步步高—数列求和(高三一轮复习)
2020步步高 苏教版高三一轮复习 数列 含答案解析
项数有限 项数无限
按项与项间的 大小关系分类
递增数列 递减数列
常数列
摆动数列
an+1__>__an
an+1__<__an
其中 n∈N*
an+1=an
从第 2 项起,有些项大于它的前一项,
有些项小于它的前一项的数列
3.数列的表示法 数列有三种表示法,它们分别是列表法、图象法和解析式法. 4.数列的通项公式 如果数列{an}的第 n 项与序号 n 之间的关系可以用一个公式来表示,那么这个公式叫做这个 数列的通项公式.
考试内容 数列的概念 等差数列 等比数列
等级要求 A C C
§6.1 数列的概念与简单表示法
考情考向分析 以考查 Sn 与 an 的关系为主,简单的递推关系也是考查的热点.本节内容在 高考中以填空的形式进行考查,难度为低档.
1.数列的定义
按照一定次序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.
2,n=1, 答案
2n-1,n≥2,n∈N*
解析 当 n=1 时,a1=S1=2,当 n≥2 时,
an=Sn-Sn-1=n2+1-[(n-1)2+1]=2n-1,
又 a1=2 不满足 an=2n-1,
2,n=1, 故 an= 2n-1,n≥2,n∈N*.
题型一 由数列的前几项求数列的通项公式 例 1 根据下面各数列前几项的值,写出数列的一个通项公式: (1)2,4 ,6 ,8 ,10,…;
2.数列的分类
分类原则
类型
满足条件
按项数分类
有穷数列 无穷数列
项数有限 项数无限
按项与项间的 大小关系分类
递增数列 递减数列
常数列
摆动数列
an+1__>__an
【步步高】高考数学大一轮复习 6.2 等差数列及其前n项和试题(含解析)新人教A
6.2 等差数列及其前n 项和一、选择题1. {a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( ) A .18 B .20 C .22D .24解析:由S 10=S 11得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20. 答案:B2.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ). A .6B .7C .8D .9解析 由a 4+a 6=a 1+a 9=-11+a 9=-6,得a 9=5,从而d =2,所以S n =-11n +n (n -1)=n 2-12n =(n -6)2-36,因此当S n 取得最小值时,n =6. 答案 A3.在等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则S 9等于( ). A .66B .99C .144D .297解析 ∵a 1+a 4+a 7=39,a 3+a 6+a 9=27, ∴3a 4=39,3a 6=27, ∴a 4=13,a 6=9.∴a 6-a 4=2d =9-13=-4, ∴d =-2,∴a 5=a 4+d =13-2=11, ∴S 9=9a 1+a 92=9a 5=99.答案 B4. 设S n 是等差数列{a n }的前n 项和,若S 8=30,S 4=7,则a 4的值等于( ) A.14 B.94 C.134 D.174 解析 由已知,得,⎩⎪⎨⎪⎧8a 1+8×72d =30,4a 1+4×32d =7,即⎩⎪⎨⎪⎧4a 1+14d =15,4a 1+6d =7,解得⎩⎪⎨⎪⎧a 1=14,d =1,则a 4=a 1+3d =134,故选C.答案 C5.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ). A .8B .7C .6D .5解析 由a 1=1,公差d =2得通项a n =2n -1,又S k +2-S k =a k +1+a k +2,所以2k +1+2k +3=24,得k =5. 答案 D6.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为( ). A .12 3B .15 3C .12D .15解析 不妨设角A =120°,c <b ,则a =b +4,c =b -4,于是cos 120°=b 2+b -2-b +22b b -=-12,解得b =10,所以S =12bc sin 120°=15 3.答案 B7.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( ) A.7 B.15 C.20 D.25解析15242451,5551522a a a a a a S ++==⇒=⨯=⨯=.答案 B 二、填空题8.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 解析:a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,S k =k +k k -2×2=k 2=9.又k ∈N *,故k =3.答案:39. 定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5,那么a 18的值为________.解析 由题意知a n +a n +1=5,所以a 2=3,a 3=2,a 4=3,…,a 18=3. 答案 310.在等差数列{a n }中,a 1=-3,11a 5=5a 8-13,则数列{a n }的前n 项和S n 的最小值为________.解析 (直接法)设公差为d ,则11(-3+4d )=5(-3+7d )-13, 所以d =59,所以数列{a n }为递增数列.令a n ≤0,所以-3+(n -1)·59≤0,所以n ≤325,又n ∈N *,前6项均为负值, 所以S n 的最小值为-293.答案 -293【点评】 本题运用直接法,直接利用等差数列的通项公式判断出数列的项的符号,进而确定前几项的和最小,最后利用等差数列的求和公式求得最小值.11.两个等差数列的前n 项和之比为5n +102n -1,则它们的第7项之比为________.解析 设两个数列{a n },{b n }的前n 项和为S n ,T n ,则S n T n =5n +102n -1,而a 7b 7=a 1+a 13b 1+b 13=S 13T 13=5×13+102×13-1=31.答案 3∶112.已知数列{a n }满足递推关系式a n +1=2a n +2n-1(n ∈N *),且⎩⎨⎧⎭⎬⎫a n +λ2n为等差数列,则λ的值是________.解析 由a n +1=2a n +2n-1,可得a n +12n +1=a n 2n +12-12n +1,则a n +1+λ2n +1-a n +λ2n =a n +12n +1-a n 2n -λ2n +1=12-12n +1-λ2n +1=12-λ+12n +1,当λ的值是-1时,数列⎩⎨⎧⎭⎬⎫a n -12n 是公差为12的等差数列. 答案 -1 三、解答题13.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.思路分析 第(1)问建立首项a 1与公差d 的方程组求解;第(2)问建立首项a 1与公差d 的方程,利用完全平方公式求范围.解析 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎪⎨⎪⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0,故(4a 1+9d )2=d 2-8,所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2.【点评】 方程思想在数列中常常用到,如求通项a n 及S n 时,一般要建立首项a 1与公差d 或公比q 的方程组.14.已知数列{a n }的前n 项和S n =10n -n 2,(n ∈N *). (1)求a 1和a n ;(2)记b n =|a n |,求数列{b n }的前n 项和.解析 (1)∵S n =10n -n 2,∴a 1=S 1=10-1=9.∵S n =10n -n 2,当n ≥2,n ∈N *时,S n -1=10(n -1)-(n -1)2=10n -n 2+2n -11,∴a n =S n -S n -1=(10n -n 2)-(10n -n 2+2n -11) =-2n +11.又n =1时,a 1=9=-2×1+11,符合上式.则数列{a n }的通项公式为a n =-2n +11(n ∈N *).(2)∵a n =-2n +11,∴b n =|a n |=⎩⎪⎨⎪⎧-2n +n ,2n -n ,设数列{b n }的前n 项和为T n ,n ≤5时,T n =n -2n +2=10n -n 2;n >5时T n =T 5+n -b 6+b n 2=25+n -+2n -2=25+(n -5)2=n 2-10n+50,∴数列{b n }的前n 项和T n =⎩⎪⎨⎪⎧10n -n 2n ≤5,n ∈N *,n 2-10n +n >5,n ∈N *15.在数列{a n }中,a n +1+a n =2n -44(n ∈N *),a 1=-23. (1)求a n ;(2)设S n 为{a n }的前n 项和,求S n 的最小值. 思路分析 由已知条件可推知n 应分奇数和偶数. 解析 (1)由a n +1+a n =2n -44(n ∈N *),a n +2+a n +1=2(n +1)-44.∴a n +2-a n =2,又a 2+a 1=2-44,∴a 2=-19.同理得:a 3=-21,a 4=-17.故a 1,a 3,a 5,…是以a 1为首项、2为公差的等差数列,a 2,a 4,a 6,…是以a 2为首项、2为公差的等差数列.从而a n =⎩⎪⎨⎪⎧n -n 为奇数,n -n 为偶数(2)当n 为偶数时,S n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=(2×1-44)+(2×3-44)+…+[2×(n -1)-44] =2[1+3+…+(n -1)]-n 2·44=n 22-22n ,故当n =22时,S n 取得最小值-242. 当n 为奇数时,S n =a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=a 1+(2×2-44)+…+[2×(n -1)-44]=a 1+2[2+4+…+(n -1)]+n -12·(-44)=-23+n +n -2-22(n -1)=n 22-22n -32. 故当n =21或n =23时,S n 取得最小值-243.综上所述:当n 为偶数时,S n 取得最小值为-242;当n 为奇数时,S n 取最小值为-243. 【点评】 数列中的分类讨论一般有两种:一是对项数n 的分类;二是对公比q 的分类,解题时只要细心就可避免失误.16.已知数列{a n }的前n 项和为S n ,且满足:a 1=a (a ≠0),a n +1=rS n (n ∈N *,r ∈R ,r ≠-1).(1)求数列{a n }的通项公式;(2)若存在k ∈N *,使得S k +1,S k ,S k +2成等差数列,试判断:对于任意的m ∈N *,且m ≥2,a m+1,a m ,a m +2是否成等差数列,并证明你的结论.解析 (1)由已知a n +1=rS n ,可得a n +2=rS n +1,两式相减可得a n +2-a n +1=r (S n +1-S n )=ra n +1,即a n +2=(r +1)a n +1,又a 2=ra 1=ra ,所以当r =0时,数列{a n }为:a,0,…,0,…; 当r ≠0,r ≠-1时,由已知a ≠0,所以a n ≠0(n ∈N *), 于是由a n +2=(r +1)a n +1,可得a n +2a n +1=r +1(n ∈N *), ∴a 2,a 3,…,a n ,…成等比数列, ∴当n ≥2时,a n =r (r +1)n -2a .综上,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧a ,n =1,rr +n -2a ,n ≥2.(2)对于任意的m ∈N *,且m ≥2,a m +1,a m ,a m +2成等差数列.证明如下:当r =0时,由(1)知,a n =⎩⎪⎨⎪⎧a ,n =1,0,n ≥2.∴对于任意的m ∈N *,且m ≥2,a m +1,a m ,a m +2成等差数列.当r ≠0,r ≠-1时,∵S k +2=S k +a k +1+a k +2,S k +1=S k +a k +1.若存在k ∈N *, 使得S k +1,S k ,S k +2成等差数列,则S k +1+S k +2=2S k , ∴2S k +2a k +1+a k +2=2S k ,即a k +2=-2a k +1.由(1)知,a2,a3,…,a m,…的公比r+1=-2,于是对于任意的m∈N*,且m≥2,a m+1=-2a m,从而a m+2=4a m,∴a m+1+a m+2=2a m,即a m+1,a m,a m+2成等差数列.综上,对于任意的m∈N*,且m≥2,a m+1,a m,a m+2成等差数列.。
步步高高三复习题库 第4讲 数列求和 精品
第4讲 数列求和一、选择题1.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( ) A.120B.70C.75D.100解析 因为S nn =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.答案 C2.(2017·杭州调研)数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( ) A.9B.8C.17D.16解析 S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9. 答案 A3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A.200B.-200C.400D.-400解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 答案 B4.(2017·高安中学模拟)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( ) A.5B.6C.7D.16解析 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.故选C. 答案 C5.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 016=( ) A.22 016-1B.3·21 008-3C.3·21 008-1D.3·21 007-2解析 a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2.∴a n +2a n =2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2 016=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 015+a 2 016 =(a 1+a 3+a 5+…+a 2 015)+(a 2+a 4+a 6+…+a 2 016) =1-21 0081-2+2(1-21 008)1-2=3·21 008-3.故选B.答案 B 二、填空题6.(2017·嘉兴一中检测)有穷数列1,1+2,1+2+4,…,1+2+4+…+2n -1所有项的和为________.解析 由题意知所求数列的通项为1-2n 1-2=2n -1,故由分组求和法及等比数列的求和公式可得和为2(1-2n )1-2-n =2n +1-2-n .答案 2n +1-2-n7.(2016·宝鸡模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________.解析 由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n , 则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6. 答案 68.(2017·安阳二模)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n -1.答案 4n -1 三、解答题9.(2016·北京卷)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 由⎩⎨⎧b 2=b 1q =3,b 3=b 1q 2=9得⎩⎨⎧b 1=1,q =3. ∴b n =b 1q n -1=3n -1,又a 1=b 1=1,a 14=b 4=34-1=27, ∴1+(14-1)d =27,解得d =2.∴a n =a 1+(n -1)d =1+(n -1)×2=2n -1(n =1,2,3,…). (2)由(1)知a n =2n -1,b n =3n -1,因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1 =n (1+2n -1)2+1-3n 1-3=n 2+3n -12.10.(2017·贵阳一模)已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N *),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)当n =1时,a 1=S 1,由S 1+12a 1=1,得a 1=23, 当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1, 则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2).故数列{a n }是以23为首项,13为公比的等比数列. 故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n(n ∈N *). (2)因为1-S n =12a n =⎝ ⎛⎭⎪⎫13n.所以b n =log 13(1-S n +1)=log 13⎝ ⎛⎭⎪⎫13n +1=n +1,因为1b n b n +1=1(n +1)(n +2)=1n +1-1n +2,所以T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n 2(2n +2).11.(2016·郑州模拟)已知数列{a n }的通项公式为a n =1(n +1)n +n n +1(n ∈N *),其前n 项和为S n ,则在数列S 1,S 2,…,S 2 016中,有理数项的项数为( ) A.42B.43C.44D.45解析 a n =1(n +1)n +n n +1=(n +1)n -n n +1[(n +1)n +n n +1][(n +1)n -n n +1] =nn -n +1n +1.所以S n =1-22+⎝ ⎛⎭⎪⎫22-33+⎝ ⎛⎭⎪⎫33-44+…+⎝ ⎛⎭⎪⎫n n -n +1n +1=1-n +1n +1,因此S 3,S 8,S 15…为有理项,又下标3,8,15,…的通项公式为n 2-1(n ≥2), 所以n 2-1≤2 016,且n ≥2,所以2≤n ≤44,所以有理项的项数为43. 答案 B12.(2017·济南模拟)在数列{a n }中,a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( ) A.76B.78C.80D.82解析 因为a n +1+(-1)n a n =2n -1,所以a 2-a 1=1,a 3+a 2=3,a 4-a 3=5,a 5+a 4=7,a 6-a 5=9,a 7+a 6=11,…,a 11+a 10=19,a 12-a 11=21,所以a 1+a 3=2,a 4+a 2=8,…,a 12+a 10=40,所以从第一项开始,依次取两个相邻奇数项的和都等于2,从第二项开始,依次取两个相邻偶数项的和构成以8为首项,以16为公差的等差数列,以上式相加可得,S 12=a 1+a 2+a 3+…+a 12=(a 1+a 3)+(a 5+a 7)+(a 9+a 11)+(a 2+a 4)+(a 6+a 8)+(a 10+a 12)=3×2+8+24+40=78. 答案 B13.(2017·台州调研)已知数列{a n }满足:a 1=2,a n +1=1+a n1-a n ,则a 1a 2a 3…a 15=________;设b n =(-1)n a n ,数列{b n }前n 项的和为S n ,则S 2 016=________.解析 ∵a 1=2,a n +1=1+a n 1-a n ,∴a 2=1+21-2=-3,a 3=1-31+3=-12,a 4=1-121+12=13,a 5=1+131-13=2.∴a 4n +1=2,a 4n +2=-3,a 4n +3=-12,a 4n =13. ∴a 4n +1·a 4n +2·a 4n +3·a 4n =2×(-3)×⎝ ⎛⎭⎪⎫-12×13=1.∴a 1a 2a 3…a 15=a 13a 14a 15=a 1a 2a 3=2×(-3)×⎝ ⎛⎭⎪⎫-12=3.∵b n =(-1)n a n ,∴b 4n +1=-2,b 4n +2=-3,b 4n +3=12,b 4n =13. ∴b 4n +1+b 4n +2+b 4n +3+b 4n =-2-3+12+13=-256. ∴S 2 016=-256×2 0164=-2 100. 答案 3 -2 10014.(2015·山东卷)已知数列{a n }是首项为正数的等差数列,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n ·a n +1的前n 项和为n2n +1. (1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 解 (1)设数列{a n }的公差为d , 令n =1,得1a 1a 2=13,所以a 1a 2=3.①令n =2,得1a 1a 2+1a 2a 3=25,所以a 2a 3=15.② 解①②得a 1=1,d =2, 所以a n =2n -1.(2)由(1)知b n =2n ·22n -1=n ·4n , 所以T n =1×41+2×42+…+n ×4n , 所以4T n =1×42+2×43+…+n ×4n +1, 两式相减,得-3T n =41+42+…+4n -n ·4n +1 =4(1-4n )1-4-n ·4n +1=1-3n 3×4n +1-43.所以T n =3n -19×4n +1+49=4+(3n -1)4n +19.15.(2016·浙江卷)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和. 解 (1)由题意得⎩⎨⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎨⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n . 所以,数列{a n }的通项公式为a n =3n -1,n ∈N *. (2)设b n =|3n -1-n -2|,n ∈N *,b 1=2,b 2=1, 当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3. 设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112,所以T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *.。
2015年高中数学步步高大一轮复习讲义(文科)第4讲 数列求和
第4讲 数列求和一、选择题1.设数列{(-1)n }的前n 项和为S n ,则对任意正整数n ,S n =( )A.n [(-1)n -1]2B.(-1)n -1+12C.(-1)n +12D.(-1)n -12解析 ∵数列{(-1)n }是首项与公比均为-1的等比数列, ∴S n =(-1)-(-1)n ×(-1)1-(-1)=(-1)n -12.答案 D2.已知数列{a n }的前n 项和S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|=( )A .66B .65C .61D .56解析 当n =1时,a 1=S 1=-1,当n ≥2时,a n =S n -S n -1=n 2-4n +2-[(n -1)2-4(n -1)+2]=2n -5.∴a 2=-1,a 3=1,a 4=3,…,a 10=15,∴|a 1|+|a 2|+…+|a 10|=1+1 +8(1+15)2=2+64=66.答案 A3.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0132 014,则项数n 为( ).A .2 011B .2 012C .2 013D .2 014解析 ∵a n =1n (n +1)=1n -1n +1,∴S n =1-1n +1=n n +1=2 0132 014,解得n =2 013.答案 C4.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ). A .3 690B .3 660C .1 845D .1 830解析 当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3, ∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2,∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=30×(3+119)2=30×61=1 830.答案 D5.若把能表示为两个连续偶数的平方差的正整数称为“和平数”,则 1~100这100个数中,能称为“和平数”的所有数的和是( ) A .130 B .325 C .676D .1 300解析 设两个连续偶数为2k +2和2k (k ∈N +),则(2k +2)2-(2k )2=4(2k +1),故和平数 是4的倍数,但不是8的倍数,故在1~100之间,能称为和平数的有 4×1,4×3,4×5,4×7,…,4×25,共计13个,其和为4×1+252×13=676. 答案 C6.数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21= ( ). A.212B .6C .10D .11解析 依题意得a n +a n +1=a n +1+a n +2=12,则a n +2=a n ,即数列{a n }中的奇数项、偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×12+1=6,故选B. 答案 B 二、填空题7.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12. 答案 -2 2n -1-128.数列{a n }的前n 项和为S n ,a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),则S 100=________.解析 由a n +2-a n =1+(-1)n ,知a 2k +2-a 2k =2,a 2k +1-a 2k -1=0,∴a 1=a 3=a 5=…=a 2n -1=1,数列{a 2k }是等差数列,a 2k =2k . ∴S 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+a 6+…+a 100)=50+(2+4+6+…+100)=50+(100+2)×502=2 600.答案 2 6009.等差数列{a n }中有两项a m 和a k (m ≠k ),满足a m =1k ,a k =1m ,则该数列前mk 项之和是S mk =________.解析 设数列{a n }的首项为a 1,公差为d .则有 ⎩⎪⎨⎪⎧a m =a 1+(m -1)d =1k ,a k =a 1+(k -1)d =1m ,解得⎩⎪⎨⎪⎧a 1=1mk ,d =1mk ,所以S mk =mk ·1mk +mk (mk -1)2·1mk =mk +12. 答案mk +1210.把公差d =2的等差数列{a n }的各项依次插入等比数列{b n }中,将{b n }按原 顺序分成1项,2项,4项,…,2n -1项的各组,得到数列{c n }:b 1,a 1,b 2,b 3,a 2, b 4,b 5,b 6,b 7,a 3,…,数列{c n }的前n 项和为S n .若c 1=1,c 2=2,S 3=134.则数列{c n } 的前100项之和S 100=________. 解析:由已知得b 1=1,a 1=2,b 2=14, 令T n =1+2+22+…+2n -1=2n -1, 则T 6=63,T 7=127,∴数列{c n }的前100项中含有数列{a n }的前6项,含有数列{b n }的前94项,故S 100=(b 1 +b 2+…+b 94)+(a 1+a 2+…+a 6) =1-⎝ ⎛⎭⎪⎫14941-14+6×2+6×52×2=13⎣⎢⎡⎦⎥⎤130-⎝ ⎛⎭⎪⎫12186. 答案 13⎣⎢⎡⎦⎥⎤130-⎝ ⎛⎭⎪⎫12186三、解答题11.已知公差为d (d >1)的等差数列{a n }和公比为q (q >1)的等比数列{b n },满足集合{a 3,a 4,a 5}∪{b 3,b 4,b 5}={1,2,3,4,5}, (1)求通项a n ,b n ;(2)求数列{a n ·b n }的前n 项和S n .解 (1)∵1,2,3,4,5这5个数中成公差大于1的等差数列的三个数只能是1,3,5;成公比大于1的等比数列的三个数只能是1,2,4. 而{a 3,a 4,a 5}∪{b 3,b 4,b 5}={1,2,3,4,5}, ∴a 3=1,a 4=3,a 5=5,b 3=1,b 4=2,b 5=4, ∴a 1=-3,d =2,b 1=14,q =2,∴a n =a 1+(n -1)d =2n -5,b n =b 1×q n -1=2n -3. (2)∵a n b n =(2n -5)×2n -3,∴S n =(-3)×2-2+(-1)×2-1+1×20+…+(2n -5)×2n -3, 2S n =-3×2-1+(-1)×20+…+(2n -7)×2n -3+(2n -5)×2n -2, 两式相减得-S n =(-3)×2-2+2×2-1+2×20+…+2×2n -3-(2n -5)×2n -2=-34-1+2n -1-(2n -5)×2n -2∴S n =74+(2n -7)×2n -2.12.已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…). (1)求数列{a n }的通项公式;(2)设b n =log 32(3a n +1)时,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n .解(1)由已知得⎩⎪⎨⎪⎧a n +1=12S n ,a n =12S n -1(n ≥2),得到a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列. 又a 2=12S 1=12a 1=12,∴a n =a 2×⎝ ⎛⎭⎪⎫32n -2=12⎝ ⎛⎭⎪⎫32n -2(n ≥2).又a 1=1不适合上式,∴a n =⎩⎪⎨⎪⎧1,n =1,12⎝ ⎛⎭⎪⎫32n -2,n ≥2.(2)b n =log 32(3a n +1)=log 32⎣⎢⎡⎦⎥⎤32·⎝ ⎛⎭⎪⎫32n -1=n . ∴1b n b n +1=1n (1+n )=1n -11+n. ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -11+n=1-11+n =nn +1. 13.设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *. (1)求数列{a n }的通项;(2)设b n =na n,求数列{b n }的前n 项和S n .解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n3, ①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,②①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n . (2)∵b n =na n,∴b n =n ·3n .∴S n =3+2×32+3×33+…+n ·3n , ③ ∴3S n =32+2×33+3×34+…+n ·3n +1.④④-③得2S n =n ·3n +1-(3+32+33+…+3n ),即2S n =n ·3n +1-3(1-3n )1-3,∴S n =(2n -1)3n +14+34. 14.将数列{a n }中的所有项按每一行比上一行多两项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 …已知表中的第一列数a 1,a 2,a 5,…构成一个等差数列,记为{b n },且b 2=4,b 5=10.表中每一行正中间一个数a 1,a 3,a 7,…构成数列{c n },其前n 项和为S n .(1)求数列{b n }的通项公式;(2)若上表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数,且a 13=1. ①求S n ;②记M ={n |(n +1)c n ≥λ,n ∈N *},若集合M 的元素个数为3,求实数λ的取值范围.解 (1)设等差数列{b n }的公差为d , 则⎩⎨⎧ b 1+d =4,b 1+4d =10,解得⎩⎨⎧b 1=2,d =2, 所以b n =2n .(2)①设每一行组成的等比数列的公比为q .由于前n 行共有1+3+5+…+(2n -1)=n 2个数,且32<13<42,a 10=b 4=8, 所以a 13=a 10q 3=8q 3,又a 13=1,所以解得q =12.由已知可得c n =b n q n -1,因此c n =2n ·⎝ ⎛⎭⎪⎫12n -1=n 2n -2. 所以S n =c 1+c 2+c 3+…+c n =12-1+220+321+…+n 2n -2, 12S n =120+221+…+n -12n -2+n2n -1, 因此12S n =12-1+120+121+…+12n -2-n 2n -1=4-12n -2-n2n -1=4-n +22n -1,解得S n =8-n +22n -2.②由①知c n =n 2n -2,不等式(n +1)c n ≥λ,可化为n (n +1)2n -2≥λ. 设f (n )=n (n +1)2n -2, 计算得f (1)=4,f (2)=f (3)=6,f (4)=5,f (5)=154. 因为f (n +1)-f (n )=(n +1)(2-n )2n -1,所以当n ≥3时,f (n +1)<f (n ).因为集合M 的元素个数为3,所以λ的取值范围是(4,5].。
高考数学一轮复习讲义(提高版) 专题4.4 数列的求和方法(解析版)
第四讲 数列求和1.分组求和:把一个数列分成几个可以直接求和的数列;2.裂项相消:有时把一个数列的通项公式分成二项差的形式,相加过程消去中间项,只剩有限项再求和;3.错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和;4.倒序相加:如等差数列前n 项和公式的推导方法.5.并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.考向一 裂项相消【例1】已知数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足2(S n +1)=(n +3)a n . (1)求数列{a n }的通项公式; (2)设数列{b n }满足b n =1a n a n +1,记数列{b n }的前n 项和为T n ,求证:T n <3.【答案】(1)a n =13(n +2). (2)见解析【解析】(1)解 2(S n +1)=(n +3)a n ,① 当n ≥2时,2(S n -1+1)=(n +2)a n -1,② ①-②得,(n +1)a n =(n +2)a n -1, 所以a nn +2=a n -1n +1(n ≥2),又∵a 11+2=13, 故⎩⎨⎧⎭⎬⎫a n n +2是首项为13的常数列.所以a n =13(n +2).(2)证明 由(1)知,b n =1a n a n +1=9(n +2)(n +3)=9⎝ ⎛⎭⎪⎫1n +2-1n +3.∴T n =b 1+b 2+b 3+…+b n=9⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15+…+⎝ ⎛⎭⎪⎫1n +2-1n +3 =9⎝ ⎛⎭⎪⎫13-1n +3=3-9n +3<3.【举一反三】1.已知各项都是正数的数列{a n }的前n 项和为S n ,且2S n =a 2n +a n ,数列{b n }满足b 1=12,2b n +1=b n +b n a n .(1)求数列{a n },{b n }的通项公式; (2)设数列{c n }满足c n =b n +2S n,求c 1+c 2+…+c n 的和. 【答案】(1)a n =n .b n =n 2n . (2)12-1(n +1)2n +1.【解析】(1)由题意知2S n =a 2n +a n , ① 2S n +1=a 2n +1+a n +1,②②-①得2a n +1=a 2n +1-a 2n +a n +1-a n , 即(a n +1+a n )(a n +1-a n -1)=0. 因为{a n }是正数数列,所以a n +1-a n -1=0,即a n +1-a n =1, 所以{a n }是公差为1的等差数列.【套路总结】解题思路:第一步 定通项公式:即根据已知条件求出数列的通项公式;第二步 巧裂项:即根据通项公式特征准确裂项,将其表示为两项之差的形式; 第三步 消项求和:即把握消项的规律,准确求和. 使用特征:1.分式:分母可以写成两个因式相乘 2.检验:检验是否可以裂项 分母中两个因式:a=小因式-大因式分子判断a 是不是为常数,如果是则可以裂项,裂成)大因式1-小因式1a(原式= 常见形式:(1)1n (n +1)=1n -1n +1;(2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3)1n +n +1=n +1-n ;(4)1n (n +1)(n +2)=12⎣⎢⎡⎦⎥⎤1n (n +1)-1(n +1)(n +2).在2S n =a 2n +a n 中,令n =1,得a 1=1, 所以a n =n . 由2b n +1=b n +b n a n ,得b n +1n +1=12·b nn, 所以数列⎩⎨⎧⎭⎬⎫b n n 是等比数列,其中首项为12,公比为12,所以b n n =⎝ ⎛⎭⎪⎫12n ,即b n =n2n .(2)由(1)知S n =(a 1+a n )n 2=n 2+n 2,所以c n =b n +2S n =n +2(n 2+n )2n +1=1n ·2n -1(n +1)2n +1, 所以c 1+c 2+…+c n =12-1(n +1)2n +1.2.设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有a n =5S n +1成立,b n =-1-log 2|a n |,数列{b n }的前n 项和为T n ,c n =b n +1T n T n +1. (1)求数列{a n }的通项公式;(2)求数列{c n }的前n 项和A n ,并求出A n 的最值.【答案】(1)a n =⎝ ⎛⎭⎪⎫-14n. (2)见解析 【解析】(1)因为a n =5S n +1,n ∈N *, 所以a n +1=5S n +1+1, 两式相减,得a n +1=-14a n ,又当n =1时,a 1=5a 1+1,知a 1=-14,所以数列{a n }是公比、首项均为-14的等比数列.所以数列{a n }的通项公式a n =⎝ ⎛⎭⎪⎫-14n. (2)b n =-1-log 2|a n |=2n -1, 数列{b n }的前n 项和T n =n 2,c n =b n +1T n T n +1=2n +1n 2(n +1)2=1n 2-1(n +1)2,所以A n =1-1(n +1)2.因此{A n }是单调递增数列,∴当n =1时,A n 有最小值A 1=1-14=34;A n 没有最大值.考向二 错位相减【例2】公差不为0的等差数列{a n }的前n 项和为S n ,已知S 4=10,且a 1,a 3,a 9成等比数列. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 3n 的前n 项和T n .【答案】(1)a n =n . (2)T n =34-2n +34×3n .【解析】(1)设{a n }的公差为d ,由题设得⎩⎪⎨⎪⎧4a 1+6d =10,a 23=a 1·a 9,∴⎩⎪⎨⎪⎧4a 1+6d =10,(a 1+2d )2=a 1(a 1+8d ). 解之得a 1=1,且d =1.因此a n =n . (2)令c n =n3n ,则T n =c 1+c 2+…+c n=13+232+333+…+n -13n -1+n3n ,① 13T n =132+233+…+n -13n +n3n +1,② ①-②得:23T n =⎝ ⎛⎭⎪⎫13+132+…+13n -n 3n +1=13⎝ ⎛⎭⎪⎫1-13n 1-13-n 3n +1=12-12×3n -n 3n +1, ∴T n =34-2n +34×3n .【举一反三】1.设等比数列{a n }的前n 项和为S n ,已知a 1=2,且4S 2,3S 3,2S 5成等差数列. (1)求数列{a n }的通项公式;(2)若数列{a n 2⋅b n }是首项为1,公差为2的等差数列,求数列{b n }的前n 项和T n . 【答案】(1)a n =2或a n =2×(−2)n−1; (2)T n =n 24或T n =59−6n+59×4n . 【解析】(1)设等比数列公比为q ,由6S 3=4S 2+2S 5,∴4(S 3−S 2)=2(S 5−S 3), ∴2a 3=a 4+a 5,∴2=q +q 2,∴q =1或q =−2, 当q =1时,a n =a 1=2, 当q =−2时,a n =2×(−2)n−1.(2)a n 2⋅b n =1+(n −1)×2=2n −1,∴b n =2n−1a n 2,当a n =2时,b n =2n−14,T n =14+34+⋯+2n−14=n 24,当a n =2×(−2)n−1时,b n =(2n −1)(14)n,T n =(14)1+3×(14)2+5×(14)3⋯+(2n −1)×(14)n,14T n =(14)2+3×(14)3+⋯+(2n −3)×(14)n+(2n −1)×(14)n+1,-得 34T n =14+2×((14)2+(14)3+⋯+(14)n)−(2n −1)×(14)n+1,∴34T n =14+2×116×(1−(14)n−1)1−14−(2n −1)×(14)n+1,所以,T n =59−6n+59×4n .2.已知数列{a n }是各项均为正数的等比数列,其前n 项和为S n ,点A n 、B n 均在函数f(x)=log 2x 的图象上,A n 的横坐标为a n ,B n 的横坐标为S n +1,直线A n B n 的斜率为k n .若k 1=1,k 2=12,则数列{a n ⋅f(a n )}的前n 项和T n =__________. 【答案】(n −2)⋅2n +2【解析】由题意可知:A 1(a 1,log 2a 1),A 2(a 2,log 2a 2), B 1(S 1+1,log 2(S 1+1)),B 2(S 2+1,log 2(S 2+1)), ∴{k 1=log 2(S 1+1)−log 2a1S 1+1−a 1=1k 2=log 2(S 2+1)−log 2a 2S 2+1−a 2=12,解得{a 1=1a 2=2 , ∴a n =2n−1,f (a n )=log 22n−1=n −1 ∴a n ⋅f (a n )=(n −1)2n−1∴T n =0×20+1×21+2×22+⋯+(n −2)×2n−2+(n −1)×2n−1① 2T n =0×21+1×22+1×22+2×23+⋯+(n −2)×2n−1+(n −1)×2n ② ①﹣②得−T n =2+22+23+⋯+2n−1−(n −1)×2n , 所以−T n =2(1−2n−1)1−2−(n −1)×2n ,整理得T n =(n −2)⋅2n +2. 故答案为:(n −2)⋅2n +2考向三 奇偶并项求和【例3】已知正项数列{a n }的前n 项和为S n ,a 1=1,S n =a n 2−S n−1(n ≥2,n ∈N ∗).(1)求证:数列{a n }为等差数列;(2)记b n =2a 2n−1,求数列{b n }的前n 项和Rn ;(3)记c n =(−1)n ⋅a n 2,求数列{c n }的前2n 项和T 2n .【答案】(1)见解析;(2)23(4n −1);(3)2n 2+n【解析】(1)证明:正项数列{an}的前n 项和为S n ,a 1=1,S n =a n 2−S n−1(n ≥2,n ∈N ∗). ∴S n+1=a n+12−S n ,相减可得:a n+1 =a n+12-a n 2-a n ,化为 (a n+1+a n )(a n+1−a n −1)=0, ∵a n+1+a n >0,∴a n+1−a n =1,n =2时,S 2=a 22−a 1,∴1+a 2=a 22−1,a 2>0,解得a 2=2,满足上式.即a n+1−a n =1,n ∈N ∗. ∴数列{a n }为等差数列,首项为1,公差为1.(2)解:由(1)可得:a n =1+n −1=n .b n =2a 2n−1=22n−1. ∴数列{b n }的前n 项和R n =2+23+⋯…+22n−1=2(4n −1)4−1=23(4n −1).(3)解:c n =(−1)n ·a n 2=(−1)n ·n 2. ∴c 2n−1+c 2n =−(2n −1)2+(2n)2=4n −1. ∴数列{c n }的前2n 项和T 2n =n(3+4n−1)2=2n 2+n .【举一反三】1.已知数列{}n a 中,1a m =,且()*1321,n n n n a a n b a n n N +=+-=+∈.(1)判断数列{}n b 是否为等比数列,并说明理由; (2)当2m =时,求数列{}(1)nn a -的前2020项和2020S .【答案】(1)①01x ≠时,不是等比数列;②1m ≠-时,是等比数列;(2)2021340434-.【解析】(1)1321n n a a n +=+-,()111321133n n n n n b a n a n n a n b ++∴=++=+-++=+=,∴①当01x ≠时,10b =,故数列{}n b 不是等比数列;②当1m ≠-时,数列{}n b 是等比数列,其首项为110b m =+≠,公比为3.(2)由(1)且当1m ≠-时有:1333n n n n b a n -=+=⨯=,即3nn a n =-,(1)(3)(1)n n n n a n ∴-=---,2020202031(3)S [(12)(34)(20192020)]1(3)⎡⎤-⨯--⎣⎦∴=--++-++⋯+-+--202120213334043101044-+-=-=. 4.已知数列{a n }的前n 项和S n =n 2−2kn (k ∈N ∗),S n 的最小值为−9. (1)确定k 的值,并求数列{a n }的通项公式;(2)设b n =(−1)n ⋅a n ,求数列{b n }的前2n +1项和T 2n+1. 【答案】(1)k =3,a n =2n −7(2)T 2n+1=5−2n【解析】(1)由已知得S n =n 2−2kn =(n −k)2− k 2, 因为k ∈N ∗,当n=k 时,(S n )min =−k 2=−9, 故k =3;所以S n =n 2−6n .因为S n−1=(n −1)2−6(n −1),(n ≥2)所以a n =S n −S n−1=(n 2−6n)−[(n −1)2−6(n −1)], 得a n =2n −7 (n ≥2).当n =1时,S 1=−4=a 1,综上,a n =2n −7. (2)依题意,b n =(−1)n ⋅a n =(−1)n (2n −7),所以T 2n+1=5−3+1+1−3+5+⋯⋯+(−1)2n (4n −7)+(−1)2n+1[2(2n +1)−7] =5−(2+2+⋯+2)⏟n=5−2n . 考向四 分组求和【例4】.已知数列{a n }的前n 项和为S n ,且1,a n ,S n 成等差数列. (1)求数列{a n }的通项公式;(2)若数列{b n }满足a n ·b n =1+2na n ,求数列{b n }的前n 项和T n . 【答案】(1)a n =2n -1. (2)T n =n 2+n +2-12n -1.【解析】 (1)由已知1,a n ,S n 成等差数列得2a n =1+S n ,① 当n =1时,2a 1=1+S 1=1+a 1,∴a 1=1, 当n ≥2时,2a n -1=1+S n -1,② ①-②得2a n -2a n -1=a n , ∴a n =2a n -1(n ≥2),且a 1=1.∴数列{a n }是以1为首项,2为公比的等比数列, ∴a n =a 1qn -1=1·2n -1=2n -1.(2)由a n ·b n =1+2na n 得b n =1a n+2n ,∴T n =b 1+b 2+…+b n =1a 1+2+1a 2+4+…+1a n+2n=⎝ ⎛⎭⎪⎫1a 1+1a 2+…+1a n +(2+4+…+2n )=1·⎝ ⎛⎭⎪⎫1-12n 1-12+(2+2n )·n 2=n 2+n +2-12n -1.【举一反三】1.已知数列{a n }满足a n +1+a n =4n -3(n ∈N *). (1)若数列{a n }是等差数列,求a 1的值; (2)当a 1=2时,求数列{a n }的前n 项和S n . 【答案】见解析【解析】(1)若数列{a n }是等差数列,则a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得(a 1+nd )+[a 1+(n -1)d ]=4n -3, 即2d =4,2a 1-d =-3,解得d =2,a 1=-12.(2)由a n +1+a n =4n -3(n ∈N *), 得a n +2+a n +1=4n +1(n ∈N *). 两式相减得a n +2-a n =4,所以数列{a 2n -1}是首项为a 1,公差为4的等差数列,数列{a 2n }是首项为a 2,公差为4的等差数列.【套路总结】解题思路:第一步 定通项公式:即根据已知条件求 出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为 几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和;第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和.由a 2+a 1=1,a 1=2,得a 2=-1,所以a n =⎩⎪⎨⎪⎧2n ,n 为奇数,2n -5,n 为偶数.①当n 为奇数时,a n =2n ,a n +1=2n -3.S n =a 1+a 2+a 3+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -2+a n -1)+a n =1+9+…+(4n -11)+2n=n -12×(1+4n -11)2+2n =2n 2-3n +52.②当n 为偶数时,S n =a 1+a 2+a 3+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7)=2n 2-3n2.所以S n=⎩⎪⎨⎪⎧2n 2-3n +52,n 为奇数,2n 2-3n2,n 为偶数.2.已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63. (1)求数列{a n }的通项公式;(2)若b n =2an +(-1)n·a n ,求数列{b n }的前n 项和T n .【答案】(1)a n =2n +1. (2)T n =⎩⎪⎨⎪⎧8(4n-1)3+n (n 为偶数),8(4n-1)3-n -2 (n 为奇数). 【解析】 (1)∵{a n }为等差数列, ∴⎩⎪⎨⎪⎧S 4=4a 1+4×32d =24,S 7=7a 1+7×62d =63,解得⎩⎪⎨⎪⎧a 1=3,d =2.因此{a n }的通项公式a n =2n +1. (2)∵b n =2an +(-1)n·a n =22n +1+(-1)n·(2n +1)=2×4n +(-1)n·(2n +1),∴T n =2×(41+42+…+4n )+[-3+5-7+9-…+(-1)n(2n +1)]=8(4n-1)3+G n .当n 为偶数时,G n =2×n2=n ,∴T n =8(4n-1)3+n ;当n 为奇数时,G n =2×n -12-(2n +1)=-n -2,∴T n =8(4n -1)3-n -2,∴T n =⎩⎪⎨⎪⎧8(4n-1)3+n (n 为偶数),8(4n-1)3-n -2 (n 为奇数).3.等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3. (1)求数列{a n }和{b n }的通项公式; (2)令c n =⎩⎪⎨⎪⎧2S n,n 为奇数,b n ,n 为偶数,设数列{c n }的前n 项和为T n ,求T 2n .【答案】(1)a n =2n +1(n ∈N *),b n =2n -1(2)2n 2n +1+23(4n-1)【解析】 (1)设数列{a n }的公差为d ,数列{b n }的公比为q ,由⎩⎪⎨⎪⎧b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧q +6+d =10,3+4d -2q =3+2d ,解得⎩⎪⎨⎪⎧d =2,q =2,∴a n =3+2(n -1)=2n +1(n ∈N *),b n =2n -1(n ∈N *).(2)由a 1=3,a n =2n +1, 得S n =n (a 1+a n )2=n (n +2),则c n =⎩⎪⎨⎪⎧2n (n +2),n 为奇数,2n -1,n 为偶数,即c n =⎩⎪⎨⎪⎧1n -1n +2,n 为奇数,2n -1,n 为偶数,所以T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1+(2+23+…+22n -1) =1-12n +1+2(1-4n)1-4=2n 2n +1+23(4n -1)(n ∈N *).1.已知数列{a n }满足a n ≠0,a 1=13,a n -a n +1=2a n a n +1,n ∈N *.(1)求证:⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求出数列{a n }的通项公式;(2)若数列{b n }满足b n =2na n,求数列{b n }的前n 项和T n .【答案】(1)a n =12n +1(n ∈N *) (2)T n =2+(2n -1)2n +1(n ∈N *).【解析】(1)由已知可得,1a n +1-1a n=2,1a 1=3,∴⎩⎨⎧⎭⎬⎫1a n 是首项为3,公差为2的等差数列, ∴1a n =3+2(n -1)=2n +1,∴a n =12n +1(n ∈N *). (2)由(1)知b n =(2n +1)2n,∴T n =3×2+5×22+7×23+…+(2n -1)2n -1+(2n +1)2n,2T n =3×22+5×23+7×24+…+(2n -1)2n+(2n +1)·2n +1,两式相减得,-T n =6+2×22+2×23+…+2×2n-(2n +1)2n +1.=6+8-8×2n -11-2-(2n +1)2n +1=-2-(2n -1)2n +1,∴T n =2+(2n -1)2n +1(n ∈N *).2.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)na n ,求数列{b n }的前2n 项和. 【答案】(1)a n =n (n ∈N *) (2)T 2n =22n +1+n -2【解析】 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n (n ∈N *). (2)由(1)知a n =n ,故b n =2n +(-1)nn .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ). 记A =21+22+ (22),B =-1+2-3+4-…+2n , 则A =2(1-22n)1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2(n ∈N *).3.已知等差数列{a n }的首项为a ,公差为d ,n ∈N *,且不等式ax 2-3x +2<0的解集为(1,d ).(1)求数列{a n }的通项公式a n ;(2)若b n =3a n +a n -1,n ∈N *,求数列{b n }的前n 项和T n . 【答案】(1)2n -1. (2)38(9n -1)+n 2-n .【解析】(1)易知a ≠0,由题设可知⎩⎪⎨⎪⎧1+d =3a,1·d =2a,解得⎩⎪⎨⎪⎧a =1,d =2.故数列{a n }的通项公式为a n =1+(n -1)·2=2n -1.(2)由(1)知b n =32n -1+2n -1-1,则T n =(3+1)+(33+3)+…+(32n -1+2n -1)-n =(31+33+…+32n -1)+(1+3+…+2n -1)-n=311-9n1-9+1+2n -1n 2-n =38(9n -1)+n 2-n .4.已知函数f(x)=log 3(ax +b)的图像经过点A(2,1)和B(5,2),a n =an +b ,n ∈N ∗. (1)求a n ;(2)设数列{a n }的前n 项和为S n ,b π=2n +2√S n ,求{b n }的前n 项和T n . 【答案】(1)a n =2n −1,n ∈N ∗;(2)T n =2n+1+n 2+n −2.【解析】(1)由函数f (x )=log 3(ax+b )的图象经过点A (2,1)和B (5,2),得{log 3(2a +b)=1log 3(5a +b)=2,解得{a =2b =−1 ,所以a n =2n −1,n ∈N ∗(2)由(1)知数列{a n }为以1为首项,2为公差的等差数列,所以S n =n +n(n−1)2×2=n 2,得b n =2n +2√S n =2n +2n .∴T n =(2×1+21)+(2×2+22)+(2×3+23)+⋯+(2×n +2n )=2×(1+2+3+⋯+n)+(21+22+23+⋯+2n )=2×(1+n)n 2+2(2n −1)2−1=2n+1+n 2+n −25.已知等比数列{}n a 的各项为正数,且11231,13a a a a =++=,数列{}n c 的前n 项和为22n n n S += ,且n n n c b a =-.(1)求{}n a 的通项公式; (2)求数列{}n b 的前n 项和n T .【答案】(1) 13-=n n a (2) n T 2312n n n ++-=【解析】(1)12313a a a ++= 211213a a q a q ⇒++=,又11a = ⇒2120q q +-=3q ∴=或4q =- {}n a 各项均为正数 3q ∴=1113n n n a a q --∴==(2)由22n n n S +=得,当2n ≥时:1n n n c S S n -=-= 当1n =时,111c S ==也合适上式 ()*n c n n N∴=∈由n n n b a c -=得:13n n b n -=+()()()201111312...33 (3)213123n n n n n n n n T n -+-∴=++++++++=++-=- 6.已知正项数列{a n }的前n 项和为S n ,且a 1=1,S n+1+S n =(a n+1)2,数列{b n }满足b n ⋅b n+1=2a n ,且b 1=2 (I )求数列{a n },{b n }的通项公式;(II )令c n =a n ⋅b 2n +(−1)n (3n −2),求数列{c n }的前n 项和T n 。
2014《步步高》高考数学第一轮复习06 数列求和
§6.4 数列求和2014高考会这样考 1.考查等差、等比数列的求和;2.以数列求和为载体,考查数列求和的各种方法和技巧;3.综合考查数列和集合、函数、不等式、解析几何、概率等知识的综合问题.复习备考要这样做 1.灵活掌握数列由递推式求通项公式的几种方法;2.掌握必要的化归方法与求和技巧,根据数列通项的结构特点,巧妙解决数列求和的问题.1. 等差数列前n 项和S n =n (a 1+a n )2=na 1+n (n -1)2d ,推导方法:倒序相加法;等比数列前n 项和S n =⎩⎪⎨⎪⎧na 1, q =1,a 1(1-q n )1-q =a 1-a n q 1-q , q ≠1.推导方法:乘公比,错位相减法. 2. 数列求和的常用方法(1)分组求和:把一个数列分成几个可以直接求和的数列.(2)拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.(3)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. (4)倒序相加:例如,等差数列前n 项和公式的推导.(5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 3. 常见的拆项公式(1)1n (n +1)=1n -1n +1; (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n .[难点正本 疑点清源]1. 解决非等差、等比数列的求和,主要有两种思路(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.2. 等价转化思想是解决数列问题的基本思想方法,它可将复杂的数列转化为等差、等比数列问题来解决.1. 在等差数列{a n }中,S n 表示前n 项和,a 2+a 8=18-a 5,则S 9=________.答案 54解析 由等差数列的性质,a 2+a 8=18-a 5, 即2a 5=18-a 5,∴a 5=6, ∴S 9=(a 1+a 9)×92=9a 5=54.2. 等比数列{a n }的公比q =12,a 8=1,则S 8=________.答案 255解析 由a 8=1,q =12得a 1=27,∴S 8=a 1(1-q 8)1-q=27[1-(12)8]1-12=28-1=255.3. 若S n =1-2+3-4+…+(-1)n -1·n ,则S 50=________.答案 -25解析 S 50=1-2+3-4+…+49-50=(-1)×25=-25.4. (2011·天津)已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为 ( )A .-110B .-90C .90D .110答案 D解析 ∵a 3=a 1+2d =a 1-4,a 7=a 1+6d =a 1-12,a 9=a 1+8d =a 1-16,又∵a 7是a 3与a 9的等比中项,∴(a 1-12)2=(a 1-4)·(a 1-16),解得a 1=20. ∴S 10=10×20+12×10×9×(-2)=110.5. (2012·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为 ( )A.100101B.99101C.99100D.101100答案 A解析 利用裂项相消法求和. 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1, ∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n (n +1)=1n -1n +1, ∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.题型一 分组转化求和例1 已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列.求: (1)p ,q 的值;(2)数列{x n }前n 项和S n 的公式.思维启迪:第(1)问由已知条件列出关于p 、q 的方程组求解;第(2)问分组后用等差、等比数列的求和公式求解.解 (1)由x 1=3,得2p +q =3,又因为x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q , 解得p =1,q =1. (2)由(1),知x n =2n +n ,所以S n =(2+22+…+2n )+(1+2+…+n ) =2n +1-2+n (n +1)2.探究提高 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.求和S n =1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+12n -1. 解 和式中第k 项为a k =1+12+14+…+12k -1=1-⎝⎛⎭⎫12k1-12=2⎝⎛⎭⎫1-12k . ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…+⎝⎛⎭⎫1-12n =2[(1+1+…+1)n 个-(12+122+…+12n )] =2⎝ ⎛⎭⎪⎫n -12⎝⎛⎭⎫1-12n1-12=12n -1+2n -2.题型二 错位相减法求和例2 设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,n ∈N *.(1)求数列{a n }的通项;(2)设b n =na n,求数列{b n }的前n 项和S n .思维启迪:(1)由已知写出前n -1项之和,两式相减.(2)b n =n ·3n 的特点是数列{n }与{3n }之积,可用错位相减法.解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n 3,①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,② ①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n .(2)∵b n =na n,∴b n =n ·3n .∴S n =3+2×32+3×33+…+n ·3n ,③ ∴3S n =32+2×33+3×34+…+n ·3n +1.④④-③得2S n =n ·3n +1-(3+32+33+…+3n ),即2S n =n ·3n +1-3(1-3n )1-3,∴S n =(2n -1)3n +14+34.探究提高 解答本题的突破口在于将所给条件式视为数列{3n -1a n }的前n 项和,从而利用a n 与S n 的关系求出通项3n -1a n ,进而求得a n ;另外乘公比错位相减是数列求和的一种重要方法,但值得注意的是,这种方法运算过程复杂,运算量大,应加强对解题过程的训练,重视运算能力的培养.(2011·辽宁)已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1,①故S 1=1,S n 2=a 12+a 24+…+a n2n .②所以,当n >1时,①-②得 S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n=1-(1-12n -1)-2-n 2n =n 2n .所以S n =n2n -1.当n =1时也成立.综上,数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和S n =n2n -1.题型三 裂项相消法求和例3 在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .思维启迪:第(1)问利用a n =S n -S n -1 (n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12, a n =S n -S n -1 (n ≥2),∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)又b n =S n 2n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎫1-12n +1=n2n +1. 探究提高 使用裂项相消法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N *.(1)求证:数列{a n }是等差数列;(2)设b n =12S n ,T n =b 1+b 2+…+b n ,求T n .(1)证明 ∵S n =a n (a n +1)2,n ∈N *,∴当n =1时,a 1=S 1=a 1(a 1+1)2(a n >0),∴a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1 得2a n =a 2n +a n -a 2n -1-a n -1.即(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,1为公差的等差数列. (2)解 由(1)可得a n =n ,S n =n (n +1)2,b n =12S n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1.四审结构定方案典例:(12分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .审题路线图等差数列{a n }中,特定项的值 ↓(a 3,a 5,a 7即为特定项) a 3=7,a 5+a 7=26↓(从特定项,考虑基本量a 1,d )列方程组⎩⎪⎨⎪⎧a 1+2d =72a 1+10d =26↓(根据条件的结构特征,确定了方程的方法) 用公式:a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d .↓(将a n 代入化简求b n ) b n =14n (n +1)↓(根据b n 的结构特征,确定裂项相消) b n =14⎝⎛⎭⎫1n -1n +1↓T n =14⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =14⎝⎛⎭⎫1-1n +1=n4(n +1). 规范解答解 (1)设等差数列{a n }的首项为a 1,公差为d .因为a 3=7,a 5+a 7=26,所以⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.[4分]所以a n =3+2(n -1)=2n +1, S n =3n +n (n -1)2×2=n 2+2n .[6分](2)由(1)知a n =2n +1,所以b n =1a 2n -1=1(2n +1)2-1=14·1n (n +1) =14·⎝⎛⎭⎫1n -1n +1,[8分] 所以T n =14·(1-12+12-13+…+1n -1n +1)[10分]=14·(1-1n +1)=n4(n +1), 即数列{b n }的前n 项和T n =n4(n +1).[12分]温馨提醒 本题审题的关键有两个环节.一是根据a 3=7,a 5+a 7=26的特征,确定列方程组求解.二是根据数列{b n }的通项b n =14n (n +1)的特征,确定用裂项相消法求和.所以,在审题时,要根据数式的结构特征确定解题方案.方法与技巧 数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和. 失误与防范1.通过数列通项公式观察数列特点和规律,在分析数列通项的基础上,判断求和类型,寻找求和的方法,或拆为基本数列求和,或转化为基本数列求和.求和过程中同时要对项数作出准确判断.2.含有字母的数列求和,常伴随着分类讨论.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100答案 C解析 ∵S n n =n +2,∴⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.2. 已知数列{a n }是等差数列,若a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于 ( )A .20B .17C .19D .21 答案 C解析 由a 9+3a 11<0,得2a 10+2a 11<0,即a 10+a 11<0,又a 10·a 11<0,则a 10与a 11异号,因为数列{a n }的前n 项和S n 有最大值,所以数列{a n }是一个递减数列,则a 10>0,a 11<0,所以S 19=19(a 1+a 19)2=19a 10>0,S 20=20(a 1+a 20)2=10(a 10+a 11)<0.3. 若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( )A .2n +n 2-1B .2n +1+n 2-1C .2n +1+n 2-2D .2n +n -2答案 C解析 S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.4. 数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-400答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 二、填空题(每小题5分,共15分)5. 数列{a n }的前n 项和为S n ,a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),则S 100=________.答案 2 600解析 由a n +2-a n =1+(-1)n 知a 2k +2-a 2k =2,a 2k +1-a 2k -1=0,∴a 1=a 3=a 5=…=a 2n -1=1,数列{a 2k }是等差数列,a 2k =2k . ∴S 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+a 6+…+a 100) =50+(2+4+6+…+100)=50+(100+2)×502=2 600.6. 数列{a n }的前n 项和S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|=________.答案 66解析 当n =1时,a 1=S 1=-1. 当n ≥2时,a n =S n -S n -1=2n -5.∴a n =⎩⎪⎨⎪⎧-1 (n =1)2n -5 (n ≥2).令2n -5≤0,得n ≤52,∴当n ≤2时,a n <0,当n ≥3时,a n >0,∴|a 1|+|a 2|+…+|a 10|=-(a 1+a 2)+(a 3+a 4+…+a 10)=S 10-2S 2=66.7. (2012·课标全国)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________.答案 1 830解析 利用数列的递推式的意义结合等差数列求和公式求解. ∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234 =15×(10+234)2=1 830.三、解答题(共22分)8. (10分)求和:(1)S n =32+94+258+6516+…+n ·2n +12n;(2)S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2. 解 (1)由于a n =n ·2n +12n=n +12n , ∴S n =⎝⎛⎭⎫1+121+⎝⎛⎭⎫2+122+⎝⎛⎭⎫3+123+…+⎝⎛⎭⎫n +12n =(1+2+3+…+n )+⎝⎛⎭⎫12+122+123+…+12n=n (n +1)2+12⎝⎛⎭⎫1-12n 1-12=n (n +1)2-12n +1.(2)当x =±1时,S n =4n .当x ≠±1时, S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2 =⎝⎛⎫x 2+2+1x 2+⎝⎛⎫x 4+2+1x 4+…+⎝⎛⎫x 2n +2+1x 2n =(x 2+x 4+…+x 2n )+2n +⎝⎛⎭⎫1x 2+1x 4+…+1x 2n =x 2(x 2n -1)x 2-1+x -2(1-x -2n )1-x -2+2n =(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n .∴S n =⎩⎪⎨⎪⎧4n (x =±1),(x 2n-1)(x 2n +2+1)x 2n (x 2-1)+2n (x ≠±1).9. (12分)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…).(1)求数列{a n }的通项公式;(2)当b n =log 32(3a n +1)时,求证:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n =n1+n .(1)解 由已知得⎩⎨⎧a n +1=12S n ,a n=12Sn -1(n ≥2),得到a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列.又a 2=12S 1=12a 1=12,∴a n =a 2×⎝⎛⎭⎫32n -2 =12⎝⎛⎭⎫32n -2(n ≥2). ∴a n =⎩⎪⎨⎪⎧1, n =1,12⎝⎛⎭⎫32n -2, n ≥2.(2)证明 b n =log 32(3a n +1)=log 32⎣⎡⎦⎤32·⎝⎛⎭⎫32n -1=n .∴1b n b n +1=1n (1+n )=1n -11+n. ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -11+n =1-11+n =n 1+n.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }的前n 项和的最大值等于( )A .126B .130C .132D .134答案 C解析 b n +1-b n =lg a n +1-lg a n =lga n +1a n=lg q (常数), ∴{b n }为等差数列.∴⎩⎪⎨⎪⎧ b 1+2d =18,b 1+5d =12,∴⎩⎪⎨⎪⎧d =-2,b 1=22.由b n =-2n +24≥0,得n ≤12,∴{b n }的前11项为正,第12项为零,从第13项起为负,∴S 11、S 12最大且S 11=S 12=132.2. 数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A .-10B .-9C .10D .9答案 B解析 数列的前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=n n +1=910, ∴n =9,∴直线方程为10x +y +9=0. 令x =0,得y =-9,∴在y 轴上的截距为-9.3. 已知数列2 008,2 009,1,-2 008,-2 009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 013项之和S 2 013等于( )A .1B .2 010C .4 018D .0答案 C解析 由已知得a n =a n -1+a n +1 (n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0.∵2 013=6×335+3,∴S 2 013=S 3=4 018. 二、填空题(每小题5分,共15分)4. 等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.答案 13(4n -1)解析 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,又∵a 1=1适合上式.∴a n =2n -1,∴a 2n =4n -1. ∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列.∴a 21+a 22+…+a 2n =1·(1-4n )1-4=13(4n -1).5. 若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N *),则a 12+a 23+…+a nn +1=__________. 答案 2n 2+6n解析 令n =1得a 1=4,即a 1=16,当n ≥2时,a n =(n 2+3n )-[(n -1)2+3(n -1)]=2n +2,所以a n =4(n +1)2,当n =1时,也适合上式,所以a n =4(n +1)2 (n ∈N *).于是a nn +1=4(n +1),故a 12+a 23+…+a nn +1=2n 2+6n .6. 已知数列{a n }中,a 1=-60,a n +1=a n +3,则这个数列前30项的绝对值的和是________.答案 765解析 由题意知{a n }是等差数列,a n =-60+3(n -1)=3n -63,令a n ≥0,解得n ≥21. ∴|a 1|+|a 2|+|a 3|+…+|a 30|=-(a 1+a 2+…+a 20)+(a 21+…+a 30)=S 30-2S 20=(-60+90-63)×302-(-60+60-63)×20=765.三、解答题7. (13分)(2012·四川)已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立.(1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n ,当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2.② 由②-①,得a 2(a 2-a 1)=a 2.③若a 2=0,由①知a 1=0; 若a 2≠0,由③知a 2-a 1=1.④由①④解得a 1=2+1,a 2=2+2或a 1=1-2, a 2=2- 2.综上可得,a 1=0,a 2=0或a 1=2+1,a 2=2+2或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2. 当n ≥2时,有(2+2)a n =S 2+S n , (2+2)a n -1=S 2+S n -1.所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2). 所以a n =a 1(2)n -1=(2+1)·(2)n -1.令b n =lg10a 1a n, 则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1.所以数列{b n }是单调递减的等差数列⎝⎛⎭⎫公差为-12lg 2. 从而b 1>b 2>…>b 7=lg108>lg 1=0. 当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0.故当n =7时,T n 取得最大值,且T n 的最大值为 T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.。
高中数学步步高大一轮复习讲义(文科)-64省公开课获奖课件市赛课比赛一等奖课件
练出高分
题型分类·深度剖析
题型一
分组转化求和
思维启迪 解析 思维升华
【例 1】 已知数列{an}是 3+2 解 由已知得,数列{an}的通项公式
-1,6+22-1,9+23-1,12+24 为 an=3n+2n-1=3n-1+2n,
-1,…,写出数列{an}的通项 ∴Sn=a1+a2+…+an
=(2+5+…+3n-1)+(2+22+…
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三
裂项相消法求和
思维启迪 解析 思维升华
【例 3】 在数列{an}中,a1=1,
当 n≥2 时,其前 n 项和 Sn 满足 S2n=anSn-12.
(1)求 Sn 的表达式; (2)设 bn=2nS+n 1,求{bn}的前
n 项和 Tn.
第(1)问利用 an=Sn-Sn-1 (n≥2) 后,再同除 Sn-1·Sn 转化为S1n的 等差数列即可求 Sn.
题型分类·深度剖析
题型一
分组转化求和
思维启迪 解析 思维升华
【例 1】 已知数列{an}是 3+2
-1,6+22-1,9+23-1,12+24 先写出通项,然后对 分组后利用等差数列、等比数列
公式并求其前 n 项和 Sn.
的求和公式求解.
基础知识
题型分类
思想方法
∴S1n=1+2(n-1)=2n-1, ∴Sn=2n1-1. (2)∵bn=2nS+n 1=2n-112n+1
=122n1-1-2n1+1,
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三
裂项相消法求和
思维启迪 解析 思维升华
2024版新教材高考数学全程一轮总复习第六章数列第四节数列求和课件
−
1
n+1
.( √ )
(3)求Sn=a+2a2+3a3+…+nan时只要把上式等号两边同时乘以a即
可根据错位相减法求和.( × )
(4)若数列a1,a2-a1,…,an-an-1是首项为1,公比为3的等比数列,
则数列
3n −1
an 的通项公式是an=
.( √
2
)
2.(教材改编)已知数列 an 的通项公式为an=2n+n,前n项和为Sn,
2n+1
1
= n + 1 − n.
n+ n+1
;
夯实双基
1.思考辨析(正确的打“√”,错误的打“×”)
(1) 若 数 列 an 为 等 比 数 列 , 且 公 比 不 等 于 1 , 则 其 前 n 项 和 Sn =
a1 −an+1
.( √ )
1−q
1
1
1
(2)当n≥2时, 2 =
n −1 2 n−1
180 dm2 .以此类推,则对折4次共可以得到不同规格图形的种数为
15 n+3
720- n−4
5
σnk=1 Sk =___________
________;如果对折n次,那么
2
dm2.
2.[2022·新高考Ⅰ卷]记Sn 为数列 an 的前n项和,已知a1 =1,
1
是公差为 的等差数列.
3
(1)求 an 的通项公式;
第四节
数列求和
必备知识·夯实双基
关键能力·题型突破
【课标标准】
掌握非等差、等比数列求和的几种常见方法.
必备知识·夯实双基
知识梳理
1.分组转化法:一个数列的通项公式是由若干个等差数列或等比数
【步步高】2014届高考数学一轮复习 习题课数列求和备考练习 苏教版
习题课 数列求和一、基础过关1.数列12·5,15·8,18·11,…,13n -1·3n +2,…的前n 项和为________.2.已知数列{a n }的通项a n =2n +1,由b n =a 1+a 2+a 3+…+a nn所确定的数列{b n }的前n 项之和是________.3.设数列1,(1+2),(1+2+4),…,(1+2+22+…+2n -1)的前m 项和为2 036,则m 的值为________.4.若1+3+5+…+2x -111·2+12·3+13·4+…+1x x +1=132 (x ∈N *),则x =________.5.已知数列{a n }前n 项和为S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15+S 22-S 31的值是________.6.在100内所有能被3整除但不能被7整除的正整数之和是________. 7.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .8.已知数列{a n }满足a 1=1,a n +1=2a n +1. (1)求证:数列{a n +1}是等比数列; (2)求数列{a n }的通项公式a n 和前n 项和S n . 二、能力提升9.数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1是首项为1,公比为2的等比数列,那么a n =________.10.数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=13S n (n ≥1),则a n =____________.11.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n =________.12.设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 三、探究与拓展13.等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)nln a n ,求数列{b n }的前n 项和S n . 1.n 6n +4 2.12n (n +5) 3.10 4.11 5.-76 6.1 473 7.解 (1)设等差数列{a n }的首项为a 1,公差为d . 因为a 3=7,a 5+a 7=26,所以⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.所以a n =3+2(n -1)=2n +1,S n =3n +n n -12×2=n 2+2n .所以,a n =2n +1,S n =n 2+2n .(2)由(1)知a n =2n +1,所以b n =1a 2n -1=12n +12-1=14·1n n +1 =14·⎝ ⎛⎭⎪⎫1n -1n +1, 所以T n =14·(1-12+12-13+…+1n -1n +1)=14·(1-1n +1)=n 4n +1, 即数列{b n }的前n 项和T n =n4n +1.8.(1)证明 ∵a n +1=2a n +1,∴a n +1+1a n +1=2a n +1+1a n +1=2a n +2a n +1=2a n +1a n +1=2, ∴数列{a n }是等比数列,公比为2,首项为a 1+1=2. (2)解 由(1)知{a n +1}为等比数列, ∴a n +1=(a 1+1)·2n -1=2n,∴a n =2n-1. ∴S n =a 1+a 2+…+a n=(21-1)+(22-1)+(23-1)+...+(2n -1)=(21+22+ (2))-n=21-2n1-2-n =2n +1-n -2.9.2n-110.⎩⎪⎨⎪⎧1, n =113·⎝ ⎛⎭⎪⎫43n -2, n ≥211.2+ln n12.解 (1)由已知,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,符合上式,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1,①从而22·S n =1·23+2·25+3·27+…+n ·22n +1.② ①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1,即S n =19[(3n -1)22n +1+2].13.解 (1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意; 因此a 1=2,a 2=6,a 3=18. 所以公比q =3. 故a n =2·3n -1.(2)因为b n =a n +(-1)nln a n=2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n [ln 2+(n -1)ln 3]=2·3n -1+(-1)n(ln 2-ln 3)+(-1)nn ln 3,所以S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n](ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n-n -12ln 3-ln 2-1.综上所述,S n =⎩⎪⎨⎪⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.。
【苏教版】【步步高】2014届高三数学(理)大一轮复习学案第6章学案30数列的通项与求和
学案30 数列的通项与求和导学目标: 1.能利用等差、等比数列前n 项和公式及其性质求一些特殊数列的和.2.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.自主梳理1.求数列的通项(1)数列前n 项和S n 与通项a n 的关系:a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.(2)当已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用________求数列的通项a n ,常利用恒等式a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1).(3)当已知数列{a n }中,满足a n +1a n =f (n ),且f (1)·f (2)·…·f (n )可求,则可用________求数列的通项a n ,常利用恒等式a n =a 1·a 2a 1·a 3a 2·…·a na n -1.(4)作新数列法:对由递推公式给出的数列,经过变形后化归成等差数列或等比数列来求通项.(5)归纳、猜想、证明法. 2.求数列的前n 项的和 (1)公式法①等差数列前n 项和S n =____________=________________,推导方法:____________; ②等比数列前n 项和S n = ⎩⎪⎨⎪⎧,q =1, = ,q ≠1. 推导方法:乘公比,错位相减法. ③常见数列的前n 项和:a .1+2+3+…+n =________;b .2+4+6+…+2n =________;c .1+3+5+…+(2n -1)=________;d .12+22+32+…+n 2=________;e .13+23+33+…+n 3=____________.(2)分组求和:把一个数列分成几个可以直接求和的数列.(3)拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.常见的拆项公式有:①1n (n +1)=1n -1n +1; ②1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;③1n +n +1=n +1-n .(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. (5)倒序相加:例如,等差数列前n 项和公式的推导. 自我检测1.(原创题)已知数列{a n }的前n 项的乘积为T n =3n 2(n ∈N *),则数列{a n }的前n 项的和为________.2.设{a n }是公比为q 的等比数列,S n 是其前n 项和,若{S n }是等差数列,则q =________.3.已知等比数列{a n }的公比为4,且a 1+a 2=20,故b n =log 2a n ,则b 2+b 4+b 6+…+b 2n =________.4.(2010·天津高三十校联考)已知数列{a n }的通项公式a n =log 2n +1n +2(n ∈N *),设{a n }的前n 项的和为S n ,则使S n <-5成立的自然数n 的最小值为________.5.(2010·北京海淀期末练习)设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________.6.数列1,412,714,1018,…前10项的和为________.探究点一 求通项公式例1 已知数列{a n }满足a n +1=2n +1·a na n +2n +1,a 1=2,求数列{a n }的通项公式.变式迁移1 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明数列{b n }是等比数列; (2)求数列{a n }的通项公式.探究点二 裂项相消法求和例2 已知数列{a n },S n 是其前n 项和,且a n =7S n -1+2(n ≥2),a 1=2. (1)求数列{a n }的通项公式;(2)设b n =1log 2a n ·log 2a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .变式迁移2 求数列1,11+2,11+2+3,…,11+2+3+…+n,…的前n 项和.探究点三 错位相减法求和 例3 已知数列{a n }是首项、公比都为q (q >0且q ≠1)的等比数列,b n =a n log 4a n (n ∈N *). (1)当q =5时,求数列{b n }的前n 项和S n ;(2)当q =1415时,若b n <b n +1,求n 的最小值.变式迁移3 求和S n =1a +2a 2+3a 3+…+nan .分类讨论思想例 (5分)二次函数f (x )=x 2+x ,当x ∈[n ,n +1](n ∈N *)时,f (x )的函数值中所有整数值的个数为g (n ),a n =2n 3+3n 2g (n )(n ∈N *),则S n =a 1-a 2+a 3-a 4+…+(-1)n -1a n =______________________.答案 (-1)n -1n (n +1)2解析 当x ∈[n ,n +1](n ∈N *)时,函数f (x )=x 2+x 的值随x 的增大而增大,则f (x )的值域为[n 2+n ,n 2+3n +2](n ∈N *),∴g (n )=2n +3(n ∈N *),于是a n =2n 3+3n 2g (n )=n 2.当n 为偶数时,S n =a 1-a 2+a 3-a 4+…+a n -1-a n =(12-22)+(32-42)+…+[(n -1)2-n 2]=-[3+7+…+(2n -1)]=-3+(2n -1)2·n 2=-n (n +1)2;当n 为奇数时,S n =(a 1-a 2)+(a 3-a 4)+…+(a n -2-a n -1)+a n =S n -1+a n =-n (n -1)2+n 2=n (n +1)2,∴S n =(-1)n -1n (n +1)2.【突破思维障碍】在利用并项转化求和时,由于数列的各项是正负交替的,所以一般需要对项数n 进行分类讨论,但最终的结果却往往可以用一个公式来表示.1.求数列的通项:(1)公式法:例如等差数列、等比数列的通项; (2)观察法:例如由数列的前几项来求通项; (3)可化归为使用累加法、累积法;(4)可化归为等差数列或等比数列,然后利用公式法; (5)求出数列的前几项,然后归纳、猜想、证明. 2.数列求和的方法:一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.3.求和时应注意的问题:(1)直接用公式求和时,注意公式的应用范围和公式的推导过程.(2)注意观察数列的特点和规律,在分析数列通项的基础上或分解为基本数列求和,或转化为基本数列求和.(满分:90分)一、填空题(每小题6分,共48分) 1.(2010·广东)已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1且a 4与2a 7的等差中项为54,则S 5=________.2.有两个等差数列{a n },{b n },其前n 项和分别为S n ,T n ,若S n T n =7n +2n +3,则a 5b 5=________.3.如果数列{a n }满足a 1=2,a 2=1且a n -1-a n a n a n -1=a n -a n +1a n a n +1(n ≥2),则此数列的第10项为________.4.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5=________.5.(2011·南京模拟)数列1,1+2,1+2+4,…,1+2+22+…+2n -1,…的前n 项和S n >1 020,那么n 的最小值是________.6.(2010·东北师大附中高三月考)数列{a n }的前n 项和为S n 且a 1=1,a n +1=3S n (n =1,2,3,…),则log 4S 10=__________.7.(原创题)已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为________.8.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n ,则数列{a n }的前n 项和S n =____________.二、解答题(共42分)9.(12分)已知函数f (x )=x 2-2(n +1)x +n 2+5n -7(n ∈N *).(1)若函数f (x )的图象的顶点的横坐标构成数列{a n },试证明数列{a n }是等差数列; (2)设函数f (x )的图象的顶点到x 轴的距离构成数列{b n },试求数列{b n }的前n 项和S n .10.(14分)设等差数列{a n }的前n 项和为S n ,且S n =12na n +a n -c (c 是常数,n ∈N *),a 2=6.(1)求c 的值及数列{a n }的通项公式;(2)证明1a 1a 2+1a 2a 3+…+1a n a n +1<18.11.(16分)(2010·北京宣武高三期中)已知数列{a n }的前n 项和为S n =3n ,数列{b n }满足b 1=-1,b n +1=b n +(2n -1) (n ∈N *).(1)求数列{a n }的通项公式a n ; (2)求数列{b n }的通项公式b n ;(3)若c n =a n ·b nn,求数列{c n }的前n 项和T n .答案 自主梳理 1.(4)n =1或n ≥2 自我检测1.22 2.32 3.15 4.8 5.919课堂活动区例1 解题导引 1.等差数列与等比数列相结合的综合问题是高考考查的重点,特别是等差、等比数列的通项公式、前n 项和公式以及等差中项、等比中项问题是历年命题的热点.2.利用等比数列前n 项和公式时注意公比q 的取值.同时对两种数列的性质,要熟悉它们的推导过程,利用好性质,可降低题目的思维难度,解题时有时还需利用条件联立方程求解.解 (1)由已知得⎩⎨⎧a 1+a 2+a 3=7(a 1+3)+(a 3+4)2=3a 2,解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q ,a 3=2q .又S 3=7,可知2q+2+2q =7,即2q 2-5q +2=0.解得q 1=2,q 2=12.由题意得q >1,∴q =2,∴a 1=1. 故数列{a n }的通项为a n =2n -1. (2)由(1)得a 3n +1=23n , ∴b n =ln a 3n +1=ln 23n =3n ln 2.又b n +1-b n =3ln 2,∴{b n }是等差数列, ∴T n =b 1+b 2+…+b n =n (b 1+b n )2=3n (n +1)2·ln 2. 故T n =3n (n +1)2ln 2.变式迁移1 4解析 设a 1,a 2,a 3,a 4的公差为d ,则a 1+2d =4,又0<a 1<2,所以1<d <2.易知数列{b n }是等比数列,故(1)正确;a 2=a 3-d ∈(2,3),所以b 2=2a 2>4,故(2)正确;a 4=a 3+d >5,所以b 4=2a 4>32,故(3)正确;又a 2+a 4=2a 3=8,所以b 2b 4=2a 2+a 4=28=256,故(4)正确.例2 解题导引 这是一道数列、函数、不等式的综合题,利用函数关系式求通项a n ,观察T n 特点,求出T n .由a n 再求b n 从而求S n ,最后利用不等式知识求出m .解 (1)∵a n +1=f ⎝⎛⎭⎫1a n=2a n +33a n=2+3a n3=a n +23,∴{a n }是以23为公差的等差数列.又a 1=1,∴a n =23n +13.(2)T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1 =a 2(a 1-a 3)+a 4(a 3-a 5)+…+a 2n (a 2n -1-a 2n +1)=-43(a 2+a 4+…+a 2n )=-43·n ⎝⎛⎭⎫53+4n 3+132=-49(2n 2+3n ).(3)当n ≥2时,b n =1a n -1a n =1⎝⎛⎭⎫23n -13⎝⎛⎭⎫23n +13=92⎝ ⎛⎭⎪⎫12n -1-12n +1, 又b 1=3=92×⎝⎛⎭⎫1-13,∴S n =b 1+b 2+…+b n =92×⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =92⎝ ⎛⎭⎪⎫1-12n +1=9n 2n +1, ∵S n <m -2 0012对一切n ∈N *成立.即9n 2n +1<m -2 0012,又∵9n 2n +1=92⎝ ⎛⎭⎪⎫1-12n +1递增,且9n2n +1<92.∴m -2 0012≥92, 即m ≥2 010.∴最小正整数m =2 010.变式迁移2 解 (1)设等比数列{a n }的首项为a 1,公比为q . 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8.∴a 2+a 4=20.∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 3=a 1q 2=8,解之,得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }单调递增,∴⎩⎪⎨⎪⎧q =2,a 1=2.∴a n =2n .(2)b n =2n ·log 122n =-n ·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n .①∴-2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.② ∴①-②,得S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=2n +1-n ·2n +1-2.由S n +(n +m )a n +1<0,即2n +1-n ·2n +1-2+n ·2n +1+m ·2n +1<0对任意正整数n 恒成立,∴m ·2n +1<2-2n +1对任意正整数n ,m <12n -1恒成立.∵12n -1>-1,∴m ≤-1, 即m 的取值范围是(-∞,-1]. 例3 解 依题意,第1个月月余款为a 1=10 000(1+20%)-10 000×20%×10%-300=11 500, 第2个月月底余款为a 2=a 1(1+20%)-a 1×20%×10%-300, 依此类推下去,设第n 个月月底的余款为a n 元,第n +1个月月底的余款为a n +1元,则a n +1=a n (1+20%)-a n ×20%×10%-300=1.18a n-300.下面构造一等比数列.设a n +1+x a n +x=1.18,则a n +1+x =1.18a n +1.18x , ∴a n +1=1.18a n +0.18x .∴0.18x =-300.∴x =-5 0003,即a n +1-5 0003a n -5 0003=1.18.∴数列{a n -5 0003}是一个等比数列,公比为1.18,首项a 1-5 0003=11 500-5 0003=29 5003. ∴a n -5 0003=29 5003×1.18n -1,∴a 12-5 0003=29 5003×1.1811,∴a 12=5 0003+29 5003×1.1811≈62 396.6(元),即到年底该职工共有资金62 396.6元. 纯收入有a 12-10 000(1+25%) =62 396.6-12 500=49 896.6(元).变式迁移3 解 (1)设中低价房的面积形成的数列为{a n }, 由题意可知{a n }是等差数列,其中a 1=250,d =50, 则a n =250+(n -1)·50=50n +200, S n =250n +n (n -1)2×50=25n 2+225n ,令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,∴n ≥10.∴到2020年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米. (2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列,其中b 1=400,q =1.08,则b n =400·(1.08)n -1. 由题意可知a n >0.85b n , 即50n +200>400·(1.08)n -1·0.85. 当n =5时,a 5<0.85b 5, 当n =6时,a 6>0.85b 6,∴满足上述不等式的最小正整数n 为6.∴到2016年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 课后练习区1.3+22 2.② 3.991 4.7解析 设至少需要n 秒钟,则1+21+22+…+2n -1≥100,∴1-2n1-2≥100,∴n ≥7.5.64解析 依题意有a n a n +1=2n,所以a n +1a n +2=2n +1,两式相除得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…也成等比数列,而a 1=1,a 2=2,所以a 10=2×24=32,a 11=1×25=32,又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64.6.3解析 该题是数列知识与函数知识的综合.a n =5·⎝⎛⎭⎫252n -2-4·⎝⎛⎭⎫25n -1=5·⎣⎡⎦⎤⎝⎛⎭⎫25n -1-252-45, 显然当n =2时,a n 取得最小值,当n =1时,a n 取得最大值,此时x =1,y =2,∴x +y =3.7.21解析 y ′=(x 2)′=2x ,则过点(a k ,a 2k )的切线斜率为2a k ,则切线方程为y -a 2k =2a k (x-a k ),令y =0,得-a 2k =2a k (x -a k ),∴x =12a k ,即a k +1=12a k .故{a n }是a 1=16,q =12的等比数列,即a n =16×(12)n -1,∴a 1+a 3+a 5=16+4+1=21.8.107解析 由数表知,第一行1个奇数,第3行3个奇数,第5行5个奇数,第61行61个奇数,前61行用去1+3+5+…+61=62×312=961个奇数.而2 009是第1 005个奇数,故应是第63行第44个数,即i +j =63+44=107.9.解 (1)∵f (1)=a =13,∴f (x )=⎝⎛⎭⎫13x .…………………………………………………(1分) a 1=f (1)-c =13-c ,a 2=[f (2)-c ]-[f (1)-c ]=-29,a 3=[f (3)-c ]-[f (2)-c ]=-227; 又数列{a n }成等比数列,a 1=a 22a 3=481-227=-23=13-c ,∴c =1;……………………………………………………………………………………(2分)公比q =a 2a 1=13,a n =-23×⎝⎛⎭⎫13n -1=-2×⎝⎛⎭⎫13n ,n ∈N *;……………………………………………………………………(3分) ∵S n -S n -1=()S n -S n -1()S n +S n -1=S n +S n -1(n >2),……………………………………………………………………(4分)又b n >0,S n >0,∴S n -S n -1=1.数列{S n }构成一个首项为1、公差为1的等差数列,S n =1+(n -1)×1=n ,S n =n 2.…………………………………………………………(6分) 当n ≥2,b n =S n -S n -1=n 2-(n -1)2=2n -1; 又当n =1时,也适合上式,∴b n =2n -1,n ∈N *.………………………………………………………………………(8分)(2)T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=11×3+13×5+15×7+…+1(2n -1)×(2n +1)=12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+12⎝⎛⎭⎫15-17+…+ 12⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.……………………………………………(12分) 由T n =n 2n +1>1 0002 009,得n >1 0009,∴满足T n >1 0002 009的最小正整数为112.…………………………………………………(14分)10.解 设乙企业仍按现状生产至第n 个月所带来的总收益为A n (万元),技术改造后生产至第n 个月所带来的总收益为B n (万元).依题意得A n =45n -[3+5+…+(2n +1)]=43n -n 2,………………………………………………………………………………(5分)当n ≥5时,B n =16⎣⎡⎦⎤⎝⎛⎭⎫325-132-1+16⎝⎛⎭⎫324(n -5)-400=81n -594,………………………………………………………(10分) ∴当n ≥5时,B n -A n =n 2+38n -594,令n 2+38n -594>0,即(n +19)2>955,解得n ≥12,∴至少经过12个月,改造后的乙企业的累计总收益多于仍按现状生产所带来的总收益.……………………………………………………………………………………………(14分)11.(1)解 令x =n ,y =1,得到f (n +1)=f (n )·f (1)=12f (n ),…………………………………………………………(2分)∴{f (n )}是首项为12,公比为12的等比数列,即f (n )=(12)n .………………………………………………………………………………(5分)(2)证明 记S n =a 1+a 2+a 3+…+a n ,∵a n =n ·f (n )=n ·(12)n ,……………………………………………………………………(6分)∴S n =12+2×(12)2+3×(12)3+…+n ×(12)n ,12S n =(12)2+2×(12)3+3×(12)4+…+(n -1)×(12)n +n ×(12)n +1, 两式相减得12S n =12+(12)2+…+(12)n -n ×(12)n +1,整理得S n =2-(12)n -1-n (12)n <2.∴a 1+a 2+a 3+…+a n <2.………………………………………………………………(9分) (3)解 ∵f (n )=(12)n ,而b n =(9-n )f (n +1)f (n )=(9-n )(12)n +1(12)n =9-n 2.…………………………………………………………………(11分)当n ≤8时,b n >0;当n =9时,b n =0; 当n >9时,b n <0,∴n =8或9时,S n 取到最大值.………………………………………………………(14分)。
步步高2014届高三数学大一轮复习讲义 第6章 数列的通项与求和学案 苏教版
学案30 数列的通项与求和n .2.项和公式及其性质求一些特殊数列的和 1.能利用等差、等比数列前导学目标: 能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.自主梳理 1.求数列的通项anS 的关系:(1)数列前与通项项和nnnS ,=, 1??1a =?nnSS≥2.- ,??nn 1-nffaaafnf 可求,则可用}中,满足(2)-+…+=+()),且((2)当已知数列{(1)nnn1+aaaaaaaaa -+(.-+…+)+((求数列的通项________-,常利用恒等式)=)nnnn 12-1213a n 1+afnfnff 满足(3)________当已知数列(1)·{(2)·…·中,(})可求,=则可用(且), na naaa n 32aaa . ·,常利用恒等式·=·…·求数列的通项 nn 1aaa n 1-21作新数列法:对由递推公式给出的数列,经过变形后化归成等差数列或等比数列来(4) 求通项. 归纳、猜想、证明法.(5)n 2.求数列的前项的和 公式法(1)Sn ;________________,①等差数列前推导方法:项和____________=____________=nSn =项和②等比数列前nq ,1= ,?? ? q ≠1. , =?? 推导方法:乘公比,错位相减法.n ③常见数列的前项和:n =________+2+3+…+;a .1n ________+6+…+2;=b .2+4n ________(2;-1)=.c1+3+5+…+2222n 3+…+;=________d .1+2+3333n ____________.+3+…+=e .1+2 分组求和:把一个数列分成几个可以直接求和的数列.(2)拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,(3) 只剩有限项再求和. 常见的拆项公式有:111 ①=-;nnnn 1++111???- ②=;nn ??nn 1+122-2+-1nn . =-+③1nn +1+(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.n项和公式的推导. (5)倒序相加:例如,等差数列前自我检测2*anTnnan项的和{,则数列的前})3的前{)(1.原创题已知数列}项的乘积为=(∈N nnn为________.1aqSnSq=则{________. 的等比数列,}是其前是等差数列,项和,若2.设{是公比为}nnn aaababbbb +…+20,故+=log3.已知等比数列{+}的公比为4,且,则+=nnnn2614222=________.n+1*aana},设{∈的通项公式N=log (已知数列4.(2010·天津高三十校联考){)}nnn2n2+nSSn的最小值为________成立的自然数.项的和为,则使<-的前5nn2*xxxnxn∈N(-)<2的解集中整数的个5.(2010·北京海淀期末练习)设关于的不等式aanSS的值为________,则}的前.项和为数为,数列{ nnn1001116.数列1,4,7,10,…前10项的和为________.248探究点一求通项公式n+1a·2naaaa满足,求数列={的通项公式.},=已知数列例1 {2}nnnn1+11+a2+nanSaSa+41的前},项和为2. ,已知==变式迁移1 设数列{nnnn11+baab}是等比数列;2 (1)设,证明数列={-nnnn1+a}的通项公式. (2)求数列{n探究点二裂项相消法求和aSnaSna=2(项和,且2. =7例2 已知数列{,}≥2),是其前+nnnn11-a}的通项公式;求数列{ (1)n m1*bTbnTn∈N对所有项和,设求使得=,都成立是数列{<}的前(2)nnnn aa20·loglog nn1+22m.的最小正整数111n项和.,…的前,,,…,变式迁移2 求数列1n+…+2+2+331+1+12+探究点三错位相减法求和*aqqqbaan∈N).≠1)的等比数列,= log (3 例已知数列{}是首项、公比都为 (>0且nnnn4qbnS;项和{}的前 (1)当=5时,求数列nn14qbbn的最小值.时,若=,求< (2)当nn1+15 2n312S=++3 求和+…+.变式迁移nn32aaaa分类讨论思想nn32+n1-*2xnfxnnfxxx的函数值中所有整时,)二次函数+(1]()=(+∈,当N∈[),例 (5分)23ng*aaaaaSgnan=(+-,-=(∈N),则1)=数值的个数为+…+(-)nnn4321______________________.nn+n1-答案 (-1)2*2xnnnfxxxxfx)+的增大而增大,则1](的值随∈N)时,函数(解析当(∈[),=+32nn32+22**2nnnnngnnnan.==∈(N)=的值域为[2+,)+3++2](3(∈N),∴,于是n ng22222naaanSaaa1)-+(3-=4-+)-+…++…+[(-(1=-2当为偶数时,)nnn1241-3nnnn+3+-2nn -1)]=-·=--=-][3+7+…+(2;222aaaaaaanS ()+--+)+…+当(为奇数时,(=)-nnnn13-2-412nnnn+-2naS=-==++,nn+n1-S. 1)∴=(-nn1-22n进行分在利用并项转化n2 【突破思维障碍】求和时,由于数列的各项是正负交替的,所以一般需要对项数类讨论,但最终的结果却往往可以用一个公式来表示.1.求数列的通项:(1)公式法:例如等差数列、等比数列的通项; (2)观察法:例如由数列的前几项来求通项; (3)可化归为使用累加法、累积法; (4)可化归为等差数列或等比数列,然后利用公式法; (5)求出数列的前几项,然后归纳、猜想、证明..数列求和的方法:2一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和. 3.求和时应注意的问题: (1)直接用公式求和时,注意公式的应用范围和公式的推导过程.注意观察数列的特点和规律,在分析数列通项的基础上或分解为基本数列求和,或(2) 转化为基本数列求和.(满分:90分)一、填空题(每小题6分,共48分)aSnaaaa与且2·为等比数列,{)1.(2010·广东已知数列}是它的前项和,若=nn4321 35aS=________.的等差中项为2,则574Sna27+n5abnST,若=,,,{则},其前=项和分别为2.有两个等差数列{________.}nnnn bnT3+n5aaaa--nnnn+-11aaan≥2),则此数列的第10且=满足 (=2,项为=3.如果数列{1}n21aaaa nnnn11-+________.1SanSa=项和为4.数列=________.{,若}的前,则nnn5nn+n1-2n项和2+…+2,…的前+4,…,1+2+2,15.(2011·南京模拟)数列1,1++2nS.的最小值是________>1 020,那么n naaSnaS==1,(6.(2010·东北师大附中高三月考)数列{}的前=项和为3且nnnn1+1S__________.log=1,2,3,…),则1041aaaa项的和为=-2,267.(原创题)已知数列{=-}满足,则该数列前=1,nn22+1a n________.aaaaaa}的“差,}的“差数列”,若{},定义数列{=-}为数列{28.对于数列{nnnnn11+n anS=____________.,则数列{项和}的前数列”的通项为2nn二、解答题(共42分)22*fxxnxnnn∈N)-7(+1).+ 9.(12分)已知函数(+)=5-2(fxaa}是等差数列; }(1)若函数,试证明数列({)的图象的顶点的横坐标构成数列{nn fxxbbnS. 项和}轴的距离构成数列{的前},(2)设函数试求数列()的图象的顶点到{nnn1*anSSnaaccn∈N是常数,设等差数列){-}的前)项和为(,且,=+10.(14分nnnnn2a=6. 2ca}的通项公式;{(1)求的值及数列n1111(2)证明++…+<.aaaaaa8nn121+32n anSb}满{{=}的前3项和为,数列(1611.分)(2010·北京宣武高三期中)已知数列nnn*bbbnn∈N)(2.-1) (足=-1,=+nn11+aa;的通项公式{(1)求数列 }nn bb;的通项公式{ }(2)求数列nn ab·nnccnT.{,求数列项和}的前(3)若=nnn n答案自主梳理nn≥2或 1.1(4)=自我检测4391.22 2. 3.15 4.8 5. 219课堂活动区例1 解题导引 1.等差数列与等比数列相结合的综合问题是高考考查的重点,特别是n项和公式以及等差中项、等比中项问题是历年命题的热点.前等差、等比数列的通项公式、nq的取值.同时对两种数列的性质,要熟悉.利用等比数列前项和公式时注意公比2它们的推导过程,利用好性质,可降低题目的思维难度,解题时有时还需利用条件联立方程求解.aaa7++=?321??a=2.(1)由已知得,解得解aa+++?231a3=2?2aqa=2,}的公比为设数列{,由n222aaqSq=7,2+22.又=7可得,可知=,+=331qq12qqqq=,解得.=-52+2=0.即2212qqa=,∴,∴1.=由题意得2>11n-1aa=2{.}的通项为故数列nnn3a=2,(1)得 (2)由n1+3n3ban ln 2.=3=∴ln 2=ln nn13+bbb}是等差数列,=又3ln 2-,∴{nnn1+Tbbb=+…+∴+nn21nbbnn++3n1=·ln 2.=22nn+3T=ln 2.故n2变式迁移1 4aaaadadadb}{<2.<2,所以则1<+2=4解析设,,,又,0<的公差为易知数列,n113241aadbaaad>5,所(2)正确;-+∈(2,3),所以2==>4是等比数列,故(1)正确;,故=3342228baaaabbaa=2=256,所以,故(4)=以2=2正确.>32,故(3)正确;又++=2 =8442434242a,这是一道数列、函数、不等式的综合题,利用函数关系式求通项例2 解题导引n TTabSm.观察再求特点,求出,最后利用不等式知识求出.由从而求nnnnn2+3aa12+32??nn??aaf+,====解 (1)∵nn1+a??333n a n2a}是以为公差的等差数列.∴{aan+.n321==1,∴又n133Taaaaaaaaaa-=+-(2)+…-nnn152+34312242aaaaaaaaa)-(=)(-+…+)+(-nnn1221-53+14232n154????n++??33344aaa)=-·+…+=-(+nn). (2=-+39 5n2423324211bn=(3)当≥2时,=n aa1221????nn1-nn????+-????3333119????-,=nn??21-+12219????Sbbbb-1 ,∴=×+又=+…+=3nn211??32111119????-+…+1--+=×nn??1+312-5322n199????-1,==n??n1+21+22m-2 001*nS∈N∵成立.<对一切n2nm-2 0019,< 即n212+n199????-1递增,又∵=n??n12+2+12nm-2 001999<.∴≥且,n2+2212mm=2 010.即≥2 010.∴最小正整数aaq. }的首项为解 (1)设等比数列{,公比为变式迁移2 n1aaa,=依题意,有2(++2)432aaaa=8.=+28+,得代入32343qaaq,20=+??11aa=20.∴∴+?422qaa,=8=??131??qq,=2,=??2?或解之,得?a2=???1?a32.=1q,2=??n aa.∴2单调递增,∴=}又{?nn a2.=??11nnn nb·2,(2) 2·log2=-=n2n32nS×2.①∴-=1×2+2×2+3×2+…+nnn+1234nSn×2.②-1)×2∴-2++…+=1×2+2×2+3×2( nnn+231nS·2 +…+2∴①-②,得-2+2+2=nn2-nnn+1++11nn-·2-2.-==2·221-Snma<0,(+由)+nn1+nnnn+111++1+nnnm恒成立,-·2+·2即2+-2<0·2对任意正整数1nn11++mmn·2恒成立.,2<2--<1对任意正整数∴n21m 1,∴,≤-∵--1>1n2m.(-∞,-即1]的取值范围是个月月余款为依题意,第1例3 解a,=-10 000×20%×10%-30011 500+=10 000(120%)1aaa,×20%×10%-20%)(1个月月底余款为第2=+-300112 6an个月月底的余款为依此类推下去,设第元,n aaanaa1.18-=元,则×20%×10%-=300(1+第20%)+1个月月底的余款为nnnnn1+1+300.-下面构造一等比数列.xa+n1+xxaa1.18,=1.18,则++1.18=设nn1+xa+n xaxa300.0.18∴=-=1.18.∴0.18+nn1+5 000a-n1+35 000x1.18.,即∴==- 5 0003a-n35 0005 0005 000aa=11 500--=-}是一个等比数列,公比为1.18,首项∴数列{n133329 500. 329 5005 000n1-a,-=∴×1.18n3329 5005 00011a,-=∴×1.18123329 5005 00011a,×1.18≈62 396.6(元∴)=+1233 元.即到年底该职工共有资金62 396.6a25%)+-10 000(1纯收入有12.元)62 396.6-12 500=49 896.6(=a,}解 (1)设中低价房的面积形成的数列为{变式迁移3 n daa,==250,由题意可知{50}是等差数列,其中n1nna,+-1)·50=50则200=250+(n nn-2nnnS 25,=250++225×50=n22nn 25≥4 750,+225令2nnnn -190≥0,而≥10.即是正整数,∴+9 4 750万平方米.∴到2020年底,该市历年所建中低价房的累计面积将首次不少于b }设新建住房面积形成数列{,(2)n qbb 1.08,,}是等比数列,其中==400由题意可知{n 1n 1-b . 则=400·(1.08)n ba >0.85,由题意可知nnn 1-n 50·0.85.+200>400·(1.08)即ban<0.85当,=5时,55ban >0.85=6时,,当66n 6.∴满足上述不等式的最小正整数为85%. 当年建造的中低价房的面积占该年建造住房面积的比例首次大于2016年底,∴到 课后练习区22 2.②+.3 3.991 14.7n1-2n-211nn ≥7. ≥100,∴+…+2≥100,∴秒钟,则1+2+2解析 设至少需要2-15.64 an +2nn +1aaaaaaa ,=两式相除得所以2=依题意有解析 2=,所以,,…,,2nnnn 2+++35111a n 54aaaaaaa=1×2=,1=而…也成等比数列,,,,成等比数列,==2×2,所以2,321126421107abbaaa 64.,所以+,又因为=+===32nnn111010+136. 解析 该题是数列知识与函数知识的综合.22224????????nnn 1-2-2-21????????a - -4·=5·-,=5· n ??????555??55yyxnanax +=2,∴显然当=2时,=取得最小值,当1=1时,,取得最大值,此时nn 3. =217.222xayxxaaaya (′=(2)′=2,,则过点(则切线方程为,=)的切线斜率为2解析 -kkkkk a-,)k 2axyaa -2,令(=0,得-)=kkk 11axaa .==,即∴ kkk 1+221qaa =的等比数列,=16故{,}是 n 121n 1-aaaa 21. 16+即4=16×(),∴++1+== n 51321078.6161行行5个奇数,第解析 由数表知,第一行1个奇数,第3行3个奇数,第562×31个奇数,005009是第1 =+3+5+…+61=961个奇数.而2 个奇数,前61行用去12ji 107.=63故应是第63行第44个数,即++44=11??x ??xffa …………………………………………………(.)(1)===9.解 (1)∵,∴ ??33)(1分1cafc =(1)-,=- 132ccfaf ]-[=-(1)-,=[(2)-] 292cfafc (2)-;-[=[](3)-=-] 3274281a 122caa -,=={又数列=-}成等比数列,=n 1a 3233-27c (2=1∴;……………………………………………………………………………………) 分a 121??2n 1-??aq =-公比==,× n??a 33311??n *??n )∈N (3;=-2×分……………………………………………………………………,??3()()SSSSSS -=∵+-nn 1-nnnn 1--1SSn >2),……………………………………………………………………(4=分+() nn 1-bSSS =1. ->0,>0,∴又nnnn 1-S }构成一个首项为1、公差为{1的等差数列, 数列n 2nSnSn .=(…………………………………………………………-1)×1=,(6=1+nn 分)22nnSnbSn 21-;=(=-当≥2,=--1)nnn 1-n 1又当=时,也适合上式, 8*nnb (8………………………………………………………………………N 1,∴.=2∈-n) 分1111T ++…+(2)+= n bbbbbbbbnn 134213+21111+++…+= nn +1×33×55×7-11111111????????????---1+…+=++??????73553222n11111????????--1(12==.……………………………………………nnn????n1+2+-2121122+2分)n1 0001 000nT>由,=>,得n n12 009+921 000T>∴满足112.…………………………………………………(14的最小正整数为n2 009分)nA(万元),解设乙企业仍按现状生产至第技术改造后生个月所带来的总收益为10.n nB(万元).依题意得产至第个月所带来的总收益为n Ann+1)]+…+(2-[3+5=45n2nn,………………………………………………………………………………(5=43分-)3????5????116-????2nB=+时,当≥5n31-23??4??nn-594,………………………………………………………40016=81((10-5)-??2分)2nBAnn-594,+≥5时,38-=∴当nn22nnnn≥12,,解得+3819)-594>0,即(令>955+∴至少经过12个月,改造后的乙企业的累计总收益多于仍按现状生产所带来的总收益.……………………………………………………………………………………………(14分) xny=1,解令,= 11.(1)1fnfnf(1)(=+1)=得到)·(2fn),…………………………………………………………(2分()11fn)}是首项为,公比为∴{的等比数列,( 221n fn)=()(.………………………………………………………………………………即(52分) Saaaa,+…++(2)证明记=+nn3121n anfnn·()=)·=(∵,……………………………………………………………………n2(6分)1111n32Sn×(),+3×()+…+∴=+2×()n2222111111nn+4231nnS,×() )))=(+2×()+3×(+…+(-1)×(+n222222 911111nn1+2nS-(),×(两式相减得)=+()+…+n2222211nn1-nS<2.)-)整理得(=2-(n22aaaa)∴<2.+………………………………………………………………+(9+…+分n312nf+1n nbnf=(9,而-(3)解∵())=()n nf21n1+2n-9n)=-.…………………………………………………………………(11=(921n2分)nbnb=0;时,=9 当时,≤8;当>0nn nb<0,>9时,当n nS取到最大值.………………………………………………………(14分时,或∴=89) n1011。
【苏教版】【步步高】2014届高三数学(理)大一轮复习练习6.4数列求和
6.4 数列求和一、填空题1.在公比为整数的等比数列{}中,如果那么该数列的前8项和=________.解析 q=或q=2,而Z,∴.∴.答案 5102.数列11×3,12×4,13×5,…,1n n +,…的前n项和S n=________.解析∵1n n +=12⎝⎛⎭⎪⎫1n-1n+2,∴S n=121-13+12-14+…+1n-1n+2=121+12-1n+1-1n+2=34-12n+2-12n+4.答案34-12n+2-12n+43.在等比数列{a n}中,a1=12,a4=-4,则公比q=________;|a1|+|a2|+…+|a n|=________.解析∵a4a1=q3=-8,∴q=-2.∴|a1|+|a2|+…+|a n|=12-2n1-2=2n-1-12.答案-2 2n-1-1 24.数列{}的前n项和为若则=________.解析∵∴….答案5.等比数列{a n}的前n项和S n=2n-1,则a21+a22+…+a2n=________. 解析当n=1时,a1=S1=1,当n≥2时,a n=S n-S n-1=2n-1-(2n-1-1)=2n-1,又∵a1=1适合上式.∴a n=2n-1,∴a2n=4n-1.∴数列{a2n}是以a21=1为首项,以4为公比的等比数列.∴a21+a22+…+a 2n =-4n1-4=13(4n-1).答案13(4n-1)6.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=________. 解析 设b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列, 所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10 =(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15. 答案 157.已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n =________. 解析 ∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1.令n +1-1=10,得n =120. 答案 1208.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60.则{a n +b n }的前20项的和为________.解析 由题意知{a n +b n }也为等差数列,所以{a n +b n }的前20项和为:S 20=a 1+b 1+a 20+b 202=+7+2=720.答案 7209.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和S n =________.解析 设等比数列{a n }的公比为q ,则a 4a 1=q 3=27,解得q =3.所以a n =a 1q n -1=3×3n -1=3n ,故b n =log 3a n =n , 所以1b n b n +1=1nn +=1n -1n +1. 则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.答案n n +110.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前5项和为________.解析 设数列{a n }的公比为q .由题意可知q ≠1,且-q 31-q=1-q 61-q, 解得q =2,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以1为首项,12为公比的等比数列,由求和公式可得S 5=3116. 答案311611.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为________. 解析 a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1, 则T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=12⎝⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n .答案 23⎝⎛⎭⎪⎫1-14n12.在等差数列{}中 008,其前n 项的和为.若则=________.解析 ∵=d=2.∴ 2=-2 008. 答案 -2 00813.等差数列{a n }的公差不为零,a 4=7,a 1,a 2,a 5成等比数列,数列{T n }满足条件T n =a 2+a 4+a 8+…+a 2n ,则T n =________.解析 设{a n }的公差为d ≠0,由a 1,a 2,a 5成等比数列,得a 22=a 1a 5, 即(7-2d )2=(7-3d )(7+d ) 所以d =2或d =0(舍去). 所以a n =7+(n -4)×2=2n -1. 又a 2n =2·2n -1=2n +1-1,故T n =(22-1)+(23-1)+(24-1)+…+(2n +1-1)=(22+23+…+2n +1)-n =2n +2-n -4. 答案 2n +2-n -4 二、解答题14.已知{a n }为等差数列,且a 3=-6,a 6=0. (1)求{a n }的通项公式;(2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式. 解析 (1)设等差数列{a n }的公差为d . 因为a 3=-6,a 6=0, 所以⎩⎨⎧a 1+2d =-6,a 1+5d =0.解得a 1=-10,d =2.所以a n =-10+(n -1)·2=2n -12. (2)设等比数列{b n }的公比为q . 因为b 2=a 1+a 2+a 3=-24,b 1=-8, 所以-8q =-24,即q =3. 所以{b n }的前n 项和公式为S n =b 1-q n 1-q=4(1-3n ).15.设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0.(1)求{a n }的通项;(2)求{nS n }的前n 项和T n .解析 (1)由210S 30-(210+1)S 20+S 10=0得210(S 30-S 20)=S 20-S 10, 即210(a 21+a 22+…+a 30)=a 11+a 12+…+a 20,可得210·q 10(a 11+a 12+…+a 20)=a 11+a 12+…+a 20.因为a n >0,所以210q 10=1,解得q =12,因而a n =a 1q n -1=12n ,n =1,2,….(2)因为{a n }是首项a 1=12、公比q =12的等比数列,故S n =12⎝ ⎛⎭⎪⎫1-12n 1-12=1-12n ,nS n =n -n2n .则数列{nS n }的前n 项和T n =(1+2+…+n )-⎝ ⎛⎭⎪⎫12+222+…+n 2n ,T n 2=12(1+2+…+n )-⎝ ⎛⎭⎪⎫122+223+…+n -12n +n 2n +1.两式相减,得T n 2=12(1+2+…+n )-⎝ ⎛⎭⎪⎫12+122+…+12n +n 2n +1=n n +4-12⎝ ⎛⎭⎪⎫1-12n 1-12+n2n +1,即T n =n n +2+12n -1+n 2n -2.16.已知首项不为零的数列{a n }的前n 项和为S n ,若对任意的r ,t ∈N *,都有 S r S t =⎝ ⎛⎭⎪⎫r t 2. (1)判断{a n }是否是等差数列,并证明你的结论;(2)若a 1=1,b 1=1,数列{b n }的第n 项是数列{a n }的第b n -1项(n ≥2),求b n ; (3)求和T n =a 1b 1+a 2b 2+…+a n b n . 解析 (1){a n }是等差数列. 证明如下:因为a 1=S 1≠0,令t =1,r =n ,则由S r S t =⎝ ⎛⎭⎪⎫r t 2,得S nS 1=n 2,即S n =a 1n 2,所以当n ≥2时,a n =S n -S n -1=(2n -1)a 1,且n =1时此式也成立, 所以a n +1-a n =2a 1(n ∈N *),即{a n }是以a 1为首项,2a 1为公差的等差数列. (2)当a 1=1时,由(1)知a n =a 1(2n -1)=2n -1, 依题意,当n ≥2时,b n =ab n -1=2b n -1-1, 所以b n -1=2(b n -1-1),又b 1-1=2,所以{b n -1}是以2为首项,2为公比的等比数列,所以b n -1 =2·2n -1,即b n =2n +1.(3)因为a n b n =(2n -1)(2n +1)=(2n -1)·2n +(2n -1)T n =[1·2+3·22+…+(2n -1)·2n ]+[1+3+…+(2n -1)], 即T n =[1·2+3·22+…+(2n -1)·2n ]+n 2,① 2T n =[1·22+3·23+…+(2n -1)·2n +1]+2n 2,②②-①,得T n =(2n -3)·2n +1+n 2+6.17.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13. (1)求{a n },{b n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和S n .解析 (1)设{a n }的公差为d ,{b n }的公比为q ,则依题意有q >0且⎩⎨⎧1+2d +q 4=21,1+4d +q 2=13,解得⎩⎨⎧d =2,q =2.所以a n =1+(n -1)d =2n -1,b n =q n -1=2n -1. (2)a n b n =2n -12n -1,S n =1+321+522+…+2n -32n -2+2n -12n -1,①2S n =2+3+52+…+2n -32n -3+2n -12n -2.②②-①,得S n =2+2+22+222+…+22n -2-2n -12n -1=2+2×⎝ ⎛⎭⎪⎫1+12+122+…+12n -2-2n -12n -1=2+2×1-12n -11-12-2n -12n -1=6-2n +32n -1.18.在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列.(1)求数列{a n }的通项公式;(2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n .解析 (1)设{a n }公比为q ,由题意,得q >0,且⎩⎨⎧a 2=2a 1+3,3a 2+5a 3=2a 4,即⎩⎨⎧a 1q -=3,2q 2-5q -3=0.解得⎩⎨⎧a 1=3,q =3或⎩⎪⎨⎪⎧a 1=-65,q =-12(舍去).所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *. (2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n . 所以S n =1·3+2·32+3·33+…+n ·3n . 所以3S n =1·32+2·33+3·34+…+n ·3n +1 两式相减,得2S n =-3-(32+33+…+3n )+n ·3n +1 =-(3+32+33+…+3n )+n ·3n +1 =--3n 1-3+n ·3n +1=3+n -n +12.所以数列{a n b n }的前n 项和为S n =3+n -n +14.。
【步步高】高考数学一轮复习第六章数列数列求和文
【步步高】(江苏专用)2017版高考数学一轮复习 第六章 数列 6.4数列求和 文求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式S n =n a 1+a n 2=na 1+n n -12d .②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1;(ⅱ)当q ≠1时,S n =a 11-q n 1-q =a 1-a n q 1-q.(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. 常见的裂项公式 ①1n n +1=1n -1n +1;②12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( √ ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ ) (3)求S n =a +2a 2+3a 3+…+na n之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )1.(教材改编)数列{a n }的前n 项和为S n ,若a n =1nn +1,则S 5=________. 答案 56解析 ∵a n =1nn +1=1n -1n +1, ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56.2.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=________.答案 -200解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.3.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为________. 答案 75解析 因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.4.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和S n =____________. 答案 2n +1-2+n 2解析 S n =21-2n1-2+n 1+2n -12=2n +1-2+n 2.5.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 017=________.答案 1 008解析 因为数列a n =n cosn π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2. ∴S 2 017=S 2 016+a 2 017 =2 0164×2+2 017·cos 2 0172π =1 008.题型一 分组转化法求和 例1 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)na n ,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1 =n 2+n2-n -12+n -12=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)nn .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ). 记A =21+22+ (22),B =-1+2-3+4-…+2n , 则A =21-22n1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.引申探究例1(2)中,求数列{b n }的前n 项和T n . 解 由(1)知b n =2n+(-1)n·n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n2-2.当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n=2n +1-n 2-52. ∴T n=⎩⎪⎨⎪⎧2n +1+n2-2, n 为偶数,2n +1-n 2-52, n 为奇数.思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.已知数列{a n }的通项公式是a n =2·3n -1+(-1)n·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n . 解 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3, 当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n-n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.题型二 错位相减法求和例2 (2015·湖北)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .解 (1)由题意得⎩⎪⎨⎪⎧10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2,或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1,或⎩⎪⎨⎪⎧a n=192n +79,b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,① 12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1.思维升华 用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.已知数列{a n }的各项均为正数,S n 是数列{a n }的前n 项和,且4S n =a 2n +2a n -3. (1)求数列{a n }的通项公式;(2)已知b n =2n,求T n =a 1b 1+a 2b 2+…+a n b n 的值. 解 (1)当n =1时,a 1=S 1=14a 21+12a 1-34.解得a 1=3.又∵4S n =a 2n +2a n -3,① 当n ≥2时,4S n -1=a 2n -1+2a n -1-3.② ①-②,得4a n =a 2n -a 2n -1+2(a n -a n -1), 即a 2n -a 2n -1-2(a n +a n -1)=0. ∴(a n +a n -1)(a n -a n -1-2)=0. ∵a n +a n -1>0,∴a n -a n -1=2 (n ≥2),∴数列{a n }是以3为首项,2为公差的等差数列. ∴a n =3+2(n -1)=2n +1.(2)T n =3×21+5×22+…+(2n +1)·2n,③ 2T n =3×22+5×23+…+(2n -1)·2n +(2n +1)2n +1,④④-③,得T n=-3×21-2(22+23+…+2n)+(2n+1)2n+1=-6+8-2·2n+1+(2n+1)·2n+1=(2n-1)2n+1+2.题型三裂项相消法求和命题点1 形如a n=1n n+k型例3 设各项均为正数的数列{a n}的前n项和为S n,且S n满足S2n-(n2+n-3)S n-3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a1a1+1+1a2a2+1+…+1a n a n+1<13.(1)解由题意知,S2n-(n2+n-3)S n-3(n2+n)=0,n∈N*.令n=1,有S21-(12+1-3)S1-3×(12+1)=0,可得S21+S1-6=0,解得S1=-3或2,即a1=-3或2,又a n为正数,所以a1=2.(2)解由S2n-(n2+n-3)S n-3(n2+n)=0,n∈N*可得,(S n+3)(S n-n2-n)=0,则S n=n2+n或S n=-3,又数列{a n}的各项均为正数,所以S n=n2+n,S n-1=(n-1)2+(n-1).所以当n≥2时,a n=S n-S n-1=n2+n-[(n-1)2+(n-1)]=2n.又a1=2=2×1,所以a n=2n.(3)证明当n=1时,1a1a1+1=12×3=16<13成立;当n≥2时,1a n a n+1=12n2n+1<12n-12n+1=12⎝⎛⎭⎪⎫12n-1-12n+1,所以1a1a1+1+1a2a2+1+…+1a n a n+1<16+12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫13-15+…+⎝⎛⎭⎪⎫12n-1-12n+1=16+12⎝⎛⎭⎪⎫13-12n+1<16+16=13.所以对一切正整数n , 有1a 1a 1+1+1a 2a 2+1+…+1a na n +1<13.命题点2 形如a n =1n +n +k型例4 已知函数f (x )=x a的图象过点(4,2),令a n =1f n +1+f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=________. 答案2 018-1解析 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12.∴a n =1f n +1+f n=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018- 2 017)= 2 018-1.思维升华 (1)用裂项相消法求和时,要对通项进行变换,如:1n +n +k =1k(n +k -n ),1n n +k =1k (1n -1n +k )裂项后可以产生连续可以相互抵消的项.(2)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.在数列{a n }中,a 1=1,当n ≥2时,其前n项和S n 满足S 2n =a n ⎝ ⎛⎭⎪⎫S n -12.(1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .解 (1)∵S 2n =a n ⎝ ⎛⎭⎪⎫S n -12,a n =S n -S n -1 (n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n ,① 由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.四审结构定方案典例 (14分)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .(1)S n =-12n 2+nk ――→S n 是关于n的二次函数n =k 时,S n 最大――→根据S n 结构特征确定k 的值k =4;S n =-12n 2+4n ――→根据S n求a n a n =92-n (2)9-2a n 2n=n 2n -1――→根据数列结构特征确定求和方法 T n =1+22+322+…+n -12n -2+n 2n -1――→错位相减法求和计算可得T n 规范解答解 (1)当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[4分]当n ≥2时,a n =S n -S n -1=92-n .当n =1时,上式也成立, 综上,a n =92-n .[7分](2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,①2T n =2+2+32+…+n -12n -3+n2n -2.②[9分] ②-①得:2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n 2n -1=4-n +22n -1.[12分]故T n =4-n +22n -1.[14分]温馨提醒 (1)根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据{9-2a n2n }的结构特征确定利用错位相减法求T n .在审题时,要通过题目中数式的结构特征判定解题方案;(2)利用S n 求a n 时不要忽视n =1的情况;错位相减时不要漏项或算错项数; (3)可以通过n =1,2时的特殊情况对结论进行验证.[方法与技巧]非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法、并项法、数列的周期性等来求和. [失误与防范]1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.A 组 专项基础训练 (时间:40分钟)1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于____________.答案 n 2+1-12n解析 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .2.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为________. 答案 110解析 通过a 7是a 3与a 9的等比中项,公差为-2,所以a 27=a 3·a 9,所以a 27=(a 7+8)(a 7-4),所以a 7=8,所以a 1=20,所以S 10=10×20+10×92×(-2)=110.3.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________. 答案 -100解析 若n 为偶数,则a n =f (n )+f (n +1)=n 2-(n +1)2=-(2n +1),所以a n 是首项为a 2=-5,公差为-4的等差数列;若n 为奇数,则a n =f (n )+f (n +1)=-n 2+(n +1)2=2n +1,所以a n 是首项为a 1=3,公差为4的等差数列.所以a 1+a 2+a 3+…+a 100=(a 1+a 3+…+a 99)+(a 2+a 4+…+a 100)=50×3+50×492×4+50×(-5)-50×492×4=-100.4.设数列{a n }的前n 项和为S n ,若a 1=2,且对任意正整数k ,l ,都有a k +l =a k +a l ,则S 8的值是________. 答案 72解析 因为a 1=2,且对任意正整数k ,l ,都有a k +l =a k +a l ,令k =n ,l =1,得a n +1=a n +a 1,即a n +1=a n +2,所以{a n }是首项为2,公差为2的等差数列,从而有a n =2n ,所以S n =n (n+1),故S 8=72.5.已知函数f (n )=⎩⎪⎨⎪⎧n 2, 当n 为奇数时,-n 2, 当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________.答案 100解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100) =-(1+2+…+99+100)+(2+3+…+100+101) =-50×101+50×103=100.6.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 答案 60解析 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60.7.整数数列{a n }满足a n +2=a n +1-a n (n ∈N *),若此数列的前800项的和是2 013,前813项的和是2 000,则其前2 015项的和为________. 答案 -13解析 由a n +2=a n +1-a n ,得a n +2=a n -a n -1-a n =-a n -1,易得该数列是周期为6的数列,且a n +2+a n -1=0,S 800=a 1+a 2=2 013,S 813=a 1+a 2+a 3=2 000,∴⎩⎪⎨⎪⎧a 3=a 2-a 1=-13,a 2+a 1=2 013,∴⎩⎪⎨⎪⎧a 1=1 013,a 2=1 000,∴⎩⎪⎨⎪⎧a 3=-13,a 4=-1 013,依次可得a 5=-1 000,a 6=13,由此可知a n +1+a n +2+a n +3+a n +4+a n +5+a n +6=0, ∴S 2 015=S 5=-13.8.已知数列{a n }满足:a 1=12,a n +1=a 2n +a n ,用[x ]表示不超过x 的最大整数,则⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1+…+1a 2 015+1的值等于________. 答案 1解析 由a n +1=a 2n +a n ,得1a n +1=1a na n +1=1a n -1a n +1,所以1a n +1=1a n -1a n +1,所以1a 1+1+1a 2+1+…+1a 2 015+1=1a 1-1a 2+1a 2-1a 3+…+1a 2 015-1a 2 016=2-1a 2 016.又a n +1=a 2n +a n ,所以a n +1-a n =a 2n >0,所以{a n }是正项递增的数列.又因为a 3=2116>1,所以a 2 016>1,即0<1a 2 016<1,所以⎣⎢⎡⎦⎥⎤2-1a 2 016=1.9.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列. (1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n . 解 (1)∵{a n -1}是等比数列且a 1-1=2,a 2-1=4,a 2-1a 1-1=2,∴a n -1=2·2n -1=2n ,∴a n =2n+1.(2)b n =na n =n ·2n+n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n)+(1+2+3+…+n ). 令T =2+2×22+3×23+…+n ·2n, 则2T =22+2×23+3×24+…+n ·2n +1.两式相减,得-T =2+22+23+ (2)-n ·2n +1=21-2n1-2-n ·2n +1,∴T =2(1-2n)+n ·2n +1=2+(n -1)·2n +1.∵1+2+3+…+n =n n +12,∴T n =(n -1)·2n +1+n 2+n +42.10.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. (1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0, 得[S n -(n 2+n )](S n +1)=0, 由于{a n }是正项数列,所以S n +1>0. 所以S n =n 2+n (n ∈N *).n ≥2时,a n =S n -S n -1=2n , n =1时,a 1=S 1=2适合上式.所以a n =2n (n ∈N *). (2)证明 由a n =2n (n ∈N *), 得b n =n +1n +22a 2n =n +14n 2n +22=116⎣⎢⎡⎦⎥⎤1n2-1n +22, T n =116⎣⎢⎡⎝⎛⎭⎪⎫1-132+⎝⎛⎭⎪⎫122-142+⎝⎛⎭⎪⎫132-152+…⎦⎥⎤+⎝⎛⎭⎪⎫1n -12-1n +12+⎝⎛⎭⎪⎫1n 2-1n +22=116⎣⎢⎡⎦⎥⎤1+122-1n +12-1n +22<116⎝ ⎛⎭⎪⎫1+122 =564(n ∈N *). 即对于任意的n ∈N *,都有T n <564.B 组 专项能力提升 (时间:20分钟)11.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n =____________. 答案4nn +1解析 ∵a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4nn +1=4⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=4⎣⎢⎡⎦⎥⎤1-1n +1=4nn +1. 12.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 014项之和S 2 014=________. 答案 2 010解析 由已知得a n =a n -1+a n +1(n ≥2), ∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008, -2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0. ∵2 014=6×335+4,∴S 2 014=S 4=2 008+2 009+1+(-2 008)=2 010.13.数列{a n }是等差数列,数列{b n }满足b n =a n a n +1a n +2(n ∈N *),设S n 为{b n }的前n 项和.若a 12=38a 5>0,则当S n 取得最大值时n 的值为________.答案 16解析 设{a n }的公差为d ,由a 12=38a 5>0,得a 1=-765d ,d <0,所以a n =⎝ ⎛⎭⎪⎫n -815d ,从而可知当1≤n ≤16时,a n >0; 当n ≥17时,a n <0.从而b 1>b 2>…>b 14>0>b 17>b 18>…,b 15=a 15a 16a 17<0,b 16=a 16a 17a 18>0,故S 14>S 13>…>S 1,S 14>S 15,S 15<S 16,S 16>S 17>S 18>….因为a 15=-65d >0,a 18=95d <0,所以a 15+a 18=-65d +95d =35d <0,所以b 15+b 16=a 16a 17(a 15+a 18)>0, 所以S 16>S 14,故当S n 取得最大值时n =16.14.在数列{a n }中,a n >0,a 1=12,如果a n +1是1与2a n a n +1+14-a 2n 的等比中项,那么a 1+a 222+a 332+a 442+…+a 1001002的值是________. 答案100101解析 由题意可得,a 2n +1=2a n a n +1+14-a 2n⇒(2a n +1+a n a n +1+1)(2a n +1-a n a n +1-1)=0,又a n >0,∴2a n +1-a n a n +1-1=0,又2-a n ≠0,∴a n +1=12-a n ⇒a n +1-1=a n -12-a n ,又可知a n ≠1,∴1a n +1-1=1a n -1-1, ∴⎩⎨⎧⎭⎬⎫1a n -1是以-2为首项,-1为公差的等差数列, ∴1a n -1=-2-(n -1)=-n -1⇒a n =n n +1⇒a nn 2=1n n +1=1n -1n +1,∴a 1+a 222+a 332+a 442+…+a 1001002=1-12+12-13+13-14+14-15+…+1100-1101=100101. 15.(2015·山东)已知数列{a n }是首项为正数的等差数列,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和为n2n +1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 解 (1)设数列{a n }的公差为d , 令n =1,得1a 1a 2=13, 所以a 1a 2=3. 令n =2,得1a 1a 2+1a 2a 3=25, 所以a 2a 3=15.解得a 1=1,d =2,所以a n =2n -1. 经检验,符合题意. (2)由(1)知b n =2n ·22n -1=n ·4n,所以T n =1·41+2·42+…+n ·4n, 所以4T n =1·42+2·43+…+n ·4n +1,两式相减,得-3T n =41+42+ (4)-n ·4n +1=41-4n1-4-n ·4n +1=1-3n 3×4n +1-43.所以T n =3n -19×4n +1+49=4+3n -14n +19.。
【步步高】高考数学一轮复习 2.2.3 等差数列的前n项和(二)备考练习 苏教版
2.2.3 等差数列的前n 项和(二)一、基础过关1.数列{a n }的前n 项和为S n ,且S n =n 2-n (n ∈N *),则通项a n =________.2.已知数列{a n }的前n 项和S n =n 3,则a 5+a 6的值为________.3.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5=________. 4.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=________. 5.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 为________.6.设S n 为等差数列{a n }的前n 项和,若a 4=1,S 5=10,则当S n 取得最大值时,n 的值为________.7.已知数列{a n }的前n 项和公式为S n =2n 2-30n .(1)求数列{a n }的通项公式a n ;(2)求S n 的最小值及对应的n 值.8.设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.二、能力提升9.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是________.10.数列{a n }的前n 项和S n =3n -2n 2 (n ∈N *),则当n ≥2时,S n 、na 1、na n 从小到大的排列顺序是__________.11.设数列{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论正确的是______.(填上所有正确结论的序号) ①d <0②a 7=0③S 9>S 5④S 6与S 7均为S n 的最大值12.数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0 (n ∈N *).(1)求数列{a n }的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n .三、探究与拓展13.设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的取值范围;(2)问前几项的和最大,并说明理由.答案1.2n -2 2.152 3.1 4.310 5.8 6.4或5 7.解 (1)∵S n =2n 2-30n ,∴当n =1时,a 1=S 1=-28. 当n ≥2时,a n =S n -S n -1=(2n 2-30n )-[2(n -1)2-30(n -1)]=4n -32. ∴a n =4n -32,n ∈N *.(2)方法一 S n =2n 2-30n=2(n -152)2-2252∴当n =7或8时,S n 最小,且最小值为S 7=S 8=-112. 方法二 ∵a n =4n -32, ∴a 1<a 2<…<a 7<0,a 8=0, 当n ≥9时,a n >0. ∴当n =7或8时,S n 最小,且最小值为S 7=S 8=-112.8.解 (1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧ a 1=9,d =-2, 所以数列{a n }的通项公式为a n =11-2n .(2)由(1)知,S n =na 1+n n -2d =10n -n 2. 因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.9.4 00610.na n <S n <na 111.①②④12.解 (1)∵a n +2-2a n +1+a n =0.∴a n +2-a n +1=a n +1-a n =…=a 2-a 1. ∴{a n }是等差数列且a 1=8,a 4=2, ∴d =-2,a n =a 1+(n -1)d =10-2n .(2)∵a n =10-2n ,令a n =0,得n =5. 当n >5时,a n <0;当n =5时,a n =0; 当n <5时,a n >0.∴当n >5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =S 5-(S n -S 5)=2S 5-S n =2·(9×5-25)-9n +n 2 =n 2-9n +40,当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =9n -n 2.∴S n =⎩⎪⎨⎪⎧ 9n -n 2 n n 2-9n +n .13.解 (1)根据题意,得⎩⎪⎨⎪⎧12a 1+12×112d >0,13a 1+13×122d <0,a 1+2d =12, 整理得:⎩⎪⎨⎪⎧ 2a 1+11d >0,a 1+6d <0,a 1+2d =12.解得:-247<d <-3. (2)∵d <0,∴a 1>a 2>a 3>…>a 12>a 13>…,而S 13=13a 1+a 132=13a 7<0, ∴a 7<0.又S 12=12a 1+a 122=6(a 1+a 12)=6(a 6+a 7)>0, ∴a 6>0.∴数列{a n }的前6项和S 6最大.。
【2022高考数学一轮复习(步步高)】第六章 §6.2 等差数列及其前n项和
§6.2 等差数列及其前n 项和考试要求 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系.1.等差数列的有关概念 (1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示,定义表达式为a n -a n -1=d (常数)(n ≥2,n ∈N *)或a n +1-a n =d (常数)(n ∈N *). (2)等差中项若三个数,a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且有A =a +b2.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d 或S n =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (5)S 2n -1=(2n -1)a n .(6)等差数列{a n }的前n 项和为S n ,⎩⎨⎧⎭⎬⎫S n n 为等差数列.微思考1.等差数列的前n 项和S n 是项数n 的二次函数吗?提示 不一定.当公差d =0时,S n =na 1,不是关于n 的二次函数.2.若数列的前n 项和为S n =An 2+Bn +C (A ≠0),则这个数列一定是等差数列吗? 提示 不一定.当C =0时是等差数列.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)等差数列{a n }的单调性是由公差d 决定的.( √ )(2)若一个数列每一项与它的前一项的差都是常数,则这个数列是等差数列.( × ) (3)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ )(4)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ ) 题组二 教材改编2.已知在等差数列{a n }中,a 2=-3,a 3=-5,则a 9=________. 答案 -17解析 d =a 3-a 2=-2,∴a 9=a 3+6d =-5+6×(-2)=-17. 3.已知在等差数列{a n }中,a 4+a 8=20,a 7=12,则d =________. 答案 2解析 ∵a 4+a 8=20,∴a 1+3d +a 1+7d =20, 即a 1+5d =10,① a 7=a 1+6d =12,② ②-①得d =2.4.已知{a n }是等差数列,其前n 项和为S n ,若a 3=2,且S 6=30,则S 9=________. 答案 126解析 由已知可得⎩⎪⎨⎪⎧ a 1+2d =2,2a 1+5d =10,解得⎩⎪⎨⎪⎧a 1=-10,d =6.∴S 9=9a 1+9×82d =-90+36×6=126.题组三 易错自纠5.(多选)设{a n }是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论正确的是( ) A .d <0 B .a 7=0 C .S 9>S 5D .S 6与S 7均为S n 的最大值 答案 ABD解析 S 6=S 5+a 6>S 5,则a 6>0,S 7=S 6+a 7=S 6,则a 7=0,则d =a 7-a 6<0,S 8=S 7+a 8<S 7,a 8<0,则a 9<0,又a 6+a 8=a 5+a 9=2a 7=0,∴S 5>S 9,由a 7=0,a 6>0知S 6,S 7是S n 中的最大值. 从而ABD 均正确.6.在等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使数列{a n }的前n 项和S n 取最大值的正整数n 的值是________. 答案 5或6解析 ∵|a 3|=|a 9|,∴|a 1+2d |=|a 1+8d |, 可得a 1=-5d ,∴a 6=a 1+5d =0,且a 1>0,∴a 5>0,故S n 取最大值时n 的值为5或6.题型一 等差数列基本量的运算1.(多选)(2019·全国Ⅰ改编)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则下列选项正确的是( ) A .a 2+a 3=0 B .a n =2n -5 C .S n =n (n -4) D .d =-2答案 ABC解析 S 4=4×(a 1+a 4)2=0,∴a 1+a 4=a 2+a 3=0,A 正确;a 5=a 1+4d =5,① a 1+a 4=a 1+a 1+3d =0,②联立①②得⎩⎪⎨⎪⎧d =2,a 1=-3,∴a n =-3+(n -1)×2=2n -5,B 正确,D 错误;S n =-3n +n (n -1)2×2=n 2-4n ,C 正确,故选ABC.2.(2020·全国Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________. 答案 25解析 设等差数列{a n }的公差为d , 则a 2+a 6=2a 1+6d =2. 因为a 1=-2,所以d =1.所以S 10=10×(-2)+10×92×1=25.3.(2020·上海)已知{a n }是公差不为零的等差数列,且a 1+a 10=a 9,则a 1+a 2+…+a 9a 10=________.答案278解析 ∵a 1+a 10=a 9,∴a 1+a 1+9d =a 1+8d , 即a 1=-d ,∴a 1+a 2+…+a 9=S 9=9a 1+9×82d =27d , a 10=a 1+9d =8d ,∴a 1+a 2+…+a 9a 10=278.4.(2020·新高考全国Ⅰ)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________. 答案 3n 2-2n解析 方法一 (观察归纳法)数列{2n -1}的各项为1,3,5,7,9,11,13,…; 数列{3n -2}的各项为1,4,7,10,13,….观察归纳可知,两个数列的公共项为1,7,13,…,是首项为1,公差为6的等差数列, 则a n =1+6(n -1)=6n -5.故前n 项和为S n =n (a 1+a n )2=n (1+6n -5)2=3n 2-2n .方法二 (引入参变量法)令b n =2n -1,c m =3m -2,b n =c m ,则2n -1=3m -2,即3m =2n +1,m 必为奇数. 令m =2t -1,则n =3t -2(t =1,2,3,…). a t =b 3t -2=c 2t -1=6t -5,即a n =6n -5. 以下同方法一.思维升华 (1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,n ,d ,a n ,S n ,知道其中三个就能求出另外两个(简称“知三求二”).(2)确定等差数列的关键是求出两个最基本的量,即首项a 1和公差d .题型二 等差数列的判定与证明例1 (2020·烟台模拟)已知在数列{a n }中,a 1=1,a n =2a n -1+1(n ≥2,n ∈N *). (1)记b n =log 2(a n +1),判断{b n }是否为等差数列,并说明理由; (2)求数列{a n }的通项公式.解 (1){b n }是等差数列,理由如下:b 1=log 2(a 1+1)=log 22=1, 当n ≥2时,b n -b n -1=log 2(a n +1)-log 2(a n -1+1)=log 2a n +1a n -1+1=log 22a n -1+2a n -1+1=1,∴{b n }是以1为首项,1为公差的等差数列.(2)由(1)知,b n =1+(n -1)×1=n , ∴a n +1=2n b=2n ,∴a n =2n -1.若本例中已知条件改为“a 1=2,(n +2)a n =(n +1)a n +1-2(n 2+3n +2).”试判断⎩⎨⎧⎭⎬⎫a n n +1是否为等差数列,并说明理由. 解 数列⎩⎨⎧⎭⎬⎫a n n +1为等差数列,理由如下:由已知得,(n +2)a n =(n +1)a n +1-2(n +2)(n +1),即a nn +1=a n +1n +2-2,∴a n +1n +2-a n n +1=2,首项为a 11+1=1, ∴⎩⎨⎧⎭⎬⎫a n n +1是以1为首项,公差d =2的等差数列.思维升华 判断数列{a n }是等差数列的常用方法 (1)定义法:对任意n ∈N *,a n +1-a n 是同一常数.(2)等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1. (3)通项公式法:对任意n ∈N *,都满足a n =pn +q (p ,q 为常数). (4)前n 项和公式法:对任意n ∈N *,都满足S n =An 2+Bn (A ,B 为常数).跟踪训练1 记首项为1的数列{a n }的前n 项和为S n ,且当n ≥2时,a n ·(2S n -1)=2S 2n .(1)证明:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,a n ·(2S n -1)=2S 2n ,即(S n -S n -1)·(2S n -1)=2S 2n ,即2S 2n -S n -2S n ·S n -1+S n -1=2S 2n ,故-S n +S n -1=2S n ·S n -1,故1S n -1S n -1=2,易知1S 1=1a 1=1,故⎩⎨⎧⎭⎬⎫1S n 是首项为1,公差为2的等差数列.(2)解 由(1)可知,1S n =2n -1,故S n =12n -1,所以a n =S n -S n -1=12n -1-12n -3=-2(2n -1)(2n -3)(n ≥2),当n =1时,上式不成立, 所以a n =⎩⎪⎨⎪⎧1,n =1,-2(2n -1)(2n -3),n ≥2.题型三 等差数列性质的应用命题点1 等差数列项的性质例2 (1)(2021·淄博模拟)设S n 为等差数列{a n }的前n 项和,且4+a 5=a 6+a 4,则S 9等于( ) A .72 B .36 C .18 D .9 答案 B解析 ∵a 6+a 4=2a 5, ∴a 5=4,∴S 9=9(a 1+a 9)2=9a 5=36.(2)(2020·临沂质检)在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为( )A .4B .6C .8D .10 答案 C解析 ∵a 2+a 4+a 6+a 8+a 10=5a 6=80, ∴a 6=16,又a 6+a 8=2a 7, ∴a 7=12a 6+12a 8,即a 7-12a 8=12a 6=8,选C.命题点2 等差数列和的性质例3 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 020,S 2 0202 020-S 2 0142 014=6,则S 2 023等于( ) A .2 023 B .-2 023 C .4 046 D .-4 046答案 C解析 ∵⎩⎨⎧⎭⎬⎫S n n 为等差数列,设公差为d ′,则S 2 0202 020-S 2 0142 014=6d ′=6,∴d ′=1, 首项为S 11=-2 020,∴S 2 0232 023=-2 020+(2 023-1)×1=2, ∴S 2 023=2 023×2=4 046,故选C.(2)(2020·全国Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3 699块B .3 474块C .3 402块D .3 339块答案 C解析 设每一层有n 环,由题意可知,从内到外每环之间构成公差为d =9,首项为a 1=9的等差数列.由等差数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=n 2d ,则9n 2=729,解得n =9,则三层共有扇面形石板S 3n =S 27=27×9+27×262×9=3 402(块).思维升华 一般地,运用等差数列的性质可以优化解题过程,但要注意性质运用的条件,等差数列的性质是解题的重要工具.跟踪训练2 (1)等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S nT n =2n -13n -2,则a 11b 6+b 10+a 5b 7+b 9的值为________. 答案 2943解析a 11b 6+b 10+a 5b 7+b 9=a 11+a 52b 8=2a 82b 8=a 8b 8,∴a 8b 8=S 2×8-1T 2×8-1=S 15T 15=2×15-13×15-2=2943. (2)设S n 为等差数列{a n }的前n 项和,若S 6=1,S 12=4,则S 18=________. 答案 9解析 在等差数列中,S 6,S 12-S 6,S 18-S 12成等差数列,∵S 6=1,S 12=4,∴1,3,S 18-4成公差为2的等差数列,即S 18-4=5,∴S 18=9.课时精练1.已知{a n }是等差数列,且a 2+a 5+a 8+a 11=48,则a 6+a 7等于( ) A .12 B .16 C .20 D .24 答案 D解析 由等差数列的性质可得a 2+a 5+a 8+a 11=2(a 6+a 7)=48,则a 6+a 7=24,故选D. 2.数列{a n }的前n 项和S n =n (2n -1),若k -l =4(k ,l ∈N *),则a k -a l 等于( ) A .4 B .8 C .16 D .32 答案 C解析 ∵S n =n (2n -1),∴数列{a n }是公差为4的等差数列, ∵k -l =4, ∴a k -a l =4×4=16. 故选C.3.已知数列{a n }满足a 1=1,a n +1=ra n +r (n ∈N *,r ∈R ,r ≠0),则“r =1”是“数列{a n }为等差数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 当r =1时,a n +1=ra n +r ⇒a n +1=a n +1, ∴数列{a n }为公差为1的等差数列,即充分性成立; ∵a n +1=ra n +r ,a 1=1,∴a 2=2r ,a 3=2r 2+r , ∴若数列{a n }为等差数列, 则4r =1+2r 2+r ,∴r =1或r =12,即必要性不成立,综上,“r =1”是“数列{a n }为等差数列”的充分不必要条件,故选A.4.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的一等人所得黄金比等级较低的九等人所得黄金( ) A .多821斤B .少821斤C .多13斤D .少13斤答案 A解析 设十等人得金从高到低依次为a 1,a 2,…,a 10, 则{a n }为等差数列,设公差为d ,则由题意可知⎩⎪⎨⎪⎧a 1+a 2+a 3=4,a 8+a 9+a 10=3,∴a 2=43,a 9=1,∴d =a 9-a 27=-121,∴a 1-a 9=-8d =821.即等级较高一等人所得黄金比等级较低的九等人所得黄金多821斤.5.(多选)等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 3+a 8+a 13是一个定值,则下列各数也为定值的有( ) A .a 7 B .a 8 C .S 15 D .S 16 答案 BC解析 由等差中项的性质可得a 3+a 8+a 13=3a 8为定值,则a 8为定值,S 15=15()a 1+a 152=15a 8为定值,但S 16=16()a 1+a 162=8()a 8+a 9不是定值.故选BC.6.(多选)已知{a n }为等差数列,其前n 项和为S n ,且2a 1+3a 3=S 6,则以下结论正确的是( ) A .a 10=0 B .S 10最小 C .S 7=S 12 D .S 19=0答案 ACD解析 2a 1+3a 3=S 6,∴2a 1+3a 1+6d =6a 1+15d , ∴a 1+9d =0,即a 10=0,A 正确; 当d <0时,S n 没有最小值,B 错误;S 12-S 7=a 8+a 9+a 10+a 11+a 12=5a 10=0,∴S 12=S 7,C 正确; S 19=(a 1+a 19)×192=19a 10=0,D 正确.故选ACD.7.若S n 是等差数列{a n }的前n 项和,且S 8-S 3=20,则S 11=________. 答案 44解析 S 8-S 3=a 4+a 5+a 6+a 7+a 8=5a 6=20, ∴a 6=4,∴S 11=11(a 1+a 11)2=11a 6=44.8.已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2 021,则m =________. 答案 1 011解析 ∵S 3=3a 1+3d ,∴3a 1+3d =a 1+4d , 即d =2,a m =a 1+(m -1)×2=2m -1=2 021, ∴m =1 011.9.已知数列{a n }的前n 项和S n 满足S n =S n -1+1(n ≥2,n ∈N *),且a 1=1,则a n =________. 答案 2n -1解析 ∵S n -S n -1=1,∴{S n }为等差数列, 又S 1=a 1=1,∴S n =n ,即S n =n 2, 当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1, 又a 1=1满足上式,∴a n =2n -1.10.(2020·河北衡水中学模拟)已知在数列{a n }中,a 6=11,且na n -(n -1)a n +1=1,则a n =________;a 2n +143n 的最小值为________.答案 2n -1 44解析 na n -(n -1)a n +1=1, 所以(n +1)a n +1-na n +2=1, 两式相减得na n -2na n +1+na n +2=0, 所以a n +a n +2=2a n +1, 所以数列{a n }为等差数列.当n =1时,由na n -(n -1)a n +1=1得a 1=1, 由a 6=11,得公差d =2, 所以a n =1+2(n -1)=2n -1,所以a 2n +143n =(2n -1)2+143n =4n +144n-4≥24n ·144n-4=44,当且仅当4n =144n,即n =6时等号成立.11.在数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0(n ∈N *). (1)求数列{a n }的通项公式; (2)设T n =|a 1|+|a 2|+…+|a n |,求T n . 解 (1)∵a n +2-2a n +1+a n =0, ∴a n +2-a n +1=a n +1-a n ,∴数列{a n }是等差数列,设其公差为d ,∵a 1=8,a 4=2,∴d =a 4-a 14-1=-2, ∴a n =a 1+(n -1)d =10-2n ,n ∈N *.(2)设数列{a n }的前n 项和为S n ,则由(1)可得,S n =8n +n (n -1)2×(-2)=9n -n 2,n ∈N *. 由(1)知a n =10-2n ,令a n =0,得n =5,∴当n >5时,a n <0,则T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n )=S 5-(S n -S 5)=2S 5-S n=2×(9×5-25)-(9n -n 2)=n 2-9n +40;当n ≤5时,a n ≥0,则T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =9n -n 2,∴T n =⎩⎪⎨⎪⎧9n -n 2,n ≤5,n ∈N *,n 2-9n +40,n ≥6,n ∈N *. 12.(2020·沈阳模拟)已知S n 是等差数列{a n }的前n 项和,S 2=2,S 3=-6.(1)求数列{a n }的通项公式及前n 项和S n ;(2)是否存在正整数n ,使S n ,S n +2+2n ,S n +3成等差数列?若存在,求出n ;若不存在,请说明理由.解 (1)∵S 2=2,S 3=-6,∴⎩⎪⎨⎪⎧ 2a 1+d =2,3a 1+3×22d =-6,解得⎩⎪⎨⎪⎧a 1=4,d =-6, ∴a n =4+(n -1)×(-6)=-6n +10,∴S n =4n +n (n -1)2×(-6)=-3n 2+7n . (2)假设存在n ,使S n ,S n +2+2n ,S n +3成等差数列,则2(S n +2+2n )=S n +S n +3,∴2[-3(n +2)2+7(n +2)+2n ]=-3n 2+7n +7(n +3)-3(n +3)2,解得n =5.13.已知数列{a n }是等差数列,若a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么S n 取得最小正值时n 等于( )A .20B .17C .19D .21答案 C解析 因为a 9+3a 11<0,所以a 9+a 11+2a 11=a 9+a 11+a 10+a 12=2(a 11+a 10)<0 ,所以a 10+a 11<0.因为a 10·a 11<0,所以由等差数列的性质和求和公式可得a 10>0,a 11<0,又可得S 19=19a 10>0,而S 20=10(a 10+a 11)<0,进而可得S n 取得最小正值时n =19.故选C.14.已知数列{a n }满足a 1=2,a 2=3,且a n +2-a n =1+(-1)n ,n ∈N *,则该数列的前9项之和为________.答案 34解析 ∵a n +2-a n =1+(-1)n ,n ∈N *,∴当n 为奇数时,a 2n +1-a 2n -1=0,则数列{a 2n -1}是常数列,a 2n -1=a 1=2;当n 为偶数时,a 2n +2-a 2n =2,则数列{a 2n }是以a 2=3为首项,2为公差的等差数列,∴a 1+a 2+…+a 9=(a 1+a 3+…+a 9)+(a 2+a 4+…+a 8)=2×5+⎝⎛⎭⎫3×4+4×32×2=34.15.(多选)设正项等差数列{a n }满足(a 1+a 10)2=2a 2a 9+20,则( )A .a 2a 9的最大值为10B .a 2+a 9的最大值为210 C.1a 22+1a 29的最大值为15D .a 42+a 49的最小值为200答案 ABD解析 因为正项等差数列{a n }满足(a 1+a 10)2=2a 2a 9+20,所以(a 2+a 9)2=2a 2a 9+20,即a 22+a 29=20.①a 2a 9≤a 22+a 292=202=10,当且仅当a 2=a 9=10时成立,故A 选项正确; ②由于⎝⎛⎭⎫a 2+a 922≤a 22+a 292=10,所以a 2+a 92≤10,a 2+a 9≤210,当且仅当a 2=a 9=10时成立,故B 选项正确;③1a 22+1a 29=a 22+a 29a 22·a 29=20a 22·a 29≥20⎝⎛⎭⎫a 22+a 2922=20102=15,当且仅当a 2=a 9=10时成立,所以1a 22+1a 29的最小值为15,故C 选项错误; ④结合①的结论,有a 42+a 49=(a 22+a 29)2-2a 22·a 29=400-2a 22·a 29≥400-2×102=200,当且仅当a 2=a 9=10时成立,故D 选项正确.16.在等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设{b n }=[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }的公差为d ,由题意有2a 1+5d =4,a 1+5d =3,解得a 1=1,d =25, 所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎡⎦⎤2n +35, 当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2<2n +35<3,b n =2; 当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4<2n +35<5,b n =4. 所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.。
高考数学一轮复习第六章数列6.4数列求和理
【步步高】(江苏专用)2017版高考数学一轮复习 第六章 数列 6.4数列求和 理求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式S n =n a 1+a n 2=na 1+n n -2d .②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1; (ⅱ)当q ≠1时,S n =a 1-qn1-q=a 1-a n q1-q. (2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. 常见的裂项公式 ①1n n +=1n -1n +1; ②1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( √ ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ ) (3)求S n =a +2a 2+3a 3+…+na n之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )1.数列{a n }的前n 项和为S n ,若a n =1n n +,则S 5=________.答案 56解析 ∵a n =1nn +=1n -1n +1, ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56.2.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=________.答案 -200解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.3.设f (x )=4x4+2,利用倒序相加法,则f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+…+f ⎝ ⎛⎭⎪⎫1011=________. 答案 5解析 当x 1+x 2=1时,f (x 1)+f (x 2)12121212121244242(44)142424(44)24x x x x x x x x x x x x ++⨯+⨯+=+==++++⨯+ 设S =f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+…+f ⎝ ⎛⎭⎪⎫1011,倒序相加有2S =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫1011+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫211+f ⎝ ⎛⎭⎪⎫911+…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1011+f ⎝ ⎛⎭⎪⎫111=10, 即S =5.4.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和S n =____________. 答案 2n +1-2+n 2解析 S n =-2n1-2+n+2n -2=2n +1-2+n 2.5.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 017=________.答案 1 008解析 因为数列a n =n cosn π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2. ∴S 2 017=S 2 016+a 2 017 =2 0164×2+2 017·cos 2 0172π =1 008.题型一 分组转化法求和例1 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设2(1)n an n n b a =+-,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n2-n -2+n -2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)nn .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ). 记A =21+22+ (22),B =-1+2-3+4-…+2n , 则A =-22n1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.引申探究例1(2)中,求数列{b n }的前n 项和T n . 解 由(1)知b n =2n+(-1)n·n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n2-2.当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n =2n +1-n 2-52. ∴T n=⎩⎪⎨⎪⎧2n +1+n2-2, n 为偶数,2n +1-n 2-52, n 为奇数.思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n . 解 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3, 当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n +n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n-n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.题型二 错位相减法求和例2 (2015·湖北)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .解 (1)由题意得⎩⎪⎨⎪⎧10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2,或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1,或⎩⎪⎨⎪⎧a n=19n +,b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,① 12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.思维升华 用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.已知数列{a n}满足首项为a1=2,a n+1=2a n(n∈N*).设b n=3log2a n-2(n∈N*),数列{c n}满足c n=a n b n.(1)求证:数列{b n}为等差数列;(2)求数列{c n}的前n项和S n.(1)证明由已知可得,a n=a1q n-1=2n,b n=3log22n-2,∴b n=3n-2,∴b n+1-b n=3,∴数列{b n}为首项b1=1,公差d=3的等差数列.(2)解c n=a n b n=(3n-2)×2n.S n=1×2+4×22+7×23+…+(3n-2)×2n,①2S n=1×22+4×23+7×24+…+(3n-5)×2n+(3n-2)×2n+1,②①-②得-S n=2+3(22+23+24+…+2n)-(3n-2)×2n+1=2+3×-2n-11-2-(3n-2)×2n+1=-10+(5-3n)×2n+1,∴S n=10-(5-3n)×2n+1. 题型三裂项相消法求和命题点1 形如a n=1n n +k型例3 设各项均为正数的数列{a n}的前n项和为S n,且S n满足S2n-(n2+n-3)S n-3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a 1a1++1a2a2++…+1a n a n+<13.(1)解由题意知,S2n-(n2+n-3)S n-3(n2+n)=0,n∈N*.令n=1,有S21-(12+1-3)S1-3×(12+1)=0,可得S21+S1-6=0,解得S1=-3或2,即a1=-3或2,又a n为正数,所以a1=2.(2)解由S2n-(n2+n-3)S n-3(n2+n)=0,n∈N*可得,(S n+3)(S n-n2-n)=0,则S n =n 2+n 或S n =-3, 又数列{a n }的各项均为正数,所以S n =n 2+n ,S n -1=(n -1)2+(n -1). 所以当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n .又a 1=2=2×1,所以a n =2n . (3)证明 当n =1时,1a 1a 1+=12×3=16<13成立; 当n ≥2时,1a n a n +=12nn +<1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以1a 1a 1++1a 2a 2++…+1a na n +<16+12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =16+12⎝ ⎛⎭⎪⎫13-12n +1<16+16=13. 所以对一切正整数n , 有1a 1a 1++1a 2a 2++…+1a na n +<13. 命题点2 形如a n =1n +n +k型例4 已知函数f (x )=x a的图象过点(4,2),令a n =1f n ++f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=________. 答案2 018-1解析 由f (4)=2可得4a=2,解得a =12,则f (x )=12x . ∴a n =1f n ++f n=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018- 2 017)= 2 018-1.思维升华 (1)用裂项相消法求和时,要对通项进行变换,如:1n +n +k =1k(n +k -n ),1n n +k =1k (1n -1n +k )裂项后可以产生连续可以相互抵消的项.(2)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .解 (1)∵S 2n =a n ⎝ ⎛⎭⎪⎫S n -12,a n =S n -S n -1 (n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n ,① 由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.四审结构定方案典例 (14分)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .(1)S n =-12n 2+nk ――→S n 是关于n的二次函数n =k 时,S n 最大――→根据S n 结构特征确定k 的值k =4;S n =-12n 2+4n ――→根据S n求a n a n =92-n (2)9-2a n 2n=n 2n -1――→根据数列结构特征确定求和方法 T n =1+22+322+…+n -12n -2+n 2n -1――→错位相减法求和计算可得T n 规范解答解 (1)当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[4分]当n ≥2时,a n =S n -S n -1=92-n .当n =1时,上式也成立, 综上,a n =92-n .[7分](2)因为9-2a n 2n =n2n -1,所以T n =1+22+32+…+n -12+n2,①2T n =2+2+32+…+n -12n -3+n2n -2.②[9分] ②-①得:2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n 2n -1=4-n +22n -1.[12分]故T n =4-n +22n -1.[14分]温馨提醒 (1)根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据{9-2a n2n }的结构特征确定利用错位相减法求T n .在审题时,要通过题目中数式的结构特征判定解题方案;(2)利用S n 求a n 时不要忽视n =1的情况;错位相减时不要漏项或算错项数; (3)可以通过n =1,2时的特殊情况对结论进行验证.[方法与技巧]非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法、并项法、数列的周期性等来求和. [失误与防范]1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.A 组 专项基础训练 (时间:40分钟)1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于____________.答案 n 2+1-12n解析 该数列的通项公式为a n =(2n -1)+12,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .2.设函数f (x )=x m+ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1fn(n ∈N *)的前n 项和是__________. 答案nn +1解析 f ′(x )=mxm -1+a ,∴a =1,m =2,∴f (x )=x 2+x , 1f n=1nn +=1n -1n +1,∴S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=n n +1. 3.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________. 答案 -100解析 若n 为偶数,则a n =f (n )+f (n +1)=n 2-(n +1)2=-(2n +1),所以a n 是首项为a 2=-5,公差为-4的等差数列;若n 为奇数,则a n =f (n )+f (n +1)=-n 2+(n +1)2=2n +1,所以a n 是首项为a 1=3,公差为4的等差数列.所以a 1+a 2+a 3+…+a 100=(a 1+a 3+…+a 99)+(a 2+a 4+…+a 100)=50×3+50×492×4+50×(-5)-50×492×4=-100.4.设数列{a n }的前n 项和为S n ,若a 1=2,且对任意正整数k ,l ,都有a k +l =a k +a l ,则S 8的值是________. 答案 72解析 因为a 1=2,且对任意正整数k ,l ,都有a k +l =a k +a l ,令k =n ,l =1,得a n +1=a n +a 1,即a n +1=a n +2,所以{a n }是首项为2,公差为2的等差数列,从而有a n =2n ,所以S n =n (n+1),故S 8=72.5.已知函数f (n )=⎩⎪⎨⎪⎧n 2, 当n 为奇数时,-n 2, 当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________.答案 100解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100) =-(1+2+…+99+100)+(2+3+…+100+101) =-50×101+50×103=100.6.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 答案 60解析 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60.7.整数数列{a n }满足a n +2=a n +1-a n (n ∈N *),若此数列的前800项的和是2 013,前813项的和是2 000,则其前2 015项的和为________. 答案 -13解析 由a n +2=a n +1-a n ,得a n +2=a n -a n -1-a n =-a n -1,易得该数列是周期为6的数列,且a n +2+a n -1=0,S 800=a 1+a 2=2 013,S 813=a 1+a 2+a 3=2 000,∴⎩⎪⎨⎪⎧a 3=a 2-a 1=-13,a 2+a 1=2 013,∴⎩⎪⎨⎪⎧a 1=1 013,a 2=1 000,∴⎩⎪⎨⎪⎧a 3=-13,a 4=-1 013,依次可得a 5=-1 000,a 6=13,由此可知a n +1+a n +2+a n +3+a n +4+a n +5+a n +6=0, ∴S 2 015=S 5=-13.8.已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n =a 2n +a n ,令b n =1a n a n +1+a n +1a n,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________. 答案 9解析 ∵2S n =a 2n +a n ,① ∴2S n +1=a 2n +1+a n +1,②②-①,得2a n +1=a 2n +1+a n +1-a 2n -a n ,a 2n +1-a 2n -a n +1-a n =0. (a n +1+a n )(a n +1-a n -1)=0. 又∵{a n }为正项数列, ∴a n +1-a n -1=0. 即a n +1-a n =1.在2S n =a 2n +a n 中,令n =1,可得a 1=1.∴数列{a n }是以1为首项,1为公差的等差数列, ∴a n =n . ∴b n =1n n +1+n +n=n +n -n n +1[n n +1+n +n n +n -n n +1]=n +n -n n +1n n +=1n-1n +1,∴T n =1-1n +1,∴T 1,T 2,T 3,…,T 100中有理数的个数为9.9.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列. (1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n . 解 (1)∵{a n -1}是等比数列且a 1-1=2,a 2-1=4,a 2-1a 1-1=2,∴a n -1=2·2n -1=2n ,∴a n =2n+1.(2)b n =na n =n ·2n+n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n)+(1+2+3+…+n ). 令T =2+2×22+3×23+…+n ·2n, 则2T =22+2×23+3×24+…+n ·2n +1.两式相减,得-T =2+22+23+ (2)-n ·2n +1=-2n1-2-n ·2n +1,∴T =2(1-2n)+n ·2n +1=2+(n -1)·2n +1.∵1+2+3+…+n =n n +2, ∴T n =(n -1)·2n +1+n 2+n +42.10.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +2a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. (1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0, 得[S n -(n 2+n )](S n +1)=0, 由于{a n }是正项数列,所以S n +1>0. 所以S n =n 2+n (n ∈N *).n ≥2时,a n =S n -S n -1=2n , n =1时,a 1=S 1=2适合上式.所以a n =2n (n ∈N *). (2)证明 由a n =2n (n ∈N *), 得b n =n +1n +2a 2n =n +14n 2n +2=116⎣⎢⎡⎦⎥⎤1n-1n +, T n =116⎣⎢⎡⎝⎛⎭⎪⎫1-132+⎝ ⎛⎭⎪⎫122-142+⎝⎛⎭⎪⎫132-152+…⎦⎥⎤+⎝⎛⎭⎪⎫1n -2-1n +2+⎝⎛⎭⎪⎫1n 2-1n +2=116⎣⎢⎡⎦⎥⎤1+122-1n +2-1n +2<116⎝ ⎛⎭⎪⎫1+122 =564(n ∈N *). 即对于任意的n ∈N *,都有T n <564.B 组 专项能力提升 (时间:20分钟)11.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n =____________. 答案4nn +1解析 ∵a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4nn +=4⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=4⎣⎢⎡⎦⎥⎤1-1n +1=4nn +1. 12.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 014项之和S 2 014=________. 答案 2 010解析 由已知得a n =a n -1+a n +1(n ≥2), ∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008, -2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0. ∵2 014=6×335+4,∴S 2 014=S 4=2 008+2 009+1+(-2 008)=2 010.13.数列{a n }是等差数列,数列{b n }满足b n =a n a n +1a n +2(n ∈N *),设S n 为{b n }的前n 项和.若a 12=38a 5>0,则当S n 取得最大值时n 的值为________.答案 16解析 设{a n }的公差为d ,由a 12=38a 5>0,得a 1=-765d ,d <0,所以a n =⎝ ⎛⎭⎪⎫n -815d ,从而可知当1≤n ≤16时,a n >0; 当n ≥17时,a n <0.从而b 1>b 2>…>b 14>0>b 17>b 18>…,b 15=a 15a 16a 17<0,b 16=a 16a 17a 18>0,故S 14>S 13>…>S 1,S 14>S 15,S 15<S 16,S 16>S 17>S 18>….因为a 15=-65d >0,a 18=95d <0,所以a 15+a 18=-65d +95d =35d <0,所以b 15+b 16=a 16a 17(a 15+a 18)>0, 所以S 16>S 14,故当S n 取得最大值时n =16.14.在数列{a n }中,a n >0,a 1=12,如果a n +1是1与2a n a n +1+14-a n 的等比中项,那么a 1+a 22+a 33+a 442+…+a 1001002的值是________.答案100101解析 由题意可得,a 2n +1=2a n a n +1+14-a 2n⇒(2a n +1+a n a n +1+1)(2a n +1-a n a n +1-1)=0,又a n >0,∴2a n +1-a n a n +1-1=0,又2-a n ≠0,∴a n +1=12-a n ⇒a n +1-1=a n -12-a n ,又可知a n ≠1,∴1a n +1-1=1a n -1-1, ∴⎩⎨⎧⎭⎬⎫1a n -1是以-2为首项,-1为公差的等差数列, ∴1a n -1=-2-(n -1)=-n -1⇒a n =n n +1⇒a nn 2=1n n +=1n -1n +1,∴a 1+a 222+a 332+a 442+…+a 1001002=1-12+12-13+13-14+14-15+…+1100-1101=100101. 15.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =12log n a .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34. (1)解 ∵S n =16-13a n ,∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1.又∵S 1=16-13a 1,∴a 1=18,∴a n =18⎝ ⎛⎭⎪⎫14n -1=⎝ ⎛⎭⎪⎫122n +1.(2)证明 由c n +1-c n =12log n a =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1). ∴1c 2+1c 3+1c 4+…+1c n=122-1+132-1+142-1+…+1n 2-1=12×⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +1 =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12-⎝ ⎛⎭⎪⎫1n +1n +1 =34-12⎝ ⎛⎭⎪⎫1n +1n +1<34. 又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13,∴原式得证.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1;(ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. 常见的裂项公式 ①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;③1n +n +1=n +1-n .(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5050. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ )(3)求S n =a +2a 2+3a 3+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )1.(教材改编)数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B.56 C.16 D.130答案 B解析 ∵a n =1n (n +1)=1n -1n +1,∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56.2.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-400 答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.3.设f (x )=4x 4x +2,利用倒序相加法,则f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011等于( )A .4B .5C .6D .10 答案 B解析 当x 1+x 2=1时,f (x 1)+f (x 2)=12121212121244242(44)42424(44)24x x x x x x x x x x x x ++⨯+⨯++=++++⨯+=1. 设S =f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011,倒序相加有2S =⎣⎡⎦⎤f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫1011+⎣⎡⎦⎤f ⎝⎛⎭⎫211+f ⎝⎛⎭⎫911+…+⎣⎡⎦⎤f ⎝⎛⎭⎫1011+f ⎝⎛⎭⎫111=10,即S =5. 4.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n =________. 答案 2n +1-2+n 2解析 S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.5.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2017=________.答案 1008解析 因为数列a n =n cos n π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2. ∴S 2017=S 2016+a 2017 =20164×2+2017·cos 20172π=1008.题型一 分组转化法求和例1 已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.引申探究例1(2)中,求数列{b n }的前n 项和T n . 解 由(1)知b n =2n +(-1)n ·n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ] =2-2n +11-2+n 2=2n +1+n 2-2当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n =2n +1-n 2-52. ∴T n=⎩⎨⎧2n +1+n 2-2, n 为偶数,2n +1-n 2-52,n 为奇数思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln2-ln3)+(-1)n n ln3,求其前n项和S n .解 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln2-ln3)+[-1+2-3+…+(-1)n n ]ln3,所以当n 为偶数时,S n =2×1-3n 1-3+n 2ln3=3n +n 2ln3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln2-ln3)+(n -12-n )ln3=3n -n -12ln3-ln2-1.综上所述,S n=⎩⎨⎧3n +n2ln3-1,n 为偶数,3n-n -12ln3-ln2-1,n 为奇数.题型二 错位相减法求和例2 (2015·湖北)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .解 (1)由题意得⎩⎪⎨⎪⎧ 10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2,或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n=2n -1,或⎩⎨⎧a n =19(2n +79),b n=9·⎝⎛⎭⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.思维升华 用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.已知数列{a n }满足首项为a 1=2,a n +1=2a n (n ∈N *).设b n =3log 2a n -2(n ∈N *),数列{c n }满足c n =a n b n .(1)求证:数列{b n }为等差数列; (2)求数列{c n }的前n 项和S n .(1)证明 由已知可得,a n =a 1q n -1=2n ,b n =3log 22n -2,∴b n =3n -2,∴b n +1-b n =3,∴数列{b n }为首项b 1=1,公差d =3的等差数列. (2)解 c n =a n b n =(3n -2)×2n .S n =1×2+4×22+7×23+…+(3n -2)×2n ,①2S n =1×22+4×23+7×24+…+(3n -5)×2n +(3n -2)×2n +1,②①-②得-S n =2+3(22+23+24+…+2n )-(3n -2)×2n +1=2+3×4(1-2n -1)1-2-(3n -2)×2n +1=-10+(5-3n )×2n +1,∴S n =10-(5-3n )×2n +1.题型三 裂项相消法求和命题点1 形如a n =1n (n +k )型例3 设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.(1)解 由题意知,S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *. 令n =1,有S 21-(12+1-3)S 1-3×(12+1)=0,可得S 21+S 1-6=0,解得S 1=-3或2, 即a 1=-3或2, 又a n 为正数,所以a 1=2.(2)解 由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *可得,(S n +3)(S n -n 2-n )=0,则S n =n 2+n 或S n =-3, 又数列{a n }的各项均为正数,所以S n =n 2+n ,S n -1=(n -1)2+(n -1).所以当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n . 又a 1=2=2×1,所以a n =2n . (3)证明 当n =1时, 1a 1(a 1+1)=12×3=16<13成立;当n ≥2时,1a n (a n +1)=12n (2n +1)<1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, 所以1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<16+12⎣⎡⎦⎤⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =16+12⎝⎛⎭⎫13-12n +1<16+16=13. 所以对一切正整数n , 有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.命题点2 形如a n =1n +n +k型例4 已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2017=________. 答案2018-1解析 由f (4)=2可得4a =2,解得a =12,则f (x )=12x .∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2017=a 1+a 2+a 3+…+a 2017=(2-1)+(3-2)+(4-3)+…+(2017-2016)+(2018-2017)=2018-1.思维升华 (1)用裂项相消法求和时,要对通项进行变换,如:1n +n +k =1k(n +k -n ),1n (n +k )=1k (1n -1n +k)裂项后可以产生连续可以相互抵消的项.(2)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12,a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎫1-12n +1=n 2n +1.四审结构定方案典例 (12分)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .(1)S n =-12n 2+nk ――→S n 是关于n的二次函数n =k 时,S n 最大――→根据S n 结构特征确定k 的值k =4;S n =-12n 2+4n――→根据S n求a n a n =92-n(2)9-2a n 2n =n2n -1――→根据数列结构特征确定求和方法T n =1+22+322+…+n -12n -2+n 2n -1――→错位相减法求和 计算可得T n 规范解答解 (1)当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .当n =1时,上式也成立, 综上,a n =92-n .[6分](2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,①2T n =2+2+32+…+n -12n -3+n2n -2.②[7分]②-①得:2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n 2-n2n 1=4-n +22n 1.[11分]故T n =4-n +22n -1.[12分]温馨提醒 (1)根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据{9-2a n2n }的结构特征确定利用错位相减法求T n .在审题时,要通过题目中数式的结构特征判定解题方案; (2)利用S n 求a n 时不要忽视n =1的情况;错位相减时不要漏项或算错项数. (3)可以通过n =1,2时的特殊情况对结论进行验证.[方法与技巧]非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法、并项法、数列的周期性等来求和. [失误与防范]1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.A 组 专项基础训练 (时间:35分钟)1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n 1D .n 2-n +1-12n答案 A解析 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .2.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( ) A .-110 B .-90 C .90 D .110答案 D解析 通过a 7是a 3与a 9的等比中项,公差为-2,所以a 27=a 3·a 9,所以a 27=(a 7+8)(a 7-4),所以a 7=8,所以a 1=20,所以S 10=10×20+10×92×(-2)=110,故选D. 3.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .-100B .0C .100D .10200 答案 A解析 若n 为偶数,则a n =f (n )+f (n +1)=n 2-(n +1)2=-(2n +1),所以a n 是首项为a 2=-5,公差为-4的等差数列;若n 为奇数,则a n =f (n )+f (n +1)=-n 2+(n +1)2=2n +1,所以a n 是首项为a 1=3,公差为4的等差数列.所以a 1+a 2+a 3+…+a 100=(a 1+a 3+…+a 99)+(a 2+a 4+…+a 100)=50×3+50×492×4+50×(-5)-50×492×4=-100. 4.数列{a n }中,a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( )A .76B .78C .80D .82答案 B解析 由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.5.已知函数f (n )=⎩⎪⎨⎪⎧n 2 (当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10200答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-50×101+50×103=100.故选B.6.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.答案 60解析 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,∴T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60.7.整数数列{a n }满足a n +2=a n +1-a n (n ∈N *),若此数列的前800项的和是2013,前813项的和是2000,则其前2015项的和为________.答案 -13解析 由a n +2=a n +1-a n ,得a n +2=a n -a n -1-a n =-a n -1,易得该数列是周期为6的数列,且a n +2+a n -1=0,S 800=a 1+a 2=2013,S 813=a 1+a 2+a 3=2000,∴⎩⎪⎨⎪⎧ a 3=a 2-a 1=-13,a 2+a 1=2013,∴⎩⎪⎨⎪⎧ a 1=1013,a 2=1000, ∴⎩⎪⎨⎪⎧a 3=-13,a 4=-1013,依次可得a 5=-1000,a 6=13, 由此可知a n +1+a n +2+a n +3+a n +4+a n +5+a n +6=0,∴S 2015=S 5=-13.8.已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n =a 2n +a n ,令b n =1a n a n +1+a n +1a n,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________.答案 9解析 ∵2S n =a 2n +a n ,①∴2S n +1=a 2n +1+a n +1,②②-①,得2a n +1=a 2n +1+a n +1-a 2n -a n ,a 2n +1-a 2n -a n +1-a n =0.(a n +1+a n )(a n +1-a n -1)=0.又∵{a n }为正项数列,∴a n +1-a n -1=0.即a n +1-a n =1.在2S n =a 2n +a n 中,令n =1,可得a 1=1.∴数列{a n }是以1为首项,1为公差的等差数列,∴a n =n .∴b n =1n n +1+(n +1)n=(n +1)n -n n +1[n n +1+(n +1)n ][(n +1)n -n n +1]=(n +1)n -n n +1n (n +1)=1n -1n +1, ∴T n =1-1n +1,∴T 1,T 2,T 3,…,T 100中有理数的个数为9.9.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列.(1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n .解 (1)∵{a n -1}是等比数列且a 1-1=2,a 2-1=4,a 2-1a 1-1=2, ∴a n -1=2·2n -1=2n ,∴a n =2n +1. (2)b n =na n =n ·2n +n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n )+(1+2+3+…+n ).令T =2+2×22+3×23+…+n ·2n ,则2T =22+2×23+3×24+…+n ·2n +1. 两式相减,得-T =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1, ∴T =2(1-2n )+n ·2n +1=2+(n -1)·2n +1. ∵1+2+3+…+n =n (n +1)2, ∴T n =(n -1)·2n +1+n 2+n +42. 10.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. (1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0,由于{a n }是正项数列,所以S n +1>0.所以S n =n 2+n (n ∈N *).n ≥2时,a n =S n -S n -1=2n ,n =1时,a 1=S 1=2适合上式.所以a n =2n (n ∈N *).(2)证明 由a n =2n (n ∈N *),得b n =n +1(n +2)2a 2n =n +14n 2(n +2)2=116⎣⎡⎦⎤1n 2-1(n +2)2,T n =116⎣⎡ ⎝⎛⎭⎫1-132+⎝⎛⎭⎫122-142+⎝⎛⎭⎫132-152+… ⎦⎤+⎝⎛⎭⎫1(n -1)2-1(n +1)2+⎝⎛⎭⎫1n 2-1(n +2)2 =116⎣⎡⎦⎤1+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122 =564(n ∈N *). 即对于任意的n ∈N *,都有T n <564. B 组 专项能力提升(时间:20分钟)11.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为( )A.n n +1B.4n n +1C.3n n +1D.5n n +1 答案 B解析 ∵a n =1+2+3+…+n n +1=n 2, ∴b n =1a n a n +1=4n (n +1)=4⎝⎛⎭⎫1n -1n +1, ∴S n =4⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =4⎣⎡⎦⎤1-1n +1=4n n +1.12.已知数列2008,2009,1,-2008,-2009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2014项之和S 2014等于( )A .2008B .2010C .1D .0答案 B解析 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2008,2009,1,-2008,-2009,-1,2008,2009.由此可知数列为周期数列,周期为6,且S 6=0.∵2014=6×335+4,∴S 2014=S 4=2008+2009+1+(-2008)=2010.13.数列{a n }是等差数列,数列{b n }满足b n =a n a n +1a n +2(n ∈N *),设S n 为{b n }的前n 项和.若a 12=38a 5>0,则当S n 取得最大值时n 的值为________. 答案 16解析 设{a n }的公差为d ,由a 12=38a 5>0,得a 1=-765d ,d <0,所以a n =⎝⎛⎭⎫n -815d ,从而可知当1≤n ≤16时,a n >0;当n ≥17时,a n <0.从而b 1>b 2>…>b 14>0>b 17>b 18>…,b 15=a 15a 16a 17<0,b 16=a 16a 17a 18>0,故S 14>S 13>…>S 1,S 14>S 15,S 15<S 16,S 16>S 17>S 18>….因为a 15=-65d >0,a 18=95d <0,所以a 15+a 18 =-65d +95d =35d <0, 所以b 15+b 16=a 16a 17(a 15+a 18)>0,所以S 16>S 14,故当S n 取得最大值时n =16.14.在数列{a n }中,a n >0,a 1=12,如果a n +1是1与2a n a n +1+14-a 2n的等比中项,那么a 1+a 222+a 332+a 442+…+a 1001002的值是________. 答案 100101解析 由题意可得,a 2n +1=2a n a n +1+14-a 2n⇒(2a n +1+a n a n +1+1)(2a n +1-a n a n +1-1)=0,又a n >0,∴2a n +1-a n a n +1-1=0,又2-a n ≠0,∴a n +1=12-a n ⇒a n +1-1=a n -12-a n ,又可知a n ≠1,∴1a n +1-1=1a n -1-1, ∴⎩⎨⎧⎭⎬⎫1a n -1是以-2为首项,-1为公差的等差数列, ∴1a n -1=-2-(n -1)=-n -1⇒a n =n n +1⇒a n n 2=1n (n +1)=1n -1n +1,∴a 1+a 222+a 332+a 442+…+a 1001002=1-12+12-13+13-14+14-15+…+1100-1101=100101. 15.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *). (1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =log 12a n .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34. (1)解 ∵S n =16-13a n , ∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n , ∴a n =14a n -1. 又∵S 1=16-13a 1,∴a 1=18, ∴a n =18⎝⎛⎭⎫14n -1=⎝⎛⎭⎫122n +1. (2)证明 由c n +1-c n =log 12a n =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1).∴1c 2+1c 3+1c 4+…+1c n=122-1+132-1+142-1+…+1n 2-1 =12×⎣⎡ ⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15+…+ ⎦⎤⎝⎛⎭⎫1n -1-1n +1 =12⎣⎡⎦⎤⎝⎛⎭⎫1+12-⎝⎛⎭⎫1n +1n +1 =34-12⎝⎛⎭⎫1n +1n +1<34. 又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13, ∴原式得证.。