________.13.定义新运算:对于任意实数a、b都有a⊕b=a(a−b)+1,其中等式右边是通常的加法、减法及乘法运算.例如:2⊕5=2×(2−5)+1=2×(−3)+1=−5 .那么不等式4⊕x<13的解集为________ .14.根据机器零件的设计图纸(如图),用不等式表示零件长度的合格尺寸(L的取值范围)________三、综合题(共7题;共75分)15.(2015•凉山州)2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元.(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元?(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案?哪种租车方案费用最低,最低费用是多少?16.综合题:(1)解方程组: {x =y +12x −y =3 (2)解不等式组: {3x −5≤x +6x−13<x 2−1 ,并将解集在数轴上表示出来.17.解下列不等式(组),并把解集在数轴上表示出来:(1){2x +6>01−2x ≥0; (2)1−x+62<2x+1318.某学校校长寒假将带领该校市级三好学生去旅游。

甲旅行社说:“若校长买全票一张,则其学生可享受半价优惠。

”乙旅行社说:“包括校长在内全部按全票的6折优惠”。

若全票价为240元,则:(1)设学生数为 x ,分别计算两家旅行社的收费(用含 x 的式子表示);(2)如何选择两家旅行社,可使学校更划算。

19.某电器超市销售每台进价分别为160元、120元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.20.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元。

(1)求购买一个足球、一个篮球各需多少元?(2)根据学校实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?21.阅读材料:解分式不等式 3x+6x−1 <0解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:① {3x +6< 0x −1 >0 或② {3x +6< 0x −1 < 0解①得:无解,解②得:﹣2<x <1所以原不等式的解集是﹣2<x <1请仿照上述方法解下列分式不等式:(1)x−42x+5 ≤0(2)x+22x−6 >0. 四、解答题(共1题;共5分)22.阅读下列材料并解答问题:我们知道 |x| 的几何意义是在数轴上数 x 对应的点与原点的距离: |x|=|x −0| ,也就是说, |x| 表示在数轴上数 x 与数0对应点之间的距离;这个结论可以推广为 |x 1−x 2| 表示在数轴上数 x 1 和数 x 2 对应的点之间的距离;例1解方程 |x|=2 ,容易看出,在数轴上与原点距离为2的点对应的数为 ±2 ,即该方程的解为 x =±2 .例2解不等式 |x −1|>2 ,如图,在数轴上找出 |x −1|=2 的解,即到1的距离为2的点对应的数为 −1 ,3,则 |x −1|>2 的解集为 x <−1 或 x >3 .例3解方程 |x −1|+|x +2|=5. 由绝对值的几何意义知,该方程表示求在数轴上与1和 −2 的距离之和为5的对应的x的值.在数轴上,1和−2的距离为3,满足方程的x对应的点在1的右边或−2的左边,若x对应的点在1的右边,由下图可以看出x=2;同理,若x对应的点在−2的左边,可得x=−3,故原方程的解是x=2或x=−3 .回答问题:(只需直接写出答案)①解方程|x+3|=4②解不等式|x−3|≥4③解方程|x−3|+|x+2|=8答案解析部分一、单选题1.【答案】B2.【答案】A3.【答案】D4.【答案】3,5,6,95.【答案】B6.【答案】B7.【答案】D8.【答案】C9.【答案】A10.【答案】C二、填空题11.【答案】{x +y =185x +90y =8812.【答案】m≤313.【答案】x >114.【答案】19.99≤L≤20.01三、综合题15.【答案】(1)解:设每千米“空列”轨道的水上建设费用需要x 亿元,每千米陆地建设费用需y 亿元,则{24x +(40−24)y =60..8x −y =0.2, 解得{x =1.6y =1.4. 所以每千米“空列”轨道的水上建设费用需要1.6亿元,每千米陆地建设费用需1.4亿元.答:每千米“空列”轨道的水上建设费用需要1.6亿元,每千米陆地建设费用需1.4亿元.(2)解:设每天租m 辆大车,则需要租(10﹣m )辆小车,则{200m +120(10−m )≥16001000m +700(10−m )≤9300∴,∴施工方有3种租车方案:①租5辆大车和5辆小车;②租6辆大车和4辆小车;③租7辆大车和3辆小车;①租5辆大车和5辆小车时,租车费用为:1000×5+700×5=5000+3500=8500(元)②租6辆大车和4辆小车时,租车费用为:1000×6+700×4=6000+2800=8800(元)③租7辆大车和3辆小车时,租车费用为:1000×7+700×3=7000+2100=9100(元)∵8500<8800<9100,∴租5辆大车和5辆小车时,租车费用最低,最低费用是8500元.16.【答案】(1)解:方程组的解为 {x =y +1①2x −y =3②, 把①代入②得:y=1,把y=1代入 ①得:x=2,∴ {x =2y =1.(2)解: {3x −5≤x +6①x−13<x 2−1② , 由不等式①得:x≤ 112 ,由不等式②x>4,.∴ 不等式组的解集为 4<x ≤112.17.【答案】(1)解: {2x +6>0①1−2x ≥0②, 由①,解得 x > −3 ,由②,解得 x ≤12 ,∴原不等式组的解集为 −3<x ≤12 .(2)解: 1−x+62<2x+13去分母, 6−3(x +6)<2(2x +1)6-3x −18<4x +2x >−2∴原不等式的解集为 x >−2 .18.【答案】(1)解:设须付给旅行社的费用为y,根据题意得:y 甲=240+50%×240x =120x +240,y 乙=240×60%(x +1)=144x +144(2)解:当y 甲=y 乙时,即120x +240=144x +144,解得:x =4;当y 甲>y 乙时,即120x +240>144x +144,解得:x <4;当y 甲<y 乙时,即120x +240<144x +144,解得:x >4.故当学生数为4个时,甲乙旅行社收费一样;当学生数小于4个时,乙旅行社便宜;当学生数大于4个时,甲旅行社便宜19.【答案】(1)解:设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得: {3x +4y =12005x +6y =1900. 解得: {x =200y =150. 答:A 、B 两种型号电风扇的销售单价分别为200元、150元.(2)解:设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台.依题意得:160a +120(50﹣a )≤7500,解得:a≤ 3712 .答:超市最多采购A 种型号电风扇37台时,采购金额不多于7500元.(3)解:依题意有:(200﹣160)a+(150﹣120)(50﹣a )>1850.解得:a >35,∵a≤ 3712 ,且a 应为整数.∴a=36,37.∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台;当a=37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.20.【答案】(1)解:设购买一个足球需要x元,购买一个篮球需要y元.根据题意{3x +2y=3102x+5y=500解得:{x=50y=80∴购买一个足球需要50元,购买一个篮球需要80.(2)解:设购买a个篮球,则购买(96-a)个足球.根据题意得:80a+50(96-a)≤5720.解得:a≤ 3023.∵a为整数 .∴a最多是30.∴这所中学最多可以购买30个篮球.21.【答案】(1)解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:① {x−4≥02x+5< 0或② {x−4≤02x+5>0解①得:无解,解②得:﹣2.5<x≤4所以原不等式的解集是:﹣2.5<x≤4(2)解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:① {x+2>02x−6>0或② {x+2< 02x−6< 0解①得:x>3,解②得:x<﹣2.所以原不等式的解集是:x>3或x<﹣2四、解答题22.【答案】解:①解方程|x+3|=4,容易看出,在数轴上与−3距离为4的点的对应数为−7,1,即该方程的解为x=−7或x=1;②解不等式|x−3|⩾4,如图3,在数轴上找出|x−3|=4的解,即到3的距离为4的点对应的数为−1,7,则|x−3|>4的解集为x⩽−1或x⩾7.③|x−3|+|x+2|=8,当x<−2时,3−x−x−2=8,解得,x=−3.5;当x=−2时,|−2−2|+|−2+2|=4≠8,∴x=−2不能使得|x−3|+|x+2|=8成立;当−2<x⩽3时,3−x+x+2=5≠8,在−2<x⩽3时,不能使得|x−3|+|x+2|=8成立;当x>3时,x−3+x+2=8,解得,x=4.5,;故|x−3|+|x+2|=8的解是x=−3.5或x=4.5.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档