2021年人教版高中数学选修2-2课后习题参考答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课程标准数学选修2—2第一章课后习题解答
欧阳光明(2021.03.07)
第一章 导数及其应用 3.1变化率与导数 练习(P6)
在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升. 练习(P8)
函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”1的思想. 练习(P9)
函数()r V =(05)V ≤≤的图象为 根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.
说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)
1、在0t 处,虽然1020()()W t W t =,然而
10102020()()()()
W t W t t W t W t t t t
--∆--∆≥
-∆-∆. 所以,企业甲比企业乙治理的效率高.
说明:平均变化率的应用,体会平均变化率的内涵.
2、
(1)(1) 4.9 3.3h h t h t t t
∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降.
3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.
(5)(5)10s s t s t t t
∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第5 s 时的瞬时速度为10 m /s ,它在第5 s 的动能
21
3101502
k E =⨯⨯= J.
4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258
k π=,于是2
258
t πθ=
. 车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的
导数.
(3.2)(3.2)25208
t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=.
因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.
5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.
6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.
说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)
1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.
2、
说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的
图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.
3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.
说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)
1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.
2、(1)1
ln 2
y x '=
; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;
(5)1sin 33x y '=-; (6)21
y x '=-.
习题1.2 A 组(P18) 1、
()()
2S S r r S r r r r r
π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=.
2、()9.8 6.5h t t '=-+.
3、32
13
()34r V V
π'=
. 4、(1)21
3ln 2
y x x '=+
; (2)1n x n x y nx e x e -'=+; (3)232
3sin cos cos sin x x x x x
y x
-+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++.
5、()822f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =
6、(1)ln 1y x '=+; (2)1y x =-.
7、1x
y π
=-+.
8、(1)氨气的散发速度()500ln 0.8340.834t A t '=⨯⨯.
(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少.
习题1.2 B 组(P19) 1、(1)
(2)当h 越来越小时,sin()sin x h x
y h
+-=
就越来越逼近函数cos y x =.
(3)sin y x =的导数为cos y x =.
2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P . x y e '=-,所以01x y ='=-.
所以,曲线在点P 处的切线的方程为y x =-.
2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h. 1.3导数在研究函数中的应用 练习(P26)
1、(1)因为2()24f x x x =-+,所以()22f x x '=-.
当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.
当()0f x '>,即0x >时,函数()x f x e x =-单调递增; 当()0f x '<,即0x <时,函数()x f x e x =-单调递减.