多级放大电路的设计与测试
多级放大电路的设计和实验
多级放大电路的设计和实验一、教学目的熟悉两级(或多级)放大电路设计和调试的一般方法。
电压放大倍数的测量,幅频特性的测量方法。
可用计算机辅助设计和仿真。
二、设计指标电压放大倍数A u :≥5000(绝对值) 输入电阻R i :≥1kΩ输出电阻R o :≤3kΩ 通频带宽BW :优于100Hz~1MHz 电源电压V CC :+12V -20V 负载电阻R L :3kΩ输出最大不失真电压:5V (峰峰值) 电路要求:无自激、负反馈任选 三、实验电路及实验结果根据设计要求进行了理论计算,设计电路图如图1:图11、在仿真软件Multisim 2001中绘制电路图,调试后输出波形不失真,放大倍数满足要求,完成表格1。
第一级 第二级 ICUBUCUE IC UBUCUE 1.59mA 2.326V 11.990V1.606V2.519mA3.267V 12.407V2.543V2、各级的电压放大倍数如下表,输出波形如下图: 第一级第二级总电压放大倍数 输入电压 (mVrms) 输出电压 (mVrms) 电压放大倍数 输入电压 (mVrms) 输出电压 (mVrms) 电压放大倍数 0.1418.466608.466653774627各级的输出波形如图2图23、电路的输入输出电阻的测量(1)用输出换算法测量放大器输入电阻R i 选取Rs=1 kΩ,完成表3,利用公式s o2o1o1i R u u u R -=计算输入电阻。
表3 放大器输入电阻R 不接R s 时输出电压 uo1(V rms) 串接R s 时输出电压 u o2(V rms) 输入电阻R i (kΩ) 0.6530.4593.3(2)用开路电压法测量放大器输出电阻Ro选取RL=3 kΩ,完成表4,利用公式L oLooo )1(R u u R -=计算输出电阻。
开路输出电压U oo (V rms)连接负载时电压u oL (V rms)输出电阻R o (kΩ)1.301 0.6532.9774、思考题(1)避免自激振荡的措施主要有哪些?你在电路中是如何避免自激振荡的? (2)你是如何分配各级电路的电压放大倍数的?分配依据是什么? (3)如果引入负反馈,目的是什么?效果如何?。
多级运算电路实验报告(3篇)
第1篇一、实验目的1. 理解多级运算电路的工作原理及特点。
2. 掌握多级运算电路的设计方法。
3. 学习使用电子实验设备,如信号发生器、示波器、数字万用表等。
4. 培养实验操作能力和数据分析能力。
二、实验原理多级运算电路是由多个基本运算电路组成的,通过级联多个基本运算电路,可以实现对信号的放大、滤波、调制、解调等功能。
本实验主要涉及以下几种基本运算电路:1. 反相比例运算电路:该电路可以实现信号的放大或衰减,放大倍数由反馈电阻RF和输入电阻R1的比值决定。
2. 同相比例运算电路:该电路可以实现信号的放大,放大倍数由反馈电阻RF和输入电阻R1的比值决定。
3. 加法运算电路:该电路可以将多个信号相加,输出信号为各输入信号的代数和。
4. 减法运算电路:该电路可以实现信号的相减,输出信号为输入信号之差。
三、实验仪器与设备1. 信号发生器:用于产生实验所需的输入信号。
2. 示波器:用于观察实验过程中信号的变化。
3. 数字万用表:用于测量电路的电压、电流等参数。
4. 电阻、电容、二极管、运放等电子元器件。
5. 电路板、导线、焊接工具等。
四、实验内容与步骤1. 设计并搭建反相比例运算电路,测量并记录放大倍数、输入电阻等参数。
2. 设计并搭建同相比例运算电路,测量并记录放大倍数、输入电阻等参数。
3. 设计并搭建加法运算电路,测量并记录输出信号与输入信号的关系。
4. 设计并搭建减法运算电路,测量并记录输出信号与输入信号的关系。
5. 分析实验数据,验证实验结果是否符合理论计算。
五、实验结果与分析1. 反相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。
分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。
实验结果与理论计算基本一致。
2. 同相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。
分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。
实验结果与理论计算基本一致。
多级放大器电路实训报告
一、实验目的1. 理解多级放大器电路的工作原理与设计方法。
2. 掌握多级放大器电路的搭建与调试技术。
3. 学习分析多级放大器电路的性能指标,如电压放大倍数、输入输出电阻、频率响应等。
4. 熟悉常用放大器电路的耦合方式,如阻容耦合、直接耦合、变压器耦合等。
二、实验原理多级放大器电路是由多个单级放大电路级联而成,主要用于放大微弱信号。
通过级联多个放大电路,可以实现较高的电压放大倍数。
多级放大器电路的搭建与调试主要包括以下几个方面:1. 选择合适的放大器电路,如共射放大电路、共集放大电路、差分放大电路等。
2. 确定各级放大器的耦合方式,如阻容耦合、直接耦合、变压器耦合等。
3. 设计各级放大器的电路参数,如晶体管型号、电阻阻值、电容容值等。
4. 搭建实验电路,并进行调试。
三、实验内容1. 搭建共射放大电路,并进行调试。
(1)电路搭建:选择合适的晶体管(如2SC1815),设计电路参数,搭建共射放大电路。
(2)调试:调整偏置电阻,使晶体管工作在放大区。
通过测量输入输出电压,计算电压放大倍数。
2. 搭建阻容耦合多级放大器电路,并进行调试。
(1)电路搭建:选择合适的晶体管,设计电路参数,搭建阻容耦合多级放大器电路。
(2)调试:调整各级放大器的偏置电阻,使晶体管工作在放大区。
通过测量输入输出电压,计算电压放大倍数。
3. 搭建直接耦合多级放大器电路,并进行调试。
(1)电路搭建:选择合适的晶体管,设计电路参数,搭建直接耦合多级放大器电路。
(2)调试:调整各级放大器的偏置电阻,使晶体管工作在放大区。
通过测量输入输出电压,计算电压放大倍数。
4. 搭建变压器耦合多级放大器电路,并进行调试。
(1)电路搭建:选择合适的晶体管,设计电路参数,搭建变压器耦合多级放大器电路。
(2)调试:调整各级放大器的偏置电阻,使晶体管工作在放大区。
通过测量输入输出电压,计算电压放大倍数。
四、实验结果与分析1. 共射放大电路电压放大倍数:A_v = 40输入电阻:R_i = 1kΩ输出电阻:R_o = 1kΩ2. 阻容耦合多级放大器电压放大倍数:A_v = 200输入电阻:R_i = 10kΩ输出电阻:R_o = 1kΩ3. 直接耦合多级放大器电压放大倍数:A_v = 300输入电阻:R_i = 10kΩ输出电阻:R_o = 1kΩ4. 变压器耦合多级放大器电压放大倍数:A_v = 500输入电阻:R_i = 10kΩ输出电阻:R_o = 1kΩ五、实验总结通过本次实训,我们对多级放大器电路的工作原理、搭建与调试方法有了更深入的了解。
什么是多级放大电路如何设计一个多级放大器
什么是多级放大电路如何设计一个多级放大器多级放大电路是指由多个放大器级联组成的电路,用于提高输入信号的幅度,并有较大增益的电子设备。
在设计一个多级放大器之前,我们需要了解多级放大器的基本原理以及设计要点。
一、多级放大器的原理多级放大器是通过将多个放大器级联连接起来,以便连续放大信号的电压或功率。
它由输入级、中级和输出级组成。
1. 输入级:输入级负责接收输入信号并将其转化为电压或电流信号。
它通常包含一个低噪声放大器,其作用是增加输入信号的幅度,并将它传递给中级放大器。
2. 中级:中级放大器是多级放大器的核心部分,它的作用是增加电压或功率的增益。
中级通常包含多个级别的放大器,其中每个级别都提供一定的增益。
3. 输出级:输出级负责将信号放大到所需的幅度,并驱动负载电阻或其他负载。
输出级通常包含高功率放大器,以确保输出信号具有足够的驱动能力。
二、多级放大器的设计要点在设计一个多级放大器时,需要考虑以下几个要点:1. 增益和带宽:多级放大器的设计目标之一是在实现所需增益的同时保持足够的带宽。
增益与带宽的折衷是设计的关键考虑因素之一。
2. 输入和输出阻抗匹配:为了最大限度地传递信号并减少反射,需要确保输入和输出阻抗与信号源和负载的阻抗相匹配。
3. 稳定性:多级放大器必须具有良好的稳定性,以确保不会出现自激振荡或非线性失真。
这可以通过使用稳定的放大器设计和适当的负反馈技术来实现。
4. 噪声:多级放大器的设计应尽可能减少噪声的引入,并提供清晰的信号放大。
5. 功率供应:多级放大器需要合适的功率供应以保证其正常工作。
供应电压和电流必须满足放大器的工作要求,并且应提供稳定和纹波较小的电源。
三、一个多级放大器的示例设计以下是一个四级放大器的示例设计,以演示多级放大器的设计过程:1. 输入级:- 使用低噪声MOSFET放大器作为输入级,以提供高增益和低噪声。
- 输入级的增益设置为10倍,输入阻抗为50欧姆。
2. 中级:- 选择两个通用增益放大器级别级联,每个级别的增益为5倍。
放大电路多级设计
放大电路多级设计I. 引言放大电路是电子设备中常见的一种电路结构,用于将信号放大以增强其幅度或功率。
在某些应用中,单级放大电路可能无法满足要求,因此需要通过多级放大电路进行设计。
本文将探讨放大电路多级设计的原理和方法,以及其在实际应用中的一些考虑因素。
II. 基本放大电路在开始讨论多级设计之前,我们先回顾一下基本的放大电路。
放大电路通常由放大器、输入电路和输出电路组成。
其中放大器负责将输入信号放大,输入电路负责对输入信号进行预处理,输出电路负责将放大后的信号传递给外部载荷。
III. 多级放大电路设计原理多级放大电路通过将多个放大器级联来实现更高的增益。
每个放大器级别都增加了总体放大电路的增益,并且可以实现更高的带宽。
多级放大电路的设计要考虑以下几个因素:1. 总增益要求:根据具体应用的需求,确定所需的总增益。
随着级数的增加,总增益也会相应增加。
2. 频率响应:多级放大电路的频率响应应该与应用场景的要求相匹配。
因此,在设计过程中要考虑各级放大器的带宽以及相位延迟等参数。
3. 稳定性:在级联放大器时,必须考虑反馈和补偿电路的设计,以确保整个放大电路的稳定性。
IV. 多级放大电路设计方法多级放大电路的设计可以通过以下步骤进行:1. 确定总增益要求:根据应用需求确定所需的总增益。
2. 选择放大器类型:选择适合应用需求的放大器类型,如共射放大器、共基放大器或共集放大器等。
3. 确定各级增益:根据总增益要求和放大器性能参数,计算每个级别的增益。
4. 考虑稳定性:设计反馈和补偿电路以确保整个放大电路的稳定性。
5. 考虑频率响应:根据应用的频率要求,选择适当的带宽和延迟参数。
V. 实际应用考虑因素在实际应用中,多级放大电路的设计还需要考虑以下几个因素:1. 电源供电:选择合适的电源供电电压和容量,以确保放大电路的正常工作。
2. 噪声:多级放大电路的设计要考虑电路内部和外部噪声的影响,并采取相应的措施进行抑制。
3. 温度稳定性:温度对电子元件性能有较大的影响,因此设计中需要考虑温度对放大电路的稳定性的影响,并采取相应的温度补偿措施。
3.16多级放大电路的设计及测试
3.16多级放大电路的设计及测试一、 实验预习与思考设计任务和要求 (1) 基本要求:用给定的三极管2SC1815(NPN ),2SA1015(PNP )设计多级放大器,已知12CC V V =+,12EE V V =-,要求设计差分放大器恒流源的射极电流31~1.5EQ I mA =,第二放大级射极电流42~3EQ I mA =;差分放大器的单端输入单端输出不失真电压增益至少大于10倍,主放大级的不失真电压增益不小于100倍;双端输入电阻大于10K Ω,输出电阻小于10Ω,并保证输入级和输出级的直流电位为零。
给出设计过程,画出设计的电路,并标明参数。
首先设计,第一级的差分放大电路.要使两端串联的电阻值一样.然后集电极的两个电阻的阻值也要差不多.最后为确保发射极上的电阻为无穷大,则需要利用长尾式差分电路,确定其发射极电阻来构成一个电流源.然后设计主放大部分,要使发射极和集电极上的电阻的差值足够大,以使其达到放大100倍的要求,但还要确保阻值的合理性,以使三极管不会处于截止区或者饱和区.最后设计输出级电路.要选用尽可能小的电阻,以确保输出电阻可以足够的小,以达到要求.最后还要注意避免互补输出级出现交越失真的现象.参数:R1=R2=5kΩ,R5=10kΩ,R3=8.87kΩ,R6=R7=10kΩ,C2=1pF,C1=4μF,R12=1Ω,R9=1kΩ,R10=R11=1Ω.二、 实验目的(1) 理解多级直接耦合放大电路的工作原理和设计方法。
(2) 学习并熟悉设计高增益的多级直接耦合放大电路的方法。
(3) 掌握多级放大器的性能指标的测试方法。
(4) 掌握在放大电路中引入负反馈的方法。
三、 实验原理与测量方法直耦式多级放大器的主要设计任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出电压增益足够高的多级放大器,可对小信号进行不失真地放大。
模拟电路 实验六 多级放大器
图4-1 多级放大器 注意:输入端无需加分压器
三、实验内容
1.静态工作点估算及调试 (1)静态工作点测量电路
(2)静态工作点估算
电路给定参数:VCC=+12V、VBE=0.75V、 β =100 、 IC1=1.3 mA 、IC2=4 mA
实验六 多级放大器
---指导书(二) 第16页
一、 实验目的
掌握多级放大器静态工作点Q的调整、 测试方法。
掌握多级放大器的电压放大倍数AVL、 Av∞的测试方法。
掌握多级放大器的输入电阻Ri、输出电 阻Ro的测试方法。
进一步熟悉EWB仿真软件的操作方法及 电路性能指标的测试方法。
二、实验参考电路
――指导书(二)P19页
判断此电路的反馈类型,并分析此反馈对放 大器性能的影响(即对Av、Ri、Ro的响);
已知VCC=+12V,IC1=1.3mA,IC2=4mA, β1=β2=100,分别计算基本放大器及负反馈放 大器的电压放大倍数,输入电阻、输出电阻。
表4-1:
VE1 VB1 VC1 VE2 VB2 VC2 RW1 RW2 (V) (V) (V) (V) (V) (V) (Ω ) (Ω )
估算值 实测值
2.动态参数估算及测量
(1)动态参数估算
电路总放大倍数:
AV
VO2 VI
VO1 VO2 VI VO1
AV 1 AV 2
第二级负载电阻:
R
' L
2
RC 2
// RL
放大电路输入电阻:ri ri1 Rb1 // rbe1
多级放大电路的设计与测试
多级放大电路的设计与测试一、实验目的1.理解多级直接耦合放大电路的工作原理与设计方法2.熟悉并熟悉设计高增益的多级直接耦合放大电路的方法3.掌握多级放大器性能指标的测试方法4.掌握在放大电路中引入负反馈的方法二、实验预习与思考1.多级放大电路的耦合方式有哪些分别有什么特点2.采用直接偶尔方式,每级放大器的工作点会逐渐提高,最终导致电路无法正常工作,如何从电路结构上解决这个问题3.设计任务和要求(1)基本要求用给定的三极管2SC1815(NPN), 2SA1015(PNP)设计多级放大器,已知V C C=+12V, -V EE=-12V,要求设计差分放大器恒流源的射极电流I EQ=1~,第二级放大射极电流I EQ=2~3mA差分放大器的单端输入单端输出不是真电压增益至少大于10 倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10k Q,输出电阻小于10Q,并保证输入级和输出级的直流点位为零。
设计并仿真实现。
三、实验原理直耦式多级放大电路的主要涉及任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出一个电压增益足够高的多级放大器,可对小信号进行不失真的放大。
1. 输入级电路的输入级是采用NPN型晶体管的恒流源式差动放大电路。
差动放大电路在直流放大中零点漂移很小,它常用作多级直流放大电路的前置级,用以放大微笑的直流信号或交流信号。
典型的差动放大电路采用的工作组态是双端输入,双端输出。
放大电路两边对称,两 晶体管型号、特性一致,各对应电阻阻值相同,电路的共模抑制比很高,禾厅抗干扰。
该电路作为多级放大电路的输入级时,采用 V 1单端输入,U oi 的单端输出的工作组^态。
计算静态工作点:差动放大电路的双端是对称的,此处令T 1, T 2的相关射级、集电极电流参数为 I EQ =I EQ =I EQ I CQ =I CQ =I CQo 设 U Bl = L B2~ OV ,则“心-U>n ,算出 丁3 的 I CQ3,即为 2 倍的 I EQ 也等于2倍的 I CQ 。
多级放大电路Multisim
一、功能利用两个共发射极放大电路构成的两级阻容耦合放大电路实现对输入电压的放大功能。
二、性能指标电路的主要性能有电压放大倍数Av、输入电阻Ri、输出电阻Ro、同频带BW三、电路图四、原理分析及理论计算㈠原理分析:将放大电路的前级输出端通过电容接到后级输入端称为阻容耦合方式,上图所示为两级阻容耦合放大电路且两级均为共射放大电路。
由于电容对直流量的阻抗为无穷大,因而阻容耦合放大电路各级之间的直流通路各不相通,各级的静态工作点相互独立,在求解或实际调试Q点时可按单级处理,所以电路的分析与设计和调试简单易行。
而且,只要输入信号频率较高,耦合电容容量较大,前级的输出信号就可以几乎没有衰减的传递到后级输入端,因此在分立件电路中阻容耦合方式得到非常广泛的应用。
由于前后两级电路静态工作点相互独立,接下来将对典型单级阻容耦合放大电路进行分析,对第一级:1、第一级是典型的阻容耦合共射级放大电路,它采用的是分压式电流负反馈偏置电路。
放大器的静态工作点Q主要由Rb1、Rb2、Re、Rc及电源电压所决定。
该电路利用电阻Rb1、Rb2的分压定基级电位Vbq,如果满足条件I1>>Ibq,当温度升高时,Ic q↑→Ve q↑→Vb e ↓→Ib q↓→Ic q↓,结果抑制了Ic q的变化,从而获得稳定的静态工作点。
2、基本关系式只有当I1>>Ibq时,才能保证Vbq恒定。
这是稳定点工作的必要条件,一般取I1=(5~10)Ib q(硅管),I1=(10~20)Ib q(锗管),负反馈越强,电路的稳定性越好。
所以要求Vbq>> Vb e,即Vbq=(5~10)Vb e,一般取Vbq=(5~10)V(硅管),Vbq=(5~10)V(锗管)电路的静态工作点由下列关系式确定R e≈(Vbq- Vb e)/ Ic q= Ve q/ Ic q,对于小信号放大器,一般Ic q=0.5mA到2mA,Veq=(0.2~0.5)VccRb2=Vbq/ I1==【Vbq/(5~10)Ic q】βRb1≈[(Vcc-Vbq)/Vbq]×Rb2Vceq≈Vcc- Ic q(Re+Rc)3、主要性能指标及测试方法①电压放大倍数Av=V o/Vi=-βRl’/rbe 式中Rl’=Rc//Rl ,rbe为晶体管内阻,即Rbe=rb+(1+β)26mV/{Ieq}. mA,测量放大倍数实际是测量放大器的输入电压与输出电压的值。
模电设计多级放大电路实验报告
摘要单级放大电路的电压放大倍数一般可以达到几十倍,然而,在许多场合,这样的放大倍数是不够用的,常需要把若干个单管放大电路串接起来,组成多级放大器,把信号经过多次放大,从而得到所需的放大倍数。
在生产实践中,一些信号需经多级放大才能达到负载的要求。
可由若干个单级放大电路组成的多级放大器来承担这一工作。
在多级放大电路的前面几级,主要用作电压放大,大多采用阻容耦合方式; 在最后的功率输出级中,常采用变压器藕合方式’;在直流放大电路及线性集成电路中,·常采用直接接藕合方式。
摘要 (2)第一章放大电路基础 (3)1.1 放大的概念和放大电路的基本指标:1.2 三种类型的指标第二章基本放大电路 (7)2.1 BJT 的结构 (7)2. 2 BJT的放大原理 (8)第三章多级放大电路 (9)3.1 多级放大电路的耦合方式 (9)3.2 放大电路的静态工作点分析 (11)3.3 设计电路的工作原理 (12)3.4计算参数 .......................................................................................................... .. (13)总结......................................................................................................................... (14)参考文献 ................................................................................................................ (14)第一章放大电路基础放大的概念和放大电路的基本指标:“放大”这个词很普遍,在很多场合都会发现放大的现象的存在。
《多级放大电路》课件
电压放大倍数等于输出电压与输入电压的比值,即A=Uo/Ui。
03
影响因素
影响电压放大倍数的因素包括晶体管的参数、电路元件的参数以及电路
的连接方式等。
输入输出电阻
输入电阻
输入电阻是指多级放大电路对信号源所呈现的电阻,反映 了电路对信号源的负载能力。输入电阻越大,信号源的有 效功率越大,电路的性能越好。
稳定性问题
总结词
稳定性问题是指多级放大电路在工作过程中,由于各种原因导致电路性能的不稳定,出现波形失真、增益下降等 现象。
详细描述
稳定性问题可能是由于电路中元器件的参数变化、温度和湿度等环境因素的影响、电源电压的波动等原因引起的。 解决稳定性问题需要采取一系列措施,如改善电路的散热条件、减小环境因素的影响、稳定电源电压等,以保证 多级放大电路的稳定可靠运行。
音频放大器性能指标
音频放大器的性能指标包括频率响应、失真度、信噪比和输出功率 等。
功率放大器
功率放大器概述
功率放大器是一种将微弱的信号放大到足够大的功率,以驱动负 载的电子设备。
功率放大器电路组成
功率放大器通常由输入级、中间级和输出级等部分组成。
功率放大器性能指标
功率放大器的性能指标包括功率增益、效率、失真度和带宽等。
稳定性
稳定性
稳定性是指多级放大电路在各种工作条件下保持性能稳定的 能力。稳定性是多级放大电路的重要性能指标之一。
影响因素
影响稳定性的因素包括温度、电源电压的变化、晶体管的参 数变化以及电路元件的老化等。为了提高稳定性,可以采用 负反馈、温度补偿、选用性能稳定的晶体管等措施。
03
多级放大电路的设计与实现
带宽原则
根据信号频率范围,选 择合适的元件和电路拓 扑,保证电路具有足够
两级放大电路的设计测试与调试
两级放大电路的设计测试与调试一、实验原理:1、多级放大器的指标的计算:一个三级放大器的通用模型如图所示有模型图可以得到多级放大器的计算特点:Ri=Ri多级放大器的输入电阻等于第一级放大器的输入电阻;Ro=Ro末,多级放大器的输出电阻等于末级放大器的输出电阻;Ri后=Rl前,后级放大器的输入电阻是前级放大器的负载;Ro前=Rs后,V oo前=Vs后,前级放大器的输出电路是后级放大器的信号源;Av=Av1*Av2*Av3,总的电压增益等于各级电压增益相乘。
2、实验电路:(多级放大电路的输出电阻的测试由于multisim没有晶体管毫伏表而改用万用表其中万用表(①)用来测试各个待求脚的电位,万用表(②)用来测试输出电压)二、测试方法:本实验与前面单管放大器的设计输入输出电阻与放大增益的测试是一样的三、实验内容:1测试静态工作点领Vcc=+12V,调节Rw 使放大器的第一级工作点Ve1=1.6V,用数字万用表测量各管脚电压并记录于下表Vb1 Vc1 Ve1 Vb2 Vc2 Ve22.183 8.589 1.573.175 7.773 2.547表(1)静态工作点的测试(单位:伏特)2,放大倍数的测量调整函数发生器,是放大器Ui=5mv,f=1kHz的正弦信号,测量输出电压Uo,计算电压增益填于下表3,输入电阻和输出电阻的测量运用两侧电压法测量量级放大器的输入电阻和输出电阻,测试输入电阻时,在输入口接入取样电阻R=1kΩ。
数据分别填入下表表(2)输入、输出电阻的测量4,测量量级放大器的频率特性,并会出频率特性曲线。
用点频测试法测量两级放大器的频率特性,并求出放大器的带宽△f=f H-f L。
记录相关数据,填于下表,并要求在对数坐标席上绘出放大器的幅频特性曲线。
表(3)幅频特性的测试、图(2.1)输入电阻的测量(万用表测得的是峰峰值电压的有效值实际为7.057/2mv)图(2.b)输入电阻的测量(有效值为6.13/2)由上面两图可得Ri=6620Ω。
bjt多级放大电路设计
bjt多级放大电路设计
设计BJT多级放大电路涉及到选择合适的放大器级数、电阻、电容和电源电压等参数。
在设计多级放大电路时,需要考虑以下几个方面:
1. 放大倍数,确定所需的总放大倍数,根据输入信号的幅度和输出信号的要求来确定。
2. 频率响应,考虑信号的频率范围,选择合适的频带宽度和截止频率,以确保信号在整个频率范围内都能得到放大。
3. 输入输出阻抗匹配,保证前级放大器的输出阻抗与后级放大器的输入阻抗匹配,以避免信号失真和能量损失。
4. 稳定性,考虑反馈电路的设计,以提高电路的稳定性和抑制可能的振荡。
5. 电源稳定性,选择合适的电源电压和电源滤波电路,以确保电路工作时电源的稳定性。
6. 温度稳定性,考虑温度对元器件参数的影响,选择具有较好温度稳定性的元器件。
在设计BJT多级放大电路时,需要根据具体的应用需求和电路参数来进行综合考虑和优化。
同时,还需要进行电路仿真和实际测试,以验证设计的可行性和性能是否符合要求。
最后,根据测试结果对电路进行调整和优化,以达到最佳的放大效果。
实验报告多级放大电路
实验报告多级放大电路引言多级放大电路是电子工程学中非常常见且重要的实验之一。
在本次实验中,我们将设计和搭建一个多级放大电路,然后测试并分析其性能。
多级放大电路在信号处理、音频放大等领域具有广泛的应用。
实验目的1. 学习多级放大电路的基本工作原理。
2. 设计和搭建一个多级放大电路,并测试其信号放大性能。
实验原理多级放大电路是由多个级联的放大器构成的,每个放大器被称为一个放大级。
每个放大级的输出作为下一个放大级的输入,因此输出信号将会经过多次放大。
多级放大电路的基本工作原理如下:1. 输入信号经过第一级放大器放大,得到一级放大信号。
2. 一级放大信号作为输入信号,经过第二级放大器放大,得到二级放大信号。
3. 二级放大信号作为输入信号,经过第三级放大器放大,得到三级放大信号,以此类推。
4. 最后一级的输出信号即为多级放大电路的输出信号。
多级放大电路通常由两种类型的放大器组成:电压放大器和功率放大器。
电压放大器用于放大输入信号的电压大小,而功率放大器用于放大信号的功率。
实验步骤与结果1. 根据实验要求,设计和搭建一个三级放大电路,其中第一级为电压放大器,后两级为功率放大器。
2. 连接实验电路,并检查电路连接是否正确。
3. 输入一个信号,测试多级放大电路的输出信号大小。
4. 使用示波器监测电路的频率、相位等性能指标,并进行记录。
5. 分析实验结果,并与理论计算进行比较。
实验结果显示,多级放大电路能够将输入信号的电压和功率进行相应的放大。
输出信号的大小与输入信号的幅度差异很大,从而实现了对信号的放大处理。
同时,电路的频率和相位表现良好,没有明显的失真或偏移现象。
实验分析与讨论1. 多级放大电路的放大倍数会随着级数的增加而增加,从而达到更大的信号放大效果。
2. 电路中的放大器应具有足够的带宽,以确保输入信号的频率范围能够得到充分的放大。
3. 多级放大电路中放大器的稳定性对于整个电路的性能至关重要,应注意稳定性分析与设计。
电路中的多级放大器设计与分析
电路中的多级放大器设计与分析介绍:电路中的多级放大器是在电子设备中常见的一种电路结构。
多级放大器可以将电信号放大到理想的程度,以满足对信号处理的需求。
本文将探讨多级放大器的设计与分析。
一、多级放大器的原理与结构多级放大器由多个放大级组成,每个放大级都能够将输入信号放大。
多级放大器一般是由级联的增益电路组成,每个级别的增益叠加使得整个电路的增益更大。
二、多级放大器的设计要点1. 选择合适的放大器类型:根据不同的需求可以选择不同类型的放大器。
常见的选择包括共射放大器、共基放大器、共集放大器等。
2. 确定电路增益:在设计多级放大器时,需要考虑整个电路的总增益。
通过计算每个级别的增益以及级联时的增益叠加,可以得到整个电路的总增益。
3. 确定电路稳定性:多级放大器中的每个级别都会引入一定的相移和相位延迟,这可能导致电路不稳定。
设计时需要考虑如何抵消或降低相移和相位延迟的影响,以保持整个电路的稳定性。
三、多级放大器的分析方法1. 构造增益-频率响应曲线:通过优化不同级别的放大电路,可以得到每个级别的增益-频率响应曲线。
通过观察这些曲线,可以找到电路在不同频率下的增益特性,进而对电路进行调整和优化。
2. 频率补偿:多级放大器中的每个级别都可能引入不同的频率衰减。
可以通过添加补偿电路或通过改变元件参数来调整频率响应,以提高整个电路的平坦度。
3. 相位裕度:多级放大器中的相位变化可能导致信号失真或干扰。
在设计和分析过程中,需要探索相位裕度并进行调整,以确保信号的准确传输。
四、多级放大器的应用领域多级放大器广泛应用于各种电子设备中,如音响系统、通信设备和放大器电路等。
其中,音响系统中的前级放大器用于信号处理与放大,而后级放大器则负责驱动扬声器。
结论:多级放大器是电路设计中常见的一种结构,通过合理的设计与分析,可以实现对信号的放大和处理。
掌握多级放大器的设计要点和分析方法,对电子工程师来说是非常重要的。
通过不断探索和优化,可以进一步提高多级放大器的性能,满足不同应用领域的需求。
多级低频电压放大器课程设计
多级低频电压放大器课程设计多级低频电压放大器课程设计作为电子工程专业的学生,学习电路设计是我们必须掌握的一项重要技能。
其中,多级低频电压放大器是电路设计的基础之一。
本文将从课程设计的目标、内容、方法、实验流程及效果等方面进行探讨。
一、设计目标1. 了解电路功能及结构多级低频电压放大器可以将信号放大,其关键在于对信号的处理和传输。
通过设计实验,学生应该了解电路的基本功能和结构,为日后电路设计打下基础。
2. 掌握电路参数测量方法除了掌握基本理论,实验还需要掌握电路参数测量方法。
包括电路工作点、增益、带宽、输出电阻等参数的测量方法。
掌握测量方法,不仅能够对电路的性能进行评估,也能够发现电路的缺陷和问题。
3. 培养实验能力和创新思维除了学习基本理论和技能,课程设计还要求学生具备实验能力和创新思维。
实验过程中,学生需要通过实践来巩固和提高其技术水平,同时要能够对实验结果进行分析和判断,并提出改进措施。
二、设计内容1. 电路设计要求本课程设计所涉及到的多级低频电压放大器,要求具备以下技术指标:(1)电路工作电压:5V;(2)工作电流:<20mA;(3)增益:>100;(4)带宽:10Hz~20kHz;(5)输出电阻:<10kΩ;(6)最大输出电压:3V。
2. 设计步骤(1)选取晶体管型号和参数:本实验采用三极管BFR93A,具有高输入阻抗、高转移比和低噪声等特点。
(2)电路结构设计:选用共射、共集级联的结构,并根据需求进行二极管偏置,电源滤波等设计。
(3)参数计算:根据电路结构和要求,计算各种参数,如工作点稳定电阻、电容选取、负载电阻等。
(4)电路布局设计:布局应尽量规整,保证电源电容与集电电阻的间隔,减少杂散电容对信号的干扰。
(5)PCB设计:利用CAD软件进行电路原理图和PCB板图的绘制,满足电路布局要求。
(6)调试和测试:根据实际电路需要调节工作点、电容和电阻配置,测试电路的性能。
三、设计方法1. 理论学习和模拟仿真在实验前,学生应先学习相关理论知识,并进行仿真试验,以掌握电路工作原理和性能特点。
多级放大电路课程设计报告
多级放大电路课程设计报告一、课程目标知识目标:1. 理解并掌握多级放大电路的基本原理与组成。
2. 学习并识别各种类型的多级放大电路及其特点。
3. 掌握多级放大电路中各个参数的计算与分析方法。
技能目标:1. 能够运用所学知识设计简单的多级放大电路。
2. 能够运用相关测试仪器对多级放大电路进行性能测试与分析。
3. 能够通过计算和仿真软件对多级放大电路进行优化与调试。
情感态度价值观目标:1. 培养学生对电子技术的兴趣和热情,激发他们的探究精神。
2. 培养学生的团队合作意识,提高他们在团队项目中的沟通与协作能力。
3. 增强学生的环保意识,让他们了解并关注电子电路在实际应用中的节能与环保问题。
课程性质分析:本课程属于电子技术领域,以实践性、应用性为主,注重培养学生的动手能力与实际操作技能。
学生特点分析:高中年级学生具备一定的电子技术基础知识,具有较强的求知欲和动手操作能力,但个别学生可能对理论知识掌握不够扎实。
教学要求:1. 结合实际电路案例,帮助学生深入理解多级放大电路的原理与设计方法。
2. 注重理论与实践相结合,提高学生的实际操作能力。
3. 强化团队合作,培养学生的沟通与协作能力。
4. 关注学生在学习过程中的情感态度价值观培养,提升他们的综合素质。
二、教学内容1. 多级放大电路基本原理:介绍多级放大电路的组成、工作原理及其在电子技术中的应用。
- 教材章节:第二章第三节- 内容:放大电路的级联原理、级间耦合方式、频率特性分析。
2. 多级放大电路类型与特点:讲解常用多级放大电路的类型、特点及适用场合。
- 教材章节:第二章第四节- 内容:共射极、共基极、共集电极多级放大电路,差分放大电路。
3. 多级放大电路参数计算与分析:教授多级放大电路中各个参数的计算与分析方法。
- 教材章节:第二章第五节- 内容:电压增益、输入/输出阻抗、频率响应的计算与分析。
4. 多级放大电路设计:学习如何设计简单的多级放大电路。
- 教材章节:第二章第六节- 内容:电路设计步骤、元器件选型、电路仿真与优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多级放大电路的设计与测试
一、实验目的
1.理解多级直接耦合放大电路的工作原理与设计方法
2.熟悉并熟悉设计高增益的多级直接耦合放大电路的方法
3.掌握多级放大器性能指标的测试方法
4.掌握在放大电路中引入负反馈的方法
二、实验预习与思考
1.多级放大电路的耦合方式有哪些分别有什么特点
2.采用直接偶尔方式,每级放大器的工作点会逐渐提高,最终导致电路无法正常工作,如何从电路结构上解决这个问题
3.设计任务和要求
(1)基本要求
用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知V CC=+12V, -V EE=-12V,要求设计差分放大器恒流源的射极电流I EQ3=1~,第二级放大射极电流I EQ4=2~3mA;差分放大器的单端输入单端输出不是真电压增益至少大于10倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10kΩ,输出电阻小于10Ω,并保证输入级和输出级的直流点位为零。
设计并仿真实现。
三、实验原理
直耦式多级放大电路的主要涉及任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出一个电压增益足够高的多级放大器,可对小信号进行不失真的放大。
1.输入级
电路的输入级是采用NPN型晶体管的恒流源式差动放大电路。
差动放大电路在直流放大中零点漂移很小,它常用作多级直流放大电路的前置级,用以放大微笑的直流信号或交流信号。
典型的差动放大电路采用的工作组态是双端输入,双端输出。
放大电路两边对称,两晶体管型号、特性一致,各对应电阻阻值相同,电路的共模抑制比很高,利于抗干扰。
该电路作为多级放大电路的输入级时,采用v i1单端输入,u o1的单端输出的工作组态。
计算静态工作点:差动放大电路的双端是对称的,此处令T 1,T 2的相关射级、集电极电流参数为I EQ1=I EQ2=I EQ ,I CQ1=I CQ2=I CQ 。
设U B1=U B2≈0V ,则U e ≈-U on ,算出T 3的I CQ3,即为2倍的I EQ 也等于2倍的I CQ 。
此处射级采用了工作点稳定电路构成的恒流源电路,此处有个较为简单的确定工作点的方法:
因为I C3≈I E3,所以只要确定了I E3就可以了,而34344
()E EE R E U V U I R R --==, 53356
((V ))E B on CC EE on R U U U V U R R =-=--⋅-+ 采用u i1单端输入,u o1单端输出时的增益11111(//(//22L L c o u i b be be
R R R P u A u R r R r ββ=
==-++) 2.主放大级 本级放大器采用一级PNP 管的共射放大电路。
由于本实验电路是采用直接耦合,各级的工作点互相有影响。
前级的差分放大电路用的是NPN 型晶体管,输出端u o1处的集电极电压U c1已经被抬得较高,同时也是第二级放大级的基极直流电压,如果放大级继续采用NPN 型共射放大电路,则集电极的工作点会被抬得更高,集电极电阻值不好设计,选小了会使放大倍数不够,选大了,则电路可能饱和,电路不能正常放大。
对于这种情况,一般采用互补的管型来设计,也就是说第二级的放大电路用PNP 型晶体管来设计。
这样,当工作在放大状态下,NPN 管的集电极电位高于基极点位,而PNP 管的集电极电位低于基极电位,互相搭配后可以方便地配置前后级的工作点,保证主放大器工作于最佳的工作点上,设计出不失真的最大放大倍数。
采用PNP 型晶体管作为中间主放大级并和差分输入级链接的参考电路,其中T 4为主放大器,其静态工作点U B4、U E4、U C4由P 1、R 7、P 2决定。
差分放大电路和放大电路采用直接耦合,其工作点相互有影响,简单估计方式如下: 447E CC E U V I R =-⋅, 4440.7B E on E U U U U =-=-(硅管),
442C EE C P U V I R =-+⋅
由于41B C U U =,相互影响,具体在调试中要仔细确定。
此电路中放大级输出增益221o c U o b be
u R A u R r β⋅=
=-+ 3.输出级电路
输出级采用互补对称电路,提高输出动态范围,降低输出电阻。
其中T 4就是主放大管,其集电极接的D 1、D 2是为了克服T 5、T 6互补对称的交越失真。
本级电路没有放大倍数。
四、测试方法
用Multisim 仿真实验结果,并使用合适的电路参数以满足性能指标要求。
给出仿真结果。
电路图如图1所示 图1
静态工作点的测量:
测试得到静态工作点I EQ3,I EQ4如图2所示,符合设计要求。
图2 静态工作点测量
输入输出端电压测试:
测试差分放大器单端输入单端输出波形如图3,输入电压为V PP=,输出电压为V PP=得到差分放大器放大倍数大约为倍。
放大倍数符合要求。
图3 低电压下波形图
主放大级输入输出波形如图4
图4 主放大级输入输出波形图
如图所示输入电压为V PP=,输出电压为V PP=放大倍数为117倍。
整个电路输入输出电压测试如图5
图5 多级放大电路输入输出波形图
由图像知输入电压为V PP=,输出电压为V PP=,放大倍数计算得到为1058倍
五、实验结论与心得:
在此电路中利用了差动放大电路,利用PNP管放大级实现主放大电路,利用互补对称输出电路。
可以有效地抑制零点漂移,消除交越失真的影响,设计的多级放大电路,得到放大倍数为1058倍,符合设计要求。
通过这次的仿真,使我对多级放大电路有了深刻地理解,对于差分放大电路有了更深的了解,学习到抑制零点漂移、消除消除交越失真的方法。
丰富了自己的知识。