2019年高一数学上期末模拟试题(及答案)

合集下载

高一上学期数学人教A版(2019)期末模拟测试卷B卷(含解析)

高一上学期数学人教A版(2019)期末模拟测试卷B卷(含解析)

高一上学期数学人教A 版(2019)期末模拟测试卷B 卷【满分:150分】一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列命题为假命题的是( )A.若,则B.若,,则C.若,则D.若,,则2.已知函数( )A.是奇函数,且在上单调递增B.是奇函数,且在上单调递减C.是偶函数,且在上单调递增D.是偶函数,且在上单调递减3.已知集合,集合,若,则实数m 的取值范围是( )A. B.C. D.或4.“”是“幂函数在上是减函数”的一个( )条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要5.函数的图像经过点和点,则的单调递增区间是( )A. B.a b >a c b c+>+0a b >>0c d >>a d b c ->-0a b <<22a ab b >>a b >cd >ac bd>()2xf x =()f x (,)-∞+∞(,)-∞+∞(,)-∞+∞(,)-∞+∞{12}A x x =->{10}B x mx =+<|A B A = 103m m ⎧⎫-≤≤⎨⎬⎩⎭113m m ⎧⎫-≤≤⎨⎬⎩⎭{01}m m ≤≤1|03{m m -≤<01}m <≤1n =()()22333nnf x n n x-=-+⋅()0,+∞()()π2tan 02,02f x x ωϕωϕ⎛⎫=+<≤<< ⎪⎝⎭A ⎛ ⎝π,4B ⎛- ⎝()f x ()πππ,π63k k k ⎛⎫-+∈ ⎪⎝⎭Z ()πππ,π36k k k ⎛⎫-+∈ ⎪⎝⎭ZC. D.6.某种药物需要2个小时才能全部注射进患者的血液中.在注射期间,血液中的药物含量以每小时的速度呈直线上升;注射结束后,血液中的药物含量每小时以的衰减率呈指数衰减.若该药物在病人血液中的含量保持在以上时才有疗效,则该药物对病人有疗效的时长大约为( )(参考数据:,,,)A.2小时B.3小时C.4小时D.5小时7.已知函数,若恒成立,则实数a 的取值范围是( )A. B. C. D.8.设函数,若,则的最小值为( )二、选择题:本题共3小题.每小题6分.共18分.在每小题给出的选项中,有多项符合题目要求全部选对的得6分.部分选对的得部分分,有选错的得0分.9.下列四个结论中,正确的结论是( )A.“所有平行四边形都是菱形”是全称量词命题B.已知集合A ,B 均为实数集R 的子集,且,则C.,有,则实数m 的取值范围是D.“”是“”的充分不必要条件10.已知函数,则( )A.函数的值域为B.点是函数的一个对称中心C.函数在区间上是减函数()ππππ,2623k k k ⎛⎫-+∈ ⎪⎝⎭Z ()ππππ,2326k k k ⎛⎫-+∈ ⎪⎝⎭Z 1000mg 20%1000mg 1.80.20.0552≈ 1.90.20.0470≈ 3.10.80.5007≈ 3.20.80.4897≈()cos 2sin 4f x x a x =+-()0f x ≤⎡-⎣[]5,5-[]5,4-[]4,4-()()ln ln f x x x a b x =-+()0f x ≥55a b +B A ⊆()A B =R R ðx ∀∈R 210x mx -+≥[]22-,13x <<04x ≤≤()cos sin f x x x =-()f x ⎡⎣π,04⎛⎫⎪⎝⎭()f x ()f x π5π,44⎡⎤⎢⎥⎣⎦D.若函数在区间11.已知函数A.B.,且,恒有C.函数在上的取值范围为D.,恒有成立的充分不必要条件是三、填空题:本题共3小题,每小题5分,共15分.12.已知函数是定义域为R ,图像恒过点,对于R 上任意,则关于x 的不等式的解集为______.13.已知函数的定义域为,则函数14.已知幂函数,则a 的取值范围是______________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或者演算步骤.15.(13分)已知幂函数是奇函数.(1)求的解析式;(2)若不等式成立,求a 的取值范围.16.(15分)已知函数.(1)当时,求函数的零点;(2)若函数为偶函数,求a 的值;(3)当时,若关于x 的不等式在时恒成立,求的取值范围.17.(15分)已知函数(其中,)的最小正周期是,点()f x [,a a -()f x m =1m =-12,x x ∀∈R 12x x ≠()()()12120x x f x f x -->⎡⎤⎣⎦()f x [2,1)-31,53⎛⎤- ⎥⎝⎦x ∀∈R ()2(21)2f x f ax x -<-6a >()f x ()0,21x x <1>-()2112f x x +<-()f x ()1,3()g x =1 ()f x x ⎛= ⎝()()182f a f a -<-()()2133m f x m m x -=--()f x ()()11233m m a a a ---<-()()33x xf x a a -=⋅-∈R 1a =()f x ()f x 1a =()99140x xf x λ----≤()0,x ∈+∞λ()2tan()f x x ωϕ=+0ω>0πϕ<<2π是函数图象的一个对称中心.(1)求的解析式;(2)求的单调区间;(3)求函数在区间上的取值范围.18.(17分)已知函数.(1)求的定义域及单调区间.(2)求的最大值,并求出取得最大值时x 的值.(3)设函数,若不等式在上恒成立,求实数a 的取值范围.19.(17分)已知函数为奇函数,且(1)求的解析式与单调递减区间;(2)将函数得到函数的图象,当时,求方程的所有根的和.(π,0)P()f x ()f x ()f x ()f x π0,3⎛⎤⎥⎝⎦44()log (1)log (3)f x x x =++-()f x ()f x 4()log [(2)4]g x a x =++()()f x x ≤(0,3)x ∈()2()2sin 1(0,0 )2x f x x ωϕωϕωϕ+⎛⎫=++-><<π ⎪⎝⎭(f x ()f x (f x ()y g x =0,2x ⎡π⎤∈⎢⎥⎣⎦()22()30g x x +-=答案以及解析1.答案:D解析:对于A :若,则,故选项A 正确;对于B :若,,则,所以,故选项B 正确;对于C :将两边同时乘以a 可得:,将两边同时乘以b 可得,所以,故选项C 正确;对于D :取,,,,满足,,但,,不满足,故选项D 不正确;所以选项D 是假命题,故选:D.2.答案:A解析:函数,可得为奇函数,函数和上都单调递增,可得单调递增,故选A 3.答案:B解析:因为,所以或,解得或,即或.因为.当由可得4.答案:A解析:由题意,当时,在上是减函数,故充分性成立;若幂函数在上是减函数,则,解得或,故必要性不成立.因此“”是“幂函数在上是减函数”的一个充分不必要条件.故选:A.2()f x x -=()223()33n nf x n n x-=-+⋅2233130n n n n ⎧-+=⎨-<⎩a b >a c b c +>+0a b >>0c d >>d c ->-a d b c ->-0a b <<2a ab >0a b <<2ab b >22a ab b >>3a =1b =-2c =-3d =-a b >c d >6ac =-3bd =ac bd >()2xf x =-11()2222x xx xf x ---=-=-=12()2x xf x ⎛⎫--=- ⎪⎝⎭()f x 2xy =y =,)-∞+∞()f x |1|2x ->12x ->12x -<-3x >1x <-{3A x x =>∣1}x <-10x +<⇒<B ⊆≤B ⊆131n =(0,)+∞(0,)+∞1n =2n =1n =()223()33n nf x n n x -=-+⋅(0,)+∞5.答案:D解析:依题意,,且因为,得,因为,所以时,得,则.由,所以的单调递增区间是.故选D.7.答案:B解析:依题意,恒成立,即令,设,则恒成立,所以,解得,所以实数a 的取值范围是.故选:B 8.答案:D解析:因为,若,则对任意的,,则当时,,不合乎题意;若时,当时,,,此时,,不合乎题意;若,则当2tan ϕ=π2tan 4ωϕ⎛⎫+=- ⎪⎝⎭ϕ=π4ωϕ⎛⎫+= ⎪⎝⎭0ϕ<<=ππtan 46ω⎛⎫+=⎪⎝⎭ππ()63k k +==-∈Z 42()k k ω=-∈Z 02ω<≤1k =2ω=π()2tan 26f x x ⎛⎫=+ ⎪⎝⎭ππππ2π()262k x k k -<+<+∈Z πππ()326k x k <<+∈Z ()f x ππππ,()2326k k k ⎛⎫-+∈ ⎪⎝⎭Z ()2cos 2sin 412sin sin 4f x x a x x a x =+-=-+-22sin sin 30x a x =-+-≤22sin sin 30x a x -+≥[]sin 1,1t x =∈-()()22311g t t at t =-+-≤≤()0g t ≥()()222113021130a a ⎧⨯--⨯-+≥⎪⎨⨯-⨯+≥⎪⎩55a -≤≤[]5,5-()()()ln ln ln f x x x ab x x a b x =-+=--0a b +≤0x >0x a b -->01x <<()()ln 0f x x a b x =--<01a b <+<1a b x +<<0x a b -->ln 0x <()()ln 0f x x a b x =--<1a b +>时,,,此时,,不合乎题意.所以,,此时,,则,当时,,,此时,;当时,,,此时,.所以,对任意的,,合乎题意,由基本不等式可得时,即当故的最小值为9.答案:ACD解析:对于A ,因为命题中含有量词“所有”,故该命题为全称量词命题,故A 符合题意;对于B ,如图设全集,集合A ,集合B 如图所示,根据运算得,故B 不符合题意;对于C ,,有成立,则,解得,故C 符合题意;对于D ,满足的数一定满足,所以充分性满足,而满足的数不一定满足,所以必要性不满足,即“”是“”的充分不必要条件,故D 符合题意.故选:ACD.10.答案:ABD解析:因为.对于A 选项,函数的值域为,A 对;对于B 选项,,故点是函数的一个对称中心,B 对;,故函数在区间上不单调,C 错;1x a b <<+0x a b --<ln 0x >()()ln 0f x x a b x =--<1a b +=()()1ln f x x x =-()10f =01x <<10x -<ln 0x <()()1ln 0f x x x =->1x >10x ->ln 0x >()()1ln 0f x x x =->0x >()()1ln 0f x x x =-≥55a b +≥==1a b a b =+=a b ==55a b +U =R ()A B ≠R R ðx ∀∈R 210x mx -+≥240m ∆=-≤22m -≤≤13x <<04x ≤≤04x ≤≤13x <<13x <<04x ≤≤()πcos sin 4f x x x x ⎛⎫=-=- ⎪⎝⎭()f x ⎡⎣π004f ⎛⎫== ⎪⎝⎭ π,04⎛⎫⎪⎝⎭()f x x ≤≤ππ4x ≤-≤()f x π5π,44⎡⎤⎢⎥⎣⎦对于D 选项,由题意且函数在上为减函数,当时,,所以,,则ABD.11.答案:ABD解析:函数是奇函数,所以,解得,代入验证可知,所以,故A 正确;在R 上单调递增且,函数上单调递增,所以函数在R 上单调递增,则,且,恒有,故B 正确;因为在上单调递增,在上的取值范围为,故C 错误;若,恒有成立,则,则的解集为R ,当时,,解得时,要使得解集为R ,则有解得,综上,若,恒有成立,则,因此其成立的充分不必要条件可以是,故D 正确.故选ABD.12.答案:0a >()f x [],a a -a x a -≤≤ππ44a x a --≤-≤πππ,444a a ⎡⎤∈---⎢⎥⎣⎦ππππ,,4422a a ⎡⎤⎡⎤---⊆-⎢⎥⎢⎥⎣⎦⎣⎦π4ππ420a a a ⎧--≥⎪⎪⎪-≤⎨⎪>⎪⎪⎩a <≤()f x m =+()f x 2(0)102f m m =+=+=1m =-()f x ()()f x f x =--1m =-()1221222()11121212121xx x x x f x ++-=-+=-+=-+-=+++21x=+1t >y =)+∞()f x 12,x x ∀∈R 12x x ≠()()()12120x x f x f x -->⎡⎤⎣⎦()f x [2,1)-(2)f -=(1)f =()f x [2,1)-31,53⎡⎫-⎪⎢⎣⎭x ∀∈R ()2(21)2f x f ax x -<-2212x ax x -<-2410ax x -+>0a =410x -+>x <0≠20,(4)40,a a >⎧⎨∆=--<⎩4a >x ∀∈R ()2(21)2f x f ax x -<-4a >6a >1,2⎛⎫-∞- ⎪⎝⎭解析:因为,即,即在上单调递增,又,所以.由,即.所以答案为:13.答案:解析:因为的定义域为,所以满足,又函数,所以函数,故答案为:14.答案:解析:由幂函数的定义域为,且是递减函数,因为,可得,解得,即实数a 的取值范围为.故答案为:.15.答案:(1)(2)解析:(1)因为是幂函数,所以,即,所以,解得或.当时,,此时,所以是奇函数,则符合题意;1x x <1>-⇒()()()1212f x f x x x -<--()()1122f x x f x x +<+()()g x f x x =+(),-∞+∞()02f =()()0002g f =+=()2112f x x +<-⇒()()21212f x x +++<()()210g x g +<210x +<⇒x <1,2⎛⎫-∞- ⎪⎝⎭()5,6()f x ()1,3()3f x -13346x x <-<⇒<<()g x =505x ->⇒>()g x =()5,6()5,6(3,4)1101()f x x x ⎛⎫=== ⎪⎝⎭()f x (0,)+∞()()182f a f a -<-18210820a a a a ->-⎧⎪->⎨⎪->⎩34a <<(3,4)(3,4)()3f x x=()(),13,-∞+∞ ()f x 2331m m --=2340m m --=()()410m m -+=4m =1m =-4m =()3f x x =()()3f x x f x -=-=-()f x 4m =当时,,此时,所以是偶函数,则不符合题意.故.(2)由(1)可知,所以不等式,即不等式,因为为增函数,所以,即,所以,解得或,即a 的取值范围是.16.答案:(1)当时,函数的零点为0(2)(3)的取值范围是解析:(1)当时,,令,解得,所以当时,函数的零点为0.(2)因为函数为偶函数,所以,即,所以,又不恒为0,所以,即.(3)当时,,因为关于x 的不等式在时恒成立,所以又因为,当且仅当时等号成立,所以,即的取值范围是.1m =-()2f xx -=()()2f x x f x --==()f x 1m =-()3f x x =4m =()()11233m m a a a ---<-()()33233a a a -<-3y x =233a a a -<-2430a a -+>()()130a a -->3a >1a <()(),13,-∞+∞ 1a =()f x 1a =-λ(],8-∞1a =()33x xf x -=-()330x xf x -=-=0x =1a =()f x ()f x ()()f x f x -=3333x x x x a a --⋅-=⋅-()()1330x xa -+-=33x x --10a +=1a =-0x >()330x xf x -=->()99140x xf x λ----≤()0,x ∈+∞()233169914333333x xx xx x x x x xλ------+++≤==---1633833x x x x---+≥=-33x x--=)3log 2=+8λ≤λ(],8-∞17.答案:(1)(2)增区间是,,无减区间(3)解析:(1)由于的最小正周期为,,即,由于点是函数图象的一个对称中心,,则.由于,所以.(2)由,解得,,所以的增区间是,,无减区间.(3)因为,所以函数在区间上的取值范围为.18.答案:(1)的单调增区间为,单调减区间为(2)的最大值为1,此时x 的值为1(3)解析:(1)根据具体函数定义域的求解方法,根据题意可得解得所以函数的定义域为;1π()2tan 22f x x ⎛⎫=+ ⎪⎝⎭(2π2π,2π)k k -k ∈Z (,-∞-()f x 2π2π=ω=1()2tan 2f x x ϕ⎛⎫=+ ⎪⎝⎭(π,0)P ()f x ϕ+=∈Z π2k ϕ=∈Z 0πϕ<<ϕ=1π()2tan 22f x x ⎛⎫=+ ⎪⎝⎭π1πππ222k x k -<+<∈Z 2π2π2πk x k -<<k ∈Z ()f x (2π2π,2π)k k -k ∈Z π0,3x ⎛∈ ⎝ππ2π,223x ⎛⎤+∈ ⎥⎝⎦()f x π0,3⎛⎤ ⎥⎝⎦(,-∞-()f x ()1,1-()1,3()f x [)2,-+∞1030x x +>⎧⎨->⎩13x -<<()f x ()1,3-令,则函数在单调递增,在上单调递减又函数在定义域上单调递增,根据复合函数单调性“同增异减”的规则函数的单调增区间为,单调减区间为.(2)由(1)中所得单调性可知,时,取得最大值故的最大值为1,此时x 的值为1.(3)根据题意得,在上恒成立,在 上恒成立,即在上恒成立即在上恒成立,令,则,即a 的取值范围为.19.答案:(1),递减区间为,;解析:(1)由题意,的最小正周期为,即可得,又,,又,()()()()2444log 1log 3log 14f x x x x ⎡⎤=++-=--+⎣⎦()()214t x x =--+()t x ()1,1-()1,34log y t =()f x ()1,1-()1,31x =()f x ()()11max f x f ==()f x ()()0f x g x -≤()0,3x ∈1≤()0,3x ∈210x ax ++≤()0,3x ∈1a x x ⎛⎫≥-+ ⎪⎝⎭()0,3x ∈()1(03)h x x x x ⎛⎫=-+<< ⎪⎝⎭()2max h x =-2a ∴≥-[)2,-+∞()2sin 2f x x =3,44k k ππ⎡⎤+π+π⎢⎥⎣⎦k ∈Z 2())2sin 12x f x x ωϕωϕ+⎛⎫=++- ⎪⎝⎭)cos()2sin 6x x x ωϕωϕωϕπ⎛⎫=+-+=+- ⎪⎝⎭ (f x ∴()f x T =π2ω=(f x k =πk ∈Z 0<()2sin 2f x x =函数的递减区间为,(2)将函数的图象,,得到函数的图象,又,则即令时,,画出的图象如图所示:,,关于,,,上有两个不同的根,,,又3222,2k x k k π≤≤+ππ+∈Z 3,4k x k k ππ≤≤+π∈Z ∴()f x 3,44k k ππ⎡⎤+π+π⎢⎥⎣⎦k ∈Z (f x 2sin 23y x π⎛⎫=- ⎪⎝⎭()2sin 43y g x x π⎛⎫==- ⎪⎝⎭()22()30g x x +-=()g x =()g x =sin 43x ⎛⎫-= ⎪⎝⎭π43x ⎛⎫= ⎪⎝⎭π-4z x =0,2⎡π⎤∈⎢⎥⎣⎦54,333z x πππ⎡⎤=-∈-⎢⎥⎣⎦sin y z =sin z =12z z =12z z +=πsin z =3z =44π3z =55π3z =sin 43x π⎛⎫-= ⎪⎝⎭0,2⎤⎥⎦π1x 2x 124433x x ππ-+-=π12x x ∴+=sin 43x ⎛⎫-= ⎪⎝⎭π所以方程在()22()30g x x +-=0,2x π⎡⎤∈⎢⎥⎣⎦。

2019-2020学年人教A版天津市部分区高一上学期期末数学试卷及答案 (解析版)

2019-2020学年人教A版天津市部分区高一上学期期末数学试卷及答案 (解析版)

2019-2020学年高一上学期期末数学试卷一、选择题1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8} 2.下列函数中既是奇函数,又在R上单调递增的是()A.B.y=sin x C.y=x3D.y=lnx3.函数f(x)=lnx+x﹣3的零点所在区间为()A.(4,5)B.(1,2)C.(2,3)D.(3,4)4.在平面直角坐标系中,若角α以x轴的非负半轴为始边,且终边过点,则sinα的值为()A.B.C.D.5.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.c>b>a B.b>c>a C.a>b>c D.b>a>c6.为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位7.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若,则不等式f(2x﹣1)<0的解集为()A.B.C.D.8.若α、β都是锐角,且sinα=,cos(α+β)=﹣,则sinβ的值是()A.B.C.D.9.下列命题正确的是()A.命题“∃x∈R,使得2x<x2”的否定是“∃x∈R,使得2x≥x2”B.若a>b,c<0,则C.若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则k≤2D.“x>3”是“x2﹣5x+6>0”的充分不必要条件10.已知函数在区间上单调递增,且存在唯一使得f(x0)=1,则ω的取值范围为()A.B.C.D.二、填空题11.幂函数f(x)的图象经过(2,4),则f(3)=.12.函数的定义域为.13.已知lga+lg(2b)=1,则a+b的最小值是.14.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100ml 血液中酒精含量达到20〜79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,那么他至少要经过t小时后才可以驾驶机动车.则整数t的值为(参考数据:lg2≈0.30,lg3≈0.48)三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤. 15.设集合A={x|x2﹣x﹣6>0},B={x|﹣4<3x﹣7<8}.(1)求A∪B,A∩B;(2)已知集合C={x|a<x<2a+1},若C⊆B,求实数a的取值范围.16.已知函数.(1)在给出的直角坐标系中,画出y=f(x)的大致图象;(2)根据图象写出f(x)的单调区间;(3)根据图象写出不等式f(x)>0的解集.17.已知sinα=,α∈(,π),cosβ=,β∈(0,).(1)求cos(α﹣β)的值;(2)求tan(2β+)的值.18.已知函数.(1)判断f(x)的单调性,并用函数单调性的定义证明;(2)判断f(x)的奇偶性,并说明理由.19.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值;(3)若关于x的不等式mf(x)+3m≥f(x)在R上恒成立,求实数m的取值范围.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.第I卷(选择题共40分)1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8} 【分析】由全集U及B,求出B的补集,找出A与B补集的交集即可;解:∵全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},∴∁U B={2,5,8},则A∩∁U B={2,5}.故选:A.2.下列函数中既是奇函数,又在R上单调递增的是()A.B.y=sin x C.y=x3D.y=lnx【分析】分别判断函数的奇偶性和单调性即可.解:A.f(x)是奇函数,在定义域(﹣∞,0)∪(0,+∞)上不单调,不满足条件.B.f(x)是奇函数,则R上不是单调函数,不满足条件.C.f(x)是奇函数,在R上是增函数,满足条件.D.函数的定义域为(0,+∞),为非奇非偶函数,不满足条件.故选:C.3.函数f(x)=lnx+x﹣3的零点所在区间为()A.(4,5)B.(1,2)C.(2,3)D.(3,4)【分析】根据对数函数单调性和函数单调性的运算法则,可得f(x)=lnx+x﹣3在(0,+∞)上是增函数,再通过计算f(1)、f(2)、f(3)的值,发现f(2)•f(3)<0,即可得到零点所在区间.解:∵f(x)=lnx+x﹣3在(0,+∞)上是增函数f(1)=﹣2<0,f(2)=ln2﹣1<0,f(3)=ln3>0∴f(2)•f(3)<0,根据零点存在性定理,可得函数f(x)=lnx+x﹣3的零点所在区间为(2,3)故选:C.4.在平面直角坐标系中,若角α以x轴的非负半轴为始边,且终边过点,则sinα的值为()A.B.C.D.【分析】利用三角函数定义直接求解.解:在平面直角坐标系中,角α以x轴的非负半轴为始边,且终边过点,∴,r==1,∴sinα==.故选:D.5.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.c>b>a B.b>c>a C.a>b>c D.b>a>c【分析】利用指数与对数函数的单调性即可得出.解:∵a=log20.3<0,b=20.3>1,0<c=0.30.2<1,∴b>c>a.故选:B.6.为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【分析】由函数y=A sin(ωx+φ)的图象变换规律,可得结论.解:∵y=sin(2x﹣)=sin[2(x﹣)],∴将函数y=sin2x的图象上所有的点向右平移个单位,即可得到函数y=sin(2x﹣)的图象.故选:C.7.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若,则不等式f(2x﹣1)<0的解集为()A.B.C.D.【分析】根据函数的奇偶性和单调性的性质将不等式进行转化求解即可.解:∵f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,∴若,则不等式f(2x﹣1)<0等价为f(|2x﹣1|)<f(),即|2x﹣1|<,即﹣<2x﹣1<,得<x<,即不等式的解集为(,),故选:A.8.若α、β都是锐角,且sinα=,cos(α+β)=﹣,则sinβ的值是()A.B.C.D.【分析】利用同角三角函数间的关系式的应用,可求得sin(α+β)与cosα的值,再利用两角差的正弦函数,可求得sinβ=sin[(α+β)﹣α]的值.解:∵cos(α+β)=﹣,α、β都是锐角,∴sin(α+β)==;又sinα=,∴cosα==,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=×﹣(﹣)×=.故选:A.9.下列命题正确的是()A.命题“∃x∈R,使得2x<x2”的否定是“∃x∈R,使得2x≥x2”B.若a>b,c<0,则C.若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则k≤2D.“x>3”是“x2﹣5x+6>0”的充分不必要条件【分析】A由命题的否命题,既要对条件否定,也要对结论否定,注意否定形式,可判断;B由条件,注意举反例,即可判断;C由二次函数的图象,即可判断;D先求出不等式x2﹣5x+6>0的解集,再由充分必要条件的定义,即可判断.解:对于A,命题“∃x∈R,使得2x<x2”的否定是“∀x∈R,使得2x≥x2”,故A错误;对于B,由条件知,比如a=2,b=﹣3,c=﹣1,则=﹣<=,故B错误;对于C,若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则≤1或≥4,故k≤2或k≥8,故C错误;对于D,x2﹣5x+6>0的解集为{x|x<2或x>3},故“x>3”是“x2﹣5x+6>0”的充分不必要条件,正确.故选:D.10.已知函数在区间上单调递增,且存在唯一使得f(x0)=1,则ω的取值范围为()A.B.C.D.【分析】由函数f(x)在[﹣,]上单调递增求出0<ω≤,再由存在唯一使得f(x0)=1求出≤ω<3;由此求得ω的取值范围.解:由于函数f(x)=sin(ωx+)(ω>0)在[﹣,]上单调递增;x∈[﹣,],ωx+∈[﹣ω+,ω+],﹣≤﹣ω+且ω+≤,解得ω≤且ω≤,所以0<ω≤;又存在唯一使得f(x0)=1,即x∈[0,]时,ωx+∈[,ω+];所以≤ω+<,解得≤ω<3;综上知,ω的取值范围是[,].故选:B.二、填空题:本大题共4小题,每小题4分,共20分.11.幂函数f(x)的图象经过(2,4),则f(3)=9 .【分析】设幂函数f(x)=x a,由幂函数f(x)的图象经过(2,4),解得f(x)的解析式,由此能求出f(3).解:设幂函数f(x)=x a,∵幂函数f(x)的图象经过(2,4),∴2a=4,解得a=2,∴f(x)=x2,∴f(3)=32=9.故答案为:9.12.函数的定义域为(﹣1,4).【分析】由分母中根式内部的代数式大于0且对数式的真数大于0联立不等式组求解.解:由,得﹣1<x<4.∴函数的定义域为(﹣1,4).故答案为:(﹣1,4).13.已知lga+lg(2b)=1,则a+b的最小值是2.【分析】利用对数运算性质可得ab,再利用基本不等式的性质即可得出.解:∵lga+lg(2b)=1,∴2ab=10,即ab=5.a,b>0.则a+b≥2=2,当且仅当a=b=时取等号.因此:a+b的最小值是2.故答案为:2.14.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100ml 血液中酒精含量达到20〜79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,那么他至少要经过t小时后才可以驾驶机动车.则整数t的值为 5 (参考数据:lg2≈0.30,lg3≈0.48)【分析】100ml血液中酒精含量达到60ml,由题意得则60(1﹣20%)t<20由此利用对数的性质能求出整数t的值.解:某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,则100ml血液中酒精含量达到60ml,在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,他至少要经过t小时后才可以驾驶机动车.则60(1﹣20%)t<20,∴0.8t<,∴t>=﹣=﹣=≈=4.8.∴整数t的值为5.故答案为:5.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤. 15.设集合A={x|x2﹣x﹣6>0},B={x|﹣4<3x﹣7<8}.(1)求A∪B,A∩B;(2)已知集合C={x|a<x<2a+1},若C⊆B,求实数a的取值范围.【分析】(1)求出集合A,B,由此能求出A∪B,A∩B.(2)当C=∅时,a≥2a+1,a≤﹣1,当C≠∅时,,由此能求出实数a的取值范围.解:(1)∵集合A={x|x2﹣x﹣6>0}={x|x>3或x<﹣2},B={x|﹣4<3x﹣7<8}={x|1<x<5},∴A∪B={x|x<﹣2或x>1},A∩B={x|3<x<5}.(2)∵集合C={x|a<x<2a+1},C⊆B,∴当C=∅时,a≥2a+1,a≤﹣1,当C≠∅时,,解得1≤a≤2,综上,实数a的取值范围是(﹣∞,﹣1]∪[1,2].16.已知函数.(1)在给出的直角坐标系中,画出y=f(x)的大致图象;(2)根据图象写出f(x)的单调区间;(3)根据图象写出不等式f(x)>0的解集.【分析】根据各段函数的解析式作图即可解:(1)如图,(2)由图可知f(x)的单调递增区间为(﹣∞,﹣2),(0,1);单调递减区间为(﹣2,0),(1,+∞);(3)由图可知f(x)>0时,x∈(﹣4,﹣1).17.已知sinα=,α∈(,π),cosβ=,β∈(0,).(1)求cos(α﹣β)的值;(2)求tan(2β+)的值.【分析】(1)由题意利用同角三角函数的基本关系,两角差的余弦公式,求得结果.(2)由题意利用同角三角函数的基本关系,两角和的正切公式,求得结果.解:(1)∵已知sinα=,α∈(,π),∴cosα=﹣=﹣.∵cosβ=,β∈(0,),∴sinβ==,∵cos(α﹣β)=cosαcosβ+sinαsinβ=﹣•+•==﹣.(2)由以上可得tanβ==2,∴tan2β===﹣,tan(2β+)===﹣.18.已知函数.(1)判断f(x)的单调性,并用函数单调性的定义证明;(2)判断f(x)的奇偶性,并说明理由.【分析】(1)根据函数单调性的定义进行证明即可;(2)根据函数奇偶性的定义进行证明即可.解:(1)函数的定义域为R,设x1<x2,则f(x1)﹣f(x2)=﹣﹣+=﹣==,∵x1<x2,∴<,则﹣<0,即f(x1)﹣f(x2)<0,则f(x1)<f(x2),即函数f(x)为增函数.(2)f(x)==,则f(﹣x)===﹣f(x),即f(x)是奇函数.19.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值;(3)若关于x的不等式mf(x)+3m≥f(x)在R上恒成立,求实数m的取值范围.【分析】(1)根据f(x)=sin(2x﹣)可求最小正周期;(2)利用x∈以及正弦函数单调区间即可求出最大最小值;(3)令t=sin(2x﹣),将不等式化成m≥=1﹣对∀t∈[﹣1,1]恒成立,即可求出m取值范围.解:f(x)=sin2x﹣cos2x=2sin(2x﹣),(1)T==π,即f(x)的最小正周期为π;(2)当x∈时,则2x﹣∈[﹣,π],sin(2x﹣)∈[﹣,1],所以f(x)∈[﹣,2],即f(x)最大值为2,最小值为﹣;(3)mf(x)+3m≥f(x)即2m sin(2x﹣)+3m≥2sin(2x﹣),令t=f(x)=sin(2x﹣),则t∈[﹣1,1],所以2t+3∈[1,5]根据题意得2mt+3m≥2t对∀t∈[﹣1,1]恒成立,即有m≥=1﹣对∀t∈[﹣1,1]恒成立,因为1﹣最大为1﹣=,所以m≥.。

2019年洛阳市高一数学上期末试卷(带答案)

2019年洛阳市高一数学上期末试卷(带答案)

2019年洛阳市高一数学上期末试卷(带答案)一、选择题1.已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 A .-2B .2C .-98D .982.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭3.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<4.若函数*12*log (1),()3,x x x N f x x N⎧+∈⎪=⎨⎪∉⎩,则((0))f f =( ) A .0B .-1C .13D .15.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6 B .1.7C .1.8D .1.96.函数y =的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)7.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f xf x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C .(D .)28.若函数y a >0,a ≠1)的定义域和值域都是[0,1],则log a56+log a 485=( )A .1B .2C .3D .49.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .510.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U P Q ⋃ð= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}11.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .1112.若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( ) A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-二、填空题13.已知函数()()22,03,0x x f x x x ⎧+≤⎪=⎨->⎪⎩,则关于x 的方程()()()()200,3f af x a x -=∈的所有实数根的和为_______. 14.若155325a b c ===,则111a b c+-=__________. 15.已知log log log 22a a ax yx y +-=,则x y的值为_________________. 16.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.17.若函数cos ()2||x f x x x =++,则11(lg 2)lg (lg 5)lg 25f f f f ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭______. 18.某食品的保鲜时间y (单位:小时)与储存温度x (单位:)满足函数关系(为自然对数的底数,k 、b 为常数).若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是 小时.19.已知函数222y x x -=+,[]1,x m ∈-.若该函数的值域为[]1,10,则m =________.20.已知sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <>则1111()()66f f -+为_____三、解答题21.某种商品的销售价格会因诸多因素而上下浮动,经过调研得知:2019年9月份第x(130x ≤≤,x +∈N )天的单件销售价格(单位:元20,115()50,1530x x f x x x +≤<⎧=⎨-≤≤⎩,第x 天的销售量(单位:件)()(g x m x m =-为常数),且第20天该商品的销售收入为600元(销售收入=销售价格⨯销售量). (1)求m 的值;(2)该月第几天的销售收入最高?最高为多少? 22.已知函数()221f x x ax =-+满足()()2f x f x =-.(1)求a 的值; (2)若不等式()24x xf m ≥对任意的[)1,x ∈+∞恒成立,求实数m 的取值范围;(3)若函数()()()22log log 1g x f x k x =--有4个零点,求实数k 的取值范围. 23.已知函数()log (12)a f x x =+,()log (2)a g x x =-,其中0a >且1a ≠,设()()()h x f x g x =-.(1)求函数()h x 的定义域; (2)若312f ⎛⎫=-⎪⎝⎭,求使()0h x <成立的x 的集合. 24.已知全集U =R,函数()lg(10)f x x =-的定义域为集合A ,集合{}|57B x x =≤<(1)求集合A ; (2)求()U C B A ⋂.25.已知函数()()()log 1log 1a a f x x x =+--(0a >,1a ≠),且()31f =. (1)求a 的值,并判定()f x 在定义域内的单调性,请说明理由; (2)对于[]2,6x ∈,()()()log 17amf x x x >--恒成立,求实数m 的取值范围.26.为保障城市蔬菜供应,某蔬菜种植基地每年投入20万元搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入2万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的经验,发现种西红柿的年收入()f x 、种黄瓜的年收入()g x 与大棚投入x分别满足()8f x =+1()124g x x =+.设甲大棚的投入为a ,每年两个大棚的总收入为()F a .(投入与收入的单位均为万元)(Ⅰ)求(8)F 的值.(Ⅱ)试问:如何安排甲、乙两个大棚的投入,才能使年总收人()F a 最大?并求最大年总收入.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(2 019)=f(504×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(2 019)=-2. 故选A2.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.3.B解析:B 【解析】 【分析】先比较三个数与零的大小关系,确定三个数的正负,然后将它们与1进行大小比较,得知1a >,0,1b c <<,再利用换底公式得出b 、c 的大小,从而得出三个数的大小关系.【详解】函数3xy =在R 上是增函数,则0.20331a =>=,函数6log y x =在()0,∞+上是增函数,则666log 1log 4log 6<<,即60log 41<<, 即01b <<,同理可得01c <<,由换底公式得22393log 2log 2log 4c ===,且96ln 4ln 4log 4log 4ln 9ln 6c b ==<==,即01c b <<<,因此,c b a <<,故选A . 【点睛】本题考查比较数的大小,这三个数的结构不一致,这些数的大小比较一般是利用中间值法来比较,一般中间值是0与1,步骤如下:①首先比较各数与零的大小,确定正负,其中正数比负数大;②其次利用指数函数或对数函数的单调性,将各数与1进行大小比较,或者找其他中间值来比较,从而最终确定三个数的大小关系.4.B解析:B 【解析】 【分析】根据分段函数的解析式代入自变量即可求出函数值. 【详解】因为0N *∉,所以0(0)3=1f =,((0))(1)f f f =,因为1N *∈,所以(1)=1f -,故((0))1f f =-,故选B. 【点睛】本题主要考查了分段函数,属于中档题.5.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.6.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】由题意得:2010x x -≥⎧⎨+>⎩解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.7.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数,若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2, 故答案为34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解8.C解析:C 【解析】 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y x a a -[0,1]上单调递减,值域是[0,1],所以f (0)1,f (1)=0, 所以a =2,所log a56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.9.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。

2019-2020年西城区高一上册期末数学试题(有答案)

2019-2020年西城区高一上册期末数学试题(有答案)

北京市西城区高一(上)期末数学试卷A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)如果θ是第三象限的角,那么()A.sinθ>0 B.cosθ>0 C.tanθ>0 D.以上都不对2.(4分)若向量=(1,﹣2),=(,4)满足⊥,则实数等于()A.8 B.﹣8 C.2 D.﹣23.(4分)若角α的终边经过点(﹣4,3),则tanα=()A.B. C.D.4.(4分)函数是()A.奇函数,且在区间上单调递增B.奇函数,且在区间上单调递减C.偶函数,且在区间上单调递增D.偶函数,且在区间上单调递减5.(4分)函数f()=sin﹣cos的图象()A.关于直线对称 B.关于直线对称C.关于直线对称 D.关于直线对称6.(4分)如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A.B.C.2 D.7.(4分)定义在R上,且最小正周期为π的函数是()A.y=sin|| B.y=cos|| C.y=|sin| D.y=|cos2|8.(4分)设向量,的模分别为2和3,且夹角为60°,则|+|等于()A.B.13 C.D.199.(4分)函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A.B.C.D.10.(4分)如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为,弓形PNO的面积S=f(),那么f ()的图象是()A.B.C.D.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.(4分)若向量=(﹣1,2)与向量=(,4)平行,则实数= .12.(4分)若θ为第四象限的角,且,则cosθ=;sin2θ=.13.(4分)将函数y=cos2的图象向左平移个单位,所得图象对应的函数表达式为.14.(4分)若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于.15.(4分)已知,则cos(﹣y)= .16.(4分)已知函数f()=sin(ω+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:①ω=3;②ω≠6,∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17.(12分)已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.18.(12分)已知函数.(1)求函数f()的单调增区间;(2)若直线y=a与函数f()的图象无公共点,求实数a的取值范围.19.(12分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设,,则得到函数y=f().(Ⅰ)求f(1)的值;(Ⅱ)对于任意a∈(0,+∞),求函数f()的最大值.B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20.(4分)设全集U=R,集合A={|<0},B={|||>1},则A∩(∁B)= .U21.(4分)已知函数若f(a)=2,则实数a= .22.(4分)定义在R上的函数f ()是奇函数,且f()在(0,+∞)是增函数,f(3)=0,则不等式f()>0的解集为.23.(4分)函数的值域为.(其中表示不大于的最大整数,例如[3.15]=3,[0.7]=0.)24.(4分)在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长(单位:m)的取值范围是.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 25.(10分)已知函数.(Ⅰ)若,求a的值;(Ⅱ)判断函数f()的奇偶性,并证明你的结论.26.(10分)已知函数f()=3,g()=|+a|﹣3,其中a∈R.(Ⅰ)若函数h()=f[g()]的图象关于直线=2对称,求a的值;(Ⅱ)给出函数y=g[f()]的零点个数,并说明理由.27.(10分)设函数f()的定义域为R,如果存在函数g(),使得f()≥g()对于一切实数都成立,那么称g()为函数f()的一个承托函数.已知函数f()=a2+b+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f()的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=为函数f()的一个承托函数,且f()为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.北京市西城区高一(上)期末数学试卷参考答案与试题解析A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)如果θ是第三象限的角,那么()A.sinθ>0 B.cosθ>0 C.ta nθ>0 D.以上都不对【解答】解:如果θ是第三象限的角,则sinθ<0,cosθ<0,tanθ>0,故选:C.2.(4分)若向量=(1,﹣2),=(,4)满足⊥,则实数等于()A.8 B.﹣8 C.2 D.﹣2【解答】解:根据题意,若向量、满足⊥,必有•=0,又由=(1,﹣2),=(,4),则有•=1×+(﹣2)×4=0,解可得=8;故选:A.3.(4分)若角α的终边经过点(﹣4,3),则tanα=()A.B. C.D.【解答】解:由定义若角α的终边经过点(﹣4,3),∴tanα=﹣,故选:D.4.(4分)函数是()A.奇函数,且在区间上单调递增B.奇函数,且在区间上单调递减C.偶函数,且在区间上单调递增D.偶函数,且在区间上单调递减【解答】解:函数=cos,是偶函数,且在区间上单调递减,故选D.5.(4分)函数f()=sin﹣cos的图象()A.关于直线对称 B.关于直线对称C.关于直线对称 D.关于直线对称【解答】解:函数y=sin﹣cos=sin(﹣),∴﹣=π+,∈,得到=π+,∈,则函数的图象关于直线=﹣对称.故选:B.6.(4分)如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A.B.C.2 D.【解答】解:∵BD=2DC,∴=+=+=+(﹣)=+,∵,∴λ=,μ=,∴=,故选:A7.(4分)定义在R上,且最小正周期为π的函数是()A.y=sin|| B.y=cos|| C.y=|sin| D.y=|cos2|【解答】解:对于A:y=sin||不是周期函数,对于B,y=cos||的最小正周期为2π,对于C,y=|sin|最小正周期为π,对于D,y=|cos2|最小正周期为,故选:C8.(4分)设向量,的模分别为2和3,且夹角为60°,则|+|等于()A.B.13 C.D.19【解答】解:∵向量,的模分别为2和3,且夹角为60°,∴=||•||cos60°=2×3×=3,∴|+|2=||2+||2+2=4+9+2×3=19,∴|+|=,故选:C.9.(4分)函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A.B.C.D.【解答】解:如图根据函数的图象可得:函数的周期为(6﹣2)×4=16,又∵ω>0,∴ω==,当=2时取最大值,即2sin(2×+φ)=2,可得:2×+φ=2π+,∈,∴φ=2π+,∈,∵0<φ<π,∴φ=,故选:B.10.(4分)如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为,弓形PNO的面积S=f(),那么f ()的图象是()A.B.C.D.【解答】解:由题意得S=f ()=﹣f′()=≥0当=0和=2π时,f′()=0,取得极值.则函数S=f ()在[0,2π]上为增函数,当=0和=2π时,取得极值.结合选项,A正确.故选A.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.(4分)若向量=(﹣1,2)与向量=(,4)平行,则实数= ﹣2 .【解答】解:因为向量=(﹣1,2)与向量=(,4)平行,所以,所以﹣1=λ,2=λ4,解得:λ=,=﹣2.故答案为﹣2.12.(4分)若θ为第四象限的角,且,则cosθ=;sin2θ=﹣.【解答】解:∵θ为第四象限的角,且,∴cosθ==,sin2θ=2sinθcosθ=2×(﹣)×=﹣.故答案为:,﹣.13.(4分)将函数y=cos2的图象向左平移个单位,所得图象对应的函数表达式为y=﹣sin2 .【解答】解:将函数y=cos2的图象向左平移个单位,所得图象对应的解析式为y=cos2(+)=cos(2+)=﹣sin2.故答案为:y=﹣sin2.14.(4分)若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于150°.【解答】解:∵,均为单位向量,且与的夹角为120°,∴(﹣)•=﹣||2=1×1×(﹣)﹣1=﹣,|﹣|2=||2﹣2+||2=1﹣2×1×1×(﹣)+1=3,∴|﹣|=,设﹣与的夹角为θ,则cosθ===﹣,∵0°≤θ≤180°,∴θ=150°,故答案为:150°15.(4分)已知,则cos(﹣y)= ﹣.【解答】解:∵sin+siny=,①cos+cosy=,②①2+②2得:2+2sinsiny+2coscosy=,∴cos(﹣y)=sinsiny+coscosy=﹣,故答案为:﹣.16.(4分)已知函数f()=sin(ω+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:①ω=3;②ω≠6,∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是①③.【解答】解:函数f()=sin(ω+φ)(ω>0,φ∈(0,π))满足,∴ω()=nπ,∴ω=n(n∈),∴①ω=3正确;②ω≠6,∈N*,不正确;③φ可能等于,正确;④符合条件的ω有无数个,且均为整数,不正确.故答案为①③.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.(12分)已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.【解答】解:(Ⅰ)∵φ∈(0,π),且=,可得:tanφ=﹣2,∴tan2φ==.(Ⅱ)===﹣.18.(12分)已知函数.(1)求函数f()的单调增区间;(2)若直线y=a与函数f()的图象无公共点,求实数a的取值范围.【解答】解:(1)函数=cos(cos+sin)=+sin2=cos(2﹣)+,由2π﹣π≤2﹣≤2π,∈,解得π﹣≤≤π+,∈,即f()的增区间为[π﹣,π+],∈;(2)由(1)可得当2﹣=2π,即=π+,∈时,f()取得最大值;当2﹣=2π+π,即=π+,∈时,f()取得最小值﹣.由直线y=a与函数f()的图象无公共点,可得a的范围是a>或a<﹣.19.(12分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设,,则得到函数y=f().(Ⅰ)求f(1)的值;(Ⅱ)对于任意a∈(0,+∞),求函数f()的最大值.【解答】解:(1)如图所示,建立直角坐标系.∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),∴B(0,0),A(﹣2,0),D(﹣1,a),C(0,a).∵=,(0≤≤1).∴=+=(﹣2,0)+(1,a)=(﹣2,a),∴=﹣=(0,a)﹣(﹣2,a)=(2﹣,a﹣a)∴y=f()=•=(2﹣,﹣a)•(2﹣,a﹣a)=(2﹣)2﹣a(a﹣a)=(a2+1)2﹣(4+a2)+4.∴f(1)=a2+1﹣(4+a2)+4=1(Ⅱ)由y=f()=(a2+1)2﹣(4+a2)+4.可知:对称轴=.当0<a≤时,1<,∴函数f()在[0,1]单调递减,因此当=0时,函数f()取得最大值4.当a>时,0<0<1,函数f()在[0,)单调递减,在(,1]上单调递增.又f(0)=4,f(1)=1,∴f()ma=f(0)=4.综上所述函数f()的最大值为4B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.B)= {|﹣1≤<0} .20.(4分)设全集U=R,集合A={|<0},B={|||>1},则A∩(∁U【解答】解:全集U=R,集合A={|<0},B={|||>1}={|<﹣1或>1},则∁B={|﹣1≤≤1},UB)={|﹣1≤<0}.A∩(∁U故答案为:{|﹣1≤<0}.21.(4分)已知函数若f(a)=2,则实数a= e2.【解答】解:∵函数,f(a)=2,∴当a<0时,f(a)=a﹣2=2,解得a=,不成立;当a>0时,f(a)=lna=2,解得a=e2.∴实数a=e2.故答案为:e2.22.(4分)定义在R上的函数f ()是奇函数,且f()在(0,+∞)是增函数,f(3)=0,则不等式f()>0的解集为(﹣3,0)∪(3,+∞).【解答】解:∵f()在R上是奇函数,且f()在(0,+∞)上是增函数,∴f()在(﹣∞,0)上也是增函数,由f(﹣3)=0,得﹣f(3)=0,即f(3)=0,由f(﹣0)=﹣f(0),得f(0)=0,作出f()的草图,如图所示:∴f()>0的解集为:(﹣3,0)∪(3,+∞),故答案为:(﹣3,0)∪(3,+∞).23.(4分)函数的值域为{0,1} .(其中表示不大于的最大整数,例如[3.15]=3,[0.7]=0.)【解答】解:设m表示整数.①当=2m时,[]=[m+0.5]=m,[]=[m]=m.∴此时恒有y=0.②当=2m+1时,[]=[m+1]=m+1,[]=[m+0.5]=m.∴此时恒有y=1.③当2m<<2m+1时,2m+1<+1<2m+2∴m<<m+0.5m+0.5<<m+1∴[]=m,[]=m∴此时恒有y=0④当2m+1<<2m+2时,2m+2<+1<2m+3∴m+0.5<<m+1m+1<<m+1.5∴此时[]=m,[]=m+1∴此时恒有y=1.综上可知,y∈{0,1}.故答案为{0,1}.24.(4分)在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长(单位:m)的取值范围是[10,20] .【解答】解:设矩形的另一边长为ym,由相似三角形的性质可得:=,解得y=30﹣,(0<<30)∴矩形的面积S=(30﹣),∵矩形花园的面积不小于200m2,∴(30﹣)≥200,化为(﹣10)(﹣20)≤0,解得10≤≤20.满足0<<30.故其边长(单位m)的取值范围是[10,20].故答案为:[10,20].二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 25.(10分)已知函数.(Ⅰ)若,求a的值;(Ⅱ)判断函数f()的奇偶性,并证明你的结论.【解答】解:(Ⅰ)∵函数.,∴=,∴=2,解得:a=﹣3;(Ⅱ)函数f()为奇函数,理由如下:函数f()的定义域(﹣∞,﹣1)∪(1,+∞)关于原点对称,且f(﹣)+f()=+=0,即f(﹣)=﹣f(),故函数f()为奇函数.26.(10分)已知函数f()=3,g()=|+a|﹣3,其中a∈R.(Ⅰ)若函数h()=f[g()]的图象关于直线=2对称,求a的值;(Ⅱ)给出函数y=g[f()]的零点个数,并说明理由.【解答】解:(Ⅰ)函数h()=f[g()]=3|+a|﹣3的图象关于直线=2对称,则h(4﹣)=h()⇒|+a|=|4﹣+a|恒成立⇒a=﹣2;(Ⅱ)函数y=g[f()]=|3+a|﹣3的零点个数,就是函数G()=|3+a|与y=3的交点,①当0≤a<3时,G()=|3+a|=3+a与y=3的交点只有一个,即函数y=g[f()]的零点个数为1个(如图1);②当a≥3时,G()=|3+a|=3+a与y=3没有交点,即函数y=g[f()]的零点个数为0个(如图1);③﹣3≤a<0时,G()=|3+a|与y=3的交点只有1个(如图2);④当a<﹣3时,G()=|3+a|与y=3的交点有2个(如图2);27.(10分)设函数f()的定义域为R,如果存在函数g(),使得f()≥g()对于一切实数都成立,那么称g()为函数f()的一个承托函数.已知函数f()=a2+b+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f()的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=为函数f()的一个承托函数,且f()为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.【解答】解:(1)函数f()=a2+b+c的图象经过点(﹣1,0),可得a﹣b+c=0,又a=1,b=2,则f()=2+2+1,由新定义可得g()=为函数f()的一个承托函数;(2)假设存在常数a,b,c,使得y=为函数f()的一个承托函数,且f()为函数的一个承托函数.即有≤a2+b+c≤2+恒成立,令=1可得1≤a+b+c≤1,即为a+b+c=1,即1﹣b=a+c,又a2+(b﹣1)+c≥0恒成立,可得a>0,且(b﹣1)2﹣4ac≤0,即为(a+c)2﹣4ac≤0,即有a=c;又(a﹣)2+b+c﹣≤0恒成立,可得a<,且b2﹣4(a﹣)(c﹣)≤0,即有(1﹣2a)2﹣4(a﹣)2≤0恒成立.故存在常数a,b,c,且0<a=c<,b=1﹣2a,可取a=c=,b=.满足题意.。

2019-2020年浙江省杭州市高一上册期末数学试题(有答案)

2019-2020年浙江省杭州市高一上册期末数学试题(有答案)

浙江省杭州市高一(上)期末数学试卷一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B. C. D.﹣2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣C.D.﹣3.(3分)已知集合A={∈R|2﹣4<0},B={∈R|2<8},则A∩B=()A.(0,3)B.(3,4)C.(0,4)D.(﹣∞,3)+﹣3的零点所在的区间是()4.(3分)函数f()=log3A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1] D.(,1]6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.7.(3分)已知函数f()=,则f(5)的值为()A.B.1 C.2 D.38.(3分)已知函数y=f(2)+2是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.29.(3分)函数f()=|sin+cos|+|sin﹣cos|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c11.(3分)要得到函数y=cos(2﹣)的图象,只需将函数y=sin2的图象()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤513.(3分)定义min{a,b}=,若函数f()=min{2﹣3+3,﹣|﹣3|+3},且f()在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.14.(3分)设函数f()=|﹣a|,若对任意的正实数a,总存在0∈[1,4],使得f()≥m,则实数m的取值范围为()A.(﹣∞,0] B.(﹣∞,1] C.(﹣∞,2] D.(﹣∞,3]二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N= ,∁UM= .16.(3分)()+()= ;log412﹣log43= .17.(3分)函数f()=tan(2﹣)的最小正周期是;不等式f()>1的解集是.18.(4分)已知偶函数f()和奇函数g()的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于的不等式f()•g()<0的解集是.19.(4分)已知不等式(a+2)•ln(+a)≤0对∈(﹣a,+∞)恒成立,则a的值为.20.(4分)已知函数f()=+,g()=f2()﹣af()+2a有四个不同的零点1,2,3,4,则[2﹣f(1)]•[2﹣f(2)]•[2﹣f(3)]•[2﹣f(4)]的值为.三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f()=α(α∈R),且.(1)求函数f()的解析式;(2)证明函数f()在定义域上是增函数.22.(12分)已知函数f()=2sin(ω+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f()的单调递增区间;(2)若关于的方程f()+log2=0在区间上总有实数解,求实数的取值范围.23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018m,试求汽车在行驶这段路程时里程表读数s(m)与时间t (h)的函数解析式,并作出相应的图象.24.(13分)已知函数f()=(﹣1)|﹣a|﹣﹣2a(∈R).(1)若a=﹣1,求方程f()=1的解集;(2)若,试判断函数y=f()在R上的零点个数,并求此时y=f()所有零点之和的取值范围.浙江省杭州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B. C. D.﹣【解答】解:因为sin120°=sin(90°+30°)=cos30°=.故选C.2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣C.D.﹣【解答】解:∵sinα=,且α为第二象限的角,∴cosα=﹣=﹣.故选:D.3.(3分)已知集合A={∈R|2﹣4<0},B={∈R|2<8},则A∩B=()A.(0,3)B.(3,4)C.(0,4)D.(﹣∞,3)【解答】解:∵集合A={∈R|2﹣4<0}={|0<<4},B={∈R|2<8}={|<3},∴A∩B={|0<<3}=(0,3).故选:A.4.(3分)函数f()=log3+﹣3的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)【解答】解:∵函数f()=log3+﹣3,定义域为:>0;函数是连续函数,∴f(2)=log32+2﹣3<0,f(3)=log33+3﹣3=1>0,∴f(2)•f(3)<0,根据函数的零点的判定定理,故选:C.5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1] D.(,1](3﹣2)≥0,【解答】解:要使函数有意义,则log0.5即0<3﹣2≤1,得<≤1,即函数的定义域为(,1],故选:D6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A. B.C.D.【解答】解:患者服用某种药物后心率立刻明显减慢,则函数的图象应呈下降趋势,之后随着药力的减退,心率再次慢慢升高,则函数的图象应一直呈上升趋势,但上升部分的图象比下降的图象要缓,排除AB,根据正常人的心率约为65,可排除D,只有C符合,故选:C7.(3分)已知函数f()=,则f(5)的值为()A.B.1 C.2 D.3【解答】解:∵函数f()=,∴f(5)=f(3)=f(1)=2.故选:C.8.(3分)已知函数y=f(2)+2是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.2【解答】解:∵函数y=f(2)+2是偶函数,∴设g()=f(2)+2,则g(﹣)=f(﹣2)﹣2=g()=f(2)+2,即f(﹣2)=f(2)+4,当=1时,f(﹣2)=f(2)+4=1+4=5,故选:A9.(3分)函数f()=|sin+cos|+|sin﹣cos|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【解答】解:f(﹣)=|sin(﹣)+cos(﹣)|+|sin(﹣)﹣cos(﹣)|=|﹣sin+cos|+|﹣sin﹣cos|=|si+cos|+|sin﹣cos|=f(),则函数f()是偶函数,∵f(+)=|sin(+)+cos(+)|+|sin(+)﹣cos(+)|=|cos﹣sin|+|cos+sin|=|sin+cos|+|sin﹣cos|=f(),∴函数f()的周期是,故选:D10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c【解答】解:如图所示,∵>π﹣2>1>0,∴sin2=sin(π﹣2)>sin1,∵,∴sin1=sin(π﹣1)>sin3.综上可得:sin2>sin1>sin3.故选B.11.(3分)要得到函数y=cos(2﹣)的图象,只需将函数y=sin2的图象()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位【解答】解:∵y=cos(2﹣)=cos(﹣2)=sin(2+)=sin[2(+)],∴将函数y=sin2的图象向左平移个单位即可得到函数y=cos(2﹣)的图象.故选:B.12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤5【解答】解:函数在(﹣∞,+∞)上是增函数,可得:,解得:1<a≤3.故选:B.13.(3分)定义min{a,b}=,若函数f()=min{2﹣3+3,﹣|﹣3|+3},且f()在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.【解答】解:根据定义作出函数f()的图象如图:(蓝色曲线),其中A(1,1),B(3,3),即f()=,当f()=时,当≥3或≤1时,由3﹣|﹣3|=,得|﹣3|=,即C =或G=,当f()=时,当1<<3时,由2﹣3+3=,得E=,由图象知若f()在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为E ﹣C=﹣=,故选:B.14.(3分)设函数f()=|﹣a|,若对任意的正实数a,总存在0∈[1,4],使得f()≥m,则实数m的取值范围为()A.(﹣∞,0] B.(﹣∞,1] C.(﹣∞,2] D.(﹣∞,3]【解答】解:对任意的正实数a,总存在0∈[1,4],使得f()≥m⇔m≤f()ma,∈[1,4].令u()=﹣a,∵a>0,∴函数u()在∈[1,4]单调递减,∴u()ma =u(1)=4﹣a,u()min=1﹣4a.①a≥4时,0≥4﹣a>1﹣4a,则f()ma=4a﹣1≥15.②4>a>1时,4﹣a>0>1﹣4a,则f()ma ={4﹣a,4a﹣1}ma>3.③a≤1时,4﹣a>1﹣4a≥0,则f()ma=4﹣a≥3.综上①②③可得:m≤3.∴实数m的取值范围为(﹣∞,3].故选:D.二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N= {2,3,4,5} ,∁UM= {1,5,6} .【解答】解:集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N={2,3,4,5};∁UM={1,5,6},故答案为:{2,3,4,5},{1,5,6}16.(3分)()+()= 3 ;log412﹣log43= 1 .【解答】解:()+()==;log412﹣log43=.故答案为:3,1.17.(3分)函数f()=tan(2﹣)的最小正周期是;不等式f()>1的解集是.【解答】解:由正切函数的周期公式得函数的周期T=;由f()>1得tan(2﹣)>1,得+π<2﹣<+π,得+<<+,∈,即不等式的解集为;故答案为:,;18.(4分)已知偶函数f()和奇函数g()的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于的不等式f()•g()<0的解集是(﹣4,﹣2)∪(0,2).【解答】解:设h()=f()g(),则h(﹣)=f(﹣)g(﹣)=﹣f()g()=﹣h(),∴h()是奇函数,由图象可知:当﹣4<<﹣2时,f()>0,g()<0,即h()>0,当0<<2时,f()<0,g()>0,即h()<0,∴h()<0的解为(﹣4,﹣2)∪(0,2).故答案为(﹣4,﹣2)∪(0,2)19.(4分)已知不等式(a+2)•ln(+a)≤0对∈(﹣a,+∞)恒成立,则a的值为﹣1 .【解答】解:∵∈(﹣a,+∞),∴当﹣a<<1﹣a时,y=ln(+a)<0,当>1﹣a时,y=ln(+a)>0,又(a+2)•ln(+a)≤0对∈(﹣a,+∞)恒成立,①若a>0,y=a+2与y=ln(+a)均为定义域上的增函数,在∈(﹣a,+∞)上,可均大于0,不满足题意;②若a=0,则2ln)≤0对∈(0,+∞)不恒成立,不满足题意;∴a<0.作图如下:由图可知,当且仅当方程为y=ln(+a)的曲线与方程为y=a+2的直线相交于点A,即满足时,(a+2)•ln(+a)≤0对∈(﹣a,+∞)恒成立,解方程得,解得a=﹣1.故答案为:﹣1.20.(4分)已知函数f()=+,g()=f2()﹣af()+2a有四个不同的零点1,2,3,4,则[2﹣f(1)]•[2﹣f(2)]•[2﹣f(3)]•[2﹣f(4)]的值为16 .【解答】解:∵令t=f(),则y=g()=f2()﹣af()+2a=t2﹣at+2a,∵g()=f2()﹣af()+2a有四个不同的零点1,2,3,4,故t2﹣at+2a=0有两个根t1,t2,且t1+t2=a,t1t2=2a,且f(1),f(2),f(3),f(4)恰两两相等,为t2﹣at+2a=0的两根,不妨令f(1)=f(2)=t1,f(3)=f(4)=t2,则[2﹣f(1)]•[2﹣f(2)]•[2﹣f(3)]•[2﹣f(4)]=(2﹣t1)•(2﹣t1)•(2﹣t2)•(2﹣t2)=[(2﹣t1)•(2﹣t2)]2=[4﹣2(t1+t2)+t1t2]2=16.故答案为:16三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f()=α(α∈R),且.(1)求函数f()的解析式;(2)证明函数f()在定义域上是增函数.【解答】(1)解:由得,,所以;(2)证明:定义域是[0,+∞),设任意的2>1≥0,则,∵,∴f(2)>f(1),函数f()在定义域上是增函数.22.(12分)已知函数f()=2sin(ω+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f()的单调递增区间;(2)若关于的方程f()+log2=0在区间上总有实数解,求实数的取值范围.【解答】解:(1)周期T=π,所以ω=2,当时,,(2分)得,又﹣π<φ<0,所以取=﹣1,得(2分)所以,(1分)由,得,∈所以函数y=f()的单调递增区间是得(∈),(2分)(2)当时,,所以,(2分)=﹣f()∈[﹣1,2],得.(3分)所以log223.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018m,试求汽车在行驶这段路程时里程表读数s(m)与时间t (h)的函数解析式,并作出相应的图象.【解答】解:(1)阴影部分的面积为:50+70+90+60=270,表示汽车在4小时内行驶的路程为270 m.(4分)(2)∵这辆汽车在行驶该段路程前里程表的读数是8018m,汽车在行驶这段路程时里程表读数s(m)与时间t (h)的函数解析式为:(4分)图象如下图:(4分)24.(13分)已知函数f()=(﹣1)|﹣a|﹣﹣2a(∈R).(1)若a=﹣1,求方程f()=1的解集;(2)若,试判断函数y=f()在R上的零点个数,并求此时y=f()所有零点之和的取值范围.【解答】解:(1)方法一:当a=﹣1时,(2 分)由f()=1得或(2 分)解得 =0,1,﹣2,即解集为{0,1,﹣2}.(2分)方法二:当a=﹣1时,由f()=1得:(﹣1)|+1|﹣(﹣1)=0(﹣1)(|+1|﹣1)=0(3分)∴得=1或|+1|=1∴=1或=0或=﹣2即解集为{0,1,﹣2}.(3分)(2)当≥a时,令2﹣(a+2)﹣a=0,∵,∴△=a2+8a+4=(a+4)2﹣12>0得,(2分)且先判断2﹣a,与大小:∵,即a<1<2,故当≥a时,f()存在两个零点.(2分)当<a时,令﹣2+a﹣3a=0,即2﹣a+3a=0得∵,∴△=a2﹣12a=(a﹣6)2﹣36>0得,同上可判断3<a<4,故<a时,f()存在一个零点.(2分)综上可知当时,f()存在三个不同零点.且设,易知g(a)在上单调递增,故g(a)∈(0,2)∴1+2+3∈(0,2).( 2分)。

北京市朝阳区2019-2020学年度第一学期期末质量检测高一年级数学试卷(解析版)

北京市朝阳区2019-2020学年度第一学期期末质量检测高一年级数学试卷(解析版)

北京市朝阳区2019-2020学年高一(上)期末数学试卷选择题:本大题共10小题,每小题5分,共50分.1.已知集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0},那么A∪B等于()A.{﹣1}B.{0,1}C.{0,1,2}D.{﹣1,0,1,2} 2.已知命题p:∀x<﹣1,x2>1,则¬p是()A.∃x<﹣1,x2≤1B.∀x≥﹣1,x2>1C.∀x<﹣1,x2>1D.∃x≤﹣1,x2≤1 3.下列命题是真命题的是()A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则4.函数f(x)=cos2x﹣sin2x的最小正周期是()A.B.πC.2πD.4π5.已知函数f(x)在区间(0,+∞)上的函数值不恒为正,则在下列函数中,f(x)只可能是()A.f(x)=xB.f(x)=sin x+2C.f(x)=ln(x2﹣x+1)D.f(x)=6.已知a,b,c∈R,则“a=b=c”是“a2+b2+c2>ab+ac+bc”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.通过科学研究发现:地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为E1,E2,则E1和E2的关系为()A.E1=32E2B.E1=64E2C.E1=1000E2D.E1=1024E2 8.已知函数f(x)=x+﹣a(a∈R),g(x)=﹣x2+4x+3,在同一平面直角坐标系里,函数f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是()A.{a|a<﹣3}B.{a|a>﹣3}C.{a|a=﹣3}D.{a|﹣3<a<4} 9.已知大于1的三个实数a,b,c满足(lga)2﹣2lgalgb+lgblgc=0,则a,b,c的大小关系不可能是()A.a=b=c B.a>b>c C.b>c>a D.b>a>c10.已知正整数x1,x2,…,x10满足当i<j(i,j∈N*)时,x i<x j,且x12+x22+…+x102≤2020,则x9﹣(x1+x2+x3+x4)的最大值为()A.19B.20C.21D.22二.填空题:本大题共6小题,每空5分,共30分.11.(5分)计算sin330°=.12.(5分)若集合A={x|x2﹣ax+2<0}=∅,则实数a的取值范围是.13.(5分)已知函数f(x)=log2x,在x轴上取两点A(x1,0),B(x2,0)(0<x1<x2),设线段AB的中点为C,过A,B,C作x轴的垂线,与函数f(x)的图象分别交于A1,B1,C1,则点C1在线段A1B1中点M的.(横线上填“上方”或者“下方”)14.(5分)给出下列命题:①函数是偶函数;②函数f(x)=tan2x在上单调递增;③直线x=是函数图象的一条对称轴;④将函数的图象向左平移单位,得到函数y=cos2x的图象.其中所有正确的命题的序号是.15.(5分)已知在平面直角坐标系xOy中,点A(1,1)关于y轴的对称点A'的坐标是.若A和A'中至多有一个点的横纵坐标满足不等式组,则实数a的取值范围是.16.(5分)在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=A sin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是,从A点出发,以恒定的角速度ω转动,经过t秒转动到点B (x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y与时间t的函数关系式为.三.解答题:本大题共4小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.(14分)已知集合A={x|x2﹣5x﹣6≤0},B={x|m+1≤x≤2m﹣1,m∈R}.(Ⅰ)求集合∁R A;(Ⅱ)若A∪B=A,求实数m的取值范围;18.(18分)已知函数f(x)=sin2x﹣2.(Ⅰ)若点在角α的终边上,求tan2α和f(α)的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)若,求函数f(x)的最小值.19.(18分)已知函数f(x)=(x≠a).(Ⅰ)若2f(1)=﹣f(﹣1),求a的值;(Ⅱ)若a=2,用函数单调性定义证明f(x)在(2,+∞)上单调递减;(Ⅲ)设g(x)=xf(x)﹣3,若函数g(x)在(0,1)上有唯一零点,求实数a的取值范围.20.(20分)已知函数f(x)=log2(x+a)(a>0).当点M(x,y)在函数y=g(x)图象上运动时,对应的点M'(3x,2y)在函数y=f(x)图象上运动,则称函数y=g(x)是函数y=f(x)的相关函数.(Ⅰ)解关于x的不等式f(x)<1;(Ⅱ)对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,求a的取值范围;(Ⅲ)设函数F(x)=f(x)﹣g(x),x∈(0,1).当a=1时,求|F(x)|的最大值2019-2020学年北京市朝阳区高一(上)期末数学试卷参考答案与试题解析选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0},那么A∪B等于()A.{﹣1}B.{0,1}C.{0,1,2}D.{﹣1,0,1,2}【分析】先分别求出集合A,B,再由并集定义能求出A∪B.【解答】解:∵集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0}={x∈Z|0≤x≤2}={0,1,2},∴A∪B={﹣1,0,1,2}.故选:D.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.2.(5分)已知命题p:∀x<﹣1,x2>1,则¬p是()A.∃x<﹣1,x2≤1B.∀x≥﹣1,x2>1C.∀x<﹣1,x2>1D.∃x≤﹣1,x2≤1【分析】根据全称命题的否定是特称命题进行判断.【解答】解:命题是全称命题,则命题的否定为:∃x<﹣1,x2≤1,故选:A.【点评】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题,特称命题的否定是全称命题是解决本题的关键.3.(5分)下列命题是真命题的是()A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则【分析】利用不等式的基本性质,判断选项的正误即可.【解答】解:对于A,若a>b>0,则ac2>bc2,c=0时,A不成立;对于B,若a>b,则a2>b2,反例a=0,b=﹣2,所以B不成立;对于C,若a<b<0,则a2<ab<b2,反例a=﹣4,b=﹣1,所以C不成立;对于D,若a<b<0,则,成立;故选:D.【点评】本题考查命题的真假的判断与应用,不等式的基本性质的应用,是基本知识的考查.4.(5分)函数f(x)=cos2x﹣sin2x的最小正周期是()A.B.πC.2πD.4π【分析】利用二倍角的余弦公式求得y=cos2x,再根据y=A cos(ωx+φ)的周期等于T =,可得结论.【解答】解:∵函数y=cos2x﹣sin2x=cos2x,∴函数的周期为T==π,故选:B.【点评】本题主要考查三角函数的周期性及其求法,二倍角的余弦公式,利用了y=A sin (ωx+φ)的周期等于T=,属于基础题.5.(5分)已知函数f(x)在区间(0,+∞)上的函数值不恒为正,则在下列函数中,f(x)只可能是()A.f(x)=xB.f(x)=sin x+2C.f(x)=ln(x2﹣x+1)D.f(x)=【分析】结合基本初等函数的性质分别求解选项中函数的值域即可判断.【解答】解:∵x>0,根据幂函数的性质可知,y=>0,不符合题意,∵﹣1≤sin x≤1,∴2+sin x>0恒成立,故选项B不符合题意,C:∵x2﹣x+1=,而f(x)=ln(x2﹣x+1),故值域中不恒为正数,符合题意,D:当x>0时,f(x)=2x﹣1>0恒成立,不符合题意,故选:C.【点评】本题主要考查了基本初等函数的值域的求解,属于基础试题.6.(5分)已知a,b,c∈R,则“a=b=c”是“a2+b2+c2>ab+ac+bc”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】先化简命题,再讨论充要性.【解答】解:由a,b,c∈R,知:∵a2+b2+c2﹣ab﹣ac﹣bc=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(b﹣c)2+(a﹣c)2],∴“a=b=c”⇒“a2+b2+c2=ab+ac+bc”,“a2+b2+c2>ab+ac+bc”⇒“a,b,c不全相等”.“a=b=c”是“a2+b2+c2>ab+ac+bc”的既不充分也不必要条件.故选:D.【点评】本题考查充分条件、必要条件、充要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,是基础题.7.(5分)通过科学研究发现:地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为E1,E2,则E1和E2的关系为()A.E1=32E2B.E1=64E2C.E1=1000E2D.E1=1024E2【分析】先把数据代入已知解析式,再利用对数的运算性质即可得出.【解答】解:根据题意得:lgE1=4.8+1.5×9 ①,lgE2=4.8+1.5×7 ②,①﹣②得lgE1﹣lgE2=3,lg()=3,所以,即E1=1000E2,故选:C.【点评】本题考查了对数的运用以及运算,熟练掌握对数的运算性质是解题的关键.8.(5分)已知函数f(x)=x+﹣a(a∈R),g(x)=﹣x2+4x+3,在同一平面直角坐标系里,函数f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是()A.{a|a<﹣3}B.{a|a>﹣3}C.{a|a=﹣3}D.{a|﹣3<a<4}【分析】作出函数f(x)与函数g(x)的图象,数形结合即可判断出a的取值范围【解答】解:在同一坐标系中作出函数f(x)与g(x)的示意图如图:因为f(x)=x+﹣a≥2﹣a=4﹣a(x>0),当且仅当x=2时取等号,而g(x)的对称轴为x=2,最大值为7,根据条件可知0<4﹣a<7,解得﹣3<a<4,故选:D.【点评】本题考查函数图象交点问题,涉及对勾函数图象在第一象限的画法,二次函数最值等知识点,属于中档题.9.(5分)已知大于1的三个实数a,b,c满足(lga)2﹣2lgalgb+lgblgc=0,则a,b,c 的大小关系不可能是()A.a=b=c B.a>b>c C.b>c>a D.b>a>c【分析】因为三个实数a,b,c都大于1,所以lga>0,lgb>0,lgc>0,原等式可化为lgalg+lgblg=0,分别分析选项的a,b,c的大小关系即可判断出结果.【解答】解:∵三个实数a,b,c都大于1,∴lga>0,lgb>0,lgc>0,∵(lga)2﹣2lgalgb+lgblgc=0,∴(lga)2﹣lgalgb+lgblgc﹣lgalgb=0,∴lga(lga﹣lgb)+lgb(lgc﹣lga)=0,∴lgalg+lgblg=0,对于A选项:若a=b=c,则lg=0,lg=0,满足题意;对于B选项:若a>b>c,则,0<<1,∴lg>0,lg<0,满足题意;对于C选项:若b>c>a,则0<<1,>1,∴lg<0,lg>0,满足题意;对于D选项:若b>a>c,则0<<1,0<<1,∴lg<0,lg<0,∴lgalg+lgblg <0,不满足题意;故选:D.【点评】本题主要考查了对数的运算性质,是中档题.10.(5分)已知正整数x1,x2,…,x10满足当i<j(i,j∈N*)时,x i<x j,且x12+x22+…+x102≤2020,则x9﹣(x1+x2+x3+x4)的最大值为()A.19B.20C.21D.22【分析】要使x9﹣(x1+x2+x3+x4)取得最大值,结合题意,则需前8项最小,第9项最大,则第10项为第9项加1,由此建立不等式,求出第9项的最大值,进而得解.【解答】解:依题意,要使x9﹣(x1+x2+x3+x4)取得最大值,则x i=i(i=1,2,3,4,5,6,7,8),且x10=x9+1,故,即,又2×292+2×29﹣1815=﹣75<0,2×302+2×30﹣1815=45>0,故x9的最大值为29,∴x9﹣(x1+x2+x3+x4)的最大值为29﹣(1+2+3+4)=19.故选:A.【点评】本题考查代数式最大值的求法,考查逻辑推理能力及创新意识,属于中档题.二.填空题:本大题共6小题,每空5分,共30分.11.(5分)计算sin330°=﹣.【分析】所求式子中的角变形后,利用诱导公式化简即可得到结果.【解答】解:sin330°=sin(360°﹣30°)=﹣sin30°=﹣.故答案为:﹣【点评】此题考查了诱导公式的作用,熟练掌握诱导公式是解本题的关键.12.(5分)若集合A={x|x2﹣ax+2<0}=∅,则实数a的取值范围是[﹣2,2].【分析】根据集合A的意义,利用△≤0求出实数a的取值范围.【解答】解:集合A={x|x2﹣ax+2<0}=∅,则不等式x2﹣ax+2<0无解,所以△=(﹣a)2﹣4×1×2≤0,解得﹣2≤a≤2,所以实数a的取值范围是[﹣2,2].故答案为:[﹣2,2].【点评】本题考查了一元二次不等式的解法与应用问题,是基础题.13.(5分)已知函数f(x)=log2x,在x轴上取两点A(x1,0),B(x2,0)(0<x1<x2),设线段AB的中点为C,过A,B,C作x轴的垂线,与函数f(x)的图象分别交于A1,B1,C1,则点C1在线段A1B1中点M的上方.(横线上填“上方”或者“下方”)【分析】求出点C1,M的纵坐标,作差后利用基本不等式即可比较大小,进而得出结论.【解答】解:依题意,A1(x1,log2x1),B1(x2,log2x2),则,则=,故点C1在线段A1B1中点M的上方.故答案为:上方.【点评】本题考查对数运算及基本不等式的运用,考查逻辑推理能力,属于基础题.14.(5分)给出下列命题:①函数是偶函数;②函数f(x)=tan2x在上单调递增;③直线x=是函数图象的一条对称轴;④将函数的图象向左平移单位,得到函数y=cos2x的图象.其中所有正确的命题的序号是①②③.【分析】利用三函数的奇偶性、单调性、对称轴、图象的平移等性质直接求解.【解答】解:在①中,函数=cos2x是偶函数,故①正确;在②中,∵y=tan x在(﹣,)上单调递增,∴函数f(x)=tan2x在上单调递增,故②正确;在③中,函数图象的对称轴方程为:2x+=kπ+,k∈Z,即x=,k=0时,x=,∴直线x=是函数图象的一条对称轴,故③正确;在④中,将函数的图象向左平移单位,得到函数y=cos(2x+)的图象,故④错误.故答案为:①②③.【点评】本题考查命题真假的判断,考查三函数的奇偶性、单调性、对称轴、图象的平移等基础知识,考查运算求解能力,是中档题.15.(5分)已知在平面直角坐标系xOy中,点A(1,1)关于y轴的对称点A'的坐标是(﹣1,1).若A和A'中至多有一个点的横纵坐标满足不等式组,则实数a 的取值范围是{a|a≥0或a≤﹣1}.【分析】先求出对称点的坐标,再求出第二问的对立面,即可求解.【解答】解:因为点A(1,1)关于y轴的对称点A'的坐标是(﹣1,1);A和A'中至多有一个点的横纵坐标满足不等式组,其对立面是A和A'中两个点的横纵坐标都满足不等式组,可得:且⇒a<0且﹣1<a<2⇒﹣1<a<0故满足条件的a的取值范围是{a|a≥0或a≤﹣1}.故答案为:(﹣1,1),{a|a≥0或a≤﹣1}.【点评】本题主要考查对称点的求法以及二元一次不等式组和平面区域之间的关系,属于基础题.16.(5分)在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=A sin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是A(r cosα,r sinα),从A点出发,以恒定的角速度ω转动,经过t 秒转动到点B(x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y与时间t的函数关系式为y=r sin(ωt+α).【分析】由任意角三角函数的定义,A(r cosα,r sinα),根据题意∠BOx=ωt+α,进而可得点C的纵坐标y与时间t的函数关系式.【解答】解:由任意角三角函数的定义,A(r cosα,r sinα),若从A点出发,以恒定的角速度ω转动,经过t秒转动到点B(x,y),则∠BOx=ωt+α,点C的纵坐标y与时间t的函数关系式为y=r sin(ωt+α).故答案为:A(r cosα,r sinα),y=r sin(ωt+α).【点评】本题考查任意角三角函数的定义,三角函数解析式,属于中档题.三.解答题:本大题共4小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.(14分)已知集合A={x|x2﹣5x﹣6≤0},B={x|m+1≤x≤2m﹣1,m∈R}.(Ⅰ)求集合∁R A;(Ⅱ)若A∪B=A,求实数m的取值范围;【分析】(Ⅰ)容易求出A={x|﹣1≤x≤6},然后进行补集的运算即可;(Ⅱ)根据A∪B=A可得出B⊆A,从而可讨论B是否为空集:B=∅时,m+1>2m﹣1;B≠∅时,,解出m的范围即可.【解答】解:(Ⅰ)A={x|﹣1≤x≤6},∴∁R A={x|x<﹣1或x>6},(Ⅱ)∵A∪B=A,∴B⊆A,∴①B=∅时,m+1>2m﹣1,解得m<2;②B≠∅时,,解得,∴实数m的取值范围为.【点评】本题考查了描述法的定义,一元二次不等式的解法,并集、补集的定义及运算,子集的定义,考查了计算能力,属于基础题.18.(18分)已知函数f(x)=sin2x﹣2.(Ⅰ)若点在角α的终边上,求tan2α和f(α)的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)若,求函数f(x)的最小值.【分析】(Ⅰ)直接利用三角函数的定义的应用和函数的关系式的应用求出结果.(Ⅱ)利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(Ⅲ)利用函数的定义域的应用求出函数的值域和最小值.【解答】解:(Ⅰ)若点在角α的终边上,所以,,故,所以tan2α===.f(α)==2.(Ⅱ)由于函数f(x)=sin2x﹣2=.所以函数的最小正周期为.(Ⅲ)由于,所以,所以当x=时,函数的最小值为.【点评】本题考查的知识要点:三角函数的定义的应用,三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.(18分)已知函数f(x)=(x≠a).(Ⅰ)若2f(1)=﹣f(﹣1),求a的值;(Ⅱ)若a=2,用函数单调性定义证明f(x)在(2,+∞)上单调递减;(Ⅲ)设g(x)=xf(x)﹣3,若函数g(x)在(0,1)上有唯一零点,求实数a的取值范围.【分析】(Ⅰ)由已知,建立关于a的方程,解出即可;(Ⅱ)将a=2代入,利用取值,作差,变形,判号,作结论的步骤证明即可;(Ⅲ)问题转化为h(x)=2x2﹣3x+3a在(0,1)上有唯一零点,由二次函数的零点分布问题解决.【解答】解:(Ⅰ)由2f(1)=﹣f(﹣1)得,,解得a=﹣3;(Ⅱ)当a=2时,,设x1,x2∈(2,+∞),且x1<x2,则,∵x1,x2∈(2,+∞),且x1<x2,∴x2﹣x1>0,(x1﹣2)(x2﹣2)>0,∴f(x1)>f(x2),∴f(x)在(2,+∞)上单调递减;(Ⅲ),若函数g(x)在(0,1)上有唯一零点,即h(x)=2x2﹣3x+3a在(0,1)上有唯一零点(x=a不是函数h(x)的零点),且二次函数h(x)=2x2﹣3x+3a的对称轴为,若函数h(x)在(0,1)上有唯一零点,依题意,①当h(0)h(1)<0时,3a(3a﹣1)<0,解得;②当△=0时,9﹣24a=0,解得,则方程h(x)=0的根为,符合题意;③当h(1)=0时,解得,则此时h(x)=2x2﹣3x+1的两个零点为,符合题意.综上所述,实数a的取值范围为.【点评】本题考查函数单调性的证明及二次函数的零点分布问题,考查推理论证及运算求解能力,属于中档题.20.(20分)已知函数f(x)=log2(x+a)(a>0).当点M(x,y)在函数y=g(x)图象上运动时,对应的点M'(3x,2y)在函数y=f(x)图象上运动,则称函数y=g(x)是函数y=f(x)的相关函数.(Ⅰ)解关于x的不等式f(x)<1;(Ⅱ)对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,求a的取值范围;(Ⅲ)设函数F(x)=f(x)﹣g(x),x∈(0,1).当a=1时,求|F(x)|的最大值【分析】(Ⅰ)利用对数函数的性质可得,解出即可;(Ⅱ)根据题意,求得,依题意,在(0,1)上恒成立,由此得解;(Ⅲ)结合(Ⅱ)可知,,则只需求出的最大值即可.【解答】解:(Ⅰ)依题意,,则,解得﹣a<x<2﹣a,∴所求不等式的解集为(﹣a,2﹣a);(Ⅱ)由题意,2y=log2(3x+a),即f(x)的相关函数为,∵对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,∴当x∈(0,1)时,恒成立,由x+a>0,3x+a>0,a>0得,∴在此条件下,即x∈(0,1)时,恒成立,即(x+a)2<3x+a,即x2+(2a﹣3)x+a2﹣a<0在(0,1)上恒成立,∴,解得0<a≤1,故实数a的取值范围为(0,1].(Ⅲ)当a=1时,由(Ⅱ)知在区间(0,1)上,f(x)<g(x),∴,令,则,令μ=3x+1(1<μ<4),则,∴,当且仅当“”时取等号,∴|F(x)|的最大值为.【点评】本题考查对数函数的图象及性质,考查换元思想的运用,考查逻辑推理能力及运算求解能力,属于中档题.。

2019年高中必修一数学上期末第一次模拟试题(附答案)(1)

2019年高中必修一数学上期末第一次模拟试题(附答案)(1)

2019年高中必修一数学上期末第一次模拟试题(附答案)(1)一、选择题1.已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>2.设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( ) A .a b c <<B .a b c >>C .b a c >>D .c a b >>3.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12B .2C .22D .24.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-155.德国数学家狄利克在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f (x )由右表给出,则1102f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值为( )A .0B .1C .2D .36.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<7.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ). A .b a c << B .c b a << C .c a b <<D .a b c <<8.函数()()212log 2f x x x =-的单调递增区间为( )A .(),1-∞B .()2,+∞C .(),0-∞D .()1,+∞9.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120fx f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭10.已知01a <<,则方程log xa a x =根的个数为( ) A .1个B .2个C .3个D .1个或2个或3根11.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .412.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .11二、填空题13.已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________.14.已知()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,其中a 是方程lg 4x x +=的解,b 是方程104x x +=的解,如果关于x 的方程()f x x =的所有解分别为1x ,2x ,…,n x ,记121==+++∑nin i xx x x L ,则1ni i x ==∑__________.15.函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()g x 的图象,则其中一个函数的解析式可以为__________.16.已知函数1,0()ln 1,0x x f x x x ⎧+≤=⎨->⎩,若方程()()f x m m R =∈恰有三个不同的实数解()a b c a b c <<、、,则()a b c +的取值范围为______;17.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______. 18.已知sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <>则1111()()66f f -+为_____19.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[3,4]4-=-,[2,7]2=.已知函数21()15x xe f x e =-+,则函数[()]y f x =的值域是_________. 20.定义在R 上的奇函数()f x ,满足0x >时,()()1f x x x =-,则当0x ≤时,()f x =______. 三、解答题21.已知函数31()31x xf x -=+. (1)证明:()f x 为奇函数;(2)判断()f x 的单调性,并加以证明; (3)求()f x 的值域.22.已知二次函数满足2()(0)f x ax bx c a =++≠,(1)()2,f x f x x +-= 且(0) 1.f =(1)求函数()f x 的解析式(2)求函数()f x 在区间[1,1]-上的值域;23.科研人员在对某物质的繁殖情况进行调查时发现,1月、2月、3月该物质的数量分别为3、5、9个单位.为了预测以后各月该物质的数量,甲选择了模型2y ax bx c =++,乙选择了模型xy pq r =+,其中y 为该物质的数量,x 为月份数,a ,b ,c ,p ,q ,r 为常数. (1)若5月份检测到该物质有32个单位,你认为哪个模型较好,请说明理由. (2)对于乙选择的模型,试分别计算4月、7月和10月该物质的当月增长量,从计算结果中你对增长速度的体会是什么?24.某上市公司股票在30天内每股的交易价格P (元)关于时间t (天)的函数关系为12,020,518,2030,10t t t P t t t ⎧+≤≤∈⎪⎪=⎨⎪-+<≤∈⎪⎩N N ,该股票在30天内的日交易量Q (万股)关于时间t(天)的函数为一次函数,其图象过点(4,36)和点(10,30). (1)求出日交易量Q (万股)与时间t (天)的一次函数关系式;(2)用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?25.义域为R 的函数()f x 满足:对任意实数x,y 均有()()()2f x y f x f y +=++,且()22f =,又当1x >时,()0f x >.(1)求()()0.1f f -的值,并证明:当1x <时,()0f x <; (2)若不等式()()()222221240f aa x a x ----++<对任意[] 1,3x ∈恒成立,求实数a 的取值范围.26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁R B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:2log 1a e =>,()21ln 20,1log b e ==∈,12221log log 3log 3c e ==>, 据此可得:c a b >>. 本题选择D 选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.2.A解析:A 【解析】 【分析】构造函数()log 2x xf x =,利用单调性比较大小即可. 【详解】构造函数()21log 1log 212log xx x f x x==-=-,则()f x 在()1,+∞上是增函数,又()6a f =,()10b f =,()14c f =,故a b c <<. 故选A 【点睛】本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题.3.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.4.A解析:A 【解析】 【分析】设()2f x ax bx c =++,可知1、3为方程()20f x x +=的两根,且0a <,利用韦达定理可将b 、c 用a 表示,再由方程()60f x a +=有两个相等的根,由0∆=求出实数a 的值. 【详解】由于不等式()2f x x >-的解集为()1,3,即关于x 的二次不等式()220ax b x c +++>的解集为()1,3,则0a <.由题意可知,1、3为关于x 的二次方程()220ax b x c +++=的两根,由韦达定理得2134b a +-=+=,133ca=⨯=,42b a ∴=--,3c a =, ()()2423f x ax a x a ∴=-++,由题意知,关于x 的二次方程()60f x a +=有两相等的根, 即关于x 的二次方程()24290ax a x a -++=有两相等的根,则()()()224236102220a a a a ∆=+-=+-=,0a <Q ,解得15a =-,故选:A. 【点睛】本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于中等题.5.D解析:D 【解析】 【分析】采用逐层求解的方式即可得到结果. 【详解】∵(] 121∈-∞,,∴112f ⎛⎫= ⎪⎝⎭, 则110102f ⎛⎫= ⎪⎝⎭,∴()1(())21010f f f =,又∵[)102∈+∞,,∴()103f =,故选D . 【点睛】本题主要考查函数的基础知识,强调一一对应性,属于基础题.6.D解析:D 【解析】 【分析】 可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b .【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.7.D解析:D 【解析】 【分析】函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,再通过数形结合得到a ,b ,c 的大小关系. 【详解】令2()2log 0x f x x =+=,则2log 2x x =-.令12()2log 0xg x x -=-=,则2log 2x x -=-. 令2()2log 10x x h x =-=,则22log 1x x =,21log 22x x x -==. 所以函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log y x =与函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,如图所示,可知01a b <<<,1c >, ∴a b c <<.故选:D . 【点睛】本题主要考查函数的零点问题,考查对数函数和指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.C【解析】 【分析】求出函数()()212log 2f x x x =-的定义域,然后利用复合函数法可求出函数()y f x =的单调递增区间. 【详解】解不等式220x x ->,解得0x <或2x >,函数()y f x =的定义域为()(),02,-∞+∞U . 内层函数22u x x =-在区间(),0-∞上为减函数,在区间()2,+∞上为增函数, 外层函数12log y u =在()0,∞+上为减函数,由复合函数同增异减法可知,函数()()212log 2f x x x =-的单调递增区间为(),0-∞. 故选:C. 【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.9.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.10.B【解析】 【分析】在同一平面直角坐标系中作出()xf x a =与()log a g x x =的图象,图象的交点数目即为方程log xa a x =根的个数. 【详解】作出()xf x a =,()log a g x x =图象如下图:由图象可知:()(),f x g x 有两个交点,所以方程log xa a x =根的个数为2.故选:B . 【点睛】本题考查函数与方程的应用,着重考查了数形结合的思想,难度一般.(1)函数()()()h x f x g x =-的零点数⇔方程()()f x g x =根的个数⇔()f x 与()g x 图象的交点数;(2)利用数形结合可解决零点个数、方程根个数、函数性质研究、求不等式解集或参数范围等问题.11.B解析:B 【解析】 【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.12.B解析:B 【解析】因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7.选B.二、填空题13.【解析】【分析】通过去掉绝对值符号得到分段函数的解析式求出值域然后求解的值域结合已知条件推出的范围即可【详解】由题意对于任意的总存在使得或则与的值域的并集为又结合分段函数的性质可得的值域为当时可知的 解析:(,1]-∞【解析】 【分析】通过去掉绝对值符号,得到分段函数的解析式,求出值域,然后求解()ag x x x=+的值域,结合已知条件推出a 的范围即可. 【详解】由题意,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则()f x 与()g x 的值域的并集为R ,又()2,1112,112,1x f x x x x x x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩,结合分段函数的性质可得,()f x 的值域为[]22-,, 当0a ≥时,可知()ag x x x=+的值域为(),⎡-∞-+∞⎣U ,所以,此时有2≤,解得01a ≤≤, 当0a <时,()ag x x x=+的值域为R ,满足题意, 综上所述,实数a 的范围为(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数恒成立条件的转化,考查转化思想的应用,注意题意的理解是解题的关键,属于基础题.14.【解析】【分析】根据互为反函数的两个图像与性质可求得的等量关系代入解析式可得分段函数分别解方程求得方程的解即可得解【详解】是方程的解是方程的解则分别为函数与函数和图像交点的横坐标因为和互为反函数所以 解析:1-【解析】 【分析】根据互为反函数的两个图像与性质,可求得a ,b 的等量关系,代入解析式可得分段函数()f x .分别解方程()f x x =,求得方程的解,即可得解. 【详解】a 是方程lg 4x x +=的解,b 是方程104x x +=的解,则a ,b 分别为函数4y x =-+与函数lg y x =和10xy =图像交点的横坐标因为lg y x =和10x y =互为反函数,所以函数lg y x =和10xy =图像关于y x =对称所以函数4y x =-+与函数lg y x =和10xy =图像的两个交点也关于y x =对称所以函数4y x =-+与y x =的交点满足4y x y x =-+⎧⎨=⎩,解得22x y =⎧⎨=⎩根据中点坐标公式可得4a b +=所以函数()242,02,0x x x f x x ⎧++≤=⎨>⎩当0x ≤时,()242f x x x =++,关于x 的方程()f x x =,即242x x x ++=解得2,1x x =-=-当0x >时,()2f x =,关于x 的方程()f x x =,即2x = 所以()()12121ni i x ==-+-+=-∑故答案为:1- 【点睛】本题考查了函数与方程的关系,互为反函数的两个函数的图像与性质,分段函数求自变量,属于中档题.15.【解析】【分析】先根据图象可以得出f(x)的图象可以在OC 或CD 中选取一个再在AB 或OB 中选取一个即可得出函数f(x)的解析式【详解】由图可知线段OC 与线段OB 是关于原点对称的线段CD 与线段BA 也是解析:()1x f x ⎧=⎨⎩1001x x -<<<< 【解析】 【分析】先根据图象可以得出f (x )的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,即可得出函数f (x ) 的解析式. 【详解】由图可知,线段OC 与线段OB 是关于原点对称的,线段CD 与线段BA 也是关于原点对称的,根据题意,f (x) 与g (x) 的图象关于原点对称,所以f (x)的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,比如其组合形式为: OC 和AB , CD 和OB , 不妨取f (x )的图象为OC 和AB ,OC 的方程为: (10)y x x =-<<,AB 的方程为: 1(01)y x =<<,所以,10()1,01x x f x x -<<⎧=⎨<<⎩, 故答案为:,10()1,01x x f x x -<<⎧=⎨<<⎩【点睛】本题主要考查了函数解析式的求法,涉及分段函数的表示和函数图象对称性的应用,属于中档题.16.【解析】【分析】画出的图像根据图像求出以及的取值范围由此求得的取值范围【详解】函数的图像如下图所示由图可知令令所以所以故答案为:【点睛】本小题主要考查分段函数的图像与性质考查数形结合的数学思想方法属解析:)22,2e e ⎡--⎣【解析】 【分析】画出()f x 的图像,根据图像求出+a b 以及c 的取值范围,由此求得()a b c +的取值范围. 【详解】函数()f x 的图像如下图所示,由图可知1,22a ba b +=-+=-.令2ln 11,x x e -==,令ln 10,x x e -==,所以2e c e <≤,所以)2()22,2a b c c e e ⎡+=-∈--⎣. 故答案为:)22,2e e ⎡--⎣【点睛】本小题主要考查分段函数的图像与性质,考查数形结合的数学思想方法,属于基础题.17.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没解析:{|2m m >或2}3m <- 【解析】 【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围. 【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >.当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意. 当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值.故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得23m <-. 综上,m 的取值范围为{|2m m >或2}3m <-.故答案为:{|2m m >或2}3m <-. 【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题.18.0【解析】【分析】根据分段函数的解析式代入求值即可求解【详解】因为则所以【点睛】本题主要考查了分段函数求值属于中档题解析:0 【解析】 【分析】根据分段函数的解析式,代入求值即可求解. 【详解】因为sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <> 则11111()sin()sin 6662f ππ-=-==, 11511()()()sin()66662f f f π==-=-=-, 所以1111()()066f f -+=.【点睛】本题主要考查了分段函数求值,属于中档题.19.【解析】【分析】求出函数的值域由高斯函数的定义即可得解【详解】所以故答案为:【点睛】本题主要考查了函数值域的求法属于中档题 解析:{}1,0,1-【解析】 【分析】求出函数()f x 的值域,由高斯函数的定义即可得解. 【详解】2(1)212192()2151551x x x xe f x e e e +-=-=--=-+++Q , 11x e +>Q ,1011xe ∴<<+, 2201xe ∴-<-<+, 19195515xe ∴-<-<+,所以19(),55f x ⎛⎫∈- ⎪⎝⎭,{}[()]1,0,1f x ∴∈-,故答案为:{}1,0,1- 【点睛】本题主要考查了函数值域的求法,属于中档题.20.【解析】【分析】由奇函数的性质得设则由函数的奇偶性和解析式可得综合2种情况即可得答案【详解】解:根据题意为定义在R 上的奇函数则设则则又由函数为奇函数则综合可得:当时;故答案为【点睛】本题考查函数的奇 解析:()1x x +【解析】 【分析】由奇函数的性质得()00f =,设0x <,则0x ->,由函数的奇偶性和解析式可得()()()1f x f x x x =--=+,综合2种情况即可得答案.【详解】解:根据题意,()f x 为定义在R 上的奇函数,则()00f =, 设0x <,则0x ->,则()()()1f x x x -=-+, 又由函数为奇函数,则()()()1f x f x x x =--=+, 综合可得:当0x ≤时,()()1f x x x =+; 故答案为()1x x + 【点睛】本题考查函数的奇偶性以及应用,注意()00f =,属于基础题.三、解答题21.(1)证明见详解;(2)函数()f x 在R 上单调递,证明见详解;(3)(1,1)- 【解析】 【分析】(1)判断()f x 的定义域,用奇函数的定义证明可得答案;(2)判断()f x 在R 上单调递增,用函数单调性的定义证明可得答案;(2)由312()13131x x xf x -==-++,可得30x >,可得231x +及231x -+的取值范围,可得()f x 的值域.【详解】证明:(1)易得函数()f x 的定义域为R ,关于原点对称,且3113()()3131x xx x f x f x -----===-++,故()f x 为奇函数;(2)函数()f x 在R 上单调递增,理由如下:在R 中任取12x x <,则1233x x -<0,131x +>0,231x +>0,可得1212121212123131222(33)()()(1)(1)31313131(31)(31)x x x x x x x x x x f x f x ----=-=---=++++++<0 故12()()0f x f x -<,函数()f x 在R 上单调递增;(3)由312()13131x x x f x -==-++,易得30x >,311x +>,故231x +0<<2,231x +-2<-<0,故2131x -+-1<<1, 故()f x 的值域为(1,1)-.【点睛】本题主要考查函数单调性及奇偶性的判断与证明及求解函数的值域,综合性大,属于中档题.22.(1)2()1f x x x =-+;(2)3[,3]4【解析】 【分析】(1)由()01f =得到c 的值,然后根据(1)()2f x f x x +-=得到关于,a b 的方程组求解出,a b 的值,即可求出()f x 的解析式;(2)判断()f x 在[1,1]-上的单调性,计算出()()max min ,f x f x ,即可求解出值域. 【详解】(1)因为()01f =,所以1c =,所以()()210f x ax bx a =++≠;又因为()()12f x f x x +-=,所以()()()2211112a x b x ax bx x ⎡⎤++++-++=⎣⎦,所以22ax a b x ++=,所以220a a b =⎧⎨+=⎩,所以11a b =⎧⎨=-⎩,即()21f x x x =-+;(2)因为()21f x x x =-+,所以()f x 对称轴为12x =且开口向上, 所以()f x 在11,2⎡⎫-⎪⎢⎣⎭递减,在1,12⎡⎤⎢⎥⎣⎦递增,所以()min 111312424f x f ⎛⎫==-+= ⎪⎝⎭, 又()()211113f -=-++=,()211111f =-+=,所以()max 3f x =, 所以()f x 在[]1,1-上的值域为:3,34⎡⎤⎢⎥⎣⎦. 【点睛】(1)利用待定系数法求解二次函数的解析式关键是:能根据已知函数类型,将条件中等量关系转化为系数方程组,求解出系数值;(2)求解二次函数在某个区间上的值域,可先由对称轴和开口方向分析单调性,然后求解出函数最值,即可确定出函数值域.23.(1)乙模型更好,详见解析(2)4月增长量为8,7月增长量为64,10月增长量为512;越到后面当月增长量快速上升. 【解析】 【分析】(1)根据题意分别求两个模型的解析式,然后验证当5x =时的函数值,最接近32的模型好;(2)第n 月的增长量是()()1f n f n --,由增长量总结结论. 【详解】(1)对于甲模型有3425939a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得:113a b c =⎧⎪=-⎨⎪=⎩23y x x ∴=-+当5x =时,23y =.对于乙模型有23359pq r pq r pq r +=⎧⎪+=⎨⎪+=⎩,解得:121p q r =⎧⎪=⎨⎪=⎩,21x y ∴=+当5x =时,33y =.因此,乙模型更好;(2)4x =时,当月增长量为()()4321218+-+=,7x =时,当月增长量为()()76212164+-+=,10x =时,当月增长量为()()1092121512+-+=,从结果可以看出,越到后面当月增长量快速上升.(类似结论也给分) 【点睛】本题考查函数模型,意在考查对实际问题题型的分析能力和计算能力,属于基础题型,本题的关键是读懂题意.24.(1)40Q t =-+,030t <≤,t ∈N (2)在30天中的第15天,日交易额最大为125万元. 【解析】 【分析】(1)设出一次函数解析式,利用待定系数法求得一次函数解析式. (2)求得日交易额的分段函数解析式,结合二次函数的性质,求得最大值. 【详解】(1)设Q ct d =+,把所给两组数据()()4,36,10,30代入可求得1c =-,40d =. ∴40Q t =-+,030t <≤,t N ∈(3)首先日交易额y (万元)=日交易量Q (万股)⨯每股交易价格P (元)()()1240,020,51840,2030,10t t t t N y t t t t N ⎧⎛⎫+-+≤≤∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-+<≤∈ ⎪⎪⎝⎭⎩,∴()()22115125,020,516040,2030,10t t t N y t t t N ⎧--+≤≤∈⎪⎪=⎨⎪--<≤∈⎪⎩ 当020t ≤≤时,当15t =时,max 125y =万元 当20t 30<≤时,y 随x 的增大而减小故在30天中的第15天,日交易额最大为125万元. 【点睛】本小题主要考查待定系数法求函数解析式,考查分段函数的最值,考查二次函数的性质,属于中档题.25.(1)答案见解析;(2)0a <或1a >. 【解析】 试题分析:(1)利用赋值法计算可得()()02,14f f =--=-,设1x <,则21x ->, 利用()22f =拆项:()()22f f x x =-+即可证得:当1x <时,()0f x <; (2)结合(1)的结论可证得()f x 是增函数,据此脱去f 符号,原问题转化为()()2222122a a x a x ----+<-在[]1,3上恒成立,分离参数有:222234x x a a x x+-->-恒成立,结合基本不等式的结论可得实数a 的取值范围是0a <或1a >. 试题解析: (1)令,得,令, 得,令,得,设,则,因为,所以;(2)设,,因为所以,所以为增函数,所以,即,上式等价于对任意恒成立,因为,所以上式等价于对任意恒成立,设,(时取等),所以,解得或.26.见解析【解析】【分析】根据题意,在数轴上表示出集合,A B,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A∪B={x|2<x<7},A∩B={x|3≤x<6}.∴∁R(A∪B)={x|x≤2或x≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。

高一上学期数学人教B版(2019)期末模拟测试卷B卷(含解析)

高一上学期数学人教B版(2019)期末模拟测试卷B卷(含解析)

高一上学期数学人教B 版(2019)期末模拟测试卷B 卷【满分:150分】一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,集合,若,则实数a 取值集合的真子集的个数为( )A.2B.3C.7D.82.已知函数是定义在R 上的偶函数,且在上单调递增,若关于x 的不等式,则不等式的解集为( )A. B.C. D.3.已知函数,若恒成立,则的最大值为( )A.4.若函数,在上单调递增,则a 的取值范围是( )A. B. C. D.5.已知函数的定义域为R ,对任意的,且,都有成立.若对任意恒成立,则实数a 的取值范围是( )A. B.C. D.6.“幸福指数”是某人对自己目前生活状态满意程度的自我评价指标,常用区间内的一个数来表示,该数越接近10表示满意程度越高.现随机抽取10位市民,他们的幸福感指数分281{50}A x x x =-+={10}B x ax =-=B A ⊆()f x [)0,+∞()f x ][),22,-∞-+∞ ()232f x x >()(),22,-∞-+∞ ()2,2-()(),44,-∞-+∞ ()4,4-()()212e 1b x f x a x -⎛⎫=--- ⎪⎝⎭()0f x ≤ab ()2log 1,13(),3x x f x ax x x ⎧+-<≤⎪=⎨+>⎪⎩(1,)-+∞[]3,9-[)3,-+∞[]0,9(],9-∞()f x 1x 2x 12x x ≠()()()12120f x f x x x -->⎡⎤⎣⎦()()22326f x x a f x a a -+>--x ∈R ()1,4,2⎛⎫-∞-+∞ ⎪⎝⎭ 11,42⎛⎫- ⎪⎝⎭()1,4,2⎛⎫-∞-+∞ ⎪⎝⎭1,42⎡⎤-⎢⎥⎣⎦[]0,10别为5,6,7,8,7,9,4,5,8,9,则下列说法错误的是( )A.该组数据的中位数为7B.该组数据的平均数为7.5C.该组数据的第60百分位数为7.5D.该组数据的极差为57.口袋中有2个红球和2个白球(形状和大小完全相同),从中随机不放回地依次摸出2个球,设事件“第1次摸出的是红球”,“第2次摸出的是红球”,“摸出的两个球均为红球”,“摸出的两个球颜色不同”则下列说法正确的是( )A.A 与B 互斥B.C 与D 互为对立C.D.A 与D 相互独立8.已知,若A.-2B.-1C.二、选择题:本题共3小题.每小题6分.共18分.在每小题给出的选项中,有多项符合题目要求全部选对的得6分.部分选对的得部分分,有选错的得0分.9.若非空实数集M 满足任意,都有, ,则称M 为“优集”.已知A ,B 是优集,则下列命题中正确的是( )A.是优集B.是优集C.若是优集,则或D.若是优集,则是优集10.已知函数是定义域为R 的偶函数,满足,当时,,则( )A.的最小值是的周期为4C. D.11.已知,,…,,为1,2,…,5,6的任意排列,设,.则( )A.任意交换,,的顺序,不影响X 的取值A =B =C =D =B C⊆0a ≠20212021()20a b a a b ++++=,x y M ∈x y M +∈x y M -∈A B A B A B A B ⊆B A⊆A B A B ()f x (2)(2)f x f x +=-02x ≤≤2()f x x x =-()f x ()f x (2025)2f =20271()1014i f i ==∑1x 2x 5x 6x {}{}{}123456min max ,,,max ,,X x x x x x x ={}{}{}123456max min ,,,min ,,Y x x x x x x =1x 2x 3xB.满足及的排列有20个C.D.三、填空题:本题共3小题,每小题5分,共15分.12.某中学高一、高二、高三的学生人数比例为,假设该中学高一、高二、高三的学生阅读完《红楼梦》的概率分别为0.2,0.25,,若从该中学三个年级的学生中随机选取1名学生,则这名学生阅读完《红楼梦》的概率不大于0.233,已知该中学高三的学生阅读完《红楼梦》的概率不低于高一的学生阅读完《红楼梦》的概率,则的取值范围是__________.13.已知函数,若恒成立,则实数k 的取值范围为__________.14.已知不等式对于恒成立,则实数a 的取值范围是_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或者演算步骤.(1)求实数a 的值:(2)探究的单调性,并证明你的结论;(3)解关于x 的不等式.17.(15分)某地区有小学生9000人,初中生8600人,高中生4400人,教育局组织网络“防溺水”网络知识问答,现用分层抽样的方法从中抽取220名学生,对其成绩进行统计解题思路,得到如下图所示的频率分布直方图所示的频率分布直方图.123x x x <<456x x x <<X =X >4:3:3(01)p p <<p ()()221f x x x kx x =-+-∈R ()0f x ≥4220x x a ⋅-+>(],0x ∈-∞()f x ()()42322x xf f +-⨯>(1)根据频率分布直方图,估计该地区所有学生中知识问答成绩的平均数和众数;(2)成绩位列前10%的学生平台会生成“防溺水达人”优秀证书,试估计获得“防溺水达人”的成绩至少为多少分;(3)已知落在内的平均成绩为67,方差是9,落在内的平均成绩是73,方差是29,求落在内的平均成绩和方差..记两组,则总体样本方差)18.(17分)为践行“绿水青山,就是金山银山”的理念,我省决定净化某条河上游水域的水质.省环保局于2022年年底在该河上游水域投入一些蒲草,这些蒲草在水中的蔓延速度越来越快,2023年2月底测得蒲草覆盖面积为,2023年3月底测得蒲草覆盖面积为,蒲草覆盖面积y(单位:)与月份x(单位:月)的关系有两个函数模型(,)与可供选择.(1)分别求出两个函数模型的解析式;(2)若2022年年底测得蒲草覆盖面积为,从上述两个函数模型中选择更合适的一个模型,说明理由,并估算至少到哪一年的几月底蒲草覆盖面积能达到?(参考数据:,).19.(17分)多项选择题是标准化考试中常见题型,从A,B,C,D四个选项中选出所有正确的答案(四个选项中至少有两个选项是正确的),其评分标准为全部选对的得5分,部分选对的得2分,有选错的得0分.(1)甲同学有一道多项选择题不会做,他随机选择至少两个选项,求他猜对本题得5分的概率;lg30.48≈[)60,70[)60,80[)70,80122()()222221122m ns s x w s x wm n m n⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦++236m248m2m xy ka=0k>1a> 2(0)y mx n m=+>220m2810mlg20.30≈否也互不影响,求这2道多项选择题乙比丙总分刚好多得5分的概率.答案以及解析1.答案:C解析:由,得,解得或,所以.当时,,满足;当时,,因为,解得,所以实数a 取值集合的真子集的个数为,故选C.2.答案:B解析:令为偶函数,且在上递增,,结合题设知,在上,在上,令上递增,,若上,则有,在上,则有,综上,结合题设的性质,不等式的解集为.故选:B 3.答案:C解析:由,解得,令,解得,则,,不符合题意;当,则,,不符合题意;所以,则当时等号成立,4.答案:A解析:当时,单调递增且值域为,而在上单调递增,28150x x -+=(3)(5)0x x --=3x =5x ={3,5}A =0a =B =∅B A ⊆0a ≠1B a ⎧⎫=⎨⎬⎩⎭B ⊆=5=a ==110,,35⎫⎬⎭3217-=()3||g x x =()0,+∞(2)6g =(2)6f =(,2)(2,)-∞-+∞ ()()g x f x >()2,2-()()g x f x <3()2h x =)0,+∞(2)(2)(2)6h g f ===23()()3||3||2y h x g x x x x =-=-=(,2)(2,)-∞-+∞ 0y >()()()h x g x f x >>()2,2-0y <()()()h x g x f x <<()f x ()232f x x >()2,2-120a x --=12x a =-2e10bx --=x =2a ->,122b x a ⎛⎫∈- ⎪⎝⎭120a x -->2e 10b x -->12a -<12,2b a ⎛⎫∈- ⎪⎝⎭120a x --<2e10bx --<12a -=24a =-()21124444ab a a a ⎛⎫=-=--+≤ ⎪⎝⎭a =1=13x -<≤2log (1)y x =+(,2]-∞()f x (1,)-+∞在,即;综上,.故选:A5.答案:C解析:不妨设,又,所以,即,所以在R上单调递增,所以对任意恒成立,即,即对任意恒成立,所以,解得或,故选:C.6.答案:B解析:首先对10位市民的幸福感指数按从小到大的顺序进行排序:4,5,5,6,7,7,8,8,9,9,该组数据的中位数为第五个和第六个数据的平均值7,因此A说法正确;,因此B说法不正确;,因此C说法正确;又该组数据最大为9,最小为4,因此极差为,因此D说法正确;故选:B.7.答案:D解析:令2个红球和2个白球分别为从中随机不放回地依次摸出2个球有:,共12种,事件A对应事件为,有6种,事件B对应事件为,有6种,23aa+≥⇒≥-)+∞ay xx=+309a<≤39a-≤≤12x x<()()()1212f x f x x x-->⎡⎤⎣⎦()()12f x f x-<()()12f x f x<()f x()()22326f x x a f x a a-+>--x∈R 22326x x a x a a-+>--224270x x a a-++>x∈R()()2244270a a∆=--+<4a<-a>()1,4,2⎛⎫-∞-+∞⎪⎝⎭7.5=945-=1,2,1,2R R W W(1,2),(1,1),(1,2),(2,1),(2,1),(2,2),(1,1),(1,2),(1,2),R R R W R W R R R W R W W R W R W W(2,1),(2,2),(2,1)W R W R W W(1,2),(1,1),(1,2),(2,1),(2,1),(2,2)R R R W R W R R R W R W(1,2),(2,1),(1,1),(1,2),(2,1),(2,2)R R R R W R W R W R W R事件C对应事件为,有2种,事件D对应事件为,有8种,综上,A与B不互斥,C与D互斥但不对立,,且事件对应事件为,有4种故故A、B、C错,D对故选:D8.答案:A,则,所以由,得,即,亦即.当且,即时,等式显然成立.当时,则有,所以.当时,有,即.因为函数是实数集上的增函数,所以由,得,则.这与矛盾,所以不成立.当时,有,即.因为函数是实数集上的增函数,所以由,得,则,这与矛盾,所以不成立.综上可知,.故选A.9.答案:ACD解析:对于A中,任取,,因为集合A,B是优集,则,,则,,,则,所以A正确;对于B中,取,,则或,令,,则,所以B不正确;对于C中,任取,,可得,因为是优集,则,,若,则,此时;若,则(1,2),(2,1)R R R R(1,1),(1,2),(2,1),(2,2),(1,1),(1,2),R W R W R W R W W R W R(2,1),(2,2)W R W RC B⊆1(),2P A P=AD(1,1),(1,2),(2,1),(2,2)R W R W R W R W()P AD=()()()P A P D P AD=k=b ak=20212021()20a b a a b++++=20212021()20a ak a a ak++++=20212021[(1)1](2)0a k a k++++=20202021(1)1(2)0a k k⎡⎤++++=⎣⎦2021(1)10k++=20k+=2k=-2021(1)10k++≠2020a=0≠202020212(1)1kak+=->++20k+<2021(1)10k++>20212021(1)(1)k+>-2021y x=20212021(1)(1)k+>-11k+>-20k+>20k+<2021(1)10k++> 20k+>2021(1)10k++<20212021(1)(1)k+<-2021y x=20212021(1)(1)k+<-11k+<-20k+<20k+>2021(1)10k++<2k=-x A B∈ y A B∈ x y A+∈x y B+∈x y A B+∈ x y A-∈x y B-∈x y A B-∈{|2,}A x x k k==∈Z{|3,}B x x m m==∈Z{|2A B x x k==3,}x k k=∈Z 3x=2y=5x y A B+=∉x A∈y B∈,x y A B∈ A Bx y A B+∈x y A B-∈ x y B+∈()x x y y B=+-∈A B⊆x y A+∈,此时,所以C 正确;对于D 中,是优集,可得,则为优集;或,则为优集,所以是优集,所以D 正确.故选:ACD.10.答案:ABD解析:由于,所以的图象关于直线对称,由于是定义在R 上的偶函数,所以的图象关于y 轴对称,所以是周期为4的周期函数,故B 正确.当时,的图象开口向上,对称轴为直线,,,,的周期性、图象的对称性可知,的最小值是,故C 错误.因为,,,,所以,所以,故D 正确.故选ABD.11.答案:ABD解析:对于A ,注意到当,,被确定后,,,的取值也被固定,因此满足条件的条件组数即满足条件的,,的组数,即从1,2,…,5,6中任选3个数的数目,即.注意到任意交换,,的顺序,不影响X ,Y 的取值,任意交换,,的顺序,不影响X ,Y 的取值,A 正确,B 正确;因此不妨设及.注意到,整体交换,,和,,也不影响X ,Y 的取值,因此不妨设,即,,将满足以上条件的排列列举如下:()y x y x A =+-∈B A ⊆A B A B ⊆A B A = B A ⊆A B B = A B (2)(2)f x f x +=-()f x 2x =()f x ()f x ()f x 02x ≤≤2()f x x x =-12x =(0)0f =(2)2f =12f ⎛⎫= ⎪⎝⎭max ()(2)2f x f ==min 1()2f x f ⎛⎫== ⎪⎝⎭()f x ()f x 2(2025)(50641(1)110)f f f =⨯+==-=(1)0f =(2)2f =(3)(1)(1)0f f f =-==(4)(0)0f f ==(1)(2)(3)(4)2f f f f +++=202712024()2(1)(2)(3)101202010144i f i f f f ==⨯+++=+++=∑1x 2x 3x 4x 5x 6x 1x 2x 3x 36C 20=1x 2x 3x 4x 5x 6x 123x x x <<456x x x <<1x 2x 3x 4x 5x 6x 14x x <4Y x ={}36min ,X x x =12.答案:解析:若从该中学三个年级的学生中随机选取1名学生,则这名学生阅读完《红楼梦》的概率为,解得.因为该中学高三的学生阅读完《红楼梦》的概率不低于高一的学生阅读完《红楼梦》的概率,所以.故p 的取值范围是.13.答案:解析:由题意得,当时,由恒成立,得,解得;当时,由上单调递增,所以,解得;当时,由恒成立,得,即,所以.综上,实数k 的取值范围是.故答案为:14.答案:解析:不等式对于恒成立,即不等式对于恒成立,令,则,所以不等式对于恒成立,所以恒成立,令,函数在上单调递减,所以,即[0.2,0.26]4330.20.250.1550.30.233433433433p p ⨯+⨯+⨯=+≤++++++0.26p ≤0.2p ≥[]0.2,0.26[]1,1-()221,111,11x kx x x f x kx x ⎧--≥≤-=⎨-+-<<⎩或1x ≥()2210x f x kx --≥=2k x ≤-2y =11x x-≥1k ≤1x ≤-()2210x f x kx --≥=],1-∞-121x x -≤-1k ≥-11x -<<()0f x ≥()()1010f f -≥⎧⎪⎨≥⎪⎩1010k k +≥⎧⎨-+≥⎩11k -≤≤[]1,1-[]1,1-()1,-+∞4220xxa ⋅-+>(],0x ∈-∞()22220x x a ⋅-+>(],0x ∈-∞2x t =(]0,1t ∈220at t -+>(]0,1t ∈22212t a t t -⎛⎫>=-+ ⎪⎝⎭(]0,1∈m =[)1,∈+∞221224y m m m ⎛⎫=-+=-- ⎪⎝⎭[)1,+∞()2max21m m-+=-,所以,即实数a 的取值范围是.故答案:为2max 1121t t ⎡⎤⎛⎫-+=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦1a >-()1,-+∞()1,-+∞16.答案:(1)(2)增函数,证明见解析(3)解析:(1)因为函数的图像关于点中心对称,所以该函数向下平行一个单位,得到的函数的图像关于点中心对称,即函数的图像关于点中心对称,因此函数是奇函数,于是有,即因为,所以符合题意;(2)因为设,是任意两个实数,且,因为,所以,因此,所以函数(3)因为函数的图像关于点中心对称,所以,即,所以由,因为函数所以,或,解得,或,因此原不等式的解集为.2a =()(),01,-∞+∞ ()f x a =-x ∈R ()0,1()0,0()2121x g x a =--+()0,0()2121x g x a =--+()2010211g a a =--=⇒=+()1g x =()()222221*********x x x x g x g x -⨯+-+=-+-=-=+++()1g x =a =1x 2x 12x x <()()121222222121x x f x f x -=--+=++12x x <1222x x <()()()()12120f x f x f x f x -<⇒<()2f x =(f x ()0,1()()2f x f x +-=()()2f x f x -=-()()()()()4232242232232x x x x x f f f f f ⎡⎤+-⨯>⇒>--⨯=--⨯⎣⎦()2f x =()()()42322122022x x x x x --⨯⇒-->⇒>>21x <1x >0x <()(),01,-∞+∞17.答案:(1)平均数为71,众数为75;(2)88;(3)平均数为76,方差为12.解析:(1)一至六组的频率分别为0.10,0.15,0.15,0.30,0.25,0.05,平均数.由图可知,众数为75.以样本估计总体,该地区所有学生中知识问答成绩的平均数为71分,众数为75分.(2)前4组的频率之和为,前5组的频率之和为,第分位数落在第5组,设为x ,则,解得.“防溺水达人”的成绩至少为88分.(3))的频率为0.15,)的频率为0.30,的频率与的频率之依题意有,,解得,所以内的平均成绩为76,方差为12.18.答案:(1);(2)至少到2024年2月底蒲草覆盖面积能达到解析:(1)若选择模型(,),则解得.若选择模型,则解得,450.10550.15650.15750.30850.25950.0571=⨯+⨯+⨯+⨯+⨯+⨯=0.100.150.150.300.700.90+++=<0.700.250.950.90+=>90%()0.70800.0250.90x +-⨯=88x =[60,70[70,80=)70,80[)60,8012736733=⨯+76=()222212299(6773)767333s ⎡⎤⎡⎤=⨯+-+⨯+-⎣⎦⎣⎦2212s =[)70,8081443xy ⎛⎫=⋅ ⎪⎝⎭21213255y x =+2810m x y ka =0k >1a >2336,48,ka ka ⎧=⎨=⎩a ==81443x y ⎛⎫=⋅ ⎪⎝⎭2(0)y mx n m =+>436,948,m n m n +=⎧⎨+=⎩1205m =>n =故函数模型为(2)把代入,可得,把代入,因为26.4与20相差比较大,故选择模型更合适.,可得,两边取对数可得,即,所以,至少要到2024年2月底蒲草覆盖面积能达到.解析:(1)甲同学所有可能的选择答案有11种:,,,,,,,,,,,其中正确选项只有一个,样本空间,共11个基本事件,所以他猜对本题得5分的概率为(2)由题意得乙得0分的概率为乙比丙刚好多得5分的情况包含:事件B :乙得10分,丙得5分,则事件C :乙得7分,丙得2分,则AB AC AD 2125y x =+0x =81443x y ⎛⎫=⋅ ⎪⎝⎭8120.254y ==0x =2125y x =+13226.45y ==81443x y ⎛⎫=⋅ ⎪⎝⎭48103x ⎛⎫≥ ⎪⎝⎭4403x⎛⎫≥ ⎪⎝⎭4lg lg 403x ≥lg 402lg 2120.3113.3342lg 2lg 320.30.48lg 3x +⨯+≥=≈≈-⨯-14x ≥2810m BC BD CD ABC ABD ACD ABD ABCD {},,,,,,,,,,AB AC AD BC BD CD ABC ABD ACD ABD ABCD Ω=P =11124--=1162--=()111111226336P B ⎛⎫=⨯⨯⨯+⨯= ⎪⎝⎭()1111111124422323P C ⎛⎫⎛⎫=⨯+⨯⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭事件D :乙得5分,丙得0分,则所以乙比丙总分刚好多得5分的概率()111111244233P D ⎛⎫=⨯+⨯⨯⨯= ⎪⎝⎭()111361236P P B C D =++=++=。

2019年信阳市高中必修一数学上期末试题(带答案)

2019年信阳市高中必修一数学上期末试题(带答案)
解析:
【解析】
【分析】
【详解】
函数 有两个零点,
和 的图象有两个交点,
画出 和 的图象,如图,要有两个交点,那么
20.5【解析】【分析】由求出的范围根据正弦函数为零确定的值再由三角函数值确定角即可【详解】时当时的解有的解有的解有故共有5个零点故答案为:5【点睛】本题主要考查了正弦函数余弦函数的三角函数值属于中档题
A. B. C. D.
二、填空题
13.已知 ,则不等式 的解集为______.
14.若函数 在 上的最大值比最小值大 ,则 的值为____________.
15.已知函数 若存在互不相等实数 有 则 的取值范围是______.
16.已知函数 , ,若关于 的不等式 恰有两个非负整数解,则实数 的取值范围是__________.
4.已知 , , ,则x,y,z的大小关系是
A. B. C. D.
5.已知二次函数 的二次项系数为 ,且不等式 的解集为 ,若方程 ,有两个相等的根,则实数 ()
A.- B. C. 或- D. 或-
6.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)= ,则f(x)的单调递减区间是( )
【详解】
在 是单调减函数,
令 ,则 ,即 在 上是减函数
在 上是减函数
函数 是偶函数,
在 上是增函数
,

故选
【点睛】
本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.
11.B
解析:B
【解析】
,则 ,故选B.
12.D
解析:D
【解析】
试题分析:由 ,可知函数 图像关于 对称,又因为 为偶函数,所以函数 图像关于 轴对称.所以函数 的周期为2,要使函数 有且仅有三个零点,即函数 和函数 图形有且只有3个交点.由数形结合分析可知, ,故 正确.

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。

(3份试卷汇总)2019-2020学年四川省绵阳市数学高一(上)期末统考模拟试题

(3份试卷汇总)2019-2020学年四川省绵阳市数学高一(上)期末统考模拟试题

2019-2020学年高一数学上学期期末试卷一、选择题1.已知,l m 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A .若,l l m α⊥,则m α⊥ B .若,l l αβ,则αβ∥ C .若,l ααβ⊥⊥,则l β∥D .若,l l αβ⊥⊥,则αβ∥2.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。

我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1037=+。

在不超过15的素数中,随机选取两个不同的数,其和小于18的概率是( ) A.15B.1115C.35D.133.已知函数1()2sin()2f x x x =+-, 则122018()()()201920192019f f f ++⋅⋅⋅⋅⋅+的值等于( ) A .2019B .2018C .20192D .10094.某几何体的三视图如图所示,则该几何体的体积为( )A .1312π+ B .134π+ C .14π+D .112π+5.已知为三角形内角,且,若,则关于的形状的判断,正确的是A .直角三角形B .锐角三角形C .钝角三角形D .三种形状都有可能6.如果是函数的零点,且,那么k 的值是A .B .C .0D .17.已知统计某校1000名学生的某次数学水平测试成绩得到样本频率分布直方图如图所示,则直方图中实数a 的值是( )A.0.020B.0.018C.0.025D.0.038.已知函数的图象关于直线对称,且,则的最小值为( )A.B.C. D.9.设等差数列{}n a 的前n 项和为n S ,若10a >,81335a a =,则n S 中最大的是( ). A .10SB .11SC .20SD .21S10.若不等式2162a bx x b a+<+对任意a , ()0b ∈+∞,恒成立,则实数x 的取值范围是( ) A .()20-,B .()42-,C .()()20-∞-⋃+∞,,D .()()42,,-∞-⋃+∞11.已知直线, , ,若且,则的值为( )A .B .C .D .12.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( )A .4B .9C .7D .2+ 二、填空题13.设实数0x >,0y <,且111x y+=,则2x y +的取值范围是______. 14.如图,在凸四边形ABCD 中,,,4,23AB BC ABC AD CD π=∠===,则四边形ABCD 的面积最大值为________.15.已知函数()()()2256f x x xxx =+-+,则()f x 的最小值为____.16.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若ABC ∆的周长为7,,1cos 8C =-,则c =__________. 三、解答题17.如图,在四面体ABCD 中,平面ABC ⊥平面ACD ,ACB ACD 90︒∠=∠=,AC BC 2===,,,E F G 分别为,,AB AD AC 的中点.(1)证明:平面//EFG 平面BCD ; (2)求三棱锥E ACD -的体积; (3)求二面角D AB C --的大小.18.设圆221:(3)(2)4C x y -+-=,圆222:(5)(4)25C x y -++=,(1)判断圆1C 与圆2C 的位置关系;(2)点A 、B 分别是圆1C ,2C 上的动点,P 为直线y x =上的动点,求PA PB +的最小值。

2019-2020学年高一数学上学期期末联考试题及答案(新人教A版第60套)

2019-2020学年高一数学上学期期末联考试题及答案(新人教A版第60套)

2019-2020 学年度第一学期期末联考高一数学试题第 I 卷(选择题)一、选择题(本大题共 10 小题,每题 5 分,共 50 分.每题只有一个正确答案)1.若 A={0,1,2 } , B = { x 1? x 2} , 则A?B(){ } { 0,1,2 }{}{1,2 }A . 1B .C . 0,1D .2. sin15 o cos15o 值为()A .1B .1C.3 D. 324243. 函数 f ( x)1lg(1 x) 的定义域是 ()1 xA .( - ,- 1)B .(1,+ )C .(-1,1)∪(1,+ )D .(- ,+ )4.已知点 P( x,3) 是角终边上一点,且 cos4),则 x 的值为(B . 55D . 4A . 5C . 45.已知 a0.7 0.8 ,blog 2 0.8, c1.10.8 ,则 a,b, c 的大小关系是()A . a b cB . b a cC . a c bD . b c a6.设函数 y = x 3 与 y( 1 )x 2 的图像的交点为 ( x 0,y 0) ,则 x 0 所在的区间是 ()2A .(0,1)B.(1 ,2) C .(2 , 3) D .(3 ,4)7.在自然界中,存在着大批的周期函数,比方声波,若两个声波随时间的变化规律分别为:y 1 3sin 100 t , y 2 3cos 100 t ,则这两个声波合成后即yy 1 y 2 的振幅为()A . 3B . 6C . 3 2 D. 6 28.以下函数中,不拥有奇偶性的函数是 ( )A . yexexB . y lg1 x1 xC . ycos2xD . y sin x cos x9.若 yAsin( x)( A0,0,| |) 的最小值为2,其图像相邻最高点与最低点横坐标之差为2 ,且图像过点(20, 1),则其分析式是()A . y 2sin( x )6B. y 2sin( x )3C . y2sin( x) 2 6xD . y 2sin( )2 310.如右图,点 P 在半径为 1的半圆上运动, AB 是直径, P当 P 沿半圆弧从 A 到 B 运动时,点 P 经过的行程 x 与 APBxB O A的面积 y 的函数y f ( x) 的图像是以下图中的()yy11 12OC π2πx OD第 II卷(非选择题)π2πx二、填空题(本大题共 5 小题,每题 5 分,共25 分.将答案填在题后横线上)11.(log29)(log 3 4).12.把函数y= 3sin2 x的图象向左平移个单位获得图像的函数分析是.13.已知tan 2 ,则 cos26.14.若函数f x 知足 f ( x 1) f ( x) ,且当x1,1 时, f x x ,则 f 2 f 3f4.15.函数f ( x)| cos x | cos x 具备的性质有.(将全部切合题意的序号都填上)( 1)f (x)是偶函数;( 2)f (x)是周期函数,且最小正周期为;( 3)f (x)在[, ] 上是增添的;2( 4)f (x)的最大值为2.三、解答题(本大题共 6 小题,共75 分.解答应写出文字说明、证明过程或演算步骤)16.已知会合M ={x 1 < x < 2},会合Nx 3x 4 .2( 1)求AèB;P ={}( 2)设会合x a < x < a + 2,若 P 腿(A B) ,务实数 a 的取值范围.117.(本小题满分12 分)已知tan2, tan,此中0,0.3( 1)求tan() 的值;( 2)求角的值.18.(本小题满分12 分)已知函数 f (x) sin( x)sin( x) .32( 1)求f (x)的最小正周期;3,求 g(x) 在区间[0,] 上的值域.( 2)若g (x) f ( x)4219.(此题满分12 分)辽宁号航母纪念章从2012 年10 月5 日起开始上市.经过市场检查,获得该纪念章每 1 枚的市场价y(单位 : 元) 与上市时间x(单位 : 天 ) 的数据以下:上市时间x 天41036市场价y 元905190(1) 依据上表数据联合散点图,从以下函数中选用一个适合的函数描绘辽宁号航母纪念章的市场价y与上市时间x 的变化关系并说明原因: ①y ax b ;②y ax 2bx c ;③y a log b x .(2)利用你选用的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价钱.20. ( 本小题满分13 分)已知函数 f (x)cx1, 0 x c,知足 f (c)9 x.2 c 21, c ≤ x128(1)求常数 c 的值;(2)解对于 x 的不等式 f (x)21.821. ( 本小题满分14 分 ) 已知函数mf( )|x|1( x0).x x( 1)当m 2时,判断f (x)在(,0) 的单一性,并用定义证明.( 2)若对随意x R ,不等式 f (2x)0 恒建立,求 m 的取值范围;( 3)议论f (x)零点的个数.2019-2020 学年度第一学期期末 考高一数学参照答案参照答案: 一、1.A2.B 3 .C4.D5.B 6 .B 7 .C 8 .D 9 .C10.A 二、填空11. 4 12. 13 .3 14. 115.( 1)( 3)(4)56三、解答{ x 1 < x < 4}16.解:( 1) A? B⋯⋯⋯⋯⋯⋯⋯⋯ 6 分 ( 2)由(1) A ? B {x 1 < x < 4 }, ⋯⋯⋯⋯⋯⋯⋯⋯ 9 分ì?a 3 1?1#a2⋯⋯⋯⋯⋯⋯⋯⋯ 12 分í?2 ? 4?a +1tantan217.解:( 1) tan()37⋯⋯⋯⋯⋯⋯⋯⋯ 5 分1 tan tan1 ( 2) 131tantan2( 2) tan(31⋯⋯⋯⋯⋯⋯⋯⋯ 10 分)tan tan111( 2)1 3因 tan2 0,tan0 ,3因此, 022因此2,2故4⋯⋯⋯⋯⋯⋯⋯⋯ 12 分18.解:f (x)( 1 sin x3cos x)cos x⋯⋯⋯⋯⋯⋯⋯⋯ 2 分221 sin x cos x3cos 2 x221sin 2x3(1 cos 2x) ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分441sin(2 x3) 3 ⋯⋯⋯⋯⋯⋯⋯⋯ 6 分24( 1)因此T 2.⋯⋯⋯⋯⋯⋯⋯⋯ 8 分21(2)g (x)) ,sin(2 x23因 0 ≤ x ≤2 ,因此3 ≤ 2x3 ≤ ,3因此3≤ sin(2 x)≤1,233≤ 1sin(2 x) ≤ 1,423 2因此 g(x) 在区 [0,] 上的 域 [3 ,1] .⋯⋯⋯⋯⋯⋯⋯⋯ 12 分24 219.解 :(1) ∵跟着 x 的增添, y 的 先减后增,而所 的三个函数中y ax b 和 ya logb x 然都是 函数,不 足 意,∴ yax 2 bx c .⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2) 把点 (4 , 90) , (10 , 51) , (36 , 90) 代入 yax 2 bx c 中,16a 4b c90得 100a 10bc 51⋯⋯⋯⋯⋯⋯⋯⋯6 分1296a 36b c 90解得 a 110, c 126⋯⋯⋯⋯⋯⋯⋯⋯ 8 分, b1 4 1∴ yx 2 10x 126 (x 20)2 26 ,⋯⋯⋯⋯⋯⋯⋯⋯ 10 分44∴当 x 20 , y 有最小 y min 26 .⋯⋯⋯⋯⋯⋯ 11 分答: 宁号航母 念章市 价最低 的上市天数 20 天,最低的价钱 26 元.⋯⋯⋯⋯12 分20.解: (1)∵ f ( c)9 ,即 c c1 9 ,2 8 28解得 c1⋯⋯⋯⋯⋯⋯⋯⋯ 5 分.21 x 1, 0 x 1(2) 由 (1) 得 f ( x)21, 1≤ x2 ,2 4x12由 f ( x)2,适当 0x12 x1 ⋯⋯⋯⋯⋯⋯⋯⋯9 分1,解得4 ;822当1≤ x 1 ,解得 1≤ x5 . ⋯⋯⋯⋯⋯⋯⋯⋯ 12 分228∴不等式 f ( x)2 1的解集 { x | 2 x 5} .⋯⋯⋯⋯⋯⋯⋯⋯ 13 分8 4821.分析:( 1)当 m2 ,且 x0 , f ( x)x 2 1 是 减的.⋯⋯⋯⋯⋯⋯⋯1 分x明: x 1x 2 0 ,f (x 1)f (x 2 )x 12 1 ( x 22 1)x 1x 2(x 2 x 1 ) (2 2x 1)x 2( x 2 x 1 )2( x 2 x 1)x 1x 2( x 22 ⋯⋯⋯⋯⋯⋯3 分x 1 )(1 ) x 1 x 2又 x 1 x 2 0 ,因此 x 2 x 1 0 , x 1x 2 0 ,因此 ( x 2 x 1 )(1 2 0)x 1x 2 因此故当f ( x 1 ) f ( x 2 ) 0 ,即 f (x 1) f (x 2 ) ,m 2 , f ( x) x2在 ( ,0) 上 减的. ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分1 x( 2)由 f (2 x ) 0 得 | 2x | m x1 0 ,形 (2 x )22x22x(2 x ) 2m 0 ,即 m而 2x(2 x )2(2 x 1)21 ,12 41当 2x即 x1 (2 x (2 x )2 )max ,2 14因此 m⋯⋯⋯⋯⋯⋯⋯⋯ 9 分.4( 3)由 f (x)0 可得 x | x | xm 0( x 0) , m x | x | x(x 0)令 g( x)x x | x |x 2 x, xx 2x, x 0作 y g (x) 的 像及直y m ,由 像可得:当 m1 1f ( x) 有 1 个零点.或 m,4 4当 m10 或 m1或 m, f (x) 有 2 个零点;41 14当 0mm0 , f ( x) 有 3 个零点.⋯⋯⋯⋯⋯⋯⋯⋯ 14 分或44。

人教版2019学年高一数学期末试卷及答案(共10套 )

人教版2019学年高一数学期末试卷及答案(共10套 )

人教版2019学年高一期末数学试卷(一)一、填空题(本大题满分36分)本大题共有12题,只要求直接填写结果,每个空格填对得3分,否则一律得零分.1.函数y=a x(a>0且a≠1)的图象均过定点.2.请写出“好货不便宜”的等价命题:.3.若集合A={x|x≤1},B={x|x≥a}满足A∩B={1},则实数a=.4.不等式2|x﹣1|﹣1<0的解集是.5.若f(x+1)=2x﹣1,则f(1)=.6.不等式的解集为.7.设函数f(x)=(x+1)(x+a)为偶函数,则a=.8.已知函数f(x)=,g(x)=,则f(x)•g(x)=.9.设α:x≤﹣5或x≥1,β:2m﹣3≤x≤2m+1,若α是β的必要条件,求实数m的取值范围.10.函数的值域是.11.已知ab>0,且a+4b=1,则的最小值为.12.已知函数f(x)=是R上的增函数,则a的取值范围是.二、选择题(本大题满分12分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,每题答对得3分,否则一律得零分.13.函数y=x的大致图象是()A. B.C.D.14.已知f(x)是R上的奇函数,且当x>0时,f(x)=x﹣1,则x<0时f(x)=()A.﹣x﹣1 B.x+1 C.﹣x+1 D.x﹣115.证券公司提示:股市有风险,入市需谨慎.小强买的股票A连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个涨停:比前一天收市价上涨10%).()A.3 B.4 C.5 D.616.给定实数x,定义[x]为不大于x的最大整数,则下列结论中不正确的是()A.x﹣[x]≥0B.x﹣[x]<1C.令f(x)=x﹣[x],对任意实数x,f(x+1)=f(x)恒成立D.令f(x)=x﹣[x],对任意实数x,f(﹣x)=f(x)恒成立三、解答题(本大题满分52分)本大题共有5题,解答下列各题必须写出必要的步骤.17.已知,求实数m的取值范围.18.如图,矩形草坪AMPN中,点C在对角线MN上.CD垂直于AN于点D,CB垂直于AM于点B,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x米,|BM|=y 米.求这块矩形草坪AMPN面积的最小值.19.设a是实数,函数f(x)=a﹣(x∈R),(1)若已知(1,2)为该函数图象上一点,求a的值.(2)证明:对于任意a,f(x)在R上为增函数.20.已知函数f(x)=x2﹣2ax+1.(1)若对任意的实数x都有f(1+x)=f(1﹣x)成立,求实数a的值;(2)若f(x)在区间[1,+∞)上为单调递增函数,求实数a的取值范围;(3)当x∈[﹣1,1]时,求函数f(x)的最大值.21.在区间D上,如果函数f(x)为减函数,而xf(x)为增函数,则称f(x)为D上的弱减函数.若f(x)=(1)判断f(x)在区间[0,+∞)上是否为弱减函数;(2)当x∈[1,3]时,不等式恒成立,求实数a的取值范围;(3)若函数g(x)=f(x)+k|x|﹣1在[0,3]上有两个不同的零点,求实数k 的取值范围.人教版2019学年高一期末数学试卷(二)一、选择题(共12小题,每小题5分,满分60分)1.若A={x|﹣1<x<2},B={x|1<x<3},则A∩B=()A.{x|1<x<2}B.{x|﹣1<x<3}C.{x|1<x<3}D.{x|﹣1<x<2}2.下列函数为奇函数的是()A.y=x+1 B.y=e x C.y=x2+x D.y=x33.2log510+log50.25=()A.0 B.1 C.2 D.44.sin(π﹣α)cos(﹣α)=()A.B.C.sin2α D.cos2α5.已知函数,那么f[f()]的值为()A.9 B.C.﹣9 D.﹣6.若点(a,9)在函数y=3x的图象上,则tan的值为()A.0 B.C.1 D.7.设a=()0.5,b=0.30.5,c=log0.30.2,则a,b,c的大小关系是()A.a>b>c B.a<b<c C.b<a<c D.a<c<b8.要得到函数y=sin2x的图象,只要将函数y=sin(2x﹣)的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位9.已知函数y=f(x+3)是偶函数,则函数y=f(x)图象的对称轴为直线()A.x=﹣3 B.x=0 C.x=3 D.x=610.△ABC的三个内角分别记为A,B,C,若tanAtanB=tanA+tanB+1,则cosC的值是()A.﹣B.C.D.﹣11.定义在R上的偶函数f(x)满足f(x+1)=,且f(x)在[﹣3,﹣2]上是减函数,若α,β是锐角三角形的两个内角,则()A.f(sinα)>f(sinβ)B.f(cosα)>f(cosβ)C.f(sinα)>f(cosβ)D.f (sinα)<f(cosβ)12.已知x1,x2是函数f(x)=e﹣x﹣|lnx|的两个不同零点,则x1x2的取值范围是()A.(0,) B.(,1]C.(1,e)D.(,1)二、填空题(共4小题,每小题5分,满分20分)13.设A={(x,y)|y=2x+3},B={(x,y)|y=x+1},则A∩B=.14.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|)的部分图象如图所示,则函数y=f(x)对应的解析式为.15.函数y=﹣的定义域是(用区间表示)16.若f(sin2x)=5sinx﹣5cosx﹣6(0<x<π),则f(﹣)=.三、解答题(共6小题,满分70分)17.已知tanα=3,计算:(Ⅰ);(Ⅱ)sinα•cosα.18.已知函数f(x)=.(Ⅰ)求函数f(x)的定义域和值域;(Ⅱ)判断函数f(x)的奇偶性,并证明.19.已知函数f(x)=cosx(sinx+cosx).(Ⅰ)若0<α<,且sinα=,求f(α)的值;(Ⅱ)求函数f(x)的最小正周期及单调递增区间.20.设函数f(x)=(Ⅰ)当时,求函数f(x)的值域;(Ⅱ)若函数f(x)是(﹣∞,+∞)上的减函数,求实数a的取值范围.21.如图所示,已知点A(1,0),D(﹣1,0),点B,C在单位圆O上,且∠BOC=.(Ⅰ)若点B(,),求cos∠AOC的值;(Ⅱ)设∠AOB=x(0<x<),四边形ABCD的周长为y,将y表示成x的函数,并求出y的最大值.22.已知函数f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若x,y∈[﹣1,1],x+y ≠0有(x+y)•[f(x)+f(y)]>0.(1)判断f(x)的单调性,并加以证明;(2)解不等式;(3)若f(x)≤m2﹣2am+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求实数m的取值范围.人教版2019学年高一期末数学试卷(三)第I 卷(选择题60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1 设全集U={0,1,2,3,4} 集合A={0,1,2,3}, 集合B= {2,3,4}则(СU A )∪(СU B )=A {0}B {0,1}C {0,1,4}D {0,1,2,3,4}2 已知集合A={x ∣∣x+1∣<2},集合B={x ∣x 2-(a+1)x+a <0}且B ⊆A ,则a 的取值范围是 A -3<a <1 B -3≤a ≤1 C 1≤a <3 D -3≤a <1 3 “1+13-x >0”是“(x+2(x-1) >0”的 A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 4设A={ x ∣xx -+21≥0},B={x ∣x <a},若A∩B≠Φ,则a 的取值范围是 A a <2 B a >-2 C a >-1 D -1<a ≤25 函数f(x)=㏒0.5(x-1)(x+3)的单调递增区间是A (-∞,-3)B (-∞,-1)C (1,∞)D (-3,-1)6 若函数f(x)的图象经过点(-1,0),则函数f -1(x+4)的图象必过点 A (-1,4) B (-4,-1) C(-1,-4) D (1,4) 7 函数y=-lg(x+1)的图象大致是8 已知 lgx, lg(x-2y), lgy 成等差数列, 则yx= A 1 B 4 C 1或4 D 41或4 9 在等差数列{a n }中,公差d=21,S 100=145,则a 1+a 3+a 5+…+a 99的值为 A 57 B 58 C 59 D 6010 在等比数列{a n }中,a n >0,且83a a ⋅=81,则㏒3a 1+㏒3a 2+…+㏒3a 10等于 A 5 B 10 C 20 D 4011 已知公差不为0的等差数列第二、三、六项构成等比数列,则公比为 A 1 B 2 C 3 D 412 已知a >b >0,则2a ,2b , 3a的大小关系是A 2a >2b >3aB 2b <2a <3aC 2b <3a <2aD 2a <3a <2b第Ⅱ卷(非选择题共90分)二、填空题:本大题共四小题,每小题4分,共16分。

2019~2020学年江苏省无锡市高一上学期期末考试数学试题及答案

2019~2020学年江苏省无锡市高一上学期期末考试数学试题及答案

绝密★启用前江苏省无锡市普通高中2019~2020学年高一年级上学期期末质量监测数学试题2020年1月一、选择题(本大题共12小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.集合A ={0,1},B ={1,2,3},则A U B =A .{1}B .{1,2,3}C .{0,2,3}D .{0,1,2,3}2.若集合M ={}2k k Z ααπ=∈,,集合N ={}k k Z ββπ=∈,,则集合M 与N 的关系是A .M ⊆NB .N ⊆MC .M =ND .M <N 3.与向量AB uuu r =(1,3)平行的单位向量是A .(12,B .(12-,C .(12,2)或(12-,2-) D .(12-,2)或(12,2-) 4.已知向量a r ,b r 满足a r =(﹣3,1),b r =(2,k ),且a r ⊥b r ,则a r ﹣b r 等于 ( )A .(5,5)B .(﹣5,﹣5)C .(﹣5,5)D .(﹣1,7)5.若扇形的弧长为6cm,圆心角为2弧度,则扇形的面积为A .6cm 2B .9cm 2C .6πcm 2D .9πcm 26. 已知曲线C 1:y =cos x ,C 2:y =cos(2x ﹣3π),则下列结论正确的是 A .把曲线C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把所得曲线向右平移23π个单位长度,得到曲线C 2B .把曲线C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把所得曲线向右平移 3π个单位长度,得到曲线C 2C .把曲线C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移23π 个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π 个单位长度,得到曲线C 2 7.某互联网公司为激励创新,计划逐年加大研发资金投入.若该公司2017年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)A .2020年B .2021年C .2022年D .2023年8.函数233()x xf x x --=的图象大致为9.已知ω>0,函数()2sin()f x x ωϕ=+在[2π,56π]上单调递减,则实数ω的取值范围是 A .(0,1] B .[12,85] C .[23,56] D .[23,85] 10.关于函数()cos cos f x x x =+有下述四个结论:①函数()y f x =是偶函数;②函数()y f x =的周期是π;③函数()y f x =的最⼤值为2;④函数()y f x =在[0,π]上有⼤数个零点.其中所有正确结论的序号是A .①②B .①③C .②④D .①③④ 11.在平面直角坐标系中,已知点A(0,﹣1),B(0,3),M,N 是x 轴上的两个动点,且MN u u u u r =2,则AM BN ⋅u u u u r u u u r 的最小值为A .﹣4B .﹣3C .2D .312.已知函数2()4f x x x =-,x ∈R,若关于x 的方程()12f x m x =+-恰有4个互异的实数根,则实数m 的取值范围为A .(0,63-)B .(0,623+)C .(2,623-)D .(2,63+)二、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)。

高一上学期数学北师大版(2019)期末模拟测试卷B卷(含解析)

高一上学期数学北师大版(2019)期末模拟测试卷B卷(含解析)

高一上学期数学北师大版(2019)期末模拟测试卷B 卷【满分:150分】一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数为偶函数,若函数的零点个数为奇数,则( )A.1B.2C.3D.02.已知集合,且,则( )A.-1B.1C.-3D.33.已知函数,若,,使得,则实数a 的取值范围是( ).A. B.C. D.4.某学校开展“国学知识竞赛”,共有“诗经组”,“论语组”,“春秋组”,“礼记组”4个小组参赛,每组10位选手,若该组每位选手的失分不超过6分,该组获得“优秀”称号,则根据每组选手的失分情况,下列小组一定获得“优秀”称号的是( )A.诗经组中位数为3,众数为2B.论语组平均数为3,方差为1C.春秋组平均数为3,众数为2D.礼记组中位数为3,极差为45.下列说法正确的是( )①已知,,那么事件“”有可能不发生;②随机试验的频率与概率相等;③如果一个事件发生的概率为99.9999%,那么说明此事件必然发生;④只有不确定事件有概率;⑤若事件A 发生的概率为,则()21f x +()()11225x x g x f x --=++-()1f ={}{}21,5,,1,23A a B a ==+B A ⊆a =()f x x =()2xg x a =+[]12,3x ∃∈[]22,3x ∀∈()()12f x g x ≥11,3⎛⎤-∞- ⎥⎝⎦(],0-∞1,3⎛⎤-∞⎥⎝⎦(],4-∞-a b >b c >a c >()P A ()01P A ≤≤A.⑤B.③⑤C.③④⑤D.②③④⑤6.已知函数是幂函数,且在上单调递增,则实数( )A.-1B.-1或2C.2D.37.已知连续函数对任意实数x 恒有,当时,,则以下说法中正确的是( )①;②是R 上的奇函数;③在上的最大值是6④不等式的解集为A.①③ B.①② C.①②③ D.①②③④8.某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以减少对空气的污染已知过滤过程中废气的污染物数量P (单位:)与过滤时间t (单位:h )的关系为(是正常数)若经过过滤后消除了的污染物,则污染物减少大约需要( )(参考数据:)A. B. C. D.二、选择题:本题共3小题.每小题6分.共18分.在每小题给出的选项中,有多项符合题目要求全部选对的得6分.部分选对的得部分分,有选错的得0分.9.某高中举行的数学史知识答题比赛,对参赛的2000名考生的成绩进行统计,可得到如图所示的频率分布直方图,若同一组中数据用该组区间中间值作为代表值,则下列说法中正确的是( )A.考生参赛成绩的平均分约为72.8分()()21mf x m m x =--()f x ()0,x ∈+∞m =()f x ()()()f x y f x f y +=+0x >()0,(1)2f x f <=-(0)0f =()f x ()f x [3,3]-2(3)2()(3)4f x f x f x -<+2|13x x ⎧⎫<<⎨⎬⎩⎭mg /L ()0ektP t P -=0,P k 10h 20%50%2log 5 2.322≈30h31h32h33hB.考生参赛成绩的第75百分位数约为82.5分C.分数在区间内的频率为0.2D.用分层抽样的方法从该校学生中抽取一个容量为200的样本,则成绩在区间应抽取30人10.已知实数x ,y ,z 满足,,,则下列结论正确的是( )A.C. D.11.设为定义在R上的奇函数,当时,(b 为常数),则下列说法正确的是( )A. B.C.在上是单调减函数D.函数仅有一个零点三、填空题:本题共3小题,每小题5分,共15分.12.已知,使得不等式成立的一个充分不必要条件是,则m 的取值范围是________.13.已知函数,,若对任意的,总存在,使14.已知函数,则实数a 的取值范围是________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或者演算步骤.15.(13分)对于给定的非空集合M ,定义集合,,当时,则称M 具有“对称性”,而,称为M 的对称集合(1)试判断集合,是否具有“对称性”,如果有,求出其对称集合;如果没有,请说明理由;(2)若集合,且集合A 具有“对称性”,求t 的最小值;(3)已知,且,记,若集合B 具有“对称性”,[)60,70[)70,8023x =34y =45z =y <2>y z<x y +>()f x 0x ≥()22xf x x b =++()3f b =-()313f -=()f x (),0-∞()f x 0m >m x m -<<2230x x --<2()43f x x x =-+()52g x mx m =+-[]11,4x ∈[]21,4x ∈12()(f x g x =()23f x x =()()31162f a f a +<-{},,M z z x y x M y M +==+∈∈{},,M z z x y x M y M -==-∈∈M M +-=∅M +M -{3,4}S ={0,1,7}T ={1,2,}A t =⊆N 02023m ≤≤m ∈N {,1,2,,2024}B m m m =++求m 的最小值.16.(15分)已知函数的图像关于点中心对称.(1)求实数a 的值;(2)探究的单调性,并证明你的结论;(3)解关于x 的不等式.17.(15分)某地区对初中500名学生某次数学成绩进行分析,将得分分成8组(满分150分):,,,,,,,,整理得到如图所示的频率分布直方图.(1)求第七组的频率;(2)用样本数据估计该地的500名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值作代表);(3)现从500名学生中利用分层抽样的方法从,的两组中抽取5个人进一步做调查问卷,再从这5个人中随机抽取两人,求抽取到的两人不在同一组的概率.18.(17分)已知函数.(1)若,求的单调区间;(2)若的定义域为R ,求实数m 的取值范围;(3)若的值域为R ,求实数m 的取值范围.19.(17分)已知(1)求a 的值,指出的单调性(单调性无需证明);()f x ()f x a =-∈R ()0,1()f x ()()42322x xf f +-⨯>[)65,75[)75,85[)85,95[)95,105[)105,115[)115,125[)125,135[)135,145[)95,105[)105,115()()()1222log 111f x m x m x ⎡⎤=-+++⎣⎦0m =()f x ()f x ()f x ()f x =(2)若函数的图象通过平移得到,求函数的值域;(3)若存在区间,使得函数在上的值域为,求t 的取值范围.()f x [,]()m n m n <()y f x t =+[,]m n 2,2m n⎡⎤⎣⎦()g x =()g x答案以及解析1.答案:A解析:当时,且,所以成立,当时,得或,即不一定成立,所以“”是“”的充分不必要条件.故选:A 2.答案:B解析:由于函数是定义在R 上的减函数,所以,函数在区间上为减函数,函数上为减函数,且有,即,解得.故选:B.3.答案:B,又因为,于是等价于,可得所以的解集为.故选:B4.答案:B解析:对于A ,数据为:1,2,2,2,2,4,6,7,8,9时,满足中位数为3,众数为2,但不满足每位选手的失分不超过6分,故A 错误;对于B ,假设有一位同学失7分,则方差,与方差为1矛盾,假设不成立,故B 正确;对于C ,数据为:1,2,2,2,2,2,2,3,5,9时,满足平均数为3,众数为2,但是不满足每位选手失分不超过6分,故C 错误;对于D ,数据为:3,3,3,3,3,3,3,3,7,7,满足中位数为3,极差为4,但最大值超1a b >>10a ->10b ->()()110a b -->()()110a b -->1010a b ->⎧⎨->⎩1010a b -<⎧⎨-<⎩1a b >>1a b >>()()110a b -->()()232,1,1a x x f x a x x ⎧-+≤⎪=⎨>⎪⎩()232y a x =-+(],1-∞y =)1,+∞()1232a a ⋅-+≥230021a a a a-<⎧⎪>⎨⎪-≥⎩1a ≤<31,2⎫⎪⎭3333=1a a a --+-=-a <<>10a -<()()()3130x a x a --+->⎡⎤⎣⎦()3301a x x a -⎡⎤--<⎢⎥-⎣⎦3x <<()()()3130x a x a --+->⎡⎤⎣⎦331a x x a ⎧-⎫<<⎨⎬-⎩⎭22(73) 1.610s -≥=过6分,故D 错误.故选:B.5.答案:A解析:对于①,如果,,那么“”是必然事件;对于②,随机试验多次重复发生时,频率会越来越靠近概率,但不一定等于概率;对于③,如果一事件发生的概率为,那么只能说明此事件发生的可能性非常大,不代表一定发生,所以不能说是必然事件;对于④,确定事件也有概率;对于⑤,若事件A 发生的概率为,则.故⑤正确.故选A 6.答案:C解析:由函数,可得,解得或,当时,函数在上单调递增,符合题意;当时,函数在上单调递减,不符合题意,所以实数m 的值为2.故选:C.7.答案:C解析:由题意.函数对任意实数x 恒有,令,可得,①正确;令,可得,可得是奇函数,②正确;设任意的,且,令,所以,所以当时,单调递减,因为这是奇函数,所以当时,也是单调递减,,令可得,所以,;,在上的最大值是6,③正确;由不等式可得,即,,,则,,解得:;④不对;故选:C.8.答案:B解析:依题意,经过10h 过滤后还剩余的污染物,则,解得染物减少用时t 小时,于是,即,则,即,a b >b c >a c >99.9999%10000.8k P P e -=50%2kte =10524t⎛⎫= ⎪⎝⎭()P A ()01P A ≤≤()()21mf x m m x =--211m m --=2m =1m =-2m =()2f x x =()0,x ∈+∞1m =-()1f x x -=()0,x ∈+∞()f x ()()()f x y f x f y +=+0x y ==(0)0f =x y =-(0)()()0f f x f x =+-=()f x 12,0x x >12x x <2112,,y x x x x x y x =-=∴+=()()()21210f x f x f x x -=-<0x >()f x 0x <(1)2f =- 1.y =(1)()2f x f x +=-(2)4f =-(3)6f =-(3)(3)6f f -=-=()f x ∴[3,3]-2(3)2()(3)4f x f x f x -<+2(3)()()(3)4f x f x f x f x <+++2(3)(23)f x f x x <+4+4(2)f =- 2(3)(23)(2)f x f x x f ∴<++-2(3)(52)f x f x <-2352x x ∴>-x <1x >80%10ke =000.5ktP P e-=()10102tke=两边取对数得,解得,所以污染物减少大约需要31h ,故选:B.,A 错误;对于B ,由频率分布直方图知,分数在内的频率为0.7,在内的频率为0.9,因此第75百分位数位于内,第75百分位数为,B 正确;对于C ,分数在区间内的频率为,C 正确;对于D ,区间应抽取人,D 错误.故选:BC 10.答案:BD解析:因为,,,所以,,,对于A 选项:因为,则,即,所以错误;对于B 选项:,故B 选项正确;对于C 选项:,所以,又,所以,即,所以,故C 选项错误;对于D 选项:因为,,所以11.答案:AD解析:对于A 中,因为为定义在R 上的奇函数,且当时,,可得,解得,所以,则2101031log 520.322t =≈≈-25log 104=50%450.05550.15650.2750.3850.2950.172.5=⨯+⨯+⨯+⨯+⨯+⨯=[40,80)[40,90)(80,90)0.750.78082.50.02-+=[)60,700.02100.2⨯=[)70,802000.360⨯=23x =34y =45z =2log 3x =3log 4y =4log 5z =3443>3433log 4log 3>33log 44>3log 4y =>23422log 3log 4log 5log 5log 42xyz =⋅⋅=>=34lg 4lg 5log 4log 5lg 3lg 4y z -=-=-=lg 3lg 4lg 5<<<22lg 3lg 5lg15lg 3lg 522+⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭()22522lg 4lg16lg15lg 4222⎛⎫⎛⎫⎛⎫==> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2lg 4lg 3lg 50->0y z ->y z >2log 31x =>3log 41y =>23log 3log 4x y +=+>==()f x 0x ≥()22xf x x b =++()0020f b =+=1b =-()221xf x x =+-,所以A 正确;对于B 中,由,所以B 不正确;对于C 中,当时,,因为函数和都是增函数,所以在是单调递增函数,又因为为在R 上的奇函数,所以在也是递增函数,所以C 不正确;对于D 中,由,且在和是单调递增函数,所以函数为定义在R 上仅有一个零点,所以D 正确.故选:AD.12.答案:解析:不等式,解得,依题意,,则,此时,所以m 的取值范围是.故答案为:13.答案:解析:因为,所以函数的对称轴为,对任意的,记,记.由题意知,当时不成立,当时,在上是增函数,所以,记,由题意知,,所以,解得.当时,在上是减函数,所以,记,由题意知,,所以,解得.综上所述,实数m 的取值范围是.故答案为:14.答案:解析:的定义域为,又,上单调递增,所以在上单调递增,由,得,解得,即实数a 的取值范围是.故答案为:.()()111(221)3f f -=-=-+-=-()()333(2231)13f f -=-=-+⨯-=-0x ≥()221xf x x =+-2x y =21y x =-()f x (0,)+∞()f x ()f x (,0)-∞()00f =()f x (,0)-∞(0,)+∞()f x 3m ≥2230(1)(3)0x x x x --<⇔+-<13x -<<((,)1,3)m m --Ü3m ≥31m -≤-<-3m ≥3m ≥(,3][6,)-∞-+∞ ()22()4321f x x x x =-+=--()f x 2x =[]11,4x ∈()[]1,3f x ∈-[]1,3A =-0m =0m >()52g x mx m =+-[]1,4[]()5,25g x m m ∈-+[]5,25B m m =-+B A ⊇15253mm -≥-+≥⎧⎨⎩6m ≥0m <()52g x mx m =+-[]1,4[]()25,5g x m m ∈+-[]25,5C m m =+-C A ⊇25153m m +≤--≥⎧⎨⎩3m ≤-(,3][6,)-∞-+∞ (,3][6,)-∞-+∞ 1,33⎡⎫-⎪⎢⎣⎭()23f x x =+[)0,+∞23y x =y =)0,+∞()f x [)0,+∞()()31162f a f a +<-031162a a ≤+<-133a -≤<1,33⎡⎫-⎪⎢⎣⎭1,33⎡⎫-⎪⎢⎣⎭15.答案:(1)没有;理由见解析(2)7(3)675解析:(1)①对集合,,,,所以具有“对称”性质,且对称集合为,;②对集合,,,,所以,不具有对称性(2),于是2、3、4、、、,0、1、、因为,所以,,又,所以.(3),因为,所以,解得,故.16.答案:(1)(2)增函数,证明见解析(3)解析:(1)因为函数的图像关于点中心对称,所以该函数向下平行一个单位,得到的函数的图像关于点中心对称,即函数的图像关于点中心对称,因此函数是奇函数,于是有,即因为,所以符合题意;{3,4}S ={6,8,7}S +={0,1}S -=S S +-=∅ {3,4}S ={6,8,7}S +={0,1}S -={0,1,7}T ={0,2,14,1,7,8}T +={0,1,6,7}T -=T T +-≠∅ {0,1,7}T ={1,2,}A t =⊆N 1t +2t +2t A +∈1t -2t A --∈A A +-=∅ 24t ->t ∈N min 7t ={2,21,22,,4048}B m m m +=++ {0,1,2,,2024}B m -=- B B +-=∅ 20242m m -<m >∈N min 675m =2a =()(),01,-∞+∞ ()f x a =-∈R ()0,1()0,0()2121xg x a =--+()0,0()2121xg x a =--+()2010211g a a =--=⇒=+()1g x =-()()222221120212121x x x xg x g x -⨯+-+=-+-=-=+++()1g x =2=(2)因为,所以设,是任意两个实数,且,,因为,所以,因此,所以函数(3)因为函数的图像关于点中心对称,所以,即,所以由,因为函数所以,或,解得,或,因此原不等式的解集为.17.答案:(1)0.080(2)102分解析:(1)由频率分布直方图得第七组的频率为:;(2)用样本数据估计该地500名学生这次考试成绩的平均分为:(分);(3)由频率分布直方图可知的频数为的频数为,所以两组人数比值为,按照分层抽样抽取5人,则在,分别抽取3人和2人,记这组三人的编号为A ,B ,C ,这组两人的编号为a ,b ,2a =()2f x =-1x 2x 12x x <()()()()1212211222222221212121x x x x x x f x f x --=--+=++++12x x <1222x x <()()()()12120f x f x f x f x -<⇒<()2f x =(f x ()0,1()()2f x f x +-=()()2f x f x -=-()()()()()4232242232232x x x x x f f f f f ⎡⎤+-⨯>⇒>--⨯=--⨯⎣⎦()2f x =()()()42322122022x x x x x --⨯⇒-->⇒>>21x <1x >0x <()(),01,-∞+∞ ()10.0040.0120.0160.0300.0200.0060.004100.080-++++++⨯=700.00410800.01210900.016101000.03010⨯⨯+⨯⨯+⨯⨯+⨯⨯+1100.02010⨯⨯+1200.006101300.008101400.00410102⨯⨯+⨯⨯+⨯⨯=[)95,105[)5000.03010150,105,115⨯⨯=5000.02010100⨯⨯=3:2[)95,105[)105,115[)95,105[)105,115故从5人随机抽取2名,共10种情况,为:,,,,,,,,,设事件“从5个人中随机抽取两人,抽取到的两人不在同一组”则,共6种情况.故.18.答案:(1)在区间上单调递减,在区间上单调递增.(2)(3).解析:(1)因为当时,函数,令,由,可得,在区间上单调递增,在区间上单调递减.又函数为减函数,根据复合函数单调性“同增异减”的判断法则,可得在区间上单调递减,在区间上单调递增.(2)要使的定义域为R ,只需真数对一切实数x 恒成立.①当,即时,若,,显然,只有,不符合题意,;若,则对一切实数x 都成立,满足题意.(),A B (),A C (),C B (),A a (),A b (),B a (),B b (),C a (),C b (),a b M =()()()()()(){},,,,,,,,,,,M A a A b B a B b C a C b =()610P M ==12⎫⎪⎪⎭12⎛ ⎝(]5,1,3⎛⎫-∞-+∞⎪⎝⎭51,3⎡⎤⎢⎥⎣⎦0m =()()212log 11f x x x ⎡⎤=-++⎣⎦()()211u x x x =-++()0u x >x ∈()u x ∴12⎫⎪⎪⎭12⎛ ⎝ ()12log y u x =∴()()212log 1f x x x =-++12⎫⎪⎪⎭12⎛ ⎝()f x ()(()221)110u x m x m x =-+++>210m -=1m =±1m =()21u x x =+x >()0x >1m ∴≠1m =-()10u x =>1m ∴=-②当时,对一切实数x 恒成立的充要条件是:解得或综上,实数m 的取值范围是.(3)要使的值域为R ,只需真数的值域包含.①当,即时,若,则,显然的值域包含,满足题意;若,则,不符合题意,.②当时,必有即解得综上,实数m 的取值范围是.19.答案:(1),在R 上单调递增,(2)(3)解析:(1)因为所以,210m -≠()0u x >()22211,10,5Δ(1)410,1,3m m m m m m m ⎧><-⎧->⎪⎪⎨⎨=+--<><-⎪⎪⎩⎩或即或1m <-m >(]5,1,3⎛⎫-∞-+∞⎪⎝⎭ ()f x ()()()22111u x m x m x =-+++()0,+∞210m -=1m =±1m =()21u x x =+()u x ()0,+∞1m ∴=1m =-()1u x =1m ∴≠-210m -≠()22210,Δ(1)410m m m ⎧->⎪⎨=+--≥⎪⎩11,51,3m m m ><-⎧⎪⎨-≤≤⎪⎩或1m <≤51,3⎡⎤⎢⎥⎣⎦1a =-()f x (0,2)()2,1-()f x =()()f x f x -+=2021x x a ++=+,所以,整理得,得,所以所以在R 上单调递增;(2)由(1)得因为函数的图象通过平移得到,所以,所以,因为,所以,所以,所以,所以函数的值域为;(3)由(1)得令因为函数在上的值域为,所以,所以,因为,所以关于x 的方程有两个不相等的正实根,所以,解得,即t 的取值范围为.221x x a +=+2021x x a ++=+1220x x a a +⋅++=()()1212x x a +=-+1a =-21212()12121x x x x f x +--===-++()f x ()1f x =-()11112122()222121x x x x x x b b b b g x b ----+-⋅⋅====-+++()g x =()f x 2b =12()221x g x -=-+120x ->1211x -+>122021x --<-<+1202221x -<-<+()g x (0,2)21()121x x y f x t t t -=+=+=+-+()1h x t =+()1x t =+()y f x t =+[,]m n 2,2m n ⎡⎤⎣⎦2()12212()1221m m n n h m t h n t ⎧=+-=⎪⎪+⎨⎪=+-=⎪⎩+()()2222102210m m n n t t t t ⎧-⋅-+=⎪⎨⎪-⋅-+=⎩022m n <<210x tx t --+=2Δ4(1)0010t t t t ⎧=-->⎪>⎨⎪->⎩21t <<()2,1-。

人教A版(2019)数学必修(第一册):期末测试卷(含答案)1

人教A版(2019)数学必修(第一册):期末测试卷(含答案)1

人教A版(2019)数学必修(第一册):期末测试卷(含答案)1 -CAL-FENGHAI.-(YICAI)-Company One1期末测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}12,3,4,5U =,,集合{}1,2A =,则UA =( )A.{}12,B.{}3,4,5C.{}1,2,3,4,5D.∅2.已知角α的终边上有一点)5M -,则sin α等于( )A.57-B.56-C.58-D.3.命题“存在一个无理数,它的平方是有理数”的否定是( ) A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数 D.存在一个无理数,它的平方不是有理数 4.函数223y x x =-+,12x -≤≤的值域是( ) A .R B .[]36,C .[]26,D .[)2+∞,5.已知tan 32α=,则cos α的值为( )A .45B .45-C .415D .35-6.已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[]01,上的增函数”是“()f x 为[]34,上的减函数”的( ) A .既不充分也不必要条件 B .充分不必要条件 C .必要不充分条件D .充要条件7.函数()y f x =的图象如图所示,则()y f x =的解析式为( )A .sin 22y x =-B .2cos31y x =-C .πsin 215y x ⎛⎫=-- ⎪⎝⎭D .π1sin 25y x ⎛⎫=-- ⎪⎝⎭8.下列函数中,既是偶函数又在区间()0+∞,上单调递减的是( ) A .1y x= B .x y e -= C .21y x =-+D .lg y x =9.已知集合1|282x A x ⎧⎫=∈⎨⎬⎩⎭R <<,{}|11B x x m =∈-+R <<,若x B ∈成立的一个充分不必要条件是x A ∈,则实数m 的取值范围是( ) A .2m ≥ B .2m ≤C .2m >D .22m -<<10.若函数()()()101x x f x k a a a a -=-->,≠在R 上既是奇函数,又是减函数,则()()log a g x x k =+的图象是( )ABCD11.已知 5.10.9m =,0.95.1n =,0.9log 5.1p =,则这三个数的大小关系是( ) A .m n p << B .m p n << C .p m n <<D .p n m <<12.具有性质()1f f x x ⎛⎫=- ⎪⎝⎭的函数,我们称为满足“倒负”变换的函数.给出下列函数:①1ln 1x y x -=+;②2211xy x -=+;③010111.x x y x x x⎧⎪⎪==⎨⎪⎪-⎩,<<,,,,> 其中满足“倒负”变换的函数是( ) A .①② B .①③C .②③D .①二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知幂函数()f x 的图象过点182⎛⎫⎪⎝⎭,,则()27f =________.14.若关于x 的不等式()21230a x x -+->有解,则实数a 的取值范围是________. 15.给出下列命题:①()72cos π22f x x ⎛⎫=-- ⎪⎝⎭是奇函数;②若α,β都是第一象限角,且αβ>,则tan tan αβ>; ③直线3π8x =-是函数33sin 2π4y x ⎛⎫=- ⎪⎝⎭的图象的一条对称轴;④已知函数()2π3sin 12f x x =+,使()()f x c f x +=对任意x ∈R 都成立的正整数c 的最小值是2. 其中正确命题的序号是________.16.已知函数()f x 是R 上的奇函数,且()()2f x f x +=-,当()02x ∈,时,()212f x x =,则()7f =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知角α终边上一点()43P -,,求()πcos sin π211π9πcos sin 22αααα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.18.(本小题满分12分)已知函数()22sin cos 2cos f x x x x =+.(1)求函数()f x 的单调递增区间;(2)将函数()y f x =的图象向右平移π4个单位长度后,得到函数()y g x =的图象,求方程()1g x =在[]0πx ∈,上的解集.19.(本小题满分12分)设a 是实数,()2221x xa a f x ⋅+-=+. (1)证明:()f x 是增函数.(2)试确定a 的值,使()f x 为奇函数.20.(本小题满分12分)已知函数()2π4sin 14f x x x ⎛⎫=+-- ⎪⎝⎭,且给定条件p :“ππ42x ≤≤”.(1)求()f x 的最大值及最小值;(2)若条件q :“()2f x m -<”,且p 是q 的充分条件,求实数m 的取值范围.21.(本小题满分12分)自2018年10月1日起,《中华人民共和国个人所得税》新规定,公民月工资、薪金所得不超过5 000元的部分不必纳税,超过5 000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:(1)如果小李10月份全月的工资、薪金为7 000元,那么他应该纳税多少元?(2)如果小张10月份交纳税金425元,那么他10月份的工资、薪金是多少元?(3)写出工资、薪金收入()<≤(元/月)与应缴纳税金y(元)的函数关系式.014000x x22.(本小题满分12分)已知函数()22=-+的两个零点为1f x x mxx=和x n=.(1)求m,n的值;(2)若函数()()22g x x ax a =-+∈R 在(]1-∞,上单调递减,解关于x 的不等式()log 20a nx m +-<.期末测试 答案解析一、 1.【答案】B【解析】因为{}12,3,4,5U =,,集合{}12A =,,所以{}3,4,5U A =. 2.【答案】B 【解析】6OM =,5sin 6α∴=-.3.【答案】B【解析】量词“存在”否定后为“任意”,结论“它的平方是有理数”否定后为“它的平方不是有理数”,故选B . 4.【答案】C【解析】函数()222312y x x x =-+=-+,对称轴为直线1x =.由12x -≤≤可得,当1x =时,函数取得最小值为2,当1x =-时,函数取得最大值为6,故函数的值域为[]26,,故选C . 5.【答案】B【解析】2222222222cos sin 1tan 134222cos cossin22135cos sin 1tan 222ααααααααα---=-====-+++. 6.【答案】D【解析】由已知()f x 在[]10-,上为减函数,∴当34x ≤≤时,140x --≤≤,∴函数()f x 在[]34,上是减函数,反之也成立,故选D . 7.【答案】D【解析】由函数()f x 的图象得,函数()f x 的最大值为2,最小值为0,周期7ππ4π2010T ⎛⎫=⨯-= ⎪⎝⎭,得2ω=.又函数()f x 过点π110⎛⎫ ⎪⎝⎭,和7π020⎛⎫⎪⎝⎭,,所以只有选项D 符合题意,故选D . 8.【答案】C【解析】由于1y x=为奇函数,故排除A ;由于()x y f x e -==,不满足()()f x f x -=-,也不满足()()f x f x -=,故它是非奇非偶函数,故排除B ;由于21y x =-+是偶函数,且在区间()0+∞,上单调递减,故C 满足条件;由于lg y x =是偶函数,但在区间()0+∞,上单调递增,故排除D ,故选C . 9.【答案】C【解析】{}1|28|132x A x x x ⎧⎫=∈=-⎨⎬⎩⎭R <<<<.x B ∈成立的一个充分不必要条件是x A ∈,AB ∴,13m ∴+>,即2m >.10.【答案】A【解析】函数()()(1x x f x k a a a -=-->0,)0a ≠在R 上是奇函数,()00f ∴=,2k ∴=,又()x x f x a a -=-为减函数,所以01a <<,所以()()log 2a g x x =+,定义域为()2-+∞,,且单调递减,故选A . 11.【答案】C【解析】设函数()0.9x f x =,() 5.1x g x =,()0.9log h x x =,则()f x 单调递减,()g x 单调递增,()h x 单调递减,()5.100.901f ∴=<<,即01m <<;()0.95.101g =>,即1n >;()0.90.95.1log 5.1log 10h ==<,即0p <,p m n ∴<<.故选C .12.【答案】C【解析】对于①,()1111ln ln111x x f f x x x x--⎛⎫==- ⎪+⎝⎭+≠,不满足“倒负”变换的函数; 对于②,()222222111111111x x x f f x x x x x ⎛⎫- ⎪--⎛⎫⎝⎭===-=- ⎪++⎝⎭⎛⎫+ ⎪⎝⎭,满足“倒负”变换的函数; 对于③,当01x <<时,11x >,()f x x =,()1f x f x x ⎛⎫=-=- ⎪⎝⎭;当1x >时,101x <<,()1f x x =-,()11f f x x x⎛⎫==- ⎪⎝⎭;当1x =时,11x =,()0f x =,()()110f f f x x ⎛⎫===- ⎪⎝⎭,满足“倒负”变换的函数.综上,②③是符合要求的函数.故选C . 二、13.【答案】13【解析】设幂函数()af x x =,由图象经过点182⎛⎫ ⎪⎝⎭,,得182a=,13a ∴=-,()13f x x -∴=,()13127273f -∴==. 14.【答案】23⎛⎫+∞ ⎪⎝⎭,【解析】当10a -=时,不等式化为230x ->,显然有解;当10a ->时,二次函数()()2123f x a x x =-+-开口向上,显然()0f x >有解; 当10a -<时,要使不等式有解,应为()41210a ∆=+->,23a ∴>,213a ∴<<. 综上,实数a 的取值范围是23a >. 15.【答案】①③④ 【解析】①()7π2cos 22sin 22f x x x ⎛⎫=--=⎪⎝⎭是奇函数,故①正确.②当°30α=,°300β=-时,αβ>,但tan tan αβ<,故②错误.③将3π8x =-代入3π3sin 24y x ⎛⎫=- ⎪⎝⎭后,y 取最大值3,故③正确.④()1cos π5331cos π222x f x x -=⨯+=-.()f x 的最小正周期是2,而()()f x c f x +=对任意x ∈R 都成立,则说明正整数c 是()f x 的周期,则c 的最小值是2,故④正确. 16.【答案】12-【解析】函数()f x 是R 上的奇函数,即()()f x f x -=-,()()2f x f x +=-,()()()222f x f x f x ∴++=-+=即()()4f x f x +=,可得函数周期4T =.那么()()()731f f f ==-,()()f x f x -=-,()()11f f ∴-=-.当()02x ∈,时,()212f x x =,则()112f =.()172f ∴=-. 三、17.【答案】角α的终边过点()43P -,,3tan 4y x α∴==-,(4分)()πcos sin πsin sin 32tan 11π9πsin cos 4cos sin 22ααααααααα⎛⎫+-- ⎪-⋅⎝⎭∴===--⋅⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.(10分) 18.【答案】(1)()π214f x x ⎛⎫++ ⎪⎝⎭,由()πππ2π22π242k x k k -++∈Z ≤≤,得()3ππππ88k x k k -+∈Z ≤≤,()f x ∴的单调递增区间是()3ππππ88k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.(6分) (2)由已知,得()π214g x x ⎛⎫=-+ ⎪⎝⎭,由()1g x =π204x ⎛⎫-= ⎪⎝⎭,()ππ28k x k ∴=+∈Z .(9分)[]0πx ∈,,π8x ∴=或5π8x =,∴方程()1g x =的解集为π5π85⎧⎫⎨⎬⎩⎭,.(12分)19.【答案】(1)证明:()2221x x a a f x ⋅+-=+.设12x x <,则()()()()()1212121212222222221212121x x x x x x x x a a a a f x f x ⨯-⋅+-⋅+--=-=++++,又由12x x <理,得()()120f x f x -<,则()f x 在R 内为增函数.(5分)(2)根据题意,()2222121x x x a a f x a ⋅+-==-++,则()221x f x a --=-+,()221x f x a -=-++,(8分)若()f x 为奇函数,则()()f x f x -=-,即222121x x a a --=-+++,变形可得()()1210x a -+=恒成立,故1a =.(12分)20.【答案】(1)()ππ21cos 2212sin 2214sin 2123f x x x x x x ⎡⎤⎛⎫⎛⎫=-+--=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 又ππ42x ≤≤, ππ2π2633x ∴-≤≤.(4分) π34sin 2153x ⎛⎫∴-+ ⎪⎝⎭≤≤, ()max 5f x ∴=,()min 3f x =.(6分)(2)由(1)得,()35f x ≤≤.()2f x m -<,()22m f x m ∴-+<<.又p 是q 的充分条件,2325m m -⎧∴⎨+⎩<,>, 解得35m <<.∴实数m 的取值范围为{}|35m m <<.(12分)21.【答案】(1)700050002000-=(元), 应交税为15003%50010%95⨯+⨯=(元).(3分)(2)小张10月份交纳税金425元,由分段累进可得15003%45⨯=;()4500150010%300-⨯=; 4254530080--=,8020%400÷=,则他10月份的工资、薪金是5000150030004009900+++=(元).(7分)(3)当014000x <≤时,可得()()()00500050000.03500065004565000.1650095004530000.195000.2950014000x x x y x x x x ⎧⎪-⨯⎪=⎨+-⨯⎪⎪+⨯+-⨯⎩,<≤,,<≤,,<≤,,<≤,即为0050000.03150500065000.1605650095000.21555950014000.x x x x x x x ⎧⎪-⎪⎨-⎪⎪-⎩,<≤,,<≤,,<≤,,<≤(12分) 22.【答案】(1)根据题意,知1x =和x n =是方程220x mx -+=的两个根, 由根和系数的关系可知112n m n +=⎧⎨⋅=⎩,, 3m ∴=,2n =.(4分) (2)函数()g x 的对称轴为直线2a x =, ()g x 在()1-∞,上单调递减,12a ∴≥,2a ∴≥.(8分) ∴由(1)知,()()log 2log 210a a nx m x +-=+<,0211x ∴+<<,102x ∴-<<,∴原不等式的解集为102⎛⎫- ⎪⎝⎭,.(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高一数学上期末模拟试题(及答案)一、选择题1.设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则B A =ð( )A .()0,1B .[)0,1C .(]0,1D .[]0,12.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<3.函数y =a |x |(a >1)的图像是( ) A .B .C .D .4.若函数*12*log (1),()3,x x x N f x x N⎧+∈⎪=⎨⎪∉⎩,则((0))f f =( ) A .0B .-1C .13D .15.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ). A .b a c << B .c b a << C .c a b <<D .a b c <<6.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x +B .(1)f x -C .()1f x +D .()1f x -7.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( )A .1B .-1C .-3D .38.函数21y x x =-+的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)9.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.已知3log 2a =,0.12b =,sin 789c =o ,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<11.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( )A.13B.14C.3D.412.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()UP Q⋃ð=A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}二、填空题13.定义在R上的奇函数f(x)在(0,+∞)上单调递增,且f(4)=0,则不等式f (x)≥0的解集是___.14.已知()f x是定义域为R的单调函数,且对任意实数x都有21()213xf f x⎡⎤+=⎢⎥+⎣⎦,则52(log)f =__________.15.已知函数()22ln0210x xf xx x x⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d、、、,有()()()()f a f b f c f d===,则+++a b c d的取值范围是______.16.若函数cos()2||xf x xx=++,则11(lg2)lg(lg5)lg25f f f f⎛⎫⎛⎫+++=⎪ ⎪⎝⎭⎝⎭______. 17.如图,矩形ABCD的三个顶点,,A B C分别在函数2logy x=,12y x=,22xy⎛⎫= ⎪⎪⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A的纵坐标为2,则点D的坐标为______.18.已知函数()21311log12x x k xf xx x⎧-++≤⎪=⎨-+>⎪⎩,()()2ln21xg x a xx=+++()a R∈,若对任意的均有1x,{}2,2x x x R x∈∈>-,均有()()12f xg x≤,则实数k的取值范围是__________.19.已知35m n k==,且112m n+=,则k=__________20.定义在R上的函数()f x满足()()2=-+f x f x,()()2f x f x=-,且当[]0,1x∈时,()2f x x=,则方程()12f xx=-在[]6,10-上所有根的和为________.三、解答题21.已知函数()221f x x ax =-+满足()()2f x f x =-.(1)求a 的值; (2)若不等式()24x xf m ≥对任意的[)1,x ∈+∞恒成立,求实数m 的取值范围;(3)若函数()()()22log log 1g x f x k x =--有4个零点,求实数k 的取值范围. 22.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为32mg/m ,首次改良后所排放的废气中含有的污染物数量为31.94mg/m .设改良工艺前所排放的废气中含有的污染物数量为0r ,首次改良工艺后所排放的废气中含有的污染物数量为1r ,则第n 次改良后所排放的废气中的污染物数量n r ,可由函数模型()0.5001)*(5n p n r r r r p R n N +-∈⋅=-∈,给出,其中n 是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过30.08mg/m ,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. (参考数据:取lg 20.3=) 23.已知()1log 1axf x x-=+(0a >,且1a ≠). (1)当(],x t t ∈-(其中()1,1t ∈-,且t 为常数)时,()f x 是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由;(2)当1a >时,求满足不等式()()2430f x f x -+-≥的实数x 的取值范围. 24.计算或化简:(1)112320412730.1log 321664π-⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭; (2)6log 332log log 2log 36⋅-- 25.已知幂函数()()223mm f x x m --=∈Z 为偶函数,且在区间()0,∞+上单调递减.(1)求函数()f x 的解析式; (2)讨论()()bF x xf x =的奇偶性.(),a b R ∈(直接给出结论,不需证明)26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁R B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先化简集合A,B,再求B A ð得解. 【详解】由题得{}10|22{|1}x A x x x -=≥=≥,{}|0B y y =≥.所以{|01}B A x x =≤<ð. 故选B 【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.2.B解析:B 【解析】 【分析】先比较三个数与零的大小关系,确定三个数的正负,然后将它们与1进行大小比较,得知1a >,0,1b c <<,再利用换底公式得出b 、c 的大小,从而得出三个数的大小关系.【详解】函数3xy =在R 上是增函数,则0.20331a =>=,函数6log y x =在()0,∞+上是增函数,则666log 1log 4log 6<<,即60log 41<<, 即01b <<,同理可得01c <<,由换底公式得22393log 2log 2log 4c ===, 且96ln 4ln 4log 4log 4ln 9ln 6c b ==<==,即01c b <<<,因此,c b a <<,故选A . 【点睛】本题考查比较数的大小,这三个数的结构不一致,这些数的大小比较一般是利用中间值法来比较,一般中间值是0与1,步骤如下:①首先比较各数与零的大小,确定正负,其中正数比负数大;②其次利用指数函数或对数函数的单调性,将各数与1进行大小比较,或者找其他中间值来比较,从而最终确定三个数的大小关系.3.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .4.B解析:B 【解析】 【分析】根据分段函数的解析式代入自变量即可求出函数值. 【详解】因为0N *∉,所以0(0)3=1f =,((0))(1)f f f =,因为1N *∈,所以(1)=1f -,故((0))1f f =-,故选B. 【点睛】本题主要考查了分段函数,属于中档题.5.D解析:D 【解析】 【分析】函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,再通过数形结合得到a ,b ,c 的大小关系. 【详解】令2()2log 0x f x x =+=,则2log 2x x =-.令12()2log 0xg x x -=-=,则2log 2x x -=-. 令2()2log 10x x h x =-=,则22log 1x x =,21log 22x x x -==. 所以函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log y x =与函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,如图所示,可知01a b <<<,1c >, ∴a b c <<.故选:D . 【点睛】本题主要考查函数的零点问题,考查对数函数和指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.D解析:D 【解析】 【分析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 【详解】设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x , 再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +, 该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目.7.C解析:C 【解析】 【分析】由(1)(3)0f x f x ++-=结合()f x 为奇函数可得()f x 为周期为4的周期函数,则(2019)(1)f f =-,要使函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,结合图像可得(1)3f =,即可得到答案.【详解】Q ()f x 为定义在R 上的奇函数,∴()()f x f x -=-,又Q (1)(3)0(13)(33)0f x f x f x f x ++-=⇔+++--=,(4)()0(4)()()f x f x f x f x f x ++-=⇔+=--=∴, ∴()f x 在R 上为周期函数,周期为4, ∴(2019)(50541)(1)(1)f f f f =⨯-=-=-Q 函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,令6()m x x = ,则5()6m x x '=,所以(,0)x ∈-∞为函数6()m x x =减区间,(0,)x ∈+∞为函数6()m x x =增区间,令()(1)cos 43x f x ϕ=⋅-,则()x ϕ为余弦函数,由此可得函数()m x 与函数()x ϕ的大致图像如下:由图分析要使函数()m x 与函数()x ϕ只有唯一交点,则(0)(0)m ϕ=,解得(1)3f =∴(2019)(1)3f f =-=-,故答案选C . 【点睛】本题主要考查奇函数、周期函数的性质以及函数的零点问题,解题的关键是周期函数的判定以及函数唯一零点的条件,属于中档题.8.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】由题意得:2010x x -≥⎧⎨+>⎩解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.9.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.10.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知34333log 2log 34a =<=<, 由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以c∈,,1)2<<,故选B.所以a c b11.C解析:C【解析】【分析】根据自变量范围代入对应解析式,化简得结果.【详解】f(log43)=log434=3,选C.【点睛】本题考查分段函数求值,考查基本求解能力,属基础题.12.C解析:C【解析】试题分析:根据补集的运算得{}{}{}{}=∴⋃=⋃=痧.故选C.UP UP Q2,4,6,()2,4,61,2,41,2,4,6【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.二、填空题13.-40∪4+∞)【解析】【分析】由奇函数的性质可得f(0)=0由函数单调性可得在(04)上f(x)<0在(4+∞)上f(x)>0结合函数的奇偶性可得在(-40)上的函数值的情况从而可得答案【详解】根解析: [-4,0]∪[4,+∞)【解析】【分析】由奇函数的性质可得f(0)=0,由函数单调性可得在(0,4)上,f(x)<0,在(4,+∞)上,f(x)>0,结合函数的奇偶性可得在(-4,0)上的函数值的情况,从而可得答案.【详解】根据题意,函数f(x)是定义在R上的奇函数,则f(0)=0,又由f(x)在区间(0,+∞)上单调递增,且f (4)=0,则在(0,4)上,f(x)<0,在(4,+∞)上,f(x)>0,又由函数f(x)为奇函数,则在(-4,0)上,f(x)>0,在(-∞,-4)上,f(x)<0,若f(x)≥0,则有-4≤x≤0或x≥4,则不等式f(x)≥0的解集是[-4,0]∪[4,+∞);故答案为:[-4,0]∪[4,+∞). 【点睛】本题考查函数的单调性和奇偶性的综合应用,属于基础题.14.【解析】【分析】由已知可得=a 恒成立且f (a )=求出a =1后将x =log25代入可得答案【详解】∵函数f (x )是R 上的单调函数且对任意实数x 都有f =∴=a 恒成立且f (a )=即f (x )=﹣+af (a )解析:23 【解析】 【分析】由已知可得()221x f x ++=a 恒成立,且f (a )=13,求出a =1后,将x =log 25代入可得答案. 【详解】∵函数f (x )是R 上的单调函数,且对任意实数x ,都有f[()221xf x ++]=13, ∴()221xf x ++=a 恒成立,且f (a )=13, 即f (x )=﹣x 221++a ,f (a )=﹣x 221++a =13, 解得:a =1,∴f (x )=﹣x 221++1, ∴f (log 25)=23, 故答案为:23. 【点睛】本题考查的知识点是函数解析式的求法和函数求值的问题,正确理解对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立是解答的关键,属于中档题.15.【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图解析:341112,1e e e ⎡⎫+--⎪⎢⎣⎭【解析】 【分析】不妨设,0,,0a b c d ≤>,根据二次函数对称性求得+a b 的值.根据绝对值的定义求得,c d的关系式,将d 转化为c 来表示,根据c 的取值范围,求得+++a b c d 的取值范围. 【详解】不妨设,0,,0a b c d ≤>,画出函数()f x 的图像如下图所示.二次函数221y x x =--+的对称轴为1x =-,所以2a b +=-.不妨设c d <,则由2ln 2ln c d +=+得2ln 2ln c d --=+,得44,e cd e d c--==,结合图像可知12ln 2c ≤+<,解得(43,c e e --⎤∈⎦,所以(()4432,e a b c d c c e e c ---⎤+++=-++∈⎦,由于42e y x x-=-++在(43,e e --⎤⎦上为减函数,故4341112,21e e e c c e -⎡⎫+--++∈⎢⎣-⎪⎭.【点睛】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.16.10【解析】【分析】由得由此即可得到本题答案【详解】由得所以则所以故答案为:10【点睛】本题主要考查利用函数的奇偶性化简求值解析:10 【解析】 【分析】 由cos ()2||xf x x x=++,得()()42||f x f x x +-=+,由此即可得到本题答案. 【详解】由cos ()2||xf x x x =++,得cos()cos ()2||2||x x f x x x x x--=+-+=+--,所以()()42||f x f x x +-=+,则(lg 2)(lg 2)42|lg 2|42lg 2f f +-=+=+,(lg5)(lg5)42|lg5|42lg5f f +-=+=+,所以,11(lg 2)lg (lg 5)lg 42lg 242lg 51025f f f f ⎛⎫⎛⎫+++=+++= ⎪ ⎪⎝⎭⎝⎭. 故答案为:10 【点睛】本题主要考查利用函数的奇偶性化简求值.17.【解析】【分析】先利用已知求出的值再求点D 的坐标【详解】由图像可知点在函数的图像上所以即因为点在函数的图像上所以因为点在函数的图像上所以又因为所以点的坐标为故答案为【点睛】本题主要考查指数对数和幂函解析:11,24⎛⎫⎪⎝⎭【解析】 【分析】先利用已知求出,A B C x x y ,的值,再求点D 的坐标. 【详解】由图像可知,点(),2A A x在函数y x=的图像上,所以2Ax =,即2122A x ⎛⎫== ⎪ ⎪⎝⎭.因为点(),2B B x 在函数12y x =的图像上,所以122Bx =,4B x =.因为点()4,C C y在函数x y =⎝⎭的图像上,所以414C y ==⎝⎭. 又因为12D A x x ==,14D C y y ==, 所以点D 的坐标为11,24⎛⎫⎪⎝⎭. 故答案为11,24⎛⎫⎪⎝⎭【点睛】本题主要考查指数、对数和幂函数的图像和性质,意在考查学生对这些知识的理解掌握水平.18.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题解析:3,4⎛⎤-∞- ⎥⎝⎦ 【解析】 【分析】若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,只需满足max min ()()f x g x ≤,分别求出max min (),()f x g x ,即可得出结论.【详解】当()221121()24x f x x x k x k -<≤=-++=--++, 16()4k f x k ∴-<≤+, 当()1311,log 122x x f x >=-<-+, ()()2ln 21xg x a x x =+++, 设21xy x =+,当0,0x y ==, 当21110,,01122x x y y x x x>==≤∴<≤++,当1x =时,等号成立 同理当20x -<<时,102y -≤<, 211[,]122x y x ∴=∈-+, 若对任意的均有1x ,{}2,2x x x R x ∈∈>-, 均有()()12f x g x ≤,只需max min ()()f x g x ≤, 当2x >-时,ln(2)x R +∈, 若0,2,()a x g x >→-→-∞, 若0,,()a x g x <→+∞→-∞ 所以0a =,min21(),()12x g x g x x ==-+, max min ()()f x g x ≤成立须,113,424k k +≤-≤-,实数k 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦.故答案为;3,4⎛⎤-∞- ⎥⎝⎦.【点睛】本题考查不等式恒成立问题,转化为求函数的最值,注意基本不等式的应用,考查分析问题解决问题能力,属于中档题.19.【解析】因为所以所以故填【解析】因为35m n k ==,所以3log m k =,5log n k =,11lg5lg3lg152lg lg lg m n k k k+=+==,所以1lg lg152k ==k =20.【解析】【分析】结合题意分析出函数是以为周期的周期函数其图象关于直线对称由可得出函数的图象关于点对称据此作出函数与函数在区间上的图象利用对称性可得出方程在上所有根的和【详解】函数满足即则函数是以为周 解析:16【解析】 【分析】结合题意分析出函数()y f x =是以4为周期的周期函数,其图象关于直线1x =对称,由()()22f x f x -=-+可得出函数()y f x =的图象关于点()2,0对称,据此作出函数()y f x =与函数12y x =-在区间[]6,10-上的图象,利用对称性可得出方程()12f x x =-在[]6,10-上所有根的和. 【详解】函数()y f x =满足()()2f x f x =-+,即()()()24f x f x f x =-+=+,则函数()y f x =是以4为周期的周期函数;()()2f x f x =-Q ,则函数()y f x =的图象关于直线1x =对称;由()()2f x f x =-+,()()2f x f x =-,有()()22f x f x -=-+,则函数()y f x =的图象关于点()2,0成中心对称; 又函数12y x =-的图象关于点()2,0成中心对称,则函数()y f x =与函数12y x =-在区间[]6,10-上的图象的交点关于点()2,0对称,如下图所示:由图象可知,函数()y f x =与函数12y x =-在区间[]6,10-上的图象共有8个交点, 4对交点关于点()2,0对称,则方程()12f x x =-在[]6,10-上所有根的和为4416⨯=. 故答案为:16. 【点睛】本题考查方程根的和的计算,将问题转化为利用函数图象的对称性求解是解答的关键,在作图时也要注意推导出函数的一些基本性质,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)1;(2)1,4⎛⎤-∞ ⎥⎝⎦;(3)1k >-.【解析】 【分析】(1)由题得()f x 的图像关于1x =对称,所以1a =;(2)令2x t =,则原不等式可化为()2112m t t ⎛⎫≤-≥ ⎪⎝⎭恒成立,再求函数的最值得解;(3)令2log (0)t x t =≥,可得11t =或21t k =+,分析即得解.【详解】(1)∵()()2f x f x =-,∴()f x 的图像关于1x =对称,∴1a =.(2)令2(2)xt t =≥,则原不等式可化为()2112m t t ⎛⎫≤-≥ ⎪⎝⎭恒成立. ∴2min 1114m t ⎛⎫≤-= ⎪⎝⎭,∴m 的取值范围是1,4⎛⎤-∞ ⎥⎝⎦.(3)令2log (0)t x t =≥,则()y g x =可化为()()()22111y t k t k t t k =-+++=---,由()()110t t k ---=可得11t =或21t k =+,∵()y g x =有4个零点,121=|log |t x =有两个解,∴221=|log |t k x =+有两个零点,∴10,1k k +>∴>-. 【点睛】本题主要考查二次函数的对称性的应用,考查不等式的恒成立问题和对数函数的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力. 22.(1)()0.50.5*20.065n n r n N -=-⨯∈ (2)6次【解析】 【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可; (2)结合题意解指数不等式即可. 【详解】解:(1)由题意得02r =,1 1.94r =, 所以当1n =时,()0.510015pr r r r +=--⋅,即0.51.942(2 1.94)5p+=--⋅,解得0.5p =-,所以0.50.520.065*()n n r n -=-⨯∈N , 故改良后所排放的废气中含有的污染物数量的函数模型为()0.50.5*20.065n n r n -=-⨯∈N .(2)由题意可得,0.50.520.0650.08n n r -=-⨯≤, 整理得,0505..1950..206n -≥,即0.50.5532n -≥, 两边同时取常用对数,得lg3205055.lg .n -≥, 整理得5lg 2211lg 2n ≥⨯+-, 将lg 20.3=代入,得5lg 230211 5.31lg 27⨯+=+≈-,又因为*n ∈N ,所以6n ≥.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. 【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题. 23.(1)见解析(2)51,3⎛⎫ ⎪⎝⎭【解析】 【分析】(1)先判定函数的单调性,结合单调性来进行求解()f x 是否存在最小值;(2)先判断函数的奇偶性及单调性,结合奇偶性和单调性把()()2430f x f x -+-≥进行转化求解.(1)由101xx ->+可得1010x x ->⎧⎨+>⎩或1010x x -<⎧⎨+<⎩,解得11x -<<,即函数()f x 的定义域为()1,1-,设1211x x -<<<,则()()()211212122111111x x x x x x x x ----=++++,∵1211x x -<<<,∴210x x ->,()()12110x x ++>,∴12121111x x x x -->++, ①当1a >时()()12f x f x >,则()f x 在()1,1-上是减函数,又()1,1t ∈-, ∴(],x t t ∈-时,()f x 有最小值,且最小值为()1log 1atf t t-=+; ②当01a <<时,()()12f x f x <,则()f x 在()1,1-上是增函数,又()1,1t ∈-, ∴(],x t t ∈-时,()f x 无最小值.(2)由于()f x 的定义域为()1,1-,定义域关于原点对称,且()()111log log 11a a x x f x f x x x -+-⎛⎫-===- ⎪-+⎝⎭,所以函数()f x 为奇函数.由(1)可知,当1a >时,函数()f x 为减函数,由此,不等式()()2430f x f x -+-≥等价于()()234f x f x -≥-,即有2341211431x x x x -≤-⎧⎪-<-<⎨⎪-<-<⎩,解得513x <<,所以x 的取值范围是51,3⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查函数性质的综合应用,奇偶性和单调性常结合求解抽象不等式问题,注意不要忽视了函数定义域,侧重考查数学抽象和逻辑推理的核心素养. 24.(1)99;(2)3-. 【解析】 【分析】(1)直接根据指数与对数的性质运算即可; (2)直接利用对数运算性质即可得出. 【详解】(1)原式21123325249131log 216104-⎡⎤⎛⎫⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦7351001442=++--(2)原式323log 313=---31422=-- 3=-.【点睛】本题主要考查了指数对数运算性质,考查了推理能力与计算能力,属于中档题. 25.(1)()4f x x -=(2)见解析【解析】 【分析】(1)由幂函数()f x 在()0,∞+上单调递减,可推出2230m m --<(m Z ∈),再结合()f x 为偶函数,即可确定m ,得出结论;(2)将()f x 代入,即可得到()F x ,再依次讨论参数,a b 是否为0的情况即可. 【详解】(1)∵幂函数()()223mm f x x m --=∈Z 在区间()0,∞+上是单调递减函数,∴2230m m --<,解得13m -<<, ∵m Z ∈,∴0m =或1m =或2m =. ∵函数()()223m m f x x m --=∈Z 为偶函数,∴1m =, ∴()4f x x -=;(2)()()4b b F x xf x x x-==⋅23ax bx -=-, 当0a b ==时,()F x 既是奇函数又是偶函数; 当0a =,0b ≠时,()F x 是奇函数; 当0a ≠,0b =时,()F x 是偶函数; 当0a ≠,0b ≠时,()F x 是非偶非偶函数. 【点睛】本题主要考查了幂函数单调性与奇偶性的综合应用,学生需要熟练掌握好其定义并灵活应用. 26.见解析 【解析】 【分析】根据题意,在数轴上表示出集合,A B ,再根据集合的运算,即可得到求解. 【详解】 解:如图所示.∴A∪B={x|2<x<7},A∩B={x|3≤x<6}.∴∁R(A∪B)={x|x≤2或x≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。

相关文档
最新文档