规范反应谱理论介绍

合集下载

反应谱相关理论

反应谱相关理论

10
反应谱相关理论
地震系数
定义:
k xg max g
可将地震动振幅对地震反应谱的影响分离出来
基本烈度 地震系数k
地震系数与基本烈度关系
6 0.05
7 0.10
8 0.20
9 0.40
11
反应谱相关理论
动力放大系数
动力放大系数的定义
(T )

Sa (T ) xg max
表示不同单自由度结构的反应对于地震 动输入的动力放大系数

mi n j ji j (t) xg (t) n f ji
j 1
j 1
27
反应谱相关理论
质点 i第 j 振型的水平地震作用 将质点 i的第 j振型水平地震作用定义为该阶振型最大惯性力,即:
Fji f ji max mi j ji j (t) xg (t) max mi j ji j (t) xg (t) max
无法考虑地震动的空间变化效应。这对大跨度桥梁而言,是 不能忽略的;
不能考虑地震动持时长短的影响; 反应谱理论只能给出结构的最大地震反应,不能给出结构反
应的全过程,以及结构各构件的破坏机理; 反应谱法对于非比例阻尼结构以及不规则结构的分析效果还
不理想。
3
反应谱相关理论
地震反应谱
地震(加速度、速度和位移)反应谱可理解为一个确定的地面运 动,通过一组阻尼比相同但自振周期各不相同的单自由度体系,所引 起的各体系最大反应与相应体系自振周期间的关系曲线。
Fji (mi g) j jik j kGi j j ji
Gi -质点 i 的重量
j -按体系第 j 周期计算的第 j 阶振型动力放大系数

《反应谱理论》

《反应谱理论》
界上第一个反应谱。 1948年,G.W.Honser提出基于反应谱理论的抗震
计算方法。从此,结构的地震反应分析进入了动力阶 段!
其主要优点: 1、一般情况下,基于线性假定,应用反应谱法只取少
数几个低阶振型就可以取得较为满意的效果,计算 量小;
精选课件
桥梁抗震与抗风 第二章 反应谱理论
2、将时变问题化为拟静力问题,易为工程师所接受。
精选课件
桥梁抗震与抗风
精选课件
桥梁抗震与抗风
精选课件
桥梁抗震与抗风
精选课件
桥梁抗震与抗风
2.4 中国公路工程抗震设计规范(JTJ004-89)
精选课件
桥梁抗震与抗风
精选课件
桥梁抗震与抗风
精选课件
桥梁抗震与抗风2.5 空间结构 Nhomakorabea反应谱方法
空间结构受到来自任意方向的地震作用时,其运动方程为:
1一般情况下基于线性假定应用反应谱法只取少数几个低阶振型就可以取得较为满意的效果计算桥梁抗震与抗风埃菲尔铁塔的整个塔体结构高耸上窄下宽给人以平衡稳定的美感
桥梁抗震与抗风
第一篇、桥梁抗震
陈志军
华中科技大学土木工程与力学学院道路桥梁系 2003. 7
桥梁抗震与抗风 第二章 反应谱理论
2.1 概论 1943年,M.A.Biot提出了反应谱的概念,给出了世
精选课件
桥梁抗震与抗风
精选课件
桥梁抗震与抗风
精选课件
精选课件
桥梁抗震与抗风
2.2 反应谱法的基本原理
精选课件
桥梁抗震与抗风
精选课件
桥梁抗震与抗风
精选课件
桥梁抗震与抗风
精选课件
桥梁抗震与抗风
精选课件
桥梁抗震与抗风

抗震设计中反应谱的应用

抗震设计中反应谱的应用

抗震设计中反应谱的应用一.什么就是反应谱理论在房屋工程抗震研究中,反应谱就是重要的计算由结构动力特性所产生共振效应的方法。

它的书面定义就是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应与加速度反应随质点自振周期变化的曲线。

用作计算在地震作用下结构的内力与变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型与阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。

地震时结构所受的最大水平基底剪力,即总水平地震作用为:FEK = kβ(T)G式中,k为地震系数,β(T)则就是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。

β(T)=Sa(T)/a反应谱理论建立在以下基本假定的基础上:1)结构的地震反应就是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程就是平稳随机过程。

二.实际房屋抗震设计中的应用为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。

一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种就是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性与所选取地震波就是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法就是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。

实践也证明此方法更适合工程技术人员采用。

由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。

【doc】几类反应谱的概念差异及其意义

【doc】几类反应谱的概念差异及其意义

几类反应谱的概念差异及其意义连及设并几类反应谱的概念差异及其意义一,前言李杰(化工部抗震防灾研究室)反应谱理论是工程结构抗震设计的基础理论之一.近年来,关于反应谱的研究工作日趋复杂而广泛.例如,在《建筑抗震设计规范(GBJ11—89)》中给出的设计反应谱考虑了远,近震的影响,并将场地类别划分为四类而在"构筑物抗设计规范"(送审稿)中,则将场地参数连续化,通过场地指数给出具体设计反应谱在关于地震危险隆分析的研究中,提出了考虑震级,距离影响的基岩反应谱和基于地震危险性分析的一致危险性反应谱.在城市抗震设防区划的研究工作中,提出了双参数标定谱和考虑场地随机性影响的均值反应潜等.上述反应谱还都是基于确定性结构的弹性反应谱而言的,如果再进一步考虑结构参数的非确定性和结构进入非线性的可能性,还能衍生出更多种类的反应谱在这种复杂背景的另一方面,近年来在设计规范中对地震动参数的取值规定存在着相对放宽约束,趋向采取双轨制或多种考虑的倾向.例如,我国《建筑抗震设计规范(GBJll--89)》中就明确指出;"对做过抗震防灾规划的城市,可按批准的抗震设防区划(设防烈度或设计地震动参数)进行抗震设防".—般说来,经过批准的抗震设防区划,对区划范围内的场地都同时作出关于设防烈度和设计反应谱的具体规定.作者发现,在近年来一些藏市防灾规划7?1嘶中,规定的反应谱往往并未严格掌握不同类型的谱的含义,存在着误用,混用的现象,这种状况,有可能给工程设计带来混乱.有鉴于此,本文拟以确定性结构的弹性反应谱为背景,讨论几种常见类型谱的概念及工程意义,讨论的重点将放在关于反应谱概率意义的考虑方面.希望通过这种讨论,有助于澄清一些基本概念,为工程结构的抗震设计提供一些概念上的帮助二,地震反应谱与设计反应谱众所周知,反应谱是指单质点体系地震最大反应与结构自振周期之间的关系在这种一般意义的基础上,反应谱又有地震反应谱与设计反应谱的概念区别.所滑地震反应谱,是指针对具体地震记录计算的反应谱,例如,绝对加速度反应谱:,lnsa(∞)一lIaO)e一…'lJ0sin[o~(t—t)+2旺]d'rl(1)式中:一∞tga一√r=地震反应潜在本质上反映的是地震动强度与频谱特性,这是因为:任何一条地震反应谱曲线都是许许多多具有不同动力特性的单质点结构对一个地震动时程的动力最大反应按T排列起来的结果,因此,从总体上说,地震反应谱不反映具体的结构特陛,而是反映地震动的特性.换句话说,9地震反应谱是从动力特性沿频率方向"滑动"的单质点体系动力最大反应这个特殊角度来描述地震动特性的通过对不同地震记录的地震反威普的综合分析,将给出设计反应谱,在本质上, 设计反应谱是对设计地震力的一种规定. 这是困为,设计反应谱并不反映一次具体的地震动过程的特性,而是从工程设计的角度在总体上把握地震动特性.这种把握, 可以是统计平均意义上的把握,也可以是严格概率意义上的把握将设计反应谱与地震反应谱在概念上区分开来,有利于在更广泛的背景下研究设计地震力.图1是两类谱的—个典型对比.周期(9)圈1.地麓反瘟谱与设计反应谱三,几类反应谱的概念差异工程上,常将反应谱用地震影响系数曲线加以表示,即将反应谱除以重力加速度:1Oa—sa(2)g对上式加以变换Ⅱ:S—a.:K.8(3)g‰其中:K=‰称为地震系数8一sa/‰称为动力放大系数.这祥,就将反应谱分解为强度特性K和频谱特性日两个部分.由于实际的地震动受多种复杂因素影响,因此,地震动无论在强度还是在频谱含量上都具有强烈的随机性.在确定性结构弹性反应谱的框架范围内,不同类型的反应谱之间的差异主要表现在对这两个l逮机性的处理上面. 1?,规范设计反应谱这里以"建筑物抗震设计规范"(GBJ11--89)为背景讨论规范设计反应谱的基本思想是以地震区划给定的基本烈度作为设防烈度依据确定K,以历史地震记录的动力放大系数曲线的统计平均值为依据确定B.由于地震危险性分析技术的发展与应用,目前对K值的规定是具有严格概率含义的.例如,对于设防烈度,地震动加速度幅值的超越概率一般取为10.在此基础上,进—步考虑"小震不坏,中震可修,大震不倒"的设计思想,演绎出了两阶段设{十的方法.关于小震强度验算,地震动加速度幅值的超越概率为63.2,而关于大震变形验算,地震动加速度幅值的超越概率为2 ~3.然而,规范设计反应谱关于B的取值并无严格的概率含义,而只具有一种准概率含义的修正统计平均性.在规范的背景研究中,通常是将实际地震记录按场地条件,震级与距离条件分类,对于每_:类别内的地震记录样本,计算动力放大系数曲线, 进而选取一些离散周期点分别关于( (T),i=1,2,……}进行统计平均,以平均直的连线为基础进一步平滑,修整,使之成为标准的动力放大系数曲线.平滑,修整前后的0谱对比如图2.(b)修整后图2.反应港的修整规范设计反应谱合理地解决了关于地震动强度不确定性问题,面对频谱含量不确定性则只作了均随意义上的近似处理.并且,由于规范谱本质上是以加速度峰值标定反应谱(一般说来,这种标定仅适用于高频段),因此,设计反应谱所规定的地震力在不同谱值处的概率含义是不同的.换句话说,对于不同周期结构,按规范反应谱求得的设计地震力的概率保证率是不一致的.2,-一致危险睦反应谱一致危险陆反应谱的基本含义是在不同周朔处的反应谱值具有相同的超越概率值.这一类反应谱源于地震危险性分析的研究工作,根据对基岩地震记录反应谱的统计分析,可以建立不同周期点的基岩地震动衰减关系.通常,取震级与距离作为统计公式中的基本变量,在给定了震级与距离的前提下,可以由基岩反应谱的衰减关系中给出具体反应谱(图3),这样,便有了所谓考虑震级,距离影响的基岩反应谱的概念.从概率意义上看,这类反应谱只具有关于历史地震记录的统计均值含义,而不具有超越概率的含义.因此,可称此类谱为基岩均值反应谱.在地震小区划中,若采用危险震源法,即依据设防概率水平和地震动峰值的危险性曲线判断一组起控制作用的等效潜在震源,则可以基岩均值反应谱作为基岩地震动输入的依据.图基岩均值厦直谱在另一方面,若采用地震危险性分析方法关于主要周期点处分别计算参数Sa (T)的地震危险性曲线,则可以从这一簇地震危险性曲线中,按照统一设定的设防概率水准给出一致危险性反应谱(图4). 此时,反应谱曲线上的各点具有统一的超越概率.显然,这种做法所耗费的计算量是巨大的.1l图4-基岩●致危险性反应谱应该指出,基岩反应谱只反应了基岩地震动的特性.其中,基岩均值反应谱从统计平均意义上同时反映了K,13的随机性, —致危险性反应谱则主要是从幅值超越概率意义上反映了K,8的随机性影响.由于以统计平均的地震动衰减关系作媒介求取地震危险性曲线,一致危险性反应谱仍未完全考虑频谱特性的概率变化特征.12图5.随机场地反应谱3,考虑场地随机性影响的反应谱基岩反应谱只反映了基岩地震动的特性,因此不能直接作为设计谱.设计谱的获取尚应考虑场地条件的影响.由于场地土层分布特征的不确定性,场地土层刚度的变异性,使场地地震反应谱表现出显着的随机性,图5是用蒙特卡洛模拟方法计算的反应谱,土层参数的变异性使得反应谱的中民周期部分表现出巨大的离散性,这种离散性甚至高于不同地震动输入引起的反应谱变异(图8).这种对比,使我们可能直接从土层参数变异性的角度把握反应谱频率含量的变异性,而将地震动输入的变异性包括在其中而不单独考虑.固6.不同地菇输入的场地反应谱当采用均值反应谱概念时,可以以基岩均值反应谱为基础,利用随机场地地震反应分析方法确定场地均值反应谱f3(T). 而若采用基岩一致危险性反应谱作为输入,则可以采用随机场地反应分析方祛确定场地的等概率反应谱.从现有计算结果推断,由于土层剐度的影响,不同周期处0 (T)的分布将具有偏态分布(如对数正态分布)的特征.在考虑土层参数随机性影响时,场地地震动幅值亦有一定幅度的改变,这在规范反应谱中是难以反映的.4,双参数标定反应谮双参数标定反应谱将反应谱的蜘昔持征变化与橱值变化统一在一起考虑.其反应谱表达方式为(hn速度):r2laI+b】}T0≤T≤T】一1b2aLT】≤T≤T2()Lb3vjTT2≤T≤T式中,b,b,ba,r为标定常数,aj,Ⅵ为地震动0§值加遗度与峰值建度.T,T为反应谱拐点周期.Ts一3秒.根据拐点处连续条件可在T,T:与aJ,Ⅵ之间建立起定量关系.双参数反应谱,既适用于基岩反应谱,也适用于地表设计反应谱,所不同的仅在于,Ⅵ的取值和标定常数时的(T)的样本取值,即对于基岩反应谱,应取地震危险性分析给定的一致危险陛地震动参数a,v{ 和基岩记录(T)样本{对于设计反应谱,则应取基于场地地震危陛分析结果的地震动小区划分av值和相应B(T)掸率.作为一般设计谱,也可以取历史强震记录样本岛(T)来确定标定参数.双参数标定谱图例见图7.图7.双参数标定匣应谱从概率意义上看,双参数标定谱主要反映设计地震动强度的超越概率特征,而对频率含量钓不确定性同样是从等效统计均值的角度把握的因此,双参数标定反应谱是与规范设计反应谱平行的一种反应谱.它不能从概率意义上反映场地参数随机陛造成的影响.四,不同反应谱概念差异的工程意义不同类型的反应谱的概念差异有两方面的工程意义.其一,是工程设计中谱的选用l其二,是结构的抗震可靠度评定中对不同类型谱的要求.在工程设计中,规范反应谱,基于地震小区划的双参数标定谱,考虑场地参数变异性的均值反应谱,都可以直接应用于一般工程结构的设计之中,而基岩均值反应谱,基岩一致危险睦反应谱不能直接应用于一-般工程结构的设计之中.当工程结丰句的基础不是童接建于基岩之上时,尤其如此.在一些城市抗震设防区划中,以基岩一致危险性反应谱作为场地设计反应谱,是存在概念错误的.结构的抗震可靠度评定问题是建立在如下的一般准则之上的.结构在使用期限内的失效概率(R<s)=IPf(R<s】y)(y)dyJ口(5)式中,S为结构地震作用效应}R为结构抗力,(y)为给定时限的地震动幅值参数的概率密度函数取等效变量R—R/YS—s/v(6)则式(5)可变为:(R<s)一I(R<s】Y)'(Y)dYJ口(7)等效变量S是与结构动力放大系数等价的一类变量,可以证明,两者具有相同的变异系数和框类似的概率分布密度.于是,地震动幅值的不确定性(Y)可以通l3过地震危险性分析计算给出,而结构在给定地震动滴值条件下的抗震可靠度将与地震动频率含量的变异性取得联系a因此,在结构的抗震可靠度评定问题中,不可避免地要求事先确立13(T)谱的概率分布或变异系数(在假定日(T)为正态分布或对数正态分布前提下)由前节分析对比中我们知道:规范设计反应谱,双参数标定谱对应的B(T)谱均不具备日(T)在诸周期点的概率分布或变异系数的信息;基岩均值反应谱与一致危险性反应谱也不具备这种信息.仅有考虑场地土层随机参数变异性的反应谱可以提供这类信息,因此,从结构抗震可靠度评价角度看,采用考虑场地土层参数随机性的反应谱是较为合适的.关于规范设计反应谱和双参数标定谱,近年来也进行了关于日(T)谱变异性的研究,但这类研究—般需要大量实测强震加速度记录,且由于将不同场地或不同震级与距离条件的谱统一加以平均,因此离散性较大.而采用考虑场地参数变异性的方法研究B谱的变异性,可以弥补上述不足.从已有研究结果分析,作者倾向于认为,B谱的变异性,主要由于场地类别和场地土的变异性引起,而震级与距离;l起的日谱变异性可以包含在前述变异性之中, 当采用基岩均值潜或基岩一致危险性谱作为基岩输入计算地表地震反应时,问题尤为如此.五,结语反应谱主要反映了地震动的幅值特性与频谱特性,这两类特性都具有强烈的随机性.从一般意义上说,关于幅值特性的随机性可以从地震动幅值超越概率的角度加以把握,而关于频谱特性的随机性则应从动力放大系数曲线的变异性角度来考察. 在确定性结构弹性反应谱的概念范围内, 目前存在几类概念上有明显差异的反应谱,这些差异主要体现在对上述两类随机性的处理已无论在工程设计还是在结构抗震可靠度评价中,区分不同类型谱并适当地加以运用都具有重要的基础意义. (上接第74页)算法,该算法可以看作纽马克13法的推广; 3,该算法的优点在于不仅能考虑坝一基,坝一库和库.基界面上的相互作用,而且能够考虑波在地基和库水边界的吸收效应;4,利用该算法所做的几个反应分析表明,与由其他研究者得到的已有的结果符合得很好,说明了所提方法的有效性;5,通过几个反应分析,看来可以对坝一基一库系统的振动特性作出例如下列几点结论:(a)由地面运动冲击荷载产生的动水压力对第一阶振动反应的影响很小; (b)然而,动水压力趋于抑制高阶振型的振动并降低高阶振动频率;(c)地基与库水间的相互作用对动水压力的衰减有重大的影响译自:EarthquakeEngineeringand StructuralDynamics,v.22,n.3,1992.原题:AFE--BEMethodForD}mam—ieAnatysisofDam--Foundation——Rcserv—lotSystemintheTimeDomain.(卞启译)。

反应谱法的概念

反应谱法的概念

反应谱法的概念反应谱法(Response Spectrum Method)是结构工程中常用的一种分析方法,通过建立结构的加速度-频率响应函数,来对结构在地震作用下的反应进行评估。

它是一种时程分析方法,通过输入合适的地震动输入,模拟结构在地震中的动力响应,并获得结构的最大位移、加速度、剪力等重要指标,以评估结构的抗震性能和结构的安全性。

反应谱法最早由美国地震工程师Nathan M. Newmark在20世纪50年代初提出,是基于结构动力学理论发展而来的一种计算方法。

它是一种简化的分析方法,相比于详细的时程分析,反应谱法考虑了地震波的周期特性和结构的固有特性,能更快速、有效地评估结构在地震中的反应。

反应谱法的核心思想是将地震动输入与结构的动力特性分离开来进行分析。

它假设结构的响应与地震输入的频率有关,而与具体的振幅无关。

在反应谱法中,定义结构的反应谱为在不同频率下结构的峰值加速度、速度或位移(或其他重要参数)。

通常,反应谱法的步骤如下:1.选择一组不同频率下的地震波输入。

2.通过动力分析方法(如有限元分析)计算每个地震波输入下结构的动力响应。

3.对每个地震波输入下的结构响应进行峰值提取,并与对应的频率进行对比。

4.根据一系列提取的峰值与频率点,绘制出结构的反应谱曲线。

反应谱曲线可以用于评估结构的抗震性能,并作为结构设计、修正因素以及抗震评估的依据。

反应谱法可以直观地展示不同频率下结构的响应情况,使得工程师能够更好地理解结构的动力性能和瓶颈,并针对性地进行抗震设计和优化。

反应谱法的优点之一是有效地考虑了结构的非线性特性。

由于结构在地震中会发生非线性变形和破坏,传统的弹性分析方法无法准确地预测这些情况。

而反应谱法可以通过选择不同的地震波输入,模拟结构在不同强度和频率的地震下的响应,更好地预测结构的非线性行为。

此外,反应谱法的应用范围广泛。

它可以用于设计新建筑物的抗震性能评估,也可以用于现有建筑物的抗震加固优化。

规范反应谱理论介绍

规范反应谱理论介绍

的算式。如果考虑单自由度结构的变形, 考虑动力放
大效应, 则相应的算式应为:
P=( W g)·Sa( T; l )

式中: Sa( T; l ) 为加速度反应谱的谱值( 周期 T 和阻尼
比 l 已取单自由度结构的对应值) 。上式可改写为:
2008 年 4 月 第 4 期
广东土木与建筑
APR 2008 No.4
第4期 2008 年 4 月
广东土木与建筑 GUANGDONG ARCHITECTURE CIVIL ENGINEERING
规范反应谱理论介绍
No.4 APR 2008
杨穗华
( 广州市城市规划勘测设计研究院 广州 510060)
摘 要: 近年计算机辅助建筑结构设计的能力不断加强, 新的结构抗震计算方法使得结构地震反应的精确计算 成为可能, 结构设计规范中已明确提出一般高层建筑都应采用振型分解反应谱法进行分析, 文中从规范的要求 出发详细介绍反应谱分析的基本理论及其计算方法。 关键词: 反应谱的概念; 地震反应谱的方法; 加速度反应谱方法; 振型参与系数
应谱也是一种标准反应谱, 它们比场地相关反应谱
包含更多的统计信息、震害经验和设计实践经验, 适
用范围自然更广。现行建筑抗震设计规范中列入的
地震影响系数曲线 a ( T) 虽然也是一种谱曲线, 但与
上述经统计的加速度反应谱曲线 Sa( T) 或动力系数 b ( T) 有区别, 其关系式分别为:
a ( T) =cSa( T) g =kcb ( T)
目前规范中对不同结构采用不同分析方法在各 国的抗震规范中均有体现, 底部剪力法和振型分解 法仍是基本方法, 时程分析法则作为补充计算, 对特 别不规则、特别重要或较高的高层建筑才要求采用。

规范设计反应谱理论初探

规范设计反应谱理论初探

规范设计反应谱理论初探发表时间:2014-12-29T14:26:03.513Z 来源:《价值工程》2014年第7月中旬供稿作者:张鑫[导读] 分析了结构地震反应分析中的反应谱理论,分别得出了绝对加速度反应和伪加速度反应的公式。

张鑫ZHANG Xin曰孟健MENG Jian(东北电力设计院,长春130021)(Northeast Electric Power Design Institute,Changchun 130021,China)摘要:分析了结构地震反应分析中的反应谱理论,分别得出了绝对加速度反应和伪加速度反应的公式。

通过Matlab 编程,在ElCentro (1940,NS)地震波作用下,对结构的绝对加速度和伪加速度反应进行了比较分析。

同时按照规范的设计反应谱对结构不同阻尼下和不同场地条件下的地震影响系数进行了比较分析。

为工程抗震设计提供便捷有效的分析手段。

Abstract: The paper analyses the response spectrum theories. The mathematical forms of the acceleration and pseudo-accelerationresponses can be obtained. According to the Matlab programming, the acceleration response spectrum is compared with thepseudo-acceleration spectrum, both for El Centro ground motion. At the same time, the Seismic influence coefficient curve with differentdamping and different sites for systems are compared in order to provide references for seismic design.关键词:反应谱;绝对加速度;伪加速度;场地类别;阻尼Key words: response spectrum;acceleration;pseudo-acceleration;site;damping中图分类号:U442.5+5 文献标识码:A 文章编号:1006-4311(2014)20-0302-030 引言地震活动给人民的生命、财产造成严重的损失。

反应谱分析原理的简单介绍

反应谱分析原理的简单介绍

反映谱的应用及意义相关:当阻尼比给定时,任一结构对给定地震的最大相对位移反应和最大加速度反应仅由自振频率决定。

改变结构的自振频率,就可以得到不同的Sd和Sa。

给定地震作用下,不同周期对应结构地震反应的最大值。

结构的地震反应仅与结构的阻尼比及自珍频率有关。

反应谱的计算要完成一系列具有不同自振周期的结构反应。

利用抗震规范给出的平均反应谱可以得到一个工程场地结构地震反应的最大值。

(?如何由反应谱计算出反应时程?)5.1.5 建筑结构地震影响系数曲线(图5.1.5)的阻尼调整和:形状参数应符合下列要求:1 除有专门规定外,建筑结构的阻尼比应取0.05,地震影响系数曲线的阻尼调整系数应按1.0采用,形状参数应符合下列规定:1)直线上升段,周期小于0.1s的区段。

2)水平段,自0.1s至特征周期区段,应取最大值(αmax)。

3)曲线下降段,自特征周期至5倍特征周期区段,衰减指数应取0.9。

4)直线下降段,自5倍特征周期至6s区段,下降斜率调整系数应取0.02。

反应谱分析建立在振型分解反应谱理论基础上。

振型分解理论将结构的地震作用响应分解为各振型分量的叠加,即对应每个振型都有一个地震作用,然后通过一定的组合方法(SRSS,CQC,ABS等)叠加各振型结构的地震响应得到最终总的结构地震响应值。

振型分解法的数学和力学的本质:首先是利用功的互等定理(贝蒂定理)得到的振型正交性质,从而将多自由度结构振动偏微分方程组解耦成若干等效单自由度体系的常微分方程组,进而得到结构位移响应的解答。

当然,对于地震作用这样的复杂问题,结构振动的偏微分方程组的精确解是难以得到的,而必须采用数值解法。

常采用的数值解法有Wilson-θ法,New mark-β法等。

这些数值积分方法都有对应的求解程序,结构工程师不需要很精通这些数值求解方法的具体过程,而只需要建立一些概念即可。

这里需要注意一个概念:振型分析反应谱法只适用线弹性体系。

如果考虑结构的弹塑性性质,则这种方法不适用。

反应谱

反应谱

从理论上讲,如果反映谱分析所用的反映谱是时程分析分析时用的地震波所产生的反映谱,而分析又限於弹性阶段,两者几乎没有差别,因为反映谱分析(取足够的模态)只是忽略了影响很小的高阶效应。

但是如果结构进入非弹性阶段,只有用时程分析反应普法有几个假设:1,结构是弹性反应,反应可以叠加;2,无土结的相互作用;3,质点的最大反应即为其最不利反应;4,地震是平稳随机过程.而时程分析是把地震过程安时间步长分为若干段,在每时间段内安弹性分析,算出反应,然后再调整刚度和阻尼.总得一句话,就是步步积分法!①反应谱方法是一种拟静力方法,虽然能够同时考虑结构各频段振动的振幅最大值和频谱两个主要要素,但对于持时这一要素未能得到体现,震害调查表明,有些按反应谱理论设计的结构,在未超过设防烈度的地震中,也遭受到了严重的破坏,这充分说明了持时要素在设计中应该被考虑。

②反应谱方法忽略了地震作用的随机性,不能考虑结构在罕遇地震下逐步进入塑性时,因其周期、阻尼、振型等动力特性的改变,而导致结构中的内力重新分布这一现象。

③反应谱方法假设结构所有支座处的地震动完全相同,忽略基础与土层之间的相互作用。

时程分析方法是一种相对比较精细的方法,不但可以考虑结构进入塑性后的内力重分布,而且可以记录结构响应的整个过程。

但这种方法只反应结构在一条特定地震波作用下的性能,往往不具有普遍性。

我国反映谱方法的曲线是由255条地震波的地震反映的平均值,而非包络值,体现的是共性,但无法反映结构进入塑性的整体结构性能。

时程方法体现的是具体某条地震波的反映,不同地震波作用下结果的差异也很大,需要合理选波。

底部剪力法/反应谱法/时程分析法一些有用的概念/histruct/blog/item/465ce38787299023c75cc357.html从传统的观点来看,底部剪力法,反应谱法和时程分析法是三大最常用的结构地震响应分析方法。

那么正确的认识它们的一些关键概念,对于建筑结构的抗震设计具有非常重要的意义。

7-反应谱概念与设计反应谱

7-反应谱概念与设计反应谱

)d
max
最大相对速度
Sv
x(t) max
t 0
xg
( )e
(t )
sin (t
)d
max
最大加速度
Sa x(t) xg max
t 0
xg ( )e
(t )
sin (t
)d
max
最大反应之间的关系 Sa Sv 2Sd
二、地震反应谱:
最大相对位移
Sd
x(t) max
绝对加速度反应谱 相对速度反应谱
相对位移反应谱
地震反应谱的特点:
3.对于速度反应谱,当结构周 期小于某个值时幅值随周期增 大,随后趋于常数。
4.对于位移反应谱,幅值随周期 增大。
绝对加速度反应谱 相对速度反应谱
相对位移反应谱
地震反应谱的特点:
5.土质条件对反应谱的形状和 很大的影响,土质越松软,加 速度反应谱峰值对应的结构周 期也就越长。
max
3.曲线下降段,自特征周期至5倍特征周期区段: 0.9
4.直线下降段,自5倍特征周期至6s区段:1 0.02
*阻尼对地震影响系数的影响
当结构阻尼比不等于0.05时,其形状参数作如下调整 :
1.曲线下降段衰减指数的调整
2 2 2
d
t 0
xg
(
)e
(t
)
sin
d
(t
)d
2
d
t 0
xg
(
)e
(t
)
s
in
d
(t
)d
质点相对于地面的最大加速度反应为:
Sa x(t) xg max
t 0
xg ( )e (t )

标准反应谱

标准反应谱

标准反应谱
标准反应谱是核心的人类行为学概念,是指一系列的信号及其随后的反应。

此信号可以来源于各种来源,例如环境、文化、心理因素等。

反应可以用来衡量个体如何感知和积极地回应外部信息,也是商业与教育相关领域的重要技能。

标准反应谱在基础教育领域的应用十分重要。

照顾到每一个孩子的学习习惯,老师们需要弄清楚孩子如何对事情有反应。

一个基础教育项目正确地实施,以满足学生的学习需求,老师们可以清楚地了解学生的反应谱,并通过实施不同的方法来应对,这将有助于更有效、优质地完成教育,使学生得到更好的发展。

另外,标准反应谱有助于树立一种良好的教育氛围。

学生们不仅要掌握学习内容,还要能够准确地感知老师的情感,增强师生之间的信任关系,得到有效教育。

标准反应谱将有助于改善教育环境。

最后,基础教育必须重视标准反应谱。

只有深入理解学生在学习过程中的关键反应声明,才能正确地实施基础教育,才能真正帮助学生整体发展,为未来成才打下坚实的基础。

反应谱基本概念

反应谱基本概念

反应谱基本概念反应谱基本概念反应谱是指结构物在地震作用下的最大响应结果。

它描述了地震波在结构物上产生的一系列振动,是结构地震反应特征的全面指标。

反应谱是工程地震学领域中非常重要的一个参数,由多个分量组成,包括加速度、速度、位移和各种响应指标。

1. 加速度反应谱加速度反应谱是指某一结构元件在地震作用下所达到的最大加速度值和所对应的振周期之间的关系曲线,通常用于结构d阶振型、峰值加速度等的计算。

加速度反应谱可以通过谱加法或时程分析法计算得到结构的反应谱曲线。

2. 速度反应谱速度反应谱即某一结构元件在地震作用下所达到的最大速度值和所对应的振周期之间的关系曲线。

速度反应谱通常用于计算结构物的阻尼比、频率和峰值地震反应等参数。

3. 位移反应谱位移反应谱是指某一结构元件在地震作用下所达到的最大位移值和所对应的振周期之间的关系曲线。

位移反应谱通常用于计算最大位移响应、峰值地震反应等参数,是结构抗震设计和分析的重要参考依据。

4. 能量反应谱能量反应谱是指结构物在地震作用下消耗的总能量与频率之间的关系曲线。

能量反应谱通常用于计算能源吸收容量等参数,是结构抗震设计中非常重要的参考依据。

5. 谱加法谱加法是反应谱分析中一种常用的计算方法,它将结构物受多种输入地震加速度地震波作用所产生的反应加和,得出结构整体的反应谱曲线。

谱加法被广泛应用于建筑、桥梁等领域的抗震设计和分析中。

总之,反应谱是地震工程领域关键的性能指标之一,在结构物的抗震设计、强震动下的地震响应分析、地震灾害预防和抵御等方面具有重要意义。

通过对反应谱及其分量的深入研究和计算,可以在抗震设计和抗震分析中提供可靠的理论和技术支持。

第二节 反应谱

第二节 反应谱

绝对加速度反应谱 相对速度反应谱
相对位移反应谱
地震反应谱总结:
4、结构的最大地震反应,对于 低频结构主要取决于地面运动 最大位移。
绝对加速度反应谱 相对速度反应谱
相对位移反应谱
五、设计反应谱
设计反应谱:
地震反应谱直接用于结构的抗震设计有一定的困难,
而需专门研究可供结构抗震设计用的反应谱,称之为设计反应谱
2
T
(t
)d
max
Sa
xg max
2 1 T xg max
t 0
2 (t )
xg ( )e T
sin
2
T
(t
)d
max
yg (t ) (ms 2 )
t (s)
Elcentro 1940 (N-S) 地震记录
相对速度反应谱
Sv

x(t) max
t 0
xg ( )e (t )
sin (t
)d
max
yg (t ) (ms 2 )
Elcentro 1940 (N-S) 地震记录
t (s)
绝对加速度反应谱
2
Sa x(t) xg max T
t 0
2 (t )
xg ( )e T
sin
max
Sa x(t) xg max
t 0
xg ( )e
(t )
sin (t

)d
max
对比上两个公式,可以看出,地面最大加速度 xg (t) 对于给
定的地震时个常数,所以β—T的曲线形式与拟加速度反应谱
曲线的形状是完全一致的,只是纵坐标数值不相同。β—T 曲

反应谱

反应谱

返回
◆语文•选修\中国小说欣赏•(配人教版)◆
质点的绝对加速度为:
&x& &x&g 2x&2x
2
t 0xg (来自)e(t)c os d
(t
)d
2 2 2
d
t 0
xg (
)e
(t
)
sin
d
(t
)d
2
d
t 0
xg (
)e
(t
)
sin d
(t
)d
质点相对于地面的最大加速度反应为: d
Sa
t (s)
绝对加速度反应谱
Sa
&x&(t) &x&g max
2
T
t 0
2 (t )
&x&g ( )e T
sin
2
T
(t
)d
max
Sa
&x&g max
2 1 T &x&g max
t 0
&x&g (
2 (t )
)e T
sin
2
T
(t
)d
max
金品质•高追求 我们让你更放心!
返回
• 反应谱分为:
• 加速度反应谱 • 速度反应谱
• 位移金反品应谱质。•高追求
-2-
我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
一、水平地震作用
运动方程:
&x&(t) 2d x&(t) d2 x(t) &x&g (t) (2.1)
t 将

反应谱理论

反应谱理论

V (T ) B1(t)cost B2(t)sint max (22a) V (T ) B1(t)sint B2(t)cost max (22b)
7.3 地震反应谱
由式(22)可见
V (T ) S(t)cos(t ) max
式中
V (T ) S(t)sin(t ) max
(23a) (23b)
u,以它为隔离体,受力如图所示。
m EI h
umg((ut) ug )
图中Fs1和Fs2可由图是有位移法(实 际直接可由形常数)得到
Fms1uFcsu2 k1u2hE3 Iumugk2(tu)
列x方向全部力的平衡方程,即可得结
构的运动方程为
Fs1 cuFs2
uu
h
7.2 单自由度地震作用分析
例-2) 试用刚度法建立图示受地面运动激 m2
k2
h2
fe1 fd1
fe2 fd2
k12
k1
h1
fI1
fI2
7.2 单自由度地震作用分析
图中各项和第二章例子相仿,分别为 fe1 fd1
f I1 m(u1 ug (t )); ui为相对位移
fI1
fd1 c11u1 c12u2; fe1 k11u1 k12u2 ;
f I 2 m(u2 ug (t )) 元素全为1
曲线则分别称为该地震的相对位移、相对速度、绝对
加速度的反应谱,分别记作D(T)、V(T)、A(T)。
讲义上图5-2、5-3和5-4分别为1940年Elcentro南 -北地震分量的相对位移、相对速度、绝对加速度反 应谱.
7.3 地震反应谱
由于一般结构阻尼比很小,可近似认为d,所以从 式(11)-(13)可见,D(T)、V(T)、A(T)分别为

现行桥梁抗震设计的反应谱分析方法概要

现行桥梁抗震设计的反应谱分析方法概要

我国是世界上多地震的国家之一,地震常常给社会造成巨大损失。

近年来随着我国经济建设的快速发展,出现了各种形式的桥梁(如大跨度、超大跨度斜拉桥、悬索桥、拱桥及各种复杂的城市立交工程。

桥梁抗震设计中也涌现了众多问题。

桥梁结构地震反应分析的发展过程可以大致分为:静力法、反应谱法、动力时程分析法。

目前桥梁设计工作者的一个重要工作内容就是采取正确的抗震计算方法以及有效的构造措施。

反应谱法在桥梁抗震设计中是有一定应用价值的,虽然目前大多数抗震设计规程都指出对大跨度桥梁进行抗震设计应采用动态时程分析法,但是有必要研究反应谱法的优点及不足,以确保桥梁工程在地震过程中有足够的抗震能力和合理的结构安全度。

1桥梁抗震设计的基本思路当前主要地震国家桥梁抗震设计规范的基本思路和设计准则是:设计地震作用基本上分为功能和安全设计两个等级。

虽然各规范使用的名词不同,但其思路是基本一致的。

比较起来我国公路工程抗震设计规范仍在使用烈度概念,关于抗震设计的指导思想方面比较笼统。

主要地震国家抗震设计基本思路见表1。

2反应谱法基本概念人类在与地震的斗争中发展了各种抗震分析方法,分为确定性方法和概率性方法两大类。

静力法、反应谱法和时程分析法均属于确定性方法,随机振动、虚拟激励法属于概率性方法。

通常所说的结构地震反应分析,就是建立结构地震振动方程,然后通过求解振动方程得到结构地震反应(位移、内力等的过程。

2.1反应谱的定义在结构抗震理论发展中,静力法、反应谱法和动力时程分析法三个阶段的形成和发展是人类对自然规律认识的不断深入与完善的过程。

反应谱理论考虑了结构物的动力特性,而且简单正确地反映了地震动的特性,因此得到了广泛认可和应用。

广义线性单自由度体系现行桥梁抗震设计的反应谱分析方法张春霞,李昌铸,卢铁瑞,白红英(交通部公路科学研究院北京新桥技术发展有限公司,北京100101摘要:文章重点论述了桥梁抗震设计反应谱法的基本概念以及在大跨度桥梁设计应用中存在的一些问题,为进行桥梁抗震分析提供参考,以确保桥梁工程在地震过程中有足够的抗震能力和合理的安全度。

《反应谱理论》课件

《反应谱理论》课件

桥梁结构的抗震设计是桥梁工程中的重要部分,反应谱理论的应用能够为桥梁结构的抗震设计提供科学依据。
在桥梁结构的抗震设计中,需要根据不同的地震动输入和桥梁的重要性、使用功能等因素,进行结构抗震分析和设计。
反应谱理论能够综合考虑地震动输入的特性、桥梁的动力特性和地震反应,为桥梁结构的抗震设计提供更加准确和可靠的计算和分析方法。
详细描述
时程分析法与反应谱法结合应用是将时程分析法和反应谱法结合起来,用于更准确地模拟结构的地震响应。时程分析法能够模拟地震动的时域历程和结构的非线性行为,而反应谱法可以快速计算结构的反应谱。通过结合两种方法,可以更全面地了解结构在不同地震动输入下的响应特性。该方法广泛应用于高层建筑、大跨桥梁等重要结构的抗震设计。
在地下结构的抗震设计中,需要根据不同的地震动输入和地下结构的重要性、使用功能等因素,进行结构抗震分析和设计。
反应谱理论能够综合考虑地震动输入的特性、地下结构动力特性和地震反应,为地下结构的抗震设计提供更加准确和可靠的计算和分析方法。
地下结构的抗震设计是地下工程中的重要部分,反应谱理论的应用能够为地下结构的抗震设计提供科学依据。
地震反应谱的形成机制
01
02核心,可用于评估结构的抗震性能和进行抗震设计。
01
结构反应计算是指根据地震动输入和结构动力特性,计算结构在地震作用下的位移、速度、加速度等响应。
02
结构反应计算可以采用数值模拟方法,如有限元、有限差分等方法。
反应谱分析方法
反应谱理论的发展趋势与展望
总结词
研究复杂结构体系在地震作用下的反应谱特性,包括高层建筑、大跨度结构等。
详细描述
随着城市化进程的加速,高层建筑和大跨度结构等复杂结构体系越来越多地出现在工程实践中。这些结构的抗震性能对于保障人民生命财产安全具有重要意义。因此,研究复杂结构体系在地震作用下的反应谱特性,对于提高结构的抗震性能和保障结构安全具有重要的理论意义和实际应用价值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

移 Sd) , 我们称之为地震反应谱。各类工程设施中的 结构物大多是组成复杂的结构体系, 但在一定条件
下, 他们可以用一个称为单自由度系统的模型来分
析在地震作用下的反应。根据振型叠加法, 我们可以
用多个单自由度系统反应的方法来完成复杂结构的
地震反应分析工作。
在地震动作用下, 单自由度结构地震反应问题
会遭受的地震作用, 这样人们便把通过长期研究而
得到的, 一定的工程场地所可能遭受的地震袭击及
其影响的某些规律性的认识运用到具体的工程场地
上, 给定一个具有统计性质的所谓标准反应谱—场
地相关反应谱, 而后据此进行结构抗震分析与设计。
除了经特别研究给出的场地相关反应谱是一种标准
反应谱外, 在各类工程结构抗震设计规范中给出的反
··u+2l
w·u+w 2u=- at-
△ai △ti
( t- ti)
⑸ቤተ መጻሕፍቲ ባይዱ
u=e- l w ( t- ti) [ c1sinw d( t- ti) +c2cosw d( t- ti) ]

ai w2

2l w
△ai 3△ti

△ai w 2△ti
( t- ti)

式中: w d 是阻尼固有圆频率; c1、c2 为待定常数。
由于时程分析的特殊性和操作上的难度, 目前 在工程上还只能用于特别重要的工程的验算和校核, 还不能上升到规范阶段。因此, 弹性反应谱理论仍是 现阶段抗震设计的最基本理论, 规范所采用的设计 反应谱以地震影响系数曲线的形式给出。
1 反应谱的概念
反应谱是指对于给定的地面运动下, 各种周期 t 情况下结构的最大响应曲线( 加速度 Sa, 速度 Sv, 位
相应地, 振型向量的形式是
!j i "= !j ix1, j iy1, j iz1,j ix2, j iy2, j iz2, …, j ixs, j iys, j izs "T ⒃ 另外, 结构基底处的输入地震动只取 3 个平动
不确知的, 不能只用一个确定的地震动时间历程所
对应的加速度反应谱来计算一个工程场地上各结构
700 Sa( cm s2)
500
300
100
Ts( s)
0 0.5 1 1.5 2 2.5 3.0
* 迁安记录
1000 Sa( cm s2)
800 600
400
200
Ts( s)
0 123 4567
+ EI Centro 记录
图 1 加速度反应谱曲线
考虑到实际工程结构( 包括设备和部件) 的阻尼 比取值范围, 一般计算和绘出谱曲线时, l 常取值为 0.02, 0.05, 0.07, 0.1 和 0.2。至于周期的取值范围, 过 去由于 结 构 物 的 长 度 和 高 度 有 限 , T 常 从 0.05s 起 算至 3s 为止, 但近年来由于高层建筑和长大桥梁等 的增多, 有的反应谱的 T 需算至 7s 甚至 10s 以上。
的算式。如果考虑单自由度结构的变形, 考虑动力放
大效应, 则相应的算式应为:
P=( W g)·Sa( T; l )

式中: Sa( T; l ) 为加速度反应谱的谱值( 周期 T 和阻尼
比 l 已取单自由度结构的对应值) 。上式可改写为:
2008 年 4 月 第 4 期
广东土木与建筑
APR 2008 No.4
P=kb W

式 中 : b =b ( T, l ) 即 为 上 文 提 及 的 动 力 放 大 系 数 。
·x·i +2l
iw

·xi
+w
2 i
xi
=-
!j i
"T[ M] !a "mi*

再来考虑空间问题。为便于表述, 考虑系统质量
上式为理论公式, 实际计算中尚需根据结构类型和 重要程度, 以及设计实践, 考虑在动力系数 b 前乘 以调整系数 c( 称为结构系数, 取值为 c=0.5~1) 。由 于 Sa( T; l ) 可 以 大 于 、等 于 或 小 于 amax, 即 b ( T, l ) 可以大于、等于或小于 1, 故反应谱方法原则上比静
速度反应谱和相对位移反应谱 ( 常简称为加速度反
应谱、速度反应谱和位移反应谱) 。当用单自由度结构
的固有振动周期 T=2p w 作为自变量时, 上述三个谱
分别用 Sa( w ; l ) 、Sv( w ; l ) 和 Sd( w ; l ) 来表示。为 了直观地显示谱形及其特征, 同时方便使用, 一般常
矩阵[ M] 去对角阵形式, 即工程上常用的集中质量 矩阵上的元素按排列次 序 列 便 为 m1, m1, m1, m2, m2, m2, …, ms, ms, ms。设结构系统的节点为固定节点, 与 该 s 个质点所在位置的节点均为自由节点, 每个自 由节点只有 3 个平动自由度, 因此有 n=3s。于是系
在反应谱问题中, 求的是反应量的绝对值的最 大值, 这显然是结构抗震分析与设计的需要, 另外选 择绝对加速度反应这个物理量也显然是因它与计算 结构受到的地震惯性力有关联, 选择相对位移反应 则是因为它与地震时结构产生的变形有联系。
从引入反应谱概念的过程可以看到: ①如果取 定一个 l 值, 则每个地震记录都有相应的 1 个加速 度反应谱; ②反应谱与某一特指的结构没有关系, 而 结构是泛指的, 由参数 T、l 描写。当然反应谱可以 有基岩反应谱、地面反应谱和楼板反应谱, 还可以有 水平向反应谱和竖向反应谱。当单自由度结构进入 塑性状态工作时, 还可以考虑弹塑性反应谱问题。
的数学模型为:
·u·+2l w ·u+w 2u=- a( t)

u( 0) =·u( 0) =0
式中: w 、l 分别为单自由度结构系统的固有圆频率
和阻尼比; u 为系统模型中质点相对于地面的位移;
a( t) 为地面运动加速度, 在这里它是一个在时间区
间 [ 0, T] 上 有 定 义 的 地 震 动 过 程 , 或 是 一 个 在 该 时
23
2008 年 4 月 第 4 期
杨穗华: 规范反应谱理论介绍
APR 2008 No.4
以 l 为参数, 以 T 为横坐标, 在直角坐标系中画出 它们的曲线, 即谱曲线。图 1 为两条加速度反应谱曲 线( 迁安记录和 EI Centro 记录, 阻尼比 0.05) , 反映了 加速度谱的基本特征, 即随周期的增加谱值起伏地 上升, 达到第 1、2 峰点后开始平滑( 稍有起伏) 下降。 反应谱理论一般具有以下特征: ①对于加速度反应 谱, 周期很短时其值接近地震动的最大加速度, 周期 很长时接近于零; ②对于速度反应谱, 周期很短时接 近于零, 周期增大时则不断增大, 当固有周期大到某 一值时就增大到顶点而不再增大; ③对于位移反应 谱, 周期很短时接近于零, 周期增大时其值不断增大, 当固有周期达到某值时就增加到顶点并保持不变。
间区间上的给出的地震记录。方程⑴的解法很多, 但
总是可以得到一个确定解 u( t) , 并且还可以得到相 对 速 度 解 ·u( t) 和 绝 对 加 速 度 解··x( t) =·u·( t) +a( t) , 也
就可以在时间长度 T 的范围内求下述 3 个量:
Sa( w ; l ) = ··x( t) max
力法更合理, 因结构受到的地震荷载该大即大, 该小 即小, 安全性与经济性均考虑到了。迄今提及的还 只是相应于一个地震记录的加速度反应谱或动力放 大系数, 显然对于工程结构抗震分析与设计实际情 况来说, 工程场地所可能遭遇的地震影响的细节是
统位移向量的形式为:
!u "= !ux1, uy1, uz1, ux2, uy2, uz2, …, uxs, uys, uzs "T ⒂
第4期 2008 年 4 月
广东土木与建筑 GUANGDONG ARCHITECTURE CIVIL ENGINEERING
规范反应谱理论介绍
No.4 APR 2008
杨穗华
( 广州市城市规划勘测设计研究院 广州 510060)
摘 要: 近年计算机辅助建筑结构设计的能力不断加强, 新的结构抗震计算方法使得结构地震反应的精确计算 成为可能, 结构设计规范中已明确提出一般高层建筑都应采用振型分解反应谱法进行分析, 文中从规范的要求 出发详细介绍反应谱分析的基本理论及其计算方法。 关键词: 反应谱的概念; 地震反应谱的方法; 加速度反应谱方法; 振型参与系数
应谱也是一种标准反应谱, 它们比场地相关反应谱
包含更多的统计信息、震害经验和设计实践经验, 适
用范围自然更广。现行建筑抗震设计规范中列入的
地震影响系数曲线 a ( T) 虽然也是一种谱曲线, 但与
上述经统计的加速度反应谱曲线 Sa( T) 或动力系数 b ( T) 有区别, 其关系式分别为:
a ( T) =cSa( T) g =kcb ( T)
应量, 及其绝对值的最大值, 就可得到一个反应谱值,
改变 w ( 和 l ) 值并计算就可得到计算的反应谱。
3 加速度反应谱方法
我们可在以上单自由度结构反应谱方法的基础
上, 利用振型的正交等特性, 将多自由度化为单自由
度分析, 然后利用某种相应的振型耦合法( SRSS 和
CQC) 得到多自由度结构的抗震分析与设计的结果。
24
2 地震反应谱计算方法
我们可以通过计算来获取反应谱曲线, 也即解 算常微分方程初值方程⑴, 目前使用得较多的是精 确法( Nigam 和 Jennings, 1969) , 其 解 题 思 路 是 将 离 散形式的地震动加速度记录数据( 表格函数) 用分段 线性插值的办法“复原”, 再逐段求解析解。以下介绍 这一方法。有上面提及的分段线性插值法, 单自由度 系统的运动方程有:
相关文档
最新文档