数电部分概念总结

合集下载

数电 知识点总结

数电 知识点总结

数电知识点总结概述:数电(数字电子学)是研究数字电路和数字系统的学科,是现代电子学的一个重要分支。

数电主要研究数字信号的产生、处理、传输和存储等方面的问题。

在现代信息和通信技术中,数电起着举足轻重的作用,因此它是电子工程技术中的重要基础课程。

一、数字电路的基本概念1. 信号与系统信号可以分为模拟信号和数字信号两种。

模拟信号是以连续的形式表示的信号,而数字信号是以离散的形式表示的信号。

数字信号由一系列离散的电平组成,每个电平代表一个离散的数值。

数字信号的基本单位是比特,表示一个二进制数码。

2. 二进制数码二进制是一种适合数字电路处理的码制,它只包含两种状态(0和1),因此逻辑电路的设计更简单、可靠。

在数字电路设计中,计数和存储的基本单位都是二进制。

3. 逻辑门逻辑门是由一个或多个传递器件组成的电路,在它的输入端和输出端之间存在特定的逻辑关系。

常见的逻辑门有与门、或门、非门、异或门等。

逻辑门是数字电路的基本组成单元,可以用来实现各种逻辑函数。

4. 组合逻辑电路组合逻辑电路是由逻辑门组成的电路,其输出只依赖于当前输入的状态,和输入变化时输出的变化无关。

组合逻辑电路可以用来实现任意的布尔逻辑函数。

5. 时序逻辑电路时序逻辑电路是由组合逻辑电路和触发器组成的电路,其输出不仅依赖于当前输入的状态,还与触发器的状态有关。

时序逻辑电路可以用来处理时序信息,例如时钟信号、计数器等。

二、数字系统的表示与运算1. 布尔代数布尔代数是一种代数系统,用来研究逻辑变量之间的运算和关系。

它有两个基本运算:与运算(∧)、或运算(∨)、非运算(¬)。

在数字系统中,布尔代数是描述逻辑运算和逻辑关系的数学工具。

2. 二进制加法二进制加法是二进制数字之间的加法运算,和十进制加法类似。

但是在二进制加法中,只有两个基本数码(0和1),因此进位特别简单。

二进制加法是数字系统中的基本运算之一。

3. 二进制乘法二进制乘法是二进制数字之间的乘法运算,和十进制乘法类似。

数电面试知识点总结

数电面试知识点总结

数电面试知识点总结一、基本概念1.1 电路和信号电路是指由电阻、电容、电感等元件组成的系统,用于控制电流和电压的流动。

信号则是指携带信息的电流或电压,可以是模拟信号或数字信号。

1.2 基本元件常见的电路元件有电阻、电容、电感、二极管和晶体管等。

电阻用于限制电流,电容用于储存电荷,电感用于储存能量,二极管用于控制电流方向,晶体管用于放大、开关和稳定电压等功能。

1.3 信号处理信号处理是指利用电路对信号进行加工、处理和传输的过程,包括放大、滤波、混频、解调等操作。

1.4 模拟和数字模拟信号是连续变化的信号,如声音、光线等;数字信号则是离散的信号,如二进制数等。

模拟电路和数字电路分别处理模拟和数字信号。

1.5 基本定律基本电路定律包括欧姆定律、基尔霍夫定律、麦克斯韦方程等,用于描述电路中电压、电流和电阻之间的关系。

二、模拟电路2.1 放大电路放大电路是模拟电路的重要组成部分,包括共射放大器、共集放大器、共阴极放大器等,用于放大模拟信号的幅度。

2.2 滤波电路滤波电路用于滤除或选择特定频率范围的信号,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

2.3 混频电路混频电路用于将不同频率的信号进行混合,产生新的频率信号,如频率合成器、调频解调器等。

2.4 模拟集成电路模拟集成电路是集成了大量模拟电路元件的集成电路,包括放大器、滤波器、混频器等,用于实现各种模拟信号处理功能。

三、数字电路3.1 逻辑门逻辑门是数字电路的基本组成单元,包括与门、或门、非门、异或门等,用于实现逻辑运算和数字信号处理的功能。

3.2 组合逻辑电路组合逻辑电路由多个逻辑门组成,通过不同的逻辑运算来实现特定的数字逻辑功能,如加法器、比较器、多路选择器等。

3.3 时序逻辑电路时序逻辑电路包括寄存器、计数器、触发器等,用于实现时序控制和状态存储等功能。

3.4 存储器存储器用于存储数字信号,包括静态随机存储器(SRAM)和动态随机存储器(DRAM)等,分为RAM和ROM,用于存储计算机的程序和数据。

数电知识点总结

数电知识点总结

数电知识点总结数电(数位电子)是一门研究数字电子技术的学科,涉及到数字电路、数字信号处理、数字系统等多个方面的知识。

数字电子技术已经成为现代电子工程技术的基础,并且在通信、计算机、控制、显示、测量等领域都有广泛的应用。

本文将从数字电路、数字信号处理和数字系统三个方面对数电的知识点进行总结。

1. 数字电路数字电路是将数字信号作为输入、输出,通过逻辑门、存储器等数字元器件完成逻辑运算和信息处理的电路。

数字电路是实现数字逻辑功能的基本组成单元,包括组合逻辑电路和时序逻辑电路两种类型。

1.1 组合逻辑电路组合逻辑电路是由若干逻辑门进行组合而成的电路,其输出仅取决于当前输入的组合,不受到电路内过去的状态的影响。

组合逻辑电路主要包括门电路(与门、或门、非门等)、编码器、译码器、多路选择器、加法器、减法器等。

常用的集成逻辑门有 TTL、CMOS、ECL、IIL 四种族类。

常见的集成逻辑门有 TTL、 CMOS、 ECL、 IIL 四种。

1.2 时序逻辑电路时序逻辑电路是组合电路与触发器相结合,结构复杂。

时序逻辑电路主要包括触发器、寄存器、计数器、移位寄存器等。

在传统的 TTL 集成电路中,触发器主要有 RS 触发器、 JK触发器、 D 触发器和 T 触发器四种。

在 CMOS 集成电路中一般用 T 触发器,D 触发器和 JK 触发器等。

2. 数字信号处理数字信号处理(DSP)是利用数字计算机或数字信号处理器对连续时间的信号进行数字化处理,包括信号的采样、量化和编码、数字滤波、谱分析、数字频率合成等基本处理方法。

数字信号处理已广泛应用于通信、音频、视频、雷达、医学影像等领域。

2.1 信号采样和量化信号采样是将连续时间信号转换为离散时间信号的过程,采样频率必须高于信号频率的两倍才能保证信号的完全重构。

信号量化是将采样得到的连续幅度信号转换为一个有限数目的离散的幅度值的过程,量化误差会引入信号失真。

2.2 数字滤波数字滤波是利用数字计算机对数字信号进行特定频率成分的增益或者衰减的处理过程。

数电 知识点总结

数电 知识点总结

数电知识点总结数电(数字电子技术)是电子信息科学与技术领域的一门基础学科,它研究数字信号的产生、传输、处理和应用。

数电主要涉及数字电路的设计、逻辑运算、组合逻辑、时序逻辑、存储器设计等方面的内容。

以下是对数电常见知识点的总结,共计1000字。

一、数字电路基础1. 二进制:介绍二进制数表示、二进制与十进制的转换、二进制加减法运算等。

2. 逻辑门电路:介绍与门、或门、非门、异或门等基本逻辑门的实现及其真值表。

3. 真值表和卡诺图:介绍真值表和卡诺图的作用,以及如何利用卡诺图简化布尔函数。

二、组合逻辑电路1. 组合逻辑的基本概念:介绍组合逻辑电路的基本概念和逻辑功能的表示方法。

2. 组合逻辑电路设计:介绍组合逻辑电路的设计方法,包括常见逻辑门的设计、多路选择器的设计、编码器和解码器的设计等。

3. 多级逻辑电路:介绍多级逻辑电路的设计原理,包括选择器、加法器、减法器等。

三、时序逻辑电路1. 时序逻辑电路的基本概念:介绍时序逻辑电路的基本概念和时序逻辑元件的特点,如锁存器、触发器等。

2. 触发器:介绍RS触发器、D触发器、JK触发器的工作原理、真值表和特性方程。

3. 时序逻辑电路设计:介绍时序逻辑电路的设计方法,包括计数器、移位寄存器等。

四、存储器设计1. 存储器的分类:介绍存储器的分类,包括RAM(随机访问存储器)和ROM(只读存储器)。

2. RAM:介绍RAM的基本工作原理和特点,包括静态RAM (SRAM)和动态RAM(DRAM)。

3. ROM:介绍ROM的分类和工作原理,包括PROM、EPROM和EEPROM。

五、数字系统设计1. 数字系统的层次结构:介绍数字系统的层次结构,包括数字系统组成元件和模块的概念。

2. 数据流图:介绍数据流图的绘制方法和用途。

3. 状态图:介绍状态图的绘制方法和应用,用于描述有限状态机的行为。

六、数字信号处理1. 数字信号的采样和量化:介绍数字信号的采样和量化方法,以及采样定理的原理。

数电知识点汇总

数电知识点汇总

数电知识点汇总一、数制与编码。

1. 数制。

- 二进制:由0和1组成,逢2进1。

在数字电路中,因为晶体管的导通和截止、电平的高和低等都可以很方便地用0和1表示,所以二进制是数字电路的基础数制。

例如,(1011)₂ = 1×2³+0×2² + 1×2¹+1×2⁰ = 8 + 0+2 + 1=(11)₁₀。

- 十进制:人们日常生活中最常用的数制,由0 - 9组成,逢10进1。

- 十六进制:由0 - 9、A - F组成,逢16进1。

十六进制常用于表示二进制数的简化形式,因为4位二进制数可以用1位十六进制数表示。

例如,(1101 1010)₂=(DA)₁₆。

- 数制转换。

- 二进制转十进制:按位权展开相加。

- 十进制转二进制:整数部分采用除2取余法,小数部分采用乘2取整法。

- 二进制与十六进制转换:4位二进制数对应1位十六进制数。

将二进制数从右向左每4位一组,不足4位的在左边补0,然后将每组二进制数转换为对应的十六进制数;反之,将十六进制数的每一位转换为4位二进制数。

2. 编码。

- BCD码(Binary - Coded Decimal):用4位二进制数来表示1位十进制数。

常见的有8421 BCD码,例如十进制数9的8421 BCD码为(1001)。

- 格雷码(Gray Code):相邻的两个代码之间只有一位不同。

在数字系统中,当数据按照格雷码的顺序变化时,可以减少电路中的瞬态干扰。

例如,3位格雷码的顺序为000、001、011、010、110、111、101、100。

二、逻辑代数基础。

1. 基本逻辑运算。

- 与运算(AND):逻辑表达式为Y = A·B(也可写成Y = AB),当A和B都为1时,Y才为1,否则Y为0。

在电路中可以用串联开关来类比与运算。

- 或运算(OR):逻辑表达式为Y = A + B,当A和B中至少有一个为1时,Y为1,只有A和B都为0时,Y为0。

大学数电知识点总结

大学数电知识点总结

大学数电知识点总结一、数电基本概念1. 数字电子学的概念和发展历史- 数字电子学是指以电子技术为基础进行数字电路设计和数字系统分析的一门学科。

它是传统的电子技术与计算机技术的结合,是先进的信息技术的一部分。

- 数字电子学的起源可以追溯到20世纪40年代,随着计算机和通信技术的发展,数字电子学逐渐发展成熟。

目前,数字电子学已经成为电子信息类专业的一门重要基础课程。

2. 数字电子学的基本概念- 数字电子学主要研究数字电路的设计、分析和实现技术,包括数字电路的原理与设计方法、数字系统的组成结构、数字信号的处理与传输等内容。

- 数字电子学的基本概念包括数字信号与模拟信号的区别、数字电路的基本原理、数字逻辑门的种类与功能等内容。

3. 数字信号与模拟信号的区别- 数字信号是离散的,表示离散的数值,其数值是以二进制形式表示。

而模拟信号是连续的,表示连续的数值,其数值可以是任意的实数。

- 数字信号与模拟信号在传输、处理和存储方面有着不同的特点和应用场景,数字电子学主要研究数字信号的处理、传输与存储技术。

4. 数字电路的基本原理- 数字电路是由数字逻辑门连接而成的电路,可以实现逻辑运算、数据存储和信号处理等功能。

数字电路的基本原理包括布尔代数、数字逻辑门、数字电路的组合与时序等内容。

5. 数字逻辑门的种类与功能- 数字逻辑门是数字电路的基本组成单元,根据不同的逻辑功能可以分为与门、或门、非门、异或门等,每种门电路具有不同的逻辑功能与应用场景。

二、数字逻辑门的基本应用1. 与门(AND Gate)- 与门是英特尔公司制造的一种逻辑门,它具有两个或两个以上输入,一个输出。

只有当所有输入均为1时,输出为1,否则输出为0。

- 与门的基本应用包括逻辑乘法器、数据选择器、移位寄存器等。

2. 或门(OR Gate)- 或门是一种逻辑门电路,它具有两个或两个以上输入,一个输出。

只要有一个输入为1,输出就为1;当所有输入均为0时,输出为0。

数电主要知识点总结

数电主要知识点总结

数电主要知识点总结一、存储器单元存储器单元是数字电路的基本元件之一,它用来存储数据。

存储器单元可以是触发器、寄存器或存储器芯片。

触发器是最简单的存储器单元,它有两个状态,分别为1和0。

寄存器是一种多位存储器单元,它可以存储多个位的数据。

存储器芯片是一种集成电路,它可以存储大量的数据。

存储器单元的作用是存储和传输数据,它是数字电路中的重要组成部分。

二、逻辑门逻辑门是数字电路的另一个重要组成部分,它用来执行逻辑运算。

逻辑门有与门、或门、非门、异或门等。

与门用于执行逻辑与运算,或门用于执行逻辑或运算,非门用于执行逻辑非运算,异或门用于执行逻辑异或运算。

逻辑门可以组成各种复杂的逻辑电路,比如加法器、减法器、乘法器、除法器等。

逻辑门的作用是执行逻辑运算,它是数字电路中的核心部分。

三、数字电路的分类数字电路可以分为组合逻辑电路和时序逻辑电路。

组合逻辑电路是一种没有反馈的逻辑电路,它的输出完全由输入决定。

组合逻辑电路的设计是固定的,不受时间影响。

时序逻辑电路是一种有反馈的逻辑电路,它的输出不仅受输入决定,还受上一次的输出影响。

时序逻辑电路的设计是随时间变化的,受时间影响。

四、数字电路的应用数字电路在计算机、通信、控制等领域有广泛的应用。

在计算机中,数字电路用于执行逻辑和算术运算,控制数据存储和传输。

在通信中,数字电路用于信号处理、调制解调、编解码等。

在控制中,数字电路用于逻辑控制、定时控制、序列控制等。

五、数字电路的设计数字电路的设计是一个复杂的过程,需要考虑多种因素。

首先要确定系统的功能和性能要求,然后选择适当的存储器单元和逻辑门,设计适当的逻辑电路,进行仿真和验证,最后进行集成和测试。

六、数字电路的发展数字电路的发展经历了多个阶段。

从最初的离散元件到集成电路,再到超大规模集成电路,数字电路的集成度越来越高,性能越来越强。

数字电路的发展推动了计算机、通信、控制等领域的快速发展,改变了人们的生活方式,促进了社会的进步。

数电知识点总结

数电知识点总结

数电知识点总结数字电子技术(简称数电)是电子信息类专业的一门重要基础课程,它主要研究数字信号的传输、处理和存储。

下面为大家总结一些关键的数电知识点。

一、数制与码制数制是指用一组固定的数字和一套统一的规则来表示数的方法。

常见的数制有十进制、二进制、八进制和十六进制。

十进制是我们日常生活中最常用的数制,它由 0、1、2、3、4、5、6、7、8、9 这十个数字组成,遵循“逢十进一”的原则。

二进制则只有 0 和 1 两个数字,其运算规则简单,是数字电路中最常用的数制,遵循“逢二进一”。

八进制由0、1、2、3、4、5、6、7 这八个数字组成,“逢八进一”。

十六进制由 0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F 这十六个数字和字母组成,“逢十六进一”。

码制是指用不同的代码来表示不同的信息。

常见的码制有BCD 码、格雷码等。

BCD 码用四位二进制数来表示一位十进制数,有 8421 BCD 码、5421 BCD 码等。

格雷码的特点是相邻两个编码之间只有一位发生变化,这在数字电路中可以减少错误的产生。

二、逻辑代数基础逻辑代数是数字电路分析和设计的数学工具。

基本逻辑运算包括与、或、非三种。

与运算表示只有当所有输入都为 1 时,输出才为 1;或运算表示只要有一个输入为 1,输出就为 1;非运算则是输入为 1 时输出为 0,输入为 0 时输出为 1。

逻辑代数的基本定律有交换律、结合律、分配律、反演律和吸收律等。

这些定律在逻辑函数的化简和变换中经常用到。

逻辑函数的表示方法有真值表、逻辑表达式、逻辑图、卡诺图等。

真值表是将输入变量的所有可能取值组合及其对应的输出值列成的表格;逻辑表达式是用逻辑运算符将输入变量连接起来表示输出的式子;逻辑图是用逻辑门符号表示逻辑函数的电路图;卡诺图则是用于化简逻辑函数的一种图形工具。

三、门电路门电路是实现基本逻辑运算的电子电路。

常见的门电路有与门、或门、非门、与非门、或非门、异或门和同或门等。

数字电路知识点总结

数字电路知识点总结

数字电路知识点总结一、数字电路基础1. 数字信号与模拟信号- 数字信号:离散的电压级别表示信息,通常为二进制。

- 模拟信号:连续变化的电压或电流表示信息。

2. 二进制系统- 基数:2。

- 权重:2的幂次方。

- 转换:二进制与十进制、十六进制之间的转换。

3. 逻辑电平- 高电平(1)与低电平(0)。

- 噪声容限。

4. 逻辑门- 基本逻辑门:与(AND)、或(OR)、非(NOT)、异或(XOR)。

- 复合逻辑门:与非(NAND)、或非(NOR)、异或非(XNOR)。

二、组合逻辑1. 逻辑门电路- 基本逻辑门的实现与应用。

- 标准逻辑系列:TTL、CMOS。

2. 布尔代数- 基本运算:与、或、非。

- 逻辑公式的简化。

3. 多级组合电路- 级联逻辑门。

- 编码器、解码器。

- 多路复用器、解复用器。

- 算术逻辑单元(ALU)。

4. 逻辑函数的表示- 真值表。

- 逻辑表达式。

- 卡诺图。

三、时序逻辑1. 触发器- SR触发器(置位/复位)。

- D触发器。

- JK触发器。

- T触发器。

2. 时序逻辑电路- 寄存器。

- 计数器。

- 有限状态机(FSM)。

3. 存储器- 随机存取存储器(RAM)。

- 只读存储器(ROM)。

- 闪存(Flash)。

4. 时钟与同步- 时钟信号的重要性。

- 同步电路与异步电路。

四、数字系统设计1. 设计流程- 需求分析。

- 概念设计。

- 逻辑设计。

- 物理设计。

2. 硬件描述语言(HDL)- VHDL与Verilog。

- 模块化设计。

- 测试与验证。

3. 集成电路(IC)- 集成电路分类:SSI、MSI、LSI、VLSI。

- 集成电路设计流程。

4. 系统级集成- 系统芯片(SoC)。

- 嵌入式系统。

- 多核处理器。

五、数字电路应用1. 计算机系统- 中央处理单元(CPU)。

- 输入/输出接口。

2. 通信系统- 数字信号处理(DSP)。

- 通信协议。

- 网络通信。

3. 消费电子产品- 音频/视频设备。

数电知识点总结

数电知识点总结

数电知识点总结数电,即数字电子技术,是现代电子科学和技术的重要组成部分。

它研究如何使用数字信号来处理和传输信息。

在这篇文章中,我们将对数电的一些基本概念和知识点进行总结和讨论。

一、数电基础理论1. 二进制二进制是计算机中常用的数字表示方式,使用0和1来表示数字。

它是整个数电系统中的基础。

2. 逻辑门逻辑门是数电中常用的基本单元。

有与门、或门、非门等。

通过组合不同的逻辑门可以实现各种电路功能。

3. 真值表真值表是描述逻辑门输入输出关系的表格。

它能够帮助我们清晰地了解逻辑门的工作原理和功能。

4. 布尔代数布尔代数是一种逻辑系统,它基于二进制值和逻辑运算。

它能够简化和优化逻辑电路的设计。

二、数电电路设计1. 加法器加法器是数电中重要的电路,用于实现数字的加法运算。

全加器是最基本的加法器。

2. 编码器编码器用于将一个多位数字编码为一个较小的码。

常见的是4-2编码器和8-3编码器等。

3. 解码器解码器正好与编码器相反,它用于将一个码解码为一个多位数字。

常见的是2-4解码器和3-8解码器等。

4. 翻转器翻转器是一种存储元件,可以存储和改变输入信号的状态。

常见的有RS触发器、D触发器和JK触发器等。

三、数电应用领域1. 计算机计算机是数电应用最广泛的领域之一。

计算机内部的逻辑电路和芯片基于数电原理。

2. 通信数字通信是现代通信技术的基础。

数电提供了快速、准确和可靠的数字信号处理方法。

3. 数字电视机数字电视机通过数电技术将模拟信号转换为数字信号,并在数字领域进行处理。

4. 数字音频设备数字音频设备使用数电技术处理和转换音频信号,提供更高的音频质量和灵活性。

结语数电是现代科技的基石之一,它通过数字信号的处理和传输,推动了科学技术的发展。

本文简要总结了数电的基础理论、电路设计和应用领域等知识点。

深入了解数电原理和应用,不仅能够更好地理解数字技术的工作原理,而且可以为我们进行相关领域的研究和应用提供帮助。

希望本文对读者有所启发和帮助。

数电知识点总结csdn

数电知识点总结csdn

数电知识点总结csdn数字电路作为电子信息技术的重要组成部分,广泛应用于计算机、通信、遥感、自动控制和电子设备等领域。

对于计算机相关专业的学生来说,掌握数字电路知识是非常重要的。

在这篇文章中,我们将对数字电路的一些基本知识点进行总结,以便帮助读者更好地理解和掌握这一重要内容。

1. 数字电路的基本概念数字电路是指电子元件在数制之间进行传递、存储和加工信息的电路。

它主要由数字信号进行传输和加工,与模拟电路相对应。

数字电路处理的是一种离散的电信号,它的核心是逻辑门电路,逻辑门是用来实现逻辑运算的基本单元。

2. 数字电路的基本元件数字电路的基本元件主要包括数字信号的表示、逻辑运算、存储和计数等功能。

常见的数字电路元件有数字信号发生器、逻辑门、触发器、计数器、移位寄存器、多路选择器、解码器、编码器、比较器等。

这些元件可以组成不同的电路结构,来实现各种不同的功能。

3. 逻辑门电路逻辑门电路是数字电路的基本组成单元,用于实现逻辑运算。

常见的逻辑门有与门、或门、非门、异或门等。

不同类型的逻辑门通过不同的组合可以实现不同的逻辑运算,例如加法、减法、乘法、除法等。

逻辑门电路是数字电路设计的基础,对于理解数字电路的原理和实现逻辑运算非常重要。

4. 触发器电路触发器是数字电路中的重要元件,主要用于存储和稳定信号的状态。

触发器电路可以实现时序逻辑控制、状态存储和数据缓存等功能。

常见的触发器包括RS触发器、D触发器、JK触发器、T触发器等。

它们可以通过不同的输入信号和时序控制实现各种不同的功能,对于数字电路的设计和应用非常重要。

5. 编码器和解码器编码器和解码器是数字电路中用于数据转换的重要元件。

编码器主要用于将多个输入信号转换成一个输出信号,解码器主要用于将一个输入信号转换成多个输出信号。

它们通常用于实现数字信号的传输、压缩和解码等功能,对于数字电路的通讯和控制具有重要的应用价值。

6. 计数器和移位寄存器计数器和移位寄存器是数字电路中常用的序贯逻辑电路。

数字电路知识整理总结

数字电路知识整理总结

数字电路知识整理总结数字电路是电子信息类专业的重要基础课程,它在现代电子技术中扮演着至关重要的角色。

数字电路以数字信号为研究对象,通过对数字信号的处理和传输,实现各种复杂的逻辑功能。

一、数字电路的基本概念数字电路中的信号只有两种取值,通常用 0 和 1 来表示。

这与模拟电路中的连续信号不同。

数字信号具有精度高、抗干扰能力强等优点。

在数字电路中,常用的逻辑门包括与门、或门、非门、与非门、或非门和异或门等。

这些逻辑门是构建数字电路的基本单元。

二、数制与编码数制是数字电路中表示数量的方式,常见的数制有二进制、八进制、十进制和十六进制。

二进制是数字电路中最常用的数制,因为其只有 0 和 1 两个数字,便于电路的实现和处理。

编码则是将信息用特定的数字组合表示。

例如,BCD 码是用四位二进制数表示一位十进制数;格雷码在相邻的两个编码之间只有一位数字不同,常用于减少误差。

三、组合逻辑电路组合逻辑电路的输出仅取决于当前的输入,没有记忆功能。

常见的组合逻辑电路有加法器、编码器、译码器、数据选择器和数据分配器等。

加法器是实现加法运算的电路,半加器和全加器是其基本组成单元。

编码器将输入的信号转换为特定的编码输出。

译码器则是将编码转换为对应的输出信号。

数据选择器从多个输入数据中选择一个输出,数据分配器则将输入数据分配到多个输出端。

四、时序逻辑电路时序逻辑电路的输出不仅取决于当前的输入,还与电路之前的状态有关,具有记忆功能。

触发器是时序逻辑电路的基本存储单元,常见的触发器有 SR 触发器、JK 触发器、D 触发器和 T 触发器。

计数器用于计数脉冲信号的个数,可分为同步计数器和异步计数器。

寄存器用于存储一组二进制数据。

五、数字电路的分析与设计数字电路的分析是根据给定的电路,求出其输出与输入之间的逻辑关系。

常用的分析方法有逻辑代数法和卡诺图法。

逻辑代数法通过运用逻辑运算规则来化简逻辑表达式。

卡诺图法则通过图形化的方式来简化逻辑函数。

数电知识点总结(整理版)

数电知识点总结(整理版)

数电知识点总结(整理版).doc数电知识点总结(整理版)一、引言数字电子技术是电子工程领域的一个重要分支,它涉及使用数字信号处理电子设备中的信息。

本文档旨在总结数字电子学的核心知识点,以帮助学生和专业人士复习和掌握这一领域的基础。

二、数字逻辑基础数字信号数字信号是离散的,可以是二进制(0和1)或多电平信号。

逻辑门基本的逻辑门包括与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)和同或门(NAND)。

逻辑运算逻辑运算是数字电路中的基本操作,包括布尔代数和逻辑表达式的简化。

三、组合逻辑电路多输入逻辑门如四输入与门、或门,以及更复杂的逻辑功能。

编码器和解码器编码器将输入信号转换为二进制代码,解码器则相反。

加法器用于执行二进制加法运算的电路。

比较器比较两个二进制数的大小。

四、时序逻辑电路触发器基本的存储单元,可以存储一位二进制信息。

寄存器由多个触发器组成的电路,用于存储多位二进制信息。

计数器用于计数事件的时序电路。

移位寄存器可以按顺序移动存储的数据。

五、存储器RAM(随机存取存储器)可以读写的数据存储器。

ROM(只读存储器)存储固定数据的存储器,内容在制造时写入。

PROM(可编程ROM)用户可以编程的只读存储器。

EEPROM(电可擦可编程ROM)可以通过电信号擦除和重新编程的存储器。

六、数字系统设计设计流程包括需求分析、逻辑设计、电路设计、仿真、实现和测试。

硬件描述语言如VHDL和Verilog,用于设计和模拟数字电路。

仿真工具用于在实际硬件实现之前测试电路设计的工具。

七、数字信号处理采样将模拟信号转换为数字信号的过程。

量化将连续的信号值转换为有限数量的离散值。

编码将采样和量化后的信号转换为数字代码。

八、数模转换和模数转换数模转换器(DAC)将数字信号转换为模拟信号的设备。

模数转换器(ADC)将模拟信号转换为数字信号的设备。

九、数字通信基础调制在发送端,将数字信号转换为适合传输的形式。

解调在接收端,将接收到的信号转换回原始的数字信号。

数电期末知识点总结

数电期末知识点总结

数电期末知识点总结一、数字逻辑1. 数字系统数字系统是一种表示数值和计算的方式。

常见的数字系统有二进制、八进制、十进制和十六进制。

二进制是计算机内部用的数字系统,十六进制则是计算机系统常见的数字系统。

2. 基本逻辑门基本逻辑门包括与门、或门、非门、异或门、同或门等。

这些逻辑门可以用来构建各种数字逻辑系统。

3. 逻辑函数逻辑函数可以表示为逻辑表达式或者真值表。

逻辑函数的不同表示方式可以用来进行数字逻辑系统的设计和分析。

4. 布尔代数布尔代数是逻辑函数的数学理论基础。

在数字逻辑系统的设计和分析中,布尔代数是非常重要的基础知识。

5. 组合逻辑电路组合逻辑电路是由逻辑门直接连接而成的数字逻辑系统。

组合逻辑电路的设计和分析是数字逻辑课程的重点内容之一。

6. 时序逻辑电路时序逻辑电路是由组合逻辑电路和时钟信号组成的数字逻辑系统。

时序逻辑电路的设计和分析是数字逻辑课程的另一个重要内容。

二、数字电路1. 数字集成电路数字集成电路是由大量的逻辑门和触发器等数字元件组成的电路芯片。

数字集成电路是数字逻辑系统的基础。

2. 二极管逻辑电路二极管逻辑电路是由二极管直接连接而成的数字逻辑系统。

二极管逻辑电路在数字逻辑发展的早期有重要的应用。

3. TTLTTL是一种重要的数字电路技术标准。

TTL技术具有高速、稳定、可靠等特点,是数字集成电路的主要技术之一。

4. CMOSCMOS是另一种重要的数字电路技术标准。

CMOS技术具有低功耗、高密度等特点,是数字集成电路的主要技术之一。

5. FPGAFPGA是一种灵活可编程的数字逻辑芯片。

FPGA具有很高的可编程性和并行性,可以实现各种复杂的数字逻辑系统。

6. ASICASIC是一种专门定制的数字逻辑芯片。

ASIC可以根据特定的应用需求进行设计和制造,具有很高的性能和可靠性。

三、数字信号处理1. 采样采样是将连续信号转换为离散信号的过程。

在数字信号处理中,采样是非常重要的步骤。

2. 量化量化是将连续信号的幅度值转换为离散值的过程。

数电基本知识点总结

数电基本知识点总结

数电基本知识点总结
数字信号与模拟信号:数字信号在时间和数值上都是离散的,只能按有限多个增量或阶梯取值;而模拟信号在时间和数值上都是连续的。

数字电路与数字逻辑:数字电路是由数字信号进行处理和传输的电路系统,主要由逻辑门和触发器等基本逻辑元件组成;而数字逻辑则是处理数字信号的逻辑,是数字电路运作的原理。

逻辑代数:也称为布尔代数,由英国数学家布尔在1849年提出,是对布尔函数进行代数运算的理论,包括加法和乘法运算,有三种最基本的运算:与、或、非。

真值表:一种描述逻辑门输入和输出之间关系的表格,用于表示布尔表达式的值。

逻辑门与逻辑电路:逻辑门是数字逻辑系统的基础,它接收一个或多个输入信号并产生一个输出信号;逻辑电路则是用于实现逻辑门和逻辑运算的物理设备,如晶体管、集成电路等。

数字电路的应用:数字电路在现代电子技术中有着广泛的应用,如计算机、网络、移动互联网等领域。

此外,数字电路还包括化简电路、集成电路等知识点。

化简电路是为了降低系统的成本,提高电路的可靠性,以便使用最少集成电路实现功能;而集成电路则是将若干个有源器件和无源器件及其导线,按照一定的功能要求制作在同一块半导体芯片上。

以上内容仅供参考,如需更多信息,建议查阅数字电路相关书籍或咨询专业技术人员。

数电知识点总结

数电知识点总结

数电知识点总结一、数字电路基础1. 数字信号与模拟信号- 数字信号:离散的电压或电流信号,代表信息的二进制状态(0和1)。

- 模拟信号:连续变化的电压或电流信号,可以表示无限多的状态。

2. 二进制系统- 数字电路使用二进制数制,基于0和1的组合。

- 二进制的运算规则包括加法、减法、乘法和除法。

3. 逻辑门- 基本逻辑门:与(AND)、或(OR)、非(NOT)、异或(XOR)和同或(XNOR)。

- 逻辑门的真值表描述了输入和输出之间的关系。

4. 组合逻辑与时序逻辑- 组合逻辑:输出仅依赖于当前输入,不依赖于历史状态。

- 时序逻辑:输出依赖于当前输入和历史状态。

二、组合逻辑电路1. 基本组合逻辑电路- 半加器:实现两个一位二进制数的加法。

- 全加器:实现三个一位二进制数(包括进位)的加法。

2. 多路复用器(MUX)- 选择多个输入信号中的一个,根据选择信号。

3. 解码器(Decoder)- 将二进制输入转换为多个输出信号,每个输出对应一个唯一的二进制输入组合。

4. 编码器(Encoder)- 将多个输入信号编码为一个二进制输出。

5. 比较器(Comparator)- 比较两个数字信号的大小。

三、时序逻辑电路1. 触发器(Flip-Flop)- SR触发器:基于设置(S)和重置(R)输入的状态。

- D触发器:输出取决于数据输入(D)和时钟信号。

2. 寄存器(Register)- 由一系列触发器组成,用于存储数据。

3. 计数器(Counter)- 顺序触发器的集合,用于计数时钟脉冲。

4. 有限状态机(FSM)- 由状态和状态之间的转换组成的电路,根据输入信号和当前状态决定输出和下一个状态。

四、存储器1. 随机存取存储器(RAM)- 可读写存储器,允许对任何地址进行直接访问。

2. 只读存储器(ROM)- 存储器内容在制造过程中确定,用户不能修改。

3. 存储器的组织- 存储单元的排列方式,如字节、字等。

五、数字系统设计1. 数字系统的基本组成- 输入接口、处理单元、存储器和输出接口。

数电知识点讲解总结

数电知识点讲解总结

数电知识点讲解总结数电,即数字电子技术,是指通过数字信号进行信息处理和传输的一种电子技术。

在现代科技领域中,数电技术已经得到了广泛的应用,涉及到计算机、通信、控制等多个领域。

数电知识点的掌握对于学习和工作都具有重要的意义,下面将对数电知识点进行总结和讲解。

1. 数制及进位运算数制是指用几个记数符号表示数的一种方法,比如我们常见的十进制数是用0到9这10个数字表示的。

在数电中,常用的数制有二进制、八进制和十六进制等。

进位运算是指在进行加减乘除等运算时,当某一位上的数字超过了进位数时,需要向高一位进位的操作。

在数电中,进位运算是一个非常基础和重要的概念,它是进行数字运算的基础。

2. 逻辑门和布尔代数逻辑门是数电中最基本的组成单元,它可以接受多个输入信号,并根据输入信号产生一个输出信号。

常见的逻辑门有与门、或门、非门等。

逻辑门的运算规则体现了布尔代数的运算规则,布尔代数是一种用于描述逻辑运算规律的代数系统,它体现了逻辑运算的基本规律,是逻辑电路设计的理论基础。

3. 组合逻辑电路和时序逻辑电路组合逻辑电路是由一些互相连接的逻辑门组成的,它可以根据输入信号的不同产生不同的输出信号。

时序逻辑电路是在组合逻辑电路的基础上引入了时钟信号,根据时钟信号的不同产生不同的输出信号。

组合逻辑电路和时序逻辑电路是数字电路中最基本的两种电路,它们构成了数字系统的基本组成部分。

4. 计算机组成原理计算机组成原理是数电中一个非常重要的知识点,它包括了计算机的硬件和软件组成结构、运行原理以及计算机系统的设计和实现等内容。

在计算机组成原理中,涉及到了 CPU、内存、输入输出设备、系统总线等多个方面的知识。

5. 存储器和寄存器存储器是计算机中用于存储数据和程序的设备,它包括了内存和外存两种形式。

内存是计算机中的主要存储设备,用于存储正在运行的程序和数据,而外存则是用于长期存储数据和程序的设备。

寄存器是一种用于存储临时数据和控制信号的存储器,它是计算机中最快的存储设备。

数电基本知识点总结

数电基本知识点总结

数电基本知识点总结一、数字信号1.1 数字信号的概念数字信号是由一系列离散的数值组成的信号,它可以使用二进制形式表示。

在数字电子技术中,数字信号是处理的对象,通过数字信号的处理可以实现各种功能和应用。

1.2 数字信号的特点数字信号具有以下特点:1)离散性:数字信号是由一系列离散的数值组成的,相邻的数值之间有间隔。

2)可靠性:数字信号的传输和处理相对容易,不易受到噪声和干扰的影响,具有较高的可靠性。

3)易处理:数字信号可以进行数学运算和逻辑运算,易于进行处理和分析。

1.3 数字信号的表示数字信号可以使用二进制、八进制、十进制、十六进制等形式进行表示,其中,二进制是最常用的表示形式。

在数字电子技术中,常用的是二进制形式。

1.4 数字信号的产生数字信号可以通过模拟信号的采样和量化来进行产生。

采样是对模拟信号进行时间间隔的离散取样,量化是对采样后的信号进行幅度离散化。

1.5 数字信号的传输数字信号可以通过数字通信系统进行传输,数字通信系统可以利用数字调制、解调技术来实现数字信号的传输和接收。

数字通信系统在通信领域中有着重要的应用。

1.6 数字信号的处理数字信号可以通过数字信号处理技术进行处理,包括滤波、变换、编码、解码等操作,可以实现对信号的提取、分析和处理。

二、数字电路2.1 数字电路的概念数字电路是由数字元器件构成的电路,用来进行数字信号的处理和运算。

数字电路可以实现逻辑运算、数学运算、存储等功能。

2.2 数字电路的分类数字电路按照其功能可以分为组合逻辑电路和时序逻辑电路。

组合逻辑电路是由逻辑门构成的,其输出仅依赖于当前的所有输入;时序逻辑电路则包含了时序逻辑元件,其输出还依赖于其先前的输入。

2.3 逻辑门逻辑门是数字电路的基本组成单元,用来进行逻辑运算。

常见的逻辑门有与门、或门、非门、异或门等,它们通过对输入信号进行逻辑运算得到输出信号。

2.4 组合逻辑电路组合逻辑电路由多个逻辑门组成,它的输出仅依赖于当前的输入信号。

数电知识点总结详细

数电知识点总结详细

数电知识点总结详细一、逻辑门逻辑门是数字电子学的基本单元,它能够根据输入的电信号产生特定的输出信号。

常见的逻辑门有与门、或门、非门、异或门等。

逻辑门的输入和输出都是逻辑电平,通常用0和1表示逻辑低电平和逻辑高电平。

逻辑门可以通过晶体管、集成电路等器件来实现,其原理基于基本的布尔代数。

二、组合逻辑电路组合逻辑电路是由多个逻辑门组成的电路,其输出只依赖于输入信号的组合。

组合逻辑电路没有存储元件,因此输出只在输入信号变化时才会改变。

组合逻辑电路常用于数字系统中的信号处理和转换,比如加法器、减法器、编码器、译码器等。

三、时序逻辑电路时序逻辑电路是由组合逻辑电路和存储元件组成的电路,其输出不仅依赖于输入信号的组合,还依赖于时钟信号。

时序逻辑电路可以实现状态的存储和控制,常用于数字系统中的时序控制和时序处理。

四、数字系统设计数字系统设计是数字电子学的重要内容,它涉及到数字系统的结构、功能和性能的设计和实现。

数字系统设计需要考虑逻辑门、组合逻辑电路、时序逻辑电路、存储元件、时钟信号、计数器、寄存器、状态机等因素,以实现特定的功能和性能要求。

五、应用领域数字电子学在信息技术、通信技术、计算机技术、控制技术等领域有着广泛的应用。

它在数字电路设计、数字信号处理、数值计算、数字通信、数字控制等方面发挥着重要作用。

数字电子学技术的发展也推动了数字产品的不断创新和应用,比如数字电视、数字音频、数字相机、数字手机等。

综上所述,数字电子学是现代电子科学中的重要分支,它研究数字信号的产生、传输、处理和存储。

数字电子学的基本概念包括逻辑门、组合逻辑电路、时序逻辑电路、数字系统设计等,其应用领域涵盖信息技术、通信技术、计算机技术、控制技术等。

通过对数字电子学的学习和应用,可以有效地设计和实现各种数字系统,满足不同领域的需求。

数电部分概念总结

数电部分概念总结

数电部分概念总结第一章1.数制的表示方法以及相互之间的转换:十进制数、二进制数、八进制数和十六进制数2.码制(1)n位有符号二进制数的编码——正数编码的符号位为0、负数编码的符号位为1。

正数的原码、反码、补码相同。

负数原码的数值位等于二进制真值的绝对值。

负数反码的数值位为二进制真值的绝对值各位取反;负数补码的数值位为二进制真值的绝对值各位取反后加1。

(2)二——十进制编码——BCD码是用四位二进制码对十进制数符编码,分为8421BCD、5421BCD、2421BCD等有权码和余三BCD、格雷BCD等无权码。

有权BCD码的码符权值叠加后等于其代表的十进制数符值,无权BCD码的码符没有权值意义。

十进制数用BCD码表示时,各码组的位权仍为10的n次幂,例如,个位组码的位权0为10、十位组码的位权为1 01、百位组码的位权为102、??。

(3)可靠性代码具有易于交错的编码规则——格雷码相邻码组只有一位码符不同,奇偶校验码的校验位反映了信息位中1符个数的奇偶性(校验位与信息位中1符的总个数为奇或偶)。

第二章1.逻辑函数的基本概念和表示方法(真值表、逻辑式、逻辑图、波形图)。

2.逻辑代数的基本定律(德?摩根定律)和常用公式。

3.逻辑代数的对偶规则、反演规则、代入规则。

4.逻辑函数的最小项(包含函数所有变量的与项)和最大项(包含函数所有变量的或项)及其对应的编号mi和Mi。

5.逻辑函数的两种标准形式是标准与或表达式和标准或与表达式。

(1)最小项表达式—标准与或式及最小项和式(用编号表示)。

(2)最大项表达式—标准或与式及最大项积式(用编号表示)(3)函数最小项和式的编号与其最大项积式的编号互补;相同编号的最小项和式与最大项积式互为反函数。

6.一般与或表达式可以通过对与项乘互补缺失变量之和构成最小项表达式。

7.逻辑函数的最简与或表达式是与项最少、与项中变量最少的函数式;最简或与表达式是或项最少、或项中变量最少的函数式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数电部分概念总结第一章1.数制的表示方法以及相互之间的转换:十进制数、二进制数、八进制数和十六进制数2.码制(1)n位有符号二进制数的编码——正数编码的符号位为0、负数编码的符号位为1。

正数的原码、反码、补码相同。

负数原码的数值位等于二进制真值的绝对值。

负数反码的数值位为二进制真值的绝对值各位取反;负数补码的数值位为二进制真值的绝对值各位取反后加1。

(2)二——十进制编码——BCD码是用四位二进制码对十进制数符编码,分为8421BCD、5421BCD、2421BCD等有权码和余三BCD、格雷BCD等无权码。

有权BCD码的码符权值叠加后等于其代表的十进制数符值,无权BCD码的码符没有权值意义。

十进制数用BCD码表示时,各码组的位权仍为10的n次幂,例如,个位组码的位权为100、十位组码的位权为1 01、百位组码的位权为102、……。

(3)可靠性代码具有易于交错的编码规则——格雷码相邻码组只有一位码符不同,奇偶校验码的校验位反映了信息位中1符个数的奇偶性(校验位与信息位中1符的总个数为奇或偶)。

第二章1.逻辑函数的基本概念和表示方法(真值表、逻辑式、逻辑图、波形图)。

2.逻辑代数的基本定律(德•摩根定律)和常用公式。

3.逻辑代数的对偶规则、反演规则、代入规则。

4.逻辑函数的最小项(包含函数所有变量的与项)和最大项(包含函数所有变量的或项)及其对应的编号m i和M i。

5.逻辑函数的两种标准形式是标准与或表达式和标准或与表达式。

(1)最小项表达式—标准与或式及最小项和式(用编号表示)。

(2)最大项表达式—标准或与式及最大项积式(用编号表示)(3)函数最小项和式的编号与其最大项积式的编号互补;相同编号的最小项和式与最大项积式互为反函数。

6.一般与或表达式可以通过对与项乘互补缺失变量之和构成最小项表达式。

7.逻辑函数的最简与或表达式是与项最少、与项中变量最少的函数式;最简或与表达式是或项最少、或项中变量最少的函数式。

8.逻辑函数的化简(1)公式法化简。

(2)卡诺图法化简。

(3)具有无关项的逻辑函数表达式及其化简。

与或表达式及或与表达式表示的逻辑函数的无关项(约束条件)用逻辑等式表示,如SR=0;最小项和式及最大项积式表示的逻辑函数中的无关项用d i表示。

第三章1.TTL逻辑门电路的输入级和输出级都采用三极管。

TTL电路的速度高,输出级采用推挽形式,带负载能力强。

2.CMOS逻辑门是用成对沟道互补(N、P)、开启电压绝对值相同的MOS管组成逻辑门电路。

CMOS电路的工作电源范围宽,静态功耗极小、输出摆幅大,抗干扰能力强。

3.集电极开路(OC)或漏极开路(OD)逻辑门的输出为低电平或高阻状态。

OC(OD)逻辑门可以互相连接并接上拉电阻后实现“线与”功能(并接后的输出函数等于各OC(OD)逻辑门的输出函数相与)。

4.三态(TS )逻辑门具有输出使能控制,使电路的输出有高电平、低电平、高阻三种状态。

5.当三态门的使能无效时,输出为高阻状态;当三态门的使能有效时,输出与输入满足逻辑门的运算功能。

当三态逻辑门的输出并接时,任意时刻只能有一个三态门的使能有效。

6.传输门是控制模拟信号的开关器件,从多路模拟信号中选择一路信号必须采用传输门;而从多路数字信号中选择一路信号可以采用数据选择器、三态门或传输门。

7.TTL 的主要参数。

开门电压U ON (输入高电平的最小值U iHmin )的典型值为2V ,关门电压U OFF (输入低电平的最大值U iLmax )的典型值为0.8V 。

输入端实现高电平的最小接地电阻R ON 的典型值为2k Ω,实现低电平的最大接地电阻R OFF 的典型值为700Ω.第四章1. 组合逻辑电路的输出只受当前的输入信号控制,与电路原来的状态无关,电路中没有反馈通路,不含记忆元件。

典型组合逻辑功能电路有编码器、译码器、数据选择器、数字比较器、并行多位.加法器、只读存储器等。

2. 8线-3线优先编码器(74LS148)输入8个低电平有效的信号,输出优先级别最高的有效输入信号的3位二进制反码。

3.3线-8线译码器74LS138输入3位二进制码,输出8个表示不同输入码组的低电平有效信号。

当使能有效时,3线-8线译码器的各输出是对应输入码变量最小项的反函数。

采用逻辑门综合74LS138的输出可以实现3变量的组合逻辑函数。

4.七段显示译码器输入4位二进制代码,输出7个控制数码显示管段极的信号。

正常显示时,共阴显示管的公共极接低电位,段极信号高电平有效;共阳显示管的公共极接高电位,段极信号低电平有效。

5.数据选择器的逻辑功能是根据n 位选择码的状态从2n 个数据输入中选择一个到输出。

如4选1数据选择器74LS153、8选1数据选择器74LS151。

6.当多位数二进制数相加时,每一位的加运算不仅需要考虑本位的两个加数,还要考虑低位的进位,称为“全加”运算。

全加器实现的是3个一位的二进制数加法运算,输出1位二进制运算和以及1位向高位的进位信号。

7.集成4位加法器74283输入两组4位的二进制数A (A 3~A 0)和B (B 3~B 0)及最低位的进位C 0,输出A 加B 加C 0的和以及最高位的进位C 4。

7.数值比较器7485的功能是对输入的两组4位二进制数A (A 3~A 0)和B (B 3~B 0)进行比较,用三个高电平有效的电平信号F A>B 、F A<B 和F A=B 表示比较结果。

7485可以通过级联输入A>B ,A<B ,A=B 扩展比较数据的位数,当数组A 和B 相等时,每个输出等于相应的级联输入。

8.逻辑函数式中的互补变量是存在竞争条件的变量,该变量变化时可能产生冒险现象。

消除竞争冒险的方法有加选通信号、修改逻辑设计增加冗余项、加滤波电容。

第五章1.双稳态触发器是时序逻辑电路的基本元件。

根据激励功能分为 RS 、D 、JK 、T 和T ’触发器。

触发器的触发方式分为直接触发、电平触发和边沿触发。

直接触发的触发器状态变化只受激励信号控制;电平触发的触发器在使能电平有效时状态随激励功能改变;边沿触发的触发器在CP 脉冲信号的有效边沿时状态随激励功能改变。

2.触发器的特征方程描述了触发条件满足时次态与激励、现态的逻辑关系。

D 触发器的特征方程Q n+1=D ,JK 触发器的特征方程n n n Q K Q J Q +=+1,T 触发器的特征方程nn Q T Q ⊕=+1。

3.计数型触发器的次态方程,1n n Q Q =+计数型触发器具有二分频功能,即输出Q 的频率是CP 频率的一半。

4.主从JK 触发器的一次变化问题是指在时钟信号为高电平期间主触发器状态只能改变一次。

第六章1.时序逻辑电路的输出不仅与当前的输入有关,还与其原来的输出状态有关,具有记忆功能。

电路含有记忆元件(双稳态触发器),电路中有反馈路径。

时序逻辑电路典型功能器件有寄存器、锁存器、计数器、静态随机存储器等。

2. 时序逻辑电路根据电路中触发器的时钟控制方式分为同步和异步两种。

同步时序电路中所有触发器由同一时钟信号控制,触发器的状态变化是同时进行的;异步时序电路中至少有一个触发器的时钟信号源与其他触发器不同,各触发器的次态是在其自身的时钟控制有效时才会产生,电路的状态变化不同步。

3.从电路输出的控制方式分类,时序逻辑电路可分为米利(Mealy)型时序电路和莫尔(Moore)型时序电路。

米利型时序逻辑电路的输出是触发器状态和外部输入控制的组合逻辑函数;莫尔型时序逻辑电路的输出仅受触发器状态控制,与外部输入无关。

4.计数器在数字系统中可以实现对CP 脉冲计数、对CP 信号分频、状态机、定时、延时等功能,移位寄存器在数字系统中可以实现移存型计数、状态机、信号传输方式转换等功能。

5.集成计数器可以利用输出状态控制反馈清零或反馈置数来减少有效状态数。

当计数器的清零或预置控制为异步方式时,产生控制信号的状态为无效状态;当计数器的清零或预置控制方式为同步方式(CP 脉冲必须同时有效)时,产生控制信号的状态为有效效态。

6.集成计数器可以通过级联使有效状态数增加(级联计数器的模相乘)。

7.移存型计数器的状态码周期性循环变化,并且具有移位特性。

移位寄存器采用输出状态控制串行输入可以实现移存型计数器。

第七章1.多谐振荡器没有稳定状态,能够自动产生频率一定的矩形脉冲信号。

2.施密特触发器的输入可以是模拟信号,输出是数字信号。

在输入信号上升达到上触发电平U +时或下降达到下触发电平U -时,输出电平翻转。

施密特触发器能够对输入信号进行幅度整形。

3. 单稳态触发器在输入信号激励下,输出宽度恒定的脉冲信号,可以对输入信号进行宽度整形或实现延时或定时功能。

4. 555定时器有两个模拟量的输入,一个开关量输出和一个放电管的OC 输出。

两个输入分别和两个参考电平U +、U -比较。

当两个输入都高于其比较电平时,输出为低电平、放电管导通;当两个输入都低于其比较电平时,输出为高电平、放电管截止;当输入信号的幅度都在两个参考电平之间时,输出保持原状态。

5. 555定时器的参考电平U +=31U -。

U +可以通过555定时器的CON 端(5脚)外加电压控制,当CON 端(5脚)不加控制电压时,U +等于32的电源电压值。

6. 555定时器构成的单稳态触发器不可重复触发,当电路处于暂稳态时,新输入的触发脉冲无效。

7. 可重复触发的单稳态触发器在电路处于暂稳态时,新的触发脉冲可以使暂稳态过程重新开始,输出脉冲的宽度可以由触发信号控制无限延长。

在输入脉冲周期小于电路的暂稳态时间时,电路不能回到稳态。

第八章1. 随机存储器RAM 采用触发器或电容存储信息,当系统运行时,RAM 能够随时在存储器任意指定的单元中存、取信息,但系统断电后存储信息丢失。

2. 只读存储器ROM 采用可编程或阵列存储信息,系统断电存储器的信息不会丢失。

在系统运行中ROM 只能读出指定单元中的信息但不能修改信息。

3. 存储器的地址码位数n 决定了存储器所含的存储单元的个数N (N =2 n ),即存储器的字数。

存储器数据线的位数m 决定了存储器的字长。

存储器含有的存储元总数称为存储容量M , M = N × m (容量等于字数乘以字长)。

4. 当存储系统的信息字数或字长超过所选存储器的的字数或字长时需要扩展。

扩展需要的存储器数量=扩展后的总存储容量÷单片存储器容量。

5.只读存储器ROM 的电路结构是固定的与阵列和可编程的或阵列。

ROM 的输入是地址码,输出地址码寻访字单元的存储信息(数据)。

6.当ROM 的地址端输入函数变量时,每条字选线是函数变量的一个最小项。

通过对或阵列的编程,每个数据输出是一个组合逻辑函数的最小项表达式。

相关文档
最新文档