2021年人教版高中数学选修2-2课后习题参考答案

合集下载

新课程人教版高中数学选修2-2课后习题解答(全)(20201130151731)

新课程人教版高中数学选修2-2课后习题解答(全)(20201130151731)

第一章导数及其应用3. 1变化率与导数练习(P6)在第3 h和5 h时,原油温度的瞬时变化率分别为1和3.它说明在第3 h附近,原油温度大约以1 C/ h的速度下降;在第 5 h时,原油温度大约以 3 C/ h的速率上升.练习(P8)函数h(t )在t - t3附近单调递增,在t~t4附近单调递增.并且,函数h(t )在t4附近比在t3附近增加得慢•[说明:体会“以直代曲”的思想练习(P9)因此,物体在第5 s 时的瞬时速度为10 m / s ,它在第5 s 的动能Ek =—1 3X 102 = 150 J. 2 4、设车轮转动的角度为',时间为t ,则'"kt 2(「0).由题意可知,当 t -0.8时,.-2 '-.所以k ^2^ ,于是'心二"斫t 2 .8 8函数r (V )根据图象,估算出 r (0.6) 0.3, r (1.2) 0.2说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意 义估算两点处的导数. 习题1.1 A 组(P10 )1、在t 处,虽然W (t ) W (t0 10 2 0),然w W 1(t 0 ^W 1(t^ t )4t W 2 (t 0 r W 2 (t(f t ).所以,企业甲比企业乙治理的效率高 .说明:平均变化率的应用,体会平均变化率的内涵2、h -h(1t )一 h ⑴…St 33,所以, t ; th ⑴二 3.3这说明运动员在t Ms 附近以3.3 m /s 的速度下降3、物体在第 5 s 的瞬时速度就是函数 s (t )在「5时的导数t ) s ( 5i t 10,所以, ts (5) 二 10 .(0 V 5)的图象为-s( 5车轮转动开始后第3.2 s 时的瞬时角速度就是函数 「⑴在t 另.2时的导数A ( 3. 2+U ) &(3幵2) 25- 八一 -t 20,所以 一 (3.2)_ 20..处t 8因此,车轮在开始转动后第3.2 s 时的瞬时角速度为 20 s -1 .说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固 5、由图可知,函数f (x)在x - 5处切线的斜率大于零,所以函数在x =.「5附近单调递增.同理可得,函数f ( x)在x - -4,-2,0,2附近分别单调递增,几乎没有变化,单调递减,单调 递减. 说明:“以直代曲”思想的应用6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数 f (x)的图象如图(1)所示;第二个函数的导数 f ( X )恒大于零,并且随着x 的增加,f ( x)的值也在增加;对于第三个函数,当X 小于零时,f ( x)小于零,当x 大于零时,f ( x)大于零,并且随着 x 的增加,f ( x)的值也在增加.以下给出了满足上述条件的导函数图象中的一种说明:由给出的 v( t)的信息获得s(t )的相关信息,并据此画出 s(t )的图象的大致形状.这个说明:本题意在让学生将导数与曲线的切线斜率相联系 习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度; 速度变化的快慢,根据物理知识,这个量就是加速度 速度关于时间的导数刻画的是2、过程基于对导数内涵的了解,以及数与形之间的相互转换3、由(1)的题意可知,函数f ( x)的图象在点(1, 5)处的切线斜率为_1,所以此点附近曲线呈下降趋势.首先画出切线的图象,然后再画出此点附近函数的图象点处函数图.同理可得(2)( 3 )某象的大致形状.下面是一种参考答案.1、 f ( x) -2x -7,所以,f (2) 3, f (6) - 5.2、 (1)y 1 - (2) y — 2e x ;xln 2(3) y 二 10 x 4-6x ;(4) y 二-3sin x -1x(5) y 二 _ _ sin ;(6y 「— 13 32心-1习题1.2 A 组(P18)S S(r 阳播;r ) S(r ) r , 所以,S (r )-1、«— •一 nrr A 1A rr2、T h (t) -9.8t 6.5 .十3f ■=1 J 33、 r (V )3 '4 V 24、 (1) y - 3x 21 ;(2) y - i 说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思 想的领悟.本题的答案不唯一. 1 . 2导数的计算 练习(P18)xln 2(3) 4cos x ;nx n=e xIim(2 低 r + A r ) = 2i r .r 0"x n e x;(5)f (x)6y =—x 3cosx _cos x;( 4)sin 2 xy ^99(x 学 1)98 ;-2'x ;(6)e8 2 2x .由 f (x o ) ~ 4 有 4~ 8y 2si n(2 x 5)4 xcos(2x 5)2 2x o ,解得 x o 一 3' 2 .7、 y 1.8、 ( 1)氨气的散发速度 A (t ) ~500 In0.8340.834:(2) A (7) 一 25.5,它表示氨气在第 7天左右时,以25.5克/天的速率减少(3)y -sin x 的导数为y - cos x .就越来越逼近函数y cos x .-0时,x-0.所以函数图象与x轴交于点P(0,0).x,所以y e y所以,曲线在点P处的切线的方程为d (t) - -4sin t .所以,上午6:00时潮水的速度为0.42 m / h ;上午9:00时潮水的速度为0.63 m / h;中午12:00时潮水的速度为1 . 3导数在研究函数中的应用练习(P26)0.83 m/h ;下午6:00时潮水的速度为 1.24 m /h.1、亠44 ,所以*f ( X)-2x1时,函数f ( X)二X21时,函数 f ( X尸X2所以 f (X) -e x 1 .时,函数 f ( x)- -e x时,函数 f ( x)- -e x(1)因为f ( x)_x2— 2x-2 .-2 x 4单调递增;当f (x) 0 ,即x2x 4单调递减.x单调递增;-x单调递减.(2)因为f ( x) v e x x ,当 f (x) 0,即x,所以f ( x)二3 3x2.jf,当 f (x) 0,即x :当 f (x) 0,即x(3)因为f ( x) =3x x3当f (X) 0 ,即一1 X 1时,函数f (x) -3x x3单调递增;3(4)因为f ( x) 一x3一x2…x,所以f ( x) — 3x2一2x 一1.1当f(X)0,即X —•或x . 1时,函数f ( X)- X3 - X2- X单调递增;3当f (x).0,即—1 x 1时,函数f ( x) _ x 3x 2x 单调递减轧_ M w亠 _ _32、 絆- 匕・ ------ ・---- V* a Pi[砾號\: 注:图象形状不唯一.bx c(a - 0),所以 f ( x)- 2ax b .(2) 当 a <0 时,因此函数f ( x) ~2x 3 - 6x 2 7在(0, 2)内是减函数练习(P29)1、X 2 , X 4是函数y 一 f ( x)的极值点,其中x x 2是函数 y — f (x)的极大值点,x " x 4是函数y — f ( x)的极小值点. 2、( 1)因为 f ( x)— 6 x 2 x 2,所以 f ( x) -12x 1 .令 f (x) 12- x-1 £,得 x 尸■ 1 .121当x 严一时,f (x)0, f ( x)单调递增;当x 凉;1时,f (x):0, f ( x)单调递减.12 12所以,当x -r 时,f (x)有极小值,并且极小值为f (r i 6(r)2-”r -.3、因为 f (x)ax 2 (1 )当 a 「0 时,即x —b时,2a即x — 时,f (x) 0, f (x) 0,函数 函数f ( x) = ax 2bx 2f ( x) _ ax bx• c(a - 0)单调递增; c( a 二0)单调递减.f(x) 0 , 函数2f ( x) _ ax bxf (x)0, 4、证明:因为f ( x) 2x 3即x 弓一“b 时, 2a 即x b 时,2a6x 27,所以'f (x)—6x 2c( a-0)单调递增; 函数 2f ( x)ax bxc(a 辱0)单调递减.12x .当 x (0, 2)时,f ( x) £x 2 12 x : 0,12 12 12 12 24 (2) 因为f ( x) — x327x,所以f ( x) — 3x227 .令f (x) 3x2一27 一0,得x 一:3 .下面分两种情况讨论:①当f (;)讥,即x V—3或x --3时;②当f "(x) V 0,即3 V X* 3时.if当x变化时,f (x),f (x)变化情况如下表:因此,当x壬鼻3时,f ( x)有极大值,并且极大值为54 ;当x - 3时,f (x)有极小值,并且极小值为—54 .(3) 因为f ( x) -6 12x x3,所以f ( x) - 12 3x2.令f (x) 12 - 3x2-0,得x -匚2 .下面分两种情况讨论:①当f ( x) ■ 0,即卩2 x :: 2时;②当f(X): 0,即x匚2或x「2时. 当x变化时,f (x), f (x)变化情况如下表:因此,当S2时,f ( x)有极小值,并且极小值为=10 ;当x -2时,f ( x)有极大值,并且极大值为22(4) 因为f ( x)_3x_x3,所以f( x)— 3 3x2.令f (x) 3二3x2二0,得x 1 .下面分两种情况讨论:①当f ( 1)哀・0,即卩彳东<1时;②当f '( x)弋0,即x V F或x洁1时. 当x变化时,f (x),f (x)变化情况如下表:因此,当x二-1时,f ( x)有极小值,并且极小值为"2 ;当x _1时,f (x)有极大值,并且极大值为2练习(P31 )11(1 )在[0, 2]上,当x _ 时,f ( X )_6X 2_X _2有极小值,并且极小值为f ()1212又由于 f (0)冃一2 , f (2)- 20 .因此,函数f ( x) 6x 2x 2在[0, 2]上的最大值是20、最小值是 _49・24(2)在[-4,4]上,当x "=-3时,f (x)x^ - 27x 有极大值,并且极大值为 f ( 3): 当x 二3时,f (x) m x 3- 27 x 有极小值,并且极小值为f ⑶--又由于 f ( V) — 44, f (4)戸—』44.又由于f (丄__,f ⑶_15 .3271 55因此,函数f ( x) -6 12x _x 3在[—,3]上的最大值是 22、最小值是.327在[2,3]上,函数f (x) -3x - x 3无极值. 因为 f (2) - 2,f (3) - 18 .因此,函数f ( x) =3x_x 3在[2,3]上的最大值是 一2、最小值是一18习题1.3 A 组(P31)_ 49 24-54 ; 54 ;二 22 .因此,函数f ( x) - X 3-- 27 x 在卜4,4]上的最大值是 54、最小值是 54 .1,3]上,当x -2时,f ( x)二6 12x _ X 3有极大值,并且极大值为f (2)31 551、( 1)因为f (刈二一2 x 1,所以f ( x)二一2 0 .因此,函数f ( x)二「2x 1是单调递减函数.(2) 因为f ( x) = x cos x ,x (0, —),所以f (x) = 1 sin x 0 ,x (0, —).2 2 因此,函数f ( x) - x cos x在(0, — )上是单调递增函数.2(3) 因为f ( x) 一-2x^4,所以f (x) 2一:0 .因此,函数 f ( x) -2x 4是单调递减函数.(4) 因为f ( x) -2 x3” 4x,所以f ( x)— 6x2 40 .因此,函数f ( x) - 2x3 4x是单调递增函数.2、( 1)因为f ( x)— x2• 2x 4,所以f ( x) —2x 2 .当f (x) 0 ,即x萨一1时,函数f (x)尸x2 1 2x 4单调递增当 f (x) f (x) - x22x i 4单调递减(2)因为f ( x)-2x2 - 3x^3,所以f (x) -4x - 3 .当f (x) 0,即x 3时,函数f ( x) - 2x2 _ 3x 3单调递增4当f (x) 0,即x 3时,函数f ( x) _2x2 3x 3单调递减4(3)因为f ( x)-3x x3,所以f ( x) 3 - 3x2 0 .因此,函数f ( x) _3x x3是单调递增函数.(4)因为f ( x) =x3 +x2 - x,所以f "( x) =3x2±2x -1.1当f (x) 0,即x^»1或x 时,函数f ( x) _ x3 x2一_ x单调递增.31当f (x) 0,即_1 x.:时,函数f ( x)=x3^x2= x单调递减.33、 ( 1)图略. (2)加速度等于0.4、 ( 1 )在X2处,导函数yf ( x)有极大值;(2)在x - X1和x—X4处,导函数y 一f (x)有极小值;(3)在x - X3处,函数y 一 f ( x)有极大值;(4)在x 一X5处,函数y— f ( x)有极小值.5、 ( 1)因为f ( x) -6 X2 x 2,所以f ( x) 12x 1 .令f (x) 12 x 1 -0,得x =「「1 .12当x啊■-时,f ( X) 0,f ( x)单调递增;12当x •-汁时,f ( x) 0, f ( x)单调递减.12所以,x 一十时,f (x)有极小值,并且极小值为 f ( 4)U夢6 (—1)2 F■12 12 12 12(2)因为f ( x) -x312x,所以f (x) 3x2 12.令f (x) "3x2 12 一0,得x「2 .下面分两种情况讨论:①当f ( x) - 0,即x 2或x 2时;②当f ( x) 0,即2 : x 2时.当x变化时,f (x) , f (x)变化情况如下表:因此,当x 一—2时,f ( x)有极大值,并且极大值为16; 当x -2时,f ( x)有极小值,并且极小值为-16 .(3)因为f ( x) -6 -12x x3,所以f ( x)— -12 3x2.令f (x) ^「12 3x2口0,得x 2 .下面分两种情况讨论:①当f ( x) • 0,即x二2或x 2时;②当f ( x) 一0,即卩2二x : 2时.当x变化时,f (x),f (x)变化情况如下表:因此,当x - 2时,f ( x)有极大值,并且极大值为22 ;当x 一2时,f ( x)有极小值,并且极小值为-10 .(4)因为f ( x) -48x x3,所以f (x) - 48 3x2.令f (x)二48— 3x2二0,得x「二4 .下面分两种情况讨论:①当f ( x) 0,即x : -2或x 2时;②当f ( xp 0,即—2 x 2时. 当x变化时,f (x),f (x)变化情况如下表:因此,当x _ 4时,f ( x)有极小值,并且极小值为128 ;当x -4时,f ( x)有极大值,并且极大值为 128.(1 )在[_1,1]上,当x =「丄 时,函数f (x) 6x 2+x 42有极小值,并且极小值为1247 24由于 f ( 1)一7 , f (1) 一 9 ,247所以,函数f ( x) _6x 2 x- 2在[_1,1]上的最大值和最小值分别为 9,24(2)在[3,3]上,当x »2时,函数f ( x) -x 312x 有极大值,并且极大值为16;当x =2时,函数f ( x) - X 3=12X 有极小值,并且极小值为-16 .由于 f ( —3) 一9 , f (3) - —9 ,所以,函数f ( x) - x 3-12x 在[-3,3]上的最大值和最小值分别为16, 16 .1 1(3)在[_ ,1]上,函数 f ( x) 6 12x. x 3在[—,1]上无极值.32693由于 f ( 1),f (1)_ 5, 3271所以,函数f ( x) - 6 —12x ;方x 3在[,1]上的最大值和最小值分别为 326927(4 )当x 4时,f ( x)有极大值,并且极大值为128..由于 f ( 一3) 一 -117 , f (5) - 115 ,所以,函数f ( x) =48x_x 3在[-3,5]上的最大值和最小值分别为 128, 117 .习题3.3 B 组(P32)1、( 1 )证明:设 f ( x) _sin x x , x (0,).因为 f ( X )- cos x 1 0, x (0,)所以f ( x) -sin x _x 在(0^ )内单调递减因此 f ( x) — sin x x : f (0)一0, x (0/ ),即 sin x x , x (0,). 图略(2)证明:设 f ( x) - x x 2, x (0,1). 因为 f ( x) — 1 2x ,x (0,1)所以,当x (0, 1 )时,f (x) _1_2x 0 , f (x)单调递增,2f ( x)r x x2嚣f (0) - 0 ;,1)时,f ( x) _ 1 _ 2x 0 , f ( x)单调递减,f (X)EX-X2 f (1尸0 ;1又f(__) 0 .因此,x _x20 , x (0,1).2 4()一x_1 一,x - 0 .x e x因为f ( x) - e x 1, x - 0所以,当x 0时,f ( x) - e x T 0 , f (x)单调递增,f (x)二e x 1 x f (0)二0 ;当x 0时,f ( x) i e x 1 0 , f (x)单调递减,f (x) = e x-1 - x > f (0)=0 ;综上,e x-1 x , x - 0 . |图略(4)证明:设 f (x) J|n x - x , x 0 .因为 f ( x) - 11,X = 0x所以,当0-C X V1时,f Yx) z斗一1刃,f ( x)单调递增,xf ( x)二In x i x f (1)二一1 0 ;当x 1 时,f ( x)--1-1 0,f ( x)单调递减,xf ( x) — In x x : f (1) —10 ;当x "1时,显然In1 : 1 . 因此,In x x .由(3)可知,e x x 1 x,x 0 . 图略(3 )证明:设. 综上,In x x e x,x 0 图略2、( 1)函数f ( x) 一ax3 bx2 cx d的图象大致是个“双峰”图象,类似“”或的形状.若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为f ( x) -ax3 bx2 cx d,所以f ( x)」3ax2 2bx c .下面分类讨论:当a -0时,分a 0和a 0两种情形:①当a 0 ,且b? -3ac 0时,设方程f ( x) 一3ax2 2bx c "0的两根分别为x i, X2,且x i ' X2 ,当f (x) -3ax2 2bx 0,即x x i 或x X2 时,函数f (x) - ax3 ' bx2 ex ' d 单调递增;当f (x) _3ax2 2bx c 0,即x i,x X2 时,函数f ( x)「「ax3 bx2 ex d 单调递减.当a 0,且b23ac-0 时,此时f ( x) =3ax2 ' 2bx ' c 0,函数f ( x)二ax3 ' bx2 c^ d 单调递增②当a 0,且b2- 3ac 0时,设方程f ( x) 一3ax2 2bx c 0的两根分别为x i, X2,且x i x2,当f (x) =3ax2 2bx c ' 0,即x i x ; X2 时,函数f ( x)二ax3 bx2 cx d 单调递增;当f (x)…3ax22bx c 0,即x :x i 或x X2 时,函数f (x) ax 3bx2 cx d 单调递减当 a 0,且b23ac—0 时,此时f ( x) "3ax2 ' 2bx ' c 0,函数f ( x) 一ax3 bx2 c^ d 单调递减i . 4生活中的优化问题举例习题i.4 A组(P37 )i、设两段铁丝的长度分别为x , l x,则这两个正方形的边长分别为x , L A,两个正方1- 4 4形的面积和为S f (x) - (-"X )2( - x)2 -亍(2 x2- 2lx T 2 ) , 0二x "1 .4 4 i6令 f ( x)二0,即4x 21 =0, x =十.2当X 和,1厂时,f '(X)W0 ;当X J )时,f ( X) 0 >2 2因此,X --是函数f ( X)的极小值点,也是最小值点.2所以,当两段铁丝的长度分别是-时,两个正方形的面积和最小2、如图所示,由于在边长为a的正方形铁片的四角截去四个边长为x的小正方形,做成一个无盖方盒,所以无盖方盒的底面为正方形,且边长为 a 2x,高为x .(i )无盖方盒的容积V ( x)」(a 一2x)2 x , 0 • x ' a .2(2)因为V (x) 4x 3 _4ax2 a2 x ,(第2 题)Rh42R 0222222 8 n i i a i )当R—+ 2V x 2 m 2 (x所以 V ( x)二 12x 2 8ax a 2 . 2—2第一章课后习题解答 沖j一 T令 f (x) 0,得 x - a i , 1 'n可以得到,x- a i 是函数f ( x)的极小值点,也是最小值点 5、设矩形的底宽为 x m ,则半圆的半径为 (第 3 题).此时,h VR 2所以,当罐咼与底面直径相等时,所用材料最省 =r z rf - 24、证明:由于 f ( x) =( x ai),所以f (x)n i in i i这个结果说明,用 n 个数据的平均值 1-n a i 表示这个物体的长度是合理的,m ,半圆的面积为 63、如图,设圆柱的高为.-.h ,底半径为R , 则表面积S 2 Rh 2 R 2I ----- ---23 V 2R . 这就是最小二乘法的基本原理 71二厂 ----------R 2 h ,得 h V 2 'R—兀 ---------------------+ TT o — S(R) 2 R V 2 R 2 R 22V 2 R 2, R 0 . R —当R因此,二 VR 3 ;-是函数S(R)的极小值点,也是最小值点由V 因此,令 S(R)R_ 0,解得 R _ I VS(R)V ]时)时,S(R)令V (x)0 ,得x a (舍去),或 x a .26a a a」当 x (0,)时,V (x) 0 ;当x e (- 一 )时,V ( x/0 .66 2因此,xa是函数V ( x)的极大值点,也是最大值点6 —所以,当x a 时,无盖方盒的容积最大.r °2a x矩形的面积为ax 2 m 2,矩形的另一边长为 — ) m8x 8因此铁丝的长为 I (x)冷 _xx Na -— 二(「•: =) x_2a, 0 x 8a2 x 4 4 x'■ ~令 I ( x) ] 2a _0,得 x_ 8a(负值舍去).4 x 2 丫4 械因此,所以,当底宽为8a m 时,所用材料最省.56、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.1 彳收入 R _q p 一 q (25 _ q) - 25q_ 1q 2,8 8利润 L _ R =C _(25q =1 q 2)_ (100 4q)q 221q =100, 0 : q 厂 200 .8 8求导得L * =+ 214令 L —0,即卩—1 q 21 0, q _84 .4当 q (0,84)时,L 0 ;当 q (84,200)时,L 0 ;因此,q 84是函数L 的极大值点,也是最大值点所以,产量为 84时,利润L 最大,当 x (0, 8a )时,V 4仕I ( x). 0 .x_ 8a 是函数I (x)的极小值点,也是最小值点I 4习题1.4 B组(P37)1、设每个房间每天的定价为x元,那么宾馆利润L (x)二(50 -x—)( x 20)二一1 X2 70x 1360,180 x : 680 .10 10令L (x) 1 x 70- 0,解得x -350 .5当x (180,350)时,L ( x) 0 ;当乂(350,680)时,L ( x) 0.因此,x ~ 350是函数L( x)的极大值点,也是最大值点所以,当每个房间每天的定价为350元时,宾馆利润最大2、设销售价为x元/件时,利润L (x) =( x_a)(c #C b ~x x4)_p( x _ a)(5 —呂x) , a”.F~l«^T.b b 4令L (x) _ _ 8c x 4ac 5bc ― 0,解得x _ 4a 5b .当x _4a 5b是函数L( x)的极大值点,也是最大值点84a所以,销售价为4a 5b元/件时,可获得最大利润81 . 5定积分的概念练习(P42)说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想练习(P45)1、S i S i --v()『二t - [ - ( ' ) 2& 2] -1 —-( i)2 1爼■nn n于是S L工/:.,s i達?止S ii T 行n[_(i )2 1 i卜n n-()2-1n n1 23 [1 22'n1 n(n 1)(23n1 1 土一占(1 )(13取极值,得n s - limn—九i 叶)] n说明:进一步体会22 kkm.3说明:进一步体会和步骤.练习(P48)x3dx 4.“以不变代变“以不变代b b⑴/ 4a」*5b 口」当x (a, )时,L (x)88r/ +5b 5b □斗0 ;当x ( 4a ,)时,8 4L ( x) 0 .从几何上看,表示由曲线 y x 3与直线x0 , x 2 , y 0所围成的曲边梯形的面积n nnnr 2^ ii'三£ v( ) ti Tn2]n(^_-1 )2」 (』)n n nn 2 ]2n 1)21 ) !n2n1 1-lim •「[-(1 -n • 厂13 n”和“ '逼近” 的思想 ”和“ '逼近” 的思想,21 n 1)(1 )2ni =1,2, ” ;»n .熟悉求变速直线运动物体路程的方法说明:进一步熟悉定积分的定义和几何意义习题1.5 A 组(P50 )1、( 1) (x 1)dx100i 1)1]10.495 ;1 2-H -- --t -------- =■i 11001002 500(2)(x __1)dx ■ -[(1i _1k_1]1 — 0.499 ;1i 怎5005002 10001(3)(X _1)dx-[(1i 」)」.<■ 1 -0.4995 .1i 110001000说明:体会通过分割、近似替换、求和得到定积分的近似值的方法 2、距离的不足近似值为:18 V 12 17 13 V 0 1 40( m );距离的过剩近似值为: 271 18 1 12 V 7 V3 1 - 67 ( m )3、证明:令f ( x )匸1 .用分点a 二x o * X 1作和式i1i1y x 3所围成的曲边梯形的面积的相反数(2)根据定积分的性质,得1 qx 3dx1由于在区间[1,0]上x 30,在区间[0,1]仔x 3dx1> 上x 31x 3 dx1 1 0 .4£,所以定积分 1x 3dx 等于位于x 轴上方的将区间 [a, b ]等分成 n个小区间,在每个小区间[X i 1 , x i ]上任取一点 i (i 1,2, , n)X i 1 X i X n — b从而「b. ; b -a 1dx i im b - a ,a 7冕斗n说明:进一步熟悉定积分的概念 4、根据定积分的几何意义,-1 x 2 dx 表示由直线沪0,x=,尸0以及曲线所围成的曲边梯形的面积,即四分之一单位圆的面积,因此(1)x 3 dx4<由于在区间[1,0]上x 30,所以定积分[ ~ =—"—x 3 dx 表示由直线 x 0 , x 1 , y1二0和曲说明:在(3)中,由于x 3在区间[1,0]上是非正的,曲边梯形面积减去位于 x 轴下方的曲边梯形面积 . I 0 3x 3dx1上x 3(3)根据定积分的性质,得2 x 3dx1一 空由于在区间[1,0] 上 x 30,在区间[0, 2]曲边梯形面积减去位于 X 轴下方的曲边梯形面积2 — — ' — ---------------------------------x 3dx1 4 15 04 4)_2,所以定积分 1x 3dx 等于位于x 轴上方的在区间 [0, 2]上是非负的,如果直接利用定义把区间[1,2]分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵「X - il - (i 1)1-1 .n则细棒的质量挡一些项,求和会非常麻烦 .利用性质3可以将定积分2 0x 3dx 化为x 3dx.12x 3dx ,这样,x 3在区间[1,0]和区间[0, 2] 上的符号都是不变的,再利用定积分的定义,容易求出r °x 3dx ,12;x 3dx ,进而得到定积分2I x 3dx 的值.由此可见,利用定积分的性质可以化简运算--1在(2)( 3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分 的几何意义.习题1.5 B 组(P50 )1、 该物体在t - 0到t - 6 (单位: 说明:根据定积分的几何意义, 的路程.2、 ( 1) v — 9.81t .s )之间走过的路程大约为 145 m.通过估算曲边梯形内包含单位正方形的个数来估计物体走过(2)过剩近似值:丄1…9.81- 空-88.29 ( m ); 2 24 2不足近似值:8i 1 1 1 8 7 '9.81 ---------- 「一 9.81 一 : ------- 68.67------------------ ( m )4(3)9.81tdt49.81tdt 二 78.48( m ).■ 0(1)分割在区间[0, l ]上等间隔地插入 l[0,-], n 记第i 个区间为[(i-1)| , -iL ]nn -1个分点,将它分成 n 个小区间:l 2l[--,—],,,,n n (i -1,2, n ) [4n^)L,i ],n把细棒在小段 [0, l ], n[l , 2l],,,, n nA —心[(n 2)l ,l ]上质量分别记作: n m 1, m 2 , , m n ,(2)近似代替(i -x很小时,在小区间['1)1 , il ]上,可以认为线密度n n化很小,近似地等于一个常数,不妨认为它近似地等于任意一点当n 很大,即'(x) - x 2的值变值(-i )s 卩[(F 1)l-』]处的函数n ni 2.于是,细棒在小段[,』]上质量 m^ ( i 厂x i 2」(i 「1,2, n ).n nn(3)求和得细棒的质量m i 、2 _!_.i 1 i n(4)取极限n 细棒的质量m ^!im r.n_]* •i2 L,所以m l2x dx ..。

(精校版)高中数学选修22全套知识点及练习答案解析

(精校版)高中数学选修22全套知识点及练习答案解析

2. [ f (x) g(x)] f (x) g(x) f (x) g(x)
3。 [ f (x)] f (x) g(x) f (x) g(x)
g(x)
[ g ( x)]2
复合函数求导 y f (u) 和 u g(x) ,称则 y 可以表示成为 x 的函数,即 y f (g(x)) 为一个复合函数
(直打版)高中数学选修 2-2 全套知识点及练习答案解析(word 版可编辑修改)
(直打版)高中数学选修 2-2 全套知识点及练习答案解析(word 版可编辑修改) 编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)高中数学选修 2-2 全 套知识点及练习答案解析(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也 真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为(直打版)高中数学选修 2-2 全套知识点及练习答案解析(word 版可编辑修改)的全部内容。
C.2.09
D.2.1
[答案] B
[解析] f(1)=5,f(1。3)=5。69.
∴kAB=Error!= =2。3,故应选 B。 5.已知函数 f(x)=-x2+2x,函数 f(x)从 2 到 2+Δx 的平均变化率为( )
A.2-Δx
B.-2-Δx
C.2+Δx
D.(Δx)2-2·Δx
[答案] B
5 若 f (x) ax ,则 f (x) ax ln a
7

f (x) logax ,则

高中数学选修2-2全套知识点及练习答案解析

高中数学选修2-2全套知识点及练习答案解析

选修2-2 知识点及习题答案解析导数及其应用一.导数概念的引入1.导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()limx f x x f x x∆→+∆-∆2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 及曲线相切。

容易知道,割线n PP 的斜率是,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim ()n x n f x f x k f x x x ∆→-'==-3.导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即()()()limx f x x f x f x x∆→+∆-'=∆二.导数的计算基本初等函数的导数公式: 1若()f x c =(c为常数),则()0f x '=; 2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln x f x a a '=6 若()xf x e=,则()x f x e '=7 若()log xa f x =,则 8 若()ln f x x =,则导数的运算法则1. [()()]()()f x g x f x g x '''±=±2.[()()]()()()()f x g x f x g x f x g x '''•=•+• 3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'=复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=•三.导数在研究函数中的应用 1.函数的单调性及导数:一般的,函数的单调性及其导数的正负有如下关系: 在某个区间(,)a b 内(1)如果()0f x '>,那么函数()y f x =在这个区间单调递增;(2)如果()0f x '<,那么函数()y f x =在这个区间单调递减.2.函数的极值及导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1)如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值(2)如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;4.函数的最大(小)值及导数 求函数()y f x =在[,]a b 上的最大值及最小值的步骤:(1)求函数()y f x =在(,)a b 内的极值;(2)将函数()y f x =的各极值及端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.推理及证明考点一合情推理及类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有及另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1)找出两类事物的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3)一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4)一般情况下,如果类比的相似性越多,相似的性质及推测的性质之间越相关,那么类比得出的命题越可靠.考点二演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三数学归纳法1.它是一个递推的数学论证方法.2.步骤:A.命题在n=1(或0n)时成立,这是递推的基础;B.假设在n=k时命题成立; C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。

高中数学选修2-2函数的单调性与导数(2021年整理)

高中数学选修2-2函数的单调性与导数(2021年整理)

(完整word)高中数学选修2-2函数的单调性与导数(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)高中数学选修2-2函数的单调性与导数(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)高中数学选修2-2函数的单调性与导数(word版可编辑修改)的全部内容。

1.3。

1函数的单调性与导数[学习目标] 1.结合实例,直观探索并掌握函数的单调性与导数的关系。

2。

能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.3.会求函数的单调区间(其中多项式函数的最高次数一般不超过三次).知识点一函数的单调性与其导数的关系在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f′(x)〉0单调递增f′(x)<0单调递减f′(x)=0常函数思考以前,我们用定义来判断函数的单调性,在假设x1<x2的前提下,比较f(x1)与f(x2)的大小,在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易,如何利用导数来判断函数的单调性?答案根据导数的几何意义,可以用曲线切线的斜率来解释导数与单调性的关系,如果切线的斜率大于零,则其倾斜角是锐角,函数曲线呈上升的状态,即函数单调递增;如果切线的斜率小于零,则其倾斜角是钝角,函数曲线呈下降的状态,即函数单调递减。

知识点二利用导数求函数的单调区间利用导数确定函数的单调区间的步骤:(1)确定函数f(x)的定义域.(2)求出函数的导数f′(x).(3)解不等式f′(x)>0,得函数的单调递增区间;解不等式f′(x)<0,得函数的单调递减区间。

高中数学选修2-2第二章课后习题解答

高中数学选修2-2第二章课后习题解答

新课程标准数学选修2—2第二章课后习题解答第二章 推理与证明2.1合情推理与演绎推理 练习(P77)1、由12341a a a a ====,猜想1n a =.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=⋅⋅. 练习(P81) 1、略.2、因为通项公式为n a 的数列{}n a ,若1n na p a +=,其中p 是非零常数,则{}n a 是等比数列; ……………………大前提又因为0cq ≠,则0q ≠,则11n n nn a cq q a cq++==; ……………………………小前提所以,通项公式为(0)n n a cq cq =≠的数列{}n a 是等比数列. ……………………结论3、由AD BD >,得到ACD BCD ∠>∠的推理是错误的. 因为这个推理的大前提是“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中.习题2.1 A 组(P83)1、21n a n =+()n N *∈. 2、2F V E +=+. 3、当6n ≤时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *∈.4、212111(2)n n A A A n π++≥-(2n >,且n N *∈). 5、121217n n b b b b b b -=(17n <,且n N *∈).6、如图,作DE ∥AB 交BC 于E .因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形ABED 是平行四边形. 因为平行四边形的对边相等.又因为四边形ABED 是平行四边形. 所以AB DE =.因为与同一条线段等长的两条线段的长度相等,又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的.又因为△DEC 是等腰三角形, 所以DEC C ∠=∠ 因为平行线的同位角相等又因为DEC ∠与B ∠是平行线AB 和DE 的同位角, 所以DEC B ∠=∠ 因为等于同角的两个角是相等的,又因为DEC C ∠=∠,DEC B ∠=∠, 所以B C ∠=∠ 习题2.1 B 组(P84)1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略. 2.2直接证明与间接证明 练习(P89)1、因为442222cos sin (cos sin )(cos sin )cos 2θθθθθθθ-=+-=,所以,命题得证.2>,只需证22>,即证1313+>+>,只需要22>,即证4240>,这是显然成立的. 所以,命题得证. 3、因为 222222222()()()(2sin )(2tan )16sin tan a b a b a b αααα-=-+==, 又因为sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab αααααααααα+-=+-=⋅22222222sin (1cos )sin sin 161616sin tan cos cos αααααααα-===, 从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P91)1、假设B ∠不是锐角,则90B ∠≥︒. 因此9090180C B ∠+∠≥︒+︒=︒. 这与三角形的内角和等于180°矛盾.所以,假设不成立. 从而,B ∠一定是锐角.2=所以22=,化简得5=225=,即2540=, 这是不可能的. 所以,假设不成立..说明:进一步熟悉运用反证法证明数学命题的思考过程与特点. 习题2.2 A 组(P91)1、由于0a ≠,因此方程至少有一个跟bx a=.假设方程不止一个根,则至少有两个根,不妨设12,x x 是它的两个不同的根,则 1ax b = ①2ax b = ②①-②得12()0a x x -=因为12x x ≠,所以120x x -≠,从而0a =,这与已知条件矛盾,故假设不成立.2、因为 (1tan )(1tan )2A B ++=展开得 1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ①假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B+=所以cos()0A B +=.因为A ,B 都是锐角,所以0A B π<+<,从而2A B π+=,与已知矛盾.因此1tan tan 0A B -≠.①式变形得tan tan 11tan tan A BA B +=-, 即tan()1A B +=. 又因为0A B π<+<,所以4A B π+=.说明:本题也可以把综合法和分析法综合使用完成证明.3、因为1tan 12tan αα-=+,所以12tan 0α+=,从而2sin cos 0αα+=. 另一方面,要证 3sin 24cos2αα=-,只要证226sin cos 4(cos sin )αααα=--即证 222sin 3sin cos 2cos 0αααα--=, 即证 (2sin cos )(sin 2cos )0αααα+-=由2sin cos 0αα+=可得,(2sin cos )(sin 2cos )0αααα+-=,于是命题得证.说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.4、因为,,a b c 的倒数成等差数列,所以211b ac =+.假设2B π<不成立,即2B π≥,则B 是ABC ∆的最大内角,所以,b a b c >>(在三角形中,大角对大边), 从而11112a c b b b +>+=. 这与211b a c=+矛盾. 所以,假设不成立,因此,2B π<.习题2.2 B 组(P91)1、要证2s a <,由于22s ab <,所以只需要2s s b<,即证b s <.因为1()2s a b c =++,所以只需要2b a b c <++,即证b a c <+. 由于,,a b c 为一个三角形的三条边,所以上式成立. 于是原命题成立. 2、由已知条件得 2b ac = ① 2x a b =+,2y b c =+ ② 要证2a cx y+=,只要证2ay cx xy +=,只要证224ay cx xy += 由①②,得 22()()2ay cx a b c c a b ab ac bc +=+++=++, 24()()2xy a b b c ab b ac bc ab ac bc =++=+++=++, 所以,224ay cx xy +=,于是命题得证. 3、由 tan()2tan αβα+= 得sin()2sin cos()cos αβααβα+=+,即sin()cos 2cos()sin αβααβα+=+. ……①要证 3sin sin(2)βαβ=+即证 3sin[()]sin[()]αβααβα+-=++ 即证3[sin()cos cos()sin ]sin()cos cos()sin αβααβααβααβα+-+=+++ 化简得sin()cos 2cos()sin αβααβα+=+,这就是①式.所以,命题成立.说明:用综合法和分析法证明命题时,经常需要把两者结合起来使用. 2.3数学归纳法 练习(P95)1、先证明:首项是1a ,公差是d 的等差数列的通项公式是1(1)n a a n d =+-. (1)当1n =时,左边=1a ,右边=11(11)a d a +-=,因此,左边=右边. 所以,当1n =时命题成立. (2)假设当n k =时,命题成立,即1(1)k a a k d =+-. 那么,11(1)[(1)1]k k k a a d a k d d a k d +=+=+-+=++-. 所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立.再证明:该数列的前n 项和的公式是1(1)2n n n S na d -=+. (1)当1n =时,左边=11S a =,右边=111(11)12a d a ⨯-⨯+=,因此,左边=右边. 所以,当1n =时命题成立.(2)假设当n k =时,命题成立,即1(1)2k k k S ka d -=+.那么,1111(1)[(1)1]2k k k k k S S a ka d a k d ++-=+=++++-1(1)(1)[1]2k k a k d -=+++1(1)(1)2k kk a d +=++所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立. 2、略.习题2.3 A 组(P96) 1、(1)略.(2)证明:①当1n =时,左边=1,右边=211=,因此,左边=右边. 所以,当1n =时,等式成立.②假设当n k =时等式成立,即2135(21)k k ++++-=.那么,22135(21)(21)(21)(1)k k k k k ++++-++=++=+.所以,当1n k =+时,等式也成立. 根据①和②,可知等式对任何n N *∈都成立.(3)略.2、1111122S ==-⨯,2111111(1)()112232233S =+=-+-=-⨯⨯,3111111111(1)()()1122334223344S =++=-+-+-=-⨯⨯⨯.由此猜想:111n S n =-+.下面我们用数学归纳法证明这个猜想.(1)当1n =时,左边=111111222S ==-=⨯,右边=11111122n -=-=+,因此,左边=右边. 所以,当1n =时,猜想成立. (2)假设当n k =时,猜想成立,即111111122334(1)1k k k ++++=-⨯⨯⨯++.那么,11111111122334(1)(1)(2)1(1)(2)k k k k k k k +++++=-+⨯⨯⨯++++++.111(1)12k k =--++ 121111122k k k k +-=-⋅=-+++所以,当1n k =+时,猜想也成立.根据(1)和(2),可知猜想对任何n N *∈都成立. 习题2.3 B 组(P96)1、略2、证明:(1)当1n =时,左边=111⨯=,右边=11(11)(12)16⨯⨯+⨯+=,因此,左边=右边. 所以,当1n =时,等式成立. (2)假设当n k =时,等式成立,即112(1)3(2)1(1)(2)6k k k k k k k ⨯+⨯-+⨯-++⨯=++.那么,1(1)2[(1)1]3[(1)2](1)1k k k k ⨯++⨯+-+⨯+-+++⨯.[12(1)3(2)1][123(1)]k k k k k =⨯+⨯-+⨯-++⨯++++++11(1)(2)(1)(2)62k k k k k =+++++ 1(1)(2)(3)6k k k =+++ 所以,当1n k =+时,等式也成立.根据(1)和(2),可知等式对任何n N *∈都成立.第二章 复习参考题A 组(P98)1、图略,共有(1)1n n -+(n N *∈)个圆圈.2、333n 个(n N *∈).3、因为2(2)(1)4f f ==,所以(1)2f =,(3)(2)(1)8f f f ==,(4)(3)(1)16f f f ==…… 猜想()2n f n =.4、运算的结果总等于1.5、如图,设O 是四面体A BCD -内任意一点,连结AO ,BO ,CO ,DO 并延长交对面于A ',B ',C ',D ',则1OA OB OC OD AA BB CC DD''''+++=''''用“体积法”证明: OA OB OC OD AA BB CC DD ''''+++'''' O BCD O CDA O DAB O ABCA BCDB CDAC DABD ABCV V V V V V V V --------=+++1A BCD A BCDVV --==6、要证 (1tan )(1tan )2A B ++=只需证 1tan tan tan tan 2A B A B +++=(第5题)即证 tan tan 1tan tan A B A B +=-由54A B π+=,得tan()1A B +=. ①又因为2A B k ππ+≠+,所以tan tan 11tan tan A BA B+=-,变形即得①式. 所以,命题得证.7、证明:(1)当1n =时,左边=1-,右边=1(1)11-⨯=-,因此,左边=右边. 所以,当1n =时,等式成立.(2)假设当n k =时,等式成立,即135(1)(21)(1)k k k k -+-++--=-.那么,1135(1)(21)(1)[2(1)1]k k k k +-+-++--+-+-.1(1)(1)[2(1)1]k k k k +=-+-+- 1(1)[2(1)1]k k k +=--++- 1(1)(1)k k +=-+所以,当1n k =+时,等式也成立.根据(1)和(2),可知等式对任何n N *∈都成立.第二章 复习参考题B 组(P47)1、(1)25条线段,16部分; (2)2n 条线段;(3)最多将圆分割成1(1)12n n ++部分.下面用数学归纳法证明这个结论. ①当1n =时,结论成立.②假设当n k =时,结论成立,即:k 条线段,两两相交,最多将圆分割成1(1)12k k ++部分当1n k =+时,其中的k 条线段12,,,k l l l 两两相交,最多将圆分割成1(1)12k k ++ 部分,第1k +条线段1k a +与线段12,,,k l l l 都相交,最多增加1k +个部分,因此,1k +条线段,两两相交,最多将圆分割成11(1)1(1)(1)(2)122k k k k k ++++=+++ 部分所以,当1n k =+时,结论也成立.根据①和②,可知结论对任何n N *∈都成立.2、要证 cos 44cos 43βα-=因为 cos 44cos 4cos(22)4cos(22)βαβα-=⨯-⨯ 2212sin 24(12sin 2)βα=--⨯-222218sin cos 4(18sin cos )ββαα=--⨯- 222218sin (1sin )4[18sin (1sin )]ββαα=---⨯-- 只需证 222218sin (1sin )4[18sin (1sin )]3ββαα---⨯--= 由已知条件,得 sin cos sin 2θθα+=,2sin sin cos βθθ=, 代入上式的左端,得 222218sin (1sin )4[18sin (1sin )]ββαα---⨯-- 2238sin cos (1sin cos )32sin (1sin )θθθθαα=---+-2238sin cos 8sin cos 2(12sin cos )(32sin cos )θθθθθθθθ=--+++-222238sin cos 8sin cos 68sin cos 8sin cos θθθθθθθθ=--++-+ 3= 因此,cos 44cos 43βα-=。

2021_2022年高中数学第二章推理与证明1

2021_2022年高中数学第二章推理与证明1
面向量的数量积,“若a·b=0,b≠0,则a=0”.
④平面上,“在△ABC 中,∠ACB 的平分线 CE 将三角形 分成两部分的面积比SS△ △ABEECC=ABCC”,将这个结论类比到空间中, 有“在三棱锥 A-BCD 中,平面 DEC 平分二面角 A-CD-B, 且与 AB 交于点 E,则平面 DEC 将三棱锥分成两部分的体积比 VA-CDE=S△ACD”. VB-CDE S△BDC
• 1.类比推理 • 由两类对象具有某些__类__似____特征和其中一类对象的某些
_已__知__特__征_____,推出另一类对象也具有这些特征的推理称为类 比推理(简称类比).简言之,类比推理是由__特__殊____到 __特__殊____的推理. • (1)类比是从人们已经掌握了的事物的属性,推测正在研究中的 事物的属性,它以旧有认识作基础,类比出新的结果;
牛刀小试
• 1.鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“ 锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在 形状上也应该类似,“锯子”应该是齿形的.该过程体现了( )
• A.归纳推理
B说法都不对
• [答案] B
• [解析] 推理是根据一个或几个已知的判断来确定一个新的判断的 思维过程,上述过程是推理,由性质类比可知是类比推理.
• [解析] 圆与球在它们的生成、形状、定义等方面都具有相似 的属性.据此,在圆与球的相关元素之间可以建立如下的对应 关系:
• 弦 ↔ 截面圆, • 直径 ↔ 大圆, • 周长 ↔ 表面积, • 圆面积 ↔ 球体积, • 等等.于是,根据圆的性质,可以猜测球的性质如下表所示:
圆的性质
圆心与弦(不是直径)的中 点的连线垂直于弦
cos2A+cos2B=bc2+ac2=a2+c2 b2=1.

人教版高中数学选修2-2同步章节训练题及答案全册汇编

人教版高中数学选修2-2同步章节训练题及答案全册汇编
1.3.2函数的极值与导数同步练习
1.3.3函数的最值与导数同步练习
1.4生活中的优化问题举例同步练习
1.5.1-2曲边梯形的面积与汽车行驶的路程同步练习
1.5.3定积分的概念同步练习
1.6微积分基本定理同步练习
1.7定积分的简单应用同步练习
第一章导数及其应用综合检测
第一章章末综合训练
2.1.1.1归纳推理同步练习
[答案]54.1
[解析]当Δx=1时,割线AB的斜率
k1= = = =5.
当Δx=0.1时,割线AB的斜率
k2= = =4.1.
三、解答题
15.已知函数f(x)=2x+1,g(x)=-2x,分别计算在区间[-3,-1],[0,5]上函数f(x)及g(x)的平均变化率.
[解析]函数f(x)在[-3,-1]上的平均变化率为
[答案]D
[解析]∵ = =40+4Δt,
∴s′(5)=li =li (40+4Δt)=40.故应选D.
5.已知函数y=f(x),那么下列说法错误的是()
A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量
B. = 叫做函数在x0到x0+Δx之间的平均变化率
C.f(x)在x0处的导数记为y′
D.f(x)在x0处的导数记为f′(x0)
18.(2010·杭州高二检测)路灯距地面8m,一个身高为1.6m的人以84m/min的速度在地面上从路灯在地面上的射影点C处沿直线离开路灯.
(1)求身影的长度y与人距路灯的距离x之间的关系式;
(2)求人离开路灯的第一个10s内身影的平均变化率.
[解析](1)如图所示,设人从C点运动到B处的路程为xm,AB为身影长度,AB的长度为ym,由于CD∥BE,
10.设f(x)= ,则li 等于()

(完整版)人教版高中数学选修2-2课后习题参考答案(可编辑修改word版)

(完整版)人教版高中数学选修2-2课后习题参考答案(可编辑修改word版)

3V 34新课程标准数学选修 2—2 第一章课后习题解答第一章 导数及其应用 3.1 变化率与导数练习(P6)在第 3 h 和 5 h 时,原油温度的瞬时变化率分别为-1和 3. 它说明在第 3 h 附近,原 油温度大约以 1 ℃/h 的速度下降;在第 5 h 时,原油温度大约以 3 ℃/h 的速率上升. 练习(P8)函数h (t ) 在t = t 3 附近单调递增,在t = t 4 附近单调递增. 并且,函数h (t ) 在t 4 附近比在t 3 附近增加得慢. 说明:体会“以直代曲”1 的思想.练习(P9)函数r (V ) = (0 ≤ V ≤ 5) 的图象为根据图象,估算出r '(0.6) ≈ 0.3 , r '(1.2) ≈ 0.2 .说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题 1.1 A 组(P10)1、在t 处,虽然W (t ) = W (t ) ,然而W 1 (t 0 ) -W 1 (t 0 - ∆t ) ≥ W 2 (t 0 ) -W 2 (t 0 - ∆t ) .0 1 0 2 0-∆t -∆t所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、 ∆h = h (1+ ∆t ) - h (1) = -4.9∆t - 3.3 ,所以, h '(1) = -3.3 .∆t ∆t这说明运动员在t = 1s 附近以 3.3 m /s 的速度下降.3、物体在第 5 s 的瞬时速度就是函数 s (t ) 在t = 5 时的导数.∆s = s (5 + ∆t ) - s (5) = ∆t +10 ,所以, s '(5) = 10 . ∆t ∆tt 因 此 , 物 体 在 第 5 s 时 的 瞬 时 速 度 为 10 m / s , 它 在 第 5 s 的 动 能 E = 1⨯ 3⨯102 = 150 J. k24、设车轮转动的角度为,时间为t ,则= kt 2 (t > 0) . 由题意可知,当t = 0.8 时,= 2. 所以k =25,于是= 25 2. 88车轮转动开始后第 3.2 s 时的瞬时角速度就是函数(t ) 在t = 3.2 时的导数. ∆=(3.2 + ∆t ) -(3.2) = 25∆t + 20,所以'(3.2) = 20.∆t∆t8因此,车轮在开始转动后第 3.2 s 时的瞬时角速度为20s -1 .说明:第 2,3,4 题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数 f (x ) 在 x = -5 处切线的斜率大于零,所以函数在 x = -5 附近单调递增. 同理可得,函数 f (x ) 在 x = -4 , -2 ,0,2 附近分别单调递增,几乎没有变化,单调递减,单调递减.说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数 f '(x )的图象如图(1)所示;第二个函数的导数 f '(x ) 恒大于零,并且随着 x 的增加, f '(x )的值也在增加;对于第三个函数,当 x 小于零时, f '(x ) 小于零,当 x 大于零时,f '(x ) 大于零,并且随着 x 的增加, f '(x ) 的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系.习题 3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻 画的是速度变化的快慢,根据物理知识,这个量就是加速度.1 2 x -11 33 4V 23 2、说明:由给出的v (t ) 的信息获得 s (t ) 的相关信息,并据此画出 s (t ) 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数 f (x ) 的图象在点(1, -5) 处的切线斜率为-1,所以此点 附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2 导数的计算练习(P18)1、 f '(x ) = 2x - 7 ,所以, f '(2) = -3 , f '(6) = 5 .2、(1) y ' = 1x l n 2;(2) y ' = 2e x ;(3) y ' = 10x 4 - 6x ;(4) y ' = -3sin x - 4 cos x ;(5) y ' = - 1 sin x;(6) y ' =.3 3习题 1.2 A 组(P18)1、 ∆S = S (r + ∆r ) - S (r ) = 2r + ∆r ,所以, S '(r ) = lim(2r + ∆r ) = 2r .∆r ∆r∆r →02、h '(t ) = -9.8t + 6.5 .3、r '(V ) =.2 x =0 4、(1) y ' = 3x 2 +1x l n 2; (2) y ' = nx n -1e x + x n e x ;(3) y ' 3x 2 sin x - x 3 cos x + cos x sin 2x; (4) y = 99(x +1)98;(5) y ' = -2e -x ;(6) y ' = 2 s in(2x + 5) + 4x cos(2x + 5) .5、 f '(x ) = -8 + 2 2x . 由 f '(x 0 ) = 4 有 4 = -8 + 2 2x 0 ,解得 x 0 = 3 .6、(1) y ' = ln x +1; (2) y = x -1.7 、 y = - x +1.8、(1)氨气的散发速度 A '(t ) = 500 ⨯ln 0.834 ⨯ 0.834t .(2) A '(7) = -25.5 ,它表示氨气在第 7 天左右时,以 25.5 克/天的速率减少. 习题 1.2 B 组(P19) 1、(1)(2) 当h 越来越小时, y =sin(x + h ) - sin x就越来越逼近函数 y = cos x .h(3) y = sin x 的导数为 y = cos x .2、当 y = 0 时, x = 0 . 所以函数图象与 x 轴交于点 P (0, 0) .y ' = -e x ,所以 y ' = -1 .所以,曲线在点 P 处的切线的方程为 y = -x .2、d '(t ) = -4 sin t . 所以,上午 6:00 时潮水的速度为-0.42 m /h ;上午 9:00 时潮水 的速度为-0.63 m /h ;中午 12:00 时潮水的速度为-0.83 m /h ;下午 6:00 时潮水的速度为-1.24 m /h.1.3 导数在研究函数中的应用练习(P26)1、(1)因为 f (x ) = x 2 - 2x + 4 ,所以 f '(x ) = 2x - 2 .当 f '(x ) > 0 ,即 x > 1 时,函数 f (x ) = x 2 - 2x + 4 单调递增;= '当 f '(x ) < 0 ,即 x < 1时,函数 f (x ) = x 2 - 2x + 4 单调递减.(2)因为 f (x ) = e x - x ,所以 f '(x ) = e x -1.当 f '(x ) > 0 ,即 x > 0 时,函数 f (x ) = e x - x 单调递增; 当 f '(x ) < 0 ,即 x < 0 时,函数 f (x ) = e x - x 单调递减. (3)因为 f (x ) = 3x - x 3 ,所以 f '(x ) = 3 - 3x 2 .当 f '(x ) > 0 ,即-1 < x < 1时,函数 f (x ) = 3x - x 3 单调递增; 当 f '(x ) < 0 ,即 x < -1或 x > 1 时,函数 f (x ) = 3x - x 3 单调递减. (4)因为 f (x ) = x 3 - x 2 - x ,所以 f '(x ) = 3x 2 - 2x -1.当 f '(x ) > 0 ,即 x < - 1或 x > 1 时,函数 f (x ) = x 3 - x 2 - x 单调递增;3 当 f '(x ) < 0 ,即- 1< x < 1 时,函数 f (x ) = x 3 - x 2 - x 单调递减.32、注:图象形状不唯一.3、因为 f (x ) = ax 2 + bx + c (a ≠ 0) ,所以 f '(x ) = 2ax + b .(1)当a > 0 时,f '(x ) > 0 ,即 x > - b2a f '(x ) < 0 ,即 x < - b2a(2)当a < 0 时,f '(x ) > 0 ,即 x < - b 2a f '(x ) < 0 ,即 x > - b2a时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递增;时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递减.时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递增;时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递减.4、证明:因为 f (x ) = 2x 3 - 6x 2 + 7 ,所以 f '(x ) = 6x 2 -12x .当 x ∈(0, 2) 时, f '(x ) = 6x 2 -12x < 0 ,因此函数 f (x ) = 2x 3 - 6x 2 + 7 在(0, 2) 内是减函数.练习(P29)1、 x 2 , x 4 是函数 y = f (x ) 的极值点,1 1 其中 x = x2 是函数 y = f (x ) 的极大值点, x = x 4 是函数 y = f (x ) 的极小值点.2、(1)因为 f (x ) = 6x 2 - x - 2 ,所以 f '(x ) = 12x -1 .令 f '(x ) = 12x -1 = 0 ,得 x =1.12调递减.当 x >1时, f '(x ) > 0 , f (x ) 单调递增;当 x < 112 12时, f '(x ) < 0 , f (x ) 单 所 以 , 当x = 1时 , 12f (x ) 有 极 小 值 , 并 且 极 小 值 为f ( ) = 6 ⨯( )2 - 1 - 2 = - 49. 12 12 12 24(2)因为 f (x ) = x 3 - 27x ,所以 f '(x ) = 3x 2 - 27 .令 f '(x ) = 3x 2 - 27 = 0 ,得 x = ±3 . 下面分两种情况讨论:①当 f '(x ) > 0 ,即 x < -3 或 x > 3 时;②当 f '(x ) < 0 ,即-3 < x < 3 时.当 x 变化时, f '(x ) , f (x ) 变化情况如下表:因此,当 x = -3 时, f (x ) 有极大值,并且极大值为 54; 当 x = 3 时, f (x ) 有极小值,并且极小值为-54 . (3)因为 f (x ) = 6 +12x - x 3 ,所以 f '(x ) = 12 - 3x 2 .令 f '(x ) = 12 - 3x 2 = 0 ,得 x= ±2 . 下面分两种情况讨论:①当 f '(x ) > 0 ,即-2 < x < 2 时;②当 f '(x ) < 0 ,即 x < -2 或 x > 2 时.当 x 变化时, f '(x ) , f (x ) 变化情况如下表:=-因此,当x =-2 时,f (x) 有极小值,并且极小值为-10 ;当x = 2 时,f (x) 有极大值,并且极大值为22(4)因为 f (x) = 3x -x3,所以 f '(x) = 3 - 3x2.令 f '(x) = 3 - 3x2= 0 ,得 x =±1 .下面分两种情况讨论:①当f '(x) > 0 ,即-1 <x < 1时;②当f '(x) < 0 ,即x <-1或x > 1 时. 当x 变化时,f '(x) ,f (x) 变化情况如下表:因此,当x =-1 时,f (x) 有极小值,并且极小值为-2 ;当x = 1 时,f (x) 有极大值,并且极大值为2练习(P31)(1)在[0, 2] 上, 当 x =1 49f ( ) .12 24 1 时,12f (x) = 6x2-x - 2 有极小值,并且极小值为又由于 f (0) =-2 , f (2) = 20 .因此,函数 f (x) = 6x2-x - 2 在[0, 2] 上的最大值是 20、最小值是-49.24(2)在[-4, 4] 上,当 x =-3 时, f (x) =x3- 27x 有极大值,并且极大值为 f (-3) = 54 ;当x = 3 时, f (x) =x3- 27x 有极小值,并且极小值为 f (3) =-54 ;又由于 f (-4) = 44 , f (4) =-44 .(0, ) ,所以 f (x )因此,函数 f (x ) = x 3 - 27x 在[-4, 4] 上的最大值是 54、最小值是-54 .( 3) 在[- 1, 3] 上, 当 x = 2 时, 3f (x ) = 6 +12x - x 3 有极大值, 并且极大值为f (2) = 22 .又由于 f (- 1) = 55, f (3) = 15 .3 27因此,函数 f (x ) = 6 +12x - x 3 在[- 1 , 3] 上的最大值是 22、最小值是 55.3 27(4)在[2, 3] 上,函数 f (x ) = 3x - x 3 无极值.因为 f (2) = -2 , f (3) = -18 .因此,函数 f (x ) = 3x - x 3 在[2, 3] 上的最大值是-2 、最小值是-18 . 习题 1.3 A 组(P31)1、(1)因为 f (x ) = -2x +1,所以 f '(x ) = -2 < 0 .因此,函数 f (x ) = -2x +1是单调递减函数.(2)因为 f (x ) = x + cos x , x ∈ ' = 1- sin x > 0 , x ∈ 2(0, ) . 2 因此,函数 f (x ) = x + cos x 在 (0, ) 上是单调递增函数. 2(3)因为 f (x ) = -2x - 4 ,所以 f '(x ) = -2 < 0 .因此,函数 f (x ) = 2x - 4 是单调递减函数.(4)因为 f (x ) = 2x 3 + 4x ,所以 f '(x ) = 6x 2 + 4 > 0 .因此,函数 f (x ) = 2x 3 + 4x 是单调递增函数.2、(1)因为 f (x ) = x 2 + 2x - 4 ,所以 f '(x ) = 2x + 2 .当 f '(x ) > 0 ,即 x > -1 时,函数 f (x ) = x 2 + 2x - 4 单调递增.当 f '(x ) < 0 ,即 x < -1时,函数 f (x ) = x 2 + 2x - 4 单调递减.(2)因为 f (x ) = 2x 2 - 3x + 3 ,所以 f '(x ) = 4x - 3 .当 f '(x ) > 0 ,即 x > 3时,函数 f (x ) = 2x 2 - 3x + 3 单调递增.4当 f '(x ) < 0 ,即 x < 3时,函数 f (x ) = 2x 2 - 3x + 3 单调递减.4(3)因为 f (x ) = 3x + x 3 ,所以 f '(x ) = 3 + 3x 2 > 0 .因此,函数 f (x ) = 3x + x 3 是单调递增函数.(4)因为 f (x ) = x 3 + x 2 - x ,所以 f '(x ) = 3x 2 + 2x -1.当 f '(x ) > 0 ,即 x < -1或 x > 1时,函数 f (x ) = x 3 + x 2 - x 单调递增.3 当 f '(x ) < 0 ,即-1 < x < 1时,函数 f (x ) = x 3 + x 2 - x 单调递减.33、(1)图略. (2)加速度等于 0.4、(1)在 x = x 2 处,导函数 y = f '(x ) 有极大值;(2) 在 x = x 1 和 x = x 4 处,导函数 y = f '(x ) 有极小值;(3) 在 x = x 3 处,函数 y =(4) 在 x = x 5 处,函数 y = f (x ) 有极大值;f (x ) 有极小值.5、(1)因为 f (x ) = 6x 2 + x + 2 ,所以 f '(x ) = 12x +1.令 f '(x ) = 12x +1 = 0 ,得 x = - 1.12当 x > - 112 当 x < - 112时, f '(x ) > 0 , f (x ) 单调递增;时, f '(x ) < 0 , f (x ) 单调递减.所 以 ,x = - 1 时 , 12f (x ) 有 极 小 值 , 并 且 极 小 值 为 f (- 1 ) = 6 ⨯(- 1 )2 - 1 - 2 = - 49 .12 12 12 24(2)因为 f (x ) = x 3 -12x ,所以 f '(x ) = 3x 2 -12 .令 f '(x ) = 3x 2 -12 = 0 ,得 x = ±2 . 下面分两种情况讨论:①当 f '(x ) > 0 ,即 x < -2 或 x > 2 时;②当 f '(x ) < 0 ,即-2 < x < 2 时.当 x 变化时, f '(x ) , f (x ) 变化情况如下表:因此,当 x =-2 时, f (x) 有极大值,并且极大值为 16;当x = 2 时, f (x) 有极小值,并且极小值为-16 .(3)因为 f (x) = 6 -12x +x3,所以 f '(x) =-12 + 3x2.令 f '(x) =-12 + 3x2= 0 ,得 x =±2 .下面分两种情况讨论:①当f '(x) > 0 ,即x <-2 或x > 2 时;②当f '(x) < 0 ,即-2 <x < 2 时. 当x 变化时,f '(x) ,f (x) 变化情况如下表:因此,当 x =-2 时, f (x) 有极大值,并且极大值为 22;当x = 2 时, f (x) 有极小值,并且极小值为-10 .(4)因为 f (x) = 48x -x3,所以 f '(x) = 48 - 3x2.令 f '(x) = 48 - 3x2= 0 ,得 x =±4 .下面分两种情况讨论:①当f '(x) > 0 ,即x <-2 或x > 2 时;②当f '(x) < 0 ,即-2 <x < 2 时. 当x 变化时,f '(x) ,f (x) 变化情况如下表:因此,当x =-4 时,f (x) 有极小值,并且极小值为-128 ;当x = 4 时,f (x) 有极大值,并且极大值为128.6、(1)在[-1,1] 上,当 x =-112时,函数f (x) = 6x2+x + 2 有极小值,并且极小值为47.24由于f (-1) = 7 ,f (1) = 9 ,所以,函数f (x) = 6x2+x + 2 在[-1,1] 上的最大值和最小值分别为9,47.24(2)在[-3, 3] 上,当 x =-2 时,函数 f (x) =x3-12x 有极大值,并且极大值为 16; 当x = 2 时,函数 f (x) =x3-12x 有极小值,并且极小值为-16 .由于f (-3) = 9 ,f (3) =-9 ,所以,函数 f (x) =x3-12x 在[-3, 3] 上的最大值和最小值分别为 16, -16 .(3)在[-1,1] 上,函数f (x) = 6 -12x +x3在[-1,1] 上无极值.3 3由于f (-1) =269,f (1) =-5 ,3 27所以,函数f (x) = 6 -12x +x3在[-1,1] 上的最大值和最小值分别为269,-5 .3 27(4)当x = 4 时,f (x) 有极大值,并且极大值为128..由于f (-3) =-117 ,f (5) = 115 ,所以,函数 f (x) = 48x -x3在[-3, 5] 上的最大值和最小值分别为 128, -117 . 习题3.3 B 组(P32)1、(1)证明:设 f (x) = sin x -x ,x ∈(0,) .因为 f '(x) = cos x -1 < 0 , x ∈(0,)所以f (x) = sin x -x 在(0,) 内单调递减因此 f (x) = sin x -x <f (0) = 0 , x ∈(0,) , 即 sin x <x , x ∈(0,) . 图略(2)证明:设 f (x) =x -x2, x ∈(0,1) .因为 f '(x) = 1- 2x , x ∈(0,1)又1 1所以,当 x ∈1(0, )2时,f '(x) = 1- 2x > 0 ,f (x) 单调递增,f (x) =x -x2> f (0) = 0 ;当 x ∈1时,f '(x) = 1- 2x < 0 ,f (x) 单调递减,( ,1)2f (x) =x -x2> f (1) = 0 ;f ( ) => 0 . 因此, x -x22 4>0 ,x ∈(0,1) . (3)证明:设 f (x) =e x-1-x , x ≠ 0 .因为 f '(x) =e x-1, x ≠ 0所以,当x > 0 时,f '(x) =e x-1 > 0 ,f (x) 单调递增,f (x) =e x-1-x > f (0) = 0 ;当x < 0 时,f '(x) =e x-1 < 0 ,f (x) 单调递减,f (x) =e x-1-x >f (0) = 0 ;综上,e x-1 >x ,x ≠ 0 . 图略(4)证明:设 f (x) = ln x -x ,x > 0 .因为 f '(x) =1-1 ,x ≠ 0 x所以,当0 <x < 1时,f '(x) =1-1 > 0 ,f (x) 单调递增,xf (x) = ln x -x < f (1) =-1 < 0 ;当x > 1 时,f '(x) =1-1 < 0 ,f (x) 单调递减,xf (x) = ln x -x < f (1) =-1 < 0 ;当x =1 时,显然ln1 <1. 因此,ln x <x .由(3)可知, e x>x +1 >x , x > 0 .. 综上,ln x <x <e x,x > 0 图略2、(1)函数f (x) =ax3+bx2+cx +d 的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象图略( ) 上能大致估计它的单调区间.(2)因为 f (x ) = ax 3 + bx 2 + cx + d ,所以 f '(x ) = 3ax 2 + 2bx + c . 下面分类讨论:当a ≠ 0 时,分a > 0 和a < 0 两种情形: ①当a > 0 ,且b 2 - 3ac > 0 时,设方程 f '(x ) = 3ax 2 + 2bx + c = 0 的两根分别为 x , x ,且 x < x ,1212当 f '(x ) = 3ax 2 + 2bx + c > 0 ,即 x < x 或 x > x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单12调递增;当 f '(x ) = 3ax 2 + 2bx + c < 0 ,即 x < x < x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递减.12当a > 0 ,且b 2 - 3ac ≤ 0 时,此时 f '(x ) = 3ax 2 + 2bx + c ≥ 0 ,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递增.②当a < 0 ,且b 2 - 3ac > 0 时,设方程 f '(x ) = 3ax 2 + 2bx + c = 0 的两根分别为 x , x ,且 x < x ,1212当 f '(x ) = 3ax 2 + 2bx + c > 0 ,即 x < x < x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递12增;当 f '(x ) = 3ax 2 + 2bx + c < 0 ,即 x < x 或 x > x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单12调递减.当a < 0 ,且b 2 - 3ac ≤ 0 时,此时 f '(x ) = 3ax 2 + 2bx + c ≤ 0 ,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递减 1.4 生活中的优化问题举例习题 1.4 A 组(P37)1、设两段铁丝的长度分别为 x , l - x ,则这两个正方形的边长分别为 x , l - x,4 4两个正方形的面积和为 S = f (x ) = x 2 + (l - x )2 = 1 (2x 2- 2lx + l 2 ) , 0 < x < l .4 4 16 令 f '(x ) = 0 ,即4x - 2l = 0 , x = l.2当 x ∈ l (0, ) 2时, f '(x ) < 0 ;当 x ∈ l( , l ) 2 时, f '(x ) > 0 .因此, x = l是函数 f (x ) 的极小值点,也是最小值点.2V3 2 V321 ni 所以,当两段铁丝的长度分别是 l时,两个正方形的面积和最小.22、如图所示,由于在边长为a 的正方形铁片的四角截去四个边长为 x 的小正方形,做成一个无盖方盒,所以无盖方盒的底面为正方形,且边长为a - 2x ,高为 x .(1)无盖方盒的容积V (x ) = (a - 2x )2 x , 0 < x < a.2(2)因为V (x ) = 4x 3 - 4ax 2 + a 2 x ,所以V '(x ) = 12x 2 - 8ax + a 2 .令V '(x ) = 0 ,得 x = a (舍去),或 x = a.(第 2 题)当 x ∈ a (0, ) 6 2 时,V '(x ) > 0 ;当 x ∈ 6 a a( , ) 6 2 时,V '(x ) < 0 . 因此, x = a是函数V (x ) 的极大值点,也是最大值点.6 所以,当 x = a时,无盖方盒的容积最大.63、如图,设圆柱的高为h ,底半径为 R ,则表面积 S = 2Rh + 2R 2由V = R 2h ,得h =V .R 2因此, S (R ) = 2R2V V R 2 + 2R 2 = 2V + 2R 2 , R > 0 . R令 S '(R ) = - + 4R = 0 ,解得 R = .R当 R ∈(0, 3 V) 时, S '(R ) < 0 ;2当 R ∈( 3 V2, +∞) 时, S '(R ) > 0 .(第 3 题)因 此 , R =是 函 数 S (R ) 的 极 小 值 点 , 也 是 最 小 值 点 . 此 时 ,h = V R 2 = 23 V= 2R .2所以,当罐高与底面直径相等时,所用材料最省.n 4、证明:由于 f (x ) = ∑(x - a )2,所以 f '(x ) = 2 ∑(x - a ) .n i =1 n i =1i8a 4 + 令 f (x ) = 0 ,得 x = n ∑ = n ∑ n ∑ )x ' 1 na i =11 n可以得到, x a i是函数 f (x ) 的极小值点,也是最小值点.i =11 n这个结果说明,用 n 个数据的平均值 a i 表示这个物体的长度是合理i =1的,这就是最小二乘法的基本原理.5、设矩形的底宽为 x m ,则半圆的半径为 x 2m ,半圆的面积为x 2 8m 2 ,矩形的面积为a -x 2 8 m 2 ,矩形的另一边长为( a x - x ) m8因此铁丝的长为l (x ) =x + x + 2a - x = (1+ + 2a, 0 < x < 2 x 4 4 x令l '(x ) = 1+ - 4 2a = 0 ,得 x = x2(负值舍去).当 x ∈(0, ) 时, l '(x ) < 0 ;当 x ∈( 8a ,8a ) 时, l '(x ) > 0 .因此, x = 4 +是函数l (x ) 的极小值点,也是最小值点.所以,当底宽为m 时,所用材料最省.6、利润 L 等于收入 R 减去成本C ,而收入 R 等于产量乘单价. 由此可得出利润 L 与产量q 的函数关系式,再用导数求最大利润.收入 R = q ⋅ p = q (25 - 1 q ) = 25q - 1q 2 ,8 8 利润 L = R - C = (25q - 1 q 2 ) - (100 + 4q ) = - 1q 2 + 21q -100 , 0 < q < 200 .8 8求导得 L ' = - 1q + 214 令 L ' = 0 ,即- 1q + 21 = 0 , q = 84 .4当 q ∈(0,84) 时, L ' > 0 ;当 q ∈(84, 200) 时, L ' < 0 ;8a8a 4 + 8a4 + 8a4 +i ,n ∆ ( ) ⋅ + ⋅ ] 因此, q = 84 是函数 L 的极大值点,也是最大值点.所以,产量为 84 时,利润 L 最大,习题 1.4 B 组(P37)1、设每个房间每天的定价为 x 元,那么宾馆利润 L (x ) = (50 - x -180)(x - 20) = - 110 10令 L '(x ) = - 1x + 70 = 0 ,解得 x = 350 .5x 2 + 70x -1360 ,180 < x < 680 .当 x ∈(180, 350) 时, L '(x ) > 0 ;当 x ∈(350, 680) 时, L '(x ) > 0 .因此, x = 350 是函数 L (x ) 的极大值点,也是最大值点.所以,当每个房间每天的定价为 350 元时,宾馆利润最大. 2、设销售价为 x 元/件时,利润 L (x ) = (x - a )(c + c b - x ⨯ 4) = c (x - a )(5 - 4 x ) , a < x < 5b.b b 4令 L '(x ) = - 8c x + 4ac + 5bc = 0 ,解得 x = 4a + 5b.b b 8 当 x ∈(a , 4a + 5b ) 时, L '(x ) > 0 ;当 x ∈( 4a + 5b , 5b) 时, L '(x ) < 0 .8 8 4 当 x = 4a + 5b 是函数 L (x ) 的极大值点,也是最大值点.8所以,销售价为 4a + 5b元/件时,可获得最大利润.81.5 定积分的概念练习(P42) 8 . 3说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、∆s ≈ ∆s ' = v ( i )∆t = [-( i )2 + 2]⋅ 1 = -( i )2 ⋅ 1 + ⋅ 2, i = 1, 2, , n .i i n n n n n n于是 s = ∑ ∆s ≈ ∑ ∆s ' = ∑ i v ( ) ti =1 i ii =1 i =1n= ∑ i =1[- i 2 1 2n n n = - 1 2 1n -1 2 1 n 2 1( n ) ⋅ n- - ( ) ⋅ - ( ) n n n ⋅ + 2 n = - 1[1+ 22 + + n 2 ] + 2n 3nn n= ∑ i =1i =1i =1⎰ ∑a= - 1 ⋅ n (n +1)(2n +1) + 2 n 3 6 = - 1 (1+ 1 )(1+ 1) + 23 n 2n 取极值,得s = lim ∑ 1 i n[ v ( )] lim [- 1 (1+ 1 )(1+ 1 ) + 2] = 5n →∞ i =1 nn n →∞ i =1 3 n 2n 3 说明:进一步体会“以不变代变”和“逼近”的思想. 2、 22 km.3说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48)2x 3dx = 4 .说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线 y = x 3 与直线 x = 0 , x = 2 , y = 0 所围成的曲边梯形的面积 S = 4 . 习题 1.5 A 组(P50)2100i -1 1 1、(1) ⎰1 (x -1)dx ≈ ∑[(1+ 100 ) -1]⨯ 100 = 0.495 ; 2500i -1 1 (2) ⎰1 (x -1)dx ≈ ∑[(1+ 500) -1]⨯ 500 = 0.499 ; 21000i -1 1 (3) ⎰1 (x -1)dx ≈ ∑[(1+ 1000) -1]⨯ 1000 = 0.4995 . 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法. 2、距离的不足近似值为:18⨯1+12 ⨯1+ 7 ⨯1+ 3⨯1+ 0 ⨯1 = 40 (m ); 距离的过剩近似值为: 27 ⨯1+18⨯1+12 ⨯1+ 7 ⨯1+ 3⨯1 = 67 (m ). 3、证明:令 f (x ) = 1 . 用分点 a = x 0 < x 1 < < x i -1 < x i < < x n = b将区间[a , b ] 等分成 n 个小区间, 在每个小区间[x i -1 , x i ] 上任取一点i(i = 1, 2, , n )作和式∑ f (i )∆x = ∑ b - an = b - a , i =1bi =1nb - a 从而 1dx = lim n →∞i =1= b - a ,nnn n⎰1- x 2 1 ⎰⎰⎰⎰⎰⎰-1-1说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义, ⎰01- x 2 dx 表示由直线 x = 0 , x = 1 , y = 0 以及曲线y = 所围成的曲边梯形的面积, 即四分之一单位圆的面积, 因此 1- x 2 d x = . 0 4 5、(1) ⎰0 x 3dx = - 1 . -1 4由于在区间[-1, 0] 上 x 3≤ 0 ,所以定积分 0x 3dx 表示由直线 x = 0 , x = -1 , y = 0-1和曲线 y = x 3 所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得⎰1x 3dx = ⎰0x 3dx + ⎰1x 3dx = - 1 + 1= 0 .-1 -1 0 4 4由于在区间[-1, 0] 上 x 3 ≤ 0 ,在区间[0,1] 上 x 3≥ 0 ,所以定积分 1x 3dx 等于位于 x-1轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.(3)根据定积分的性质,得⎰2 x 3dx = ⎰0 x 3dx + ⎰2 x 3dx = - 1 + 4 = 15-1 -1 0 4 4由于在区间[-1, 0] 上 x 3 ≤ 0 ,在区间[0, 2] 上 x 3 ≥ 0 ,所以定积分 2x 3dx 等于位于 x-1轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.说明:在(3)中,由于 x 3 在区间[-1, 0] 上是非正的,在区间[0, 2] 上是非负的,如果直接利用定义把区间[-1, 2] 分成n 等份来求这个定积分,那么和式中既有正项又 有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质 3 可以将定积分 2x 3dx-1化为 0 x 3dx + 2x 3dx ,这样, x 3 在区间[-1, 0] 和区间[0, 2] 上的符号都是不变的,再-1利用定积分的定义,容易求出⎰0x 3dx , ⎰2x 3dx ,进而得到定积分⎰2x 3dx 的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义.习题 1.5 B 组(P50)1、该物体在t = 0 到t = 6 (单位:s )之间走过的路程大约为 145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1) v = 9.81t .8 i 1 1 8⨯ 9(2)过剩近似值: ∑9.81⨯ ⨯ = 9.81⨯ ⨯ = 88.29 (m ); i =12 2 4 2 1⎰4 4∑ i l ∑ ∑ ∑ n8i -1 1 1 8⨯ 7不足近似值: ∑9.81⨯i =1⨯ = 9.81⨯ ⨯ 2 2 4 2 = 68.67 (m )(3) ⎰09.81tdt ; 3、(1)分割⎰09.81t d t = 78.48 (m ).在区间[0, l ] 上等间隔地插入n -1个分点,将它分成n 个小区间:l l 2l(n - 2)l [0, ] ,[ , ],……,[ , l ] , n n n n 记第i 个区间为[(i -1)l iln , n ] ( i = 1, 2, n ),其长度为 ∆x = il - (i -1)l = l .n n n 把细棒在小段 ll 2l(n - 2)l[0, ] ,[ , ],……,[ , l ] 上质量分别记作: n n n n∆m 1 , ∆m 2 , , ∆m n ,则细棒的质量m = ∑∆m i .i =1 (2) 近似代替当n 很大,即∆x 很小时,在小区间[(i -1)l , il] 上,可以认为线密度(x ) = x 2 n n的值变化很小, 近似地等于一个常数, 不妨认为它近似地等于任意一点 ∈[(i -1)l il处的函数值 () = 2. 于是, 细棒在小段 [(i -1)l il上质量 i , ] i i , ] n n n n∆m ≈ ()∆x = 2 l ( i = 1, 2, n ).i i i n(3) 求和得细棒的质量n nnm = ∆m ≈ ()∆x = 2. i ii n(4) 取极限i =1i =1nl2i =1l 2细棒的质量 m = limn →∞i =1n,所以m = ⎰0 x dx ..1.6 微积分基本定理练习(P55)(1)50;(2) 50 ;(3)4 2 - 5; (4)24; 33 3(5) 3 - ln 2 ; (6) 1 ;(7)0;(8) -2 .2 23 6 说明:本题利用微积分基本定理和定积分的性质计算定积分. 习题 1.6 A 组(P55)1、(1) 40 ; (2) - 1- 3ln 2 ;(3) 9+ ln 3 - ln 2 ;3 (4) - 17 ;(5) 6232 82+1; (6) e 2- e - 2 ln 2 .说明:本题利用微积分基本定理和定积分的性质计算定积分.2、 3sin xdx = [-cos x ]3= 2 . ⎰0 它表示位于 x 轴上方的两个曲边梯形的面积与 x 轴下方的曲边梯形的面积之差. 或表述为:位于 x 轴上方的两个曲边梯形的面积(取正值)与 x 轴下方的曲边梯形的面积(取负值)的代数和. 习 题 1.6 B 组 (P55)1 e2 11 11、(1)原式=[ e 2x ]1 = - ;(2)原式=[ sin 2x ]4 = - ;2 0 2 22x 3 62 4 (3)原式=[ ln 2]1 = ln 2.2、(1) sin mxdx = [- cos mx ]= - 1[cos m - cos(-m )] = 0 ; ⎰-m - msin mx 1(2) cos mxdx = | = [sin m - sin(-m )] = 0 ;⎰-m - m(3) sin 2 mxdx = 1- cos 2mx dx = [ x - sin 2mx ]= ;⎰- ⎰- 2 2 4m - (4) cos 2mxdx = 1+ cos 2mx dx = [ x + sin 2mx ] = .⎰- ⎰- 2 2 4m -3、 ( 1) s (t ) = t g (1- e -kt )dt = g+ g e - kt ]t = g t + g e - kt - g = 49t + 245e -0.2t - 245 . ⎰0 k [ k t k2 0 k k 2 k 2(2)由题意得 49t + 245e -0.2t - 245 = 5000 .这是一个超越方程,为了解这个方程,我们首先估计t 的取值范围.根据指数函数的性质,当t > 0 时, 0 < e -0.2t < 1 ,从而 5000 < 49t < 5245 ,因此, 5000 < t < 5245 .49 49因此245e-0.2⨯500049≈ 3.36 ⨯10-7 , 245e-0.2⨯524549≈ 1.24 ⨯10-7 ,所以,1.24 ⨯10-7 < 245e -0.2t < 3.36 ⨯10-7 .从而,在解方程49t + 245e -0.2t - 245 = 5000 时, 245e -0.2t 可以忽略不计.240 ⎰ ⎰= ⎰ 0a a 1]a 3因此,. 49t - 245 ≈ 5000 ,解之得 t ≈5245(s ).49说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7 定积分的简单应用练习(P58)(1) 32; (2)1.3说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程.练习(P59)52 51、 s = (2t + 3)dt = [t + 3t ] = 22 (m ).⎰3 2、W = ⎰0 (3x + 4)dx = [ 2 3x 2 + 4x ]4 = 40 (J ). 习题 1.7 A 组(P60)1、(1)2; (2) 9.2 2、W = ⎰b k q dr = [-q b = k q - k q.a r r a b3、令v (t ) = 0 ,即40 -10t = 0 . 解得t = 4 . 即第 4s 时物体达到最大高度.42 4最大高度为 h = (40 -10t )dt = [40t - 5t ] = 80 (m ).⎰4、设t s 后两物体相遇,则 0t(3t 2+1)dt = t10tdt + 5 , 0解之得t = 5 . 即 A , B 两物体 5s 后相遇.此时,物体 A 离出发地的距离为 5(3t 2 +1)dt = [t 3 + t ]5 = 130 (m ).⎰5、由 F = kl ,得10 = 0.01k . 解之得k = 1000 .所做的功为 0.1W1000ldl = 500l 2 |0.1= 5 (J ). 06、(1)令v (t ) = 5 - t + 551+ t= 0 ,解之得t = 10 . 因此,火车经过 10s 后完全停止.(2) s = (5 - t + 55 )dt = [5t - 1 t 2 + 55 ln(1+ t )]10 = 55 ln11(m ). ⎰1+ t2习题 1.7 B 组(P60)1、(1) ⎰- aa 2 - x 2 dx 表示圆 x 2 + y 2 = a 2 与 x 轴所围成的上半圆的面积,因此⎰- adx =a 22(2) ⎰[ - x ]dx 表示圆(x -1)2 + y 2 = 1与直线( 第 1( 2)2 a 2- x 21- (x -1)210k3 x 2 33x33x= 2bh . (第 2 题) 0⎩ ⎰ ⎰ y = x 所围成的图形(如图所示)的面积,1⨯12 1 1因此, ⎰0 [ - x ]dx =- ⨯1⨯1 = - . 4 2 4 22、证明:建立如图所示的平面直角坐标系,可设抛物线的方程为 y = ax 2 ,则h = a ⨯ (b )2 ,所以a = 4h. 2 b 2从而抛物线的方程为y = 4h x 2. b 2b4h4h b 于是,抛物线拱的面积 S = 2 2(h - 0b 2 x 2 )dx = 2[hx - 3b 2 x 3 ]2 3⎧ y = x 2 + 23、如图所示.解方程组⎨ y = 3x得曲线 y = x 2 + 2 与曲线 y = 3x 交点的横坐标 x = 1 , x = 2 .12于是,所求的面积为 1[(x 2 + 2) - 3x ]dx + 2[3x - (x 2 + 2)]dx = 1 .0 14、证明:W = R +h G Mm dr = [-G Mm ]R +h = GMmh .⎰Rr2rRR (R + h )第一章 复习参考题 A 组(P65)1、(1)3;(2) y = -4 .2、(1) y ' =2 s in x cos x + 2x; (2) y ' = 3(x - 2)2 (3x +1)(5x - 3) ;cos 2x(3) y ' =2x ln x ln 2 + 2x x;(4) y 2x - 2x 2(2x +1)4.3、 F ' = -2GMm .r34、(1) f '(t ) < 0 . 因为红茶的温度在下降.(2) f '(3) = -4 表明在 3℃附近时,红茶温度约以 4℃/min 的速度下降. 图略.5、因为 f (x ) = ,所以 f '(x ) =2 .当 f '(x ) =2> 0 ,即 x > 0 时, f (x ) 单调递增; 1- (x -1)2 ⎰ ' =33x=当 f '(x ) =2< 0 ,即 x < 0 时, f (x ) 单调递减.6、因为 f (x ) = x 2 + px + q ,所以 f '(x ) = 2x + p .当 f '(x ) = 2x + p = 0 ,即 x = - p= 1 时, f (x ) 有最小值.2由- p= 1,得 p = -2 . 又因为 f (1) = 1- 2 + q = 4 ,所以q = 5 .27、因为 f (x ) = x (x - c )2 = x 3 - 2cx 2 + c 2 x ,所以 f '(x ) = 3x 2 - 4cx + c 2 = (3x - c )(x - c ) .当 f '(x ) = 0 ,即 x = c,或 x = c 时,函数 f (x ) = x (x - c )2 可能有极值.3由题意当 x = 2 时,函数 f (x ) = x (x - c )2 有极大值,所以c > 0 . 由于所以,当x = c 时,函数 f (x ) = x (x - c )2 有极大值. 此时, c = 2 , c = 6 . 3 3 8、设当点 A 的坐标为(a , 0) 时, ∆AOB 的面积最小.因为直线 AB 过点 A (a , 0) , P (1,1) ,所以直线 AB 的方程为 y - 0 = x - a,即 y =x - 0 1- a1 (x - a ) . 1- a 当 x = 0 时, y = a ,即点 B 的坐标是(0, a) .a -1因此, ∆AOB 的面积 S ∆AOB = S (a ) = a -11 aa 22 a a -1 2(a -1) .令 S '(a ) = ' = 1 ⋅a 2 - 2a =0 ,即 S (a ) 2 (a -1)2 0 .当a = 0 ,或a = 2 时, S '(a ) = 0 , a = 0 不合题意舍去.x (-∞, c )3c 3( c , c ) 3c(c , +∞)f '(x ) +-+f (x )单调递增 极大值 单调递减 极小值 单调递增由于所以,当a = 2 ,即直线 AB 的倾斜角为135︒ 时, ∆AOB 的面积最小,最小面积为 2. 9、 D .10、设底面一边的长为 x m ,另一边的长为(x + 0.5) m. 因为钢条长为 14.8m. 所以,长方体容器的高为14.8 - 4x - 4(x + 0.5) = 12.8 - 8x = 3.2 - 2x .4 4设容器的容积为V ,则V = V (x ) = x (x + 0.5)(3.2 - 2x ) = -2x 3 + 2.2x 2 +1.6x , 0 < x < 1.6 .令V '(x ) = 0 ,即-6x 2 + 4.4x +1.6 = 0 .所以, x = - 4 15(舍去),或 x = 1 .当 x ∈(0,1) 时,V '(x ) > 0 ;当 x ∈(1,1.6) 时,V '(x ) < 0 .因此, x = 1 是函数V (x ) 在(0,1.6) 的极大值点,也是最大值点. 所以,当长方体容器的高为 1 m 时,容器最大,最大容器为 1.8 m 3. 11、设旅游团人数为100 + x 时,旅行社费用为 y = f (x ) = (100 + x )(1000 - 5x ) = -5x 2 + 500 +100000 (0 ≤ x ≤ 80) .令 f '(x ) = 0 ,即-10x + 500 = 0 , x = 50 .又 f (0) = 100000 , f (80) = 108000 , f (50) = 112500 .所以, x = 50 是函数 f (x ) 的最大值点.所以,当旅游团人数为 150 时,可使旅行社收费最多. 12、设打印纸的长为 x cm 时,可使其打印面积最大.因为打印纸的面积为 623.7,长为 x ,所以宽为 623.7,x打印面积 S (x ) = (x - 2 ⨯ 2.54)( 623.7- 2 ⨯ 3.17)x= 655.9072 - 6.34x - 3168.396, 5.08 < x < 98.38 .x2 令 S '(x ) = 0 ,即6.34 - 3168.396 = 0 , x ≈ 22.36 (负值舍去), 623.7≈ 27.89 .x 2 22.365 2dx = 2 (cos x - sin x )dx = [sin x + cos x ]2 = 0 ; (5)原式= 2 dx = [ ]2 = x = 22.36 是函数 S (x ) 在(5.08, 98.38) 内唯一极值点,且为极大值,从而是最大值点.所以,打印纸的长、宽分别约为 27.89cm ,22.36cm 时,可使其打印面积最大. 13、设每年养q 头猪时,总利润为 y 元.则 y = R (q ) - 20000 -100q = - 1q 2 + 300q - 20000 (0 < q ≤ 400, q ∈ N ) .2令 y ' = 0 ,即-q + 300 = 0 , q = 300 .当q = 300 时, y = 25000 ;当q = 400 时, y = 20000 .q = 300 是函数 y ( p ) 在(0, 400] 内唯一极值点,且为极大值点,从而是最大值点.所以,每年养 300 头猪时,可使总利润最大,最大总利润为 25000 元. 14、(1) 2 - 2 ;(2) 2e - 2 ; (3)1;cos 2 x - sin 2 x⎰0cos x + sin x⎰01- cos x x - sin x - 2⎰0 2 2 0 4 15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2 - 2 .17、由 F = kl ,得0.049 = 0.01k . 解之得k = 4.9 .0.3l 2 0.3所做的功为 W = ⎰0.1 4.9ldl = 4.9 ⨯ 2|0.1 = 0.196 (J )第一章 复习参考题 B 组(P66)1、(1) b '(t ) = 104 - 2 ⨯103t . 所以,细菌在t = 5 与t = 10 时的瞬时速度分别为 0 和-104 .(2)当0 ≤ t < 5 时, b '(t ) > 0 ,所以细菌在增加;当5 < t < 5 + 5 时, b '(t ) < 0 ,所以细菌在减少.2、设扇形的半径为r ,中心角为弧度时,扇形的面积为 S .因为 S = 1r 2 , l - 2r =r ,所以= l- 2 .2 rS = 1r 2 = 1 ( l - 2)r 2 = 1 (lr - 2r 2 ) , 0 < r < l .2 2 r 2 23 2 (4)原式= .令 S ' = 0 ,即l - 4r = 0 , r = l,此时为 2 弧度.4r = l 是函数 S (r ) 在 4 l(0, ) 内唯一极值点,且是极大值点,从而是最大值点.2所以,扇形的半径为 l、中心角为 2 弧度时,扇形的面积最大.43、设圆锥的底面半径为r ,高为h ,体积为V ,那么r 2 + h 2 = R 2 . 因此,V =1r 2h = 1(R 2 - h 2 )h = 1R 2h -1h 3 , 0 < h < R .3 3 33令V ' = 1R 2 -h 2 = 0 ,解得h = 33 R .3容易知道, h =3 R 是函数V (h ) 的极大值点,也是最大值点.3所以,当h =3 R 时,容积最大.3把h =3 R 代入r 2 + h 2 = R 2 ,得r =36 R .3由 R = 2r ,得= 2 6 .3所以,圆心角为=2 6 时,容积最大.34、由于80 = k ⨯102 ,所以k = 4.5设船速为 x km /h 时,总费用为 y ,则 y = 4 x 2 ⨯ 20 + 20⨯ 4805 x x令 y ' = 0 ,即16 - 9600= 0 , x ≈ 24 .x2 = 16x + 9600, x > 0x容易知道, x = 24 是函数 y 的极小值点,也是最小值点.当 x = 24 时, (16 ⨯ 24 + 9600) ÷ ( 20) ≈ 941(元/时)24 24所以,船速约为 24km /h 时,总费用最少,此时每小时费用约为 941 元.5、 设汽车以 x km / h 行驶时, 行车的总费用y = 390x(3 +x 2 360 ) + 130 ⨯14 , x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课程标准数学选修2—2第一章课后习题解答欧阳光明(2021.03.07)第一章 导数及其应用 3.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升. 练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”1的思想. 练习(P9)函数()r V =(05)V ≤≤的图象为 根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆. 所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降.3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第5 s 时的瞬时速度为10 m /s ,它在第5 s 的动能213101502k E =⨯⨯= J.4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=. 车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=.因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin 33x y '=-; (6)21y x '=-.习题1.2 A 组(P18) 1、()()2S S r r S r r r r rπ∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=.2、()9.8 6.5h t t '=-+.3、3213()34r V Vπ'=. 4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x xy x-+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++.5、()822f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =6、(1)ln 1y x '=+; (2)1y x =-.7、1xy π=-+.8、(1)氨气的散发速度()500ln 0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少.习题1.2 B 组(P19) 1、(1)(2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P . x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h. 1.3导数在研究函数中的应用 练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增; 当()0f x '<,即0x <时,函数()x f x e x =-单调递减.(3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增; 当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减. 2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a>-时,函数2()(0)f x ax bx c a =++≠单调递减. 4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,其中2x x =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点.2、(1)因为2()62f x x x =--,所以()121f x x '=-. 令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减.所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-. (2)因为3()27f x x x =-,所以2()327f x x '=-.令2()3270f x x '=-=,得3x =±.注:图象形状不唯一.下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x '因此,当3x =-时,()f x 有极大值,并且极大值为54; 当3x =时,()f x 有极小值,并且极小值为54-. (3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x '因此,当2x =-时,()f x 有极小值,并且极小值为10-; 当2x =时,()f x 有极大值,并且极大值为22 (4)因为3()3f x x x =-,所以2()33f x x '=-. 令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x '因此,当1x =-时,()f x 有极小值,并且极小值为2-; 当1x =时,()f x 有极大值,并且极大值为2 练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=;当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-;又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527. (4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈.因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<.因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数. 2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增.当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>.因此,函数3()3f x x x =+是单调递增函数. (4)因为32()f x x x x =+-,所以2()321f x x x '=+-.当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减. 3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极大值;(2)在1x x =和4x x =处,导函数()y f x '=有极小值; (3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-.令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x '因此,当2x =-时,()f x 有极大值,并且极大值为16; 当2x =时,()f x 有极小值,并且极小值为16-. (3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x ()f x '()f x因此,当2x =-时,()f x 有极大值,并且极大值为22; 当2x =时,()f x 有极小值,并且极小值为10-. (4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-; 当4x =时,()f x 有极大值,并且极大值为128. 6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极小值,并且极小值为4724. 由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16;当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值. 由于1269()327f -=,(1)5f =-, 所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-. (4)当4x =时,()f x 有极大值,并且极大值为128..由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-.习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略(2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠.因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增, ()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减, ()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略 (4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠所以,当01x <<时,1()10f x x'=->,()f x 单调递增,()ln (1)10f x x x f =-<=-<;当1x >时,1()10f x x'=-<,()f x 单调递减,()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >. . 综上,ln x x x e <<,0x >图略2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间. (2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++. 下面分类讨论:当0a ≠时,分0a >和0a <两种情形: ①当0a >,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减.当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增.②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减.当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4生活中的优化问题举例 习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x-,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 四个边长为x 盖方盒的底面为正方形,且边长为2a x -,高为x (1)无盖方盒的容积2()(2)V x a x x =-,02a x <<. (2)因为322()44V x x ax a x =-+, 所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =.当(0,)6a x ∈时,()0V x '>;当(,)62a a x ∈时,()0V x '<. 因此,6a x =是函数()V x 的极大值点,也是最大值点. 所以,当6a x =时,无盖方盒的容积最大. 3、如图,设圆柱的高为h ,底半径为R , 则表面积222S Rh R ππ=+ 由2V R h π=,得2V h R π=. (第2题)因此,2222()222V V S R RR R R Rππππ=+=+,0R >. 令2()40V S R R R π'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>.因此,R =是函数()S R 的极小值点,也是最小值点.此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2x m ,半圆的面积为28x π2m ,矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m 因此铁丝的长为22()(1)244x a x a l x x x x x πππ=++-=++,0x <<令22()104a l x x π'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.时,所用材料最省.6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价.由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点. 所以,产量为84时,利润L 最大, 习题1.4 B 组(P37)1、设每个房间每天的定价为x 元, 那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<. 令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>.因此,350x =是函数()L x 的极大值点,也是最大值点.所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c cc x a x b b-=-+⨯=--,54ba x <<.令845()0c ac bc L x x b b+'=-+=,解得458a bx +=. 当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<.当458a bx +=是函数()L x 的极大值点,也是最大值点.所以,销售价为458a b+元/件时,可获得最大利润.1.5定积分的概念练习(P42)83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想. 练习(P45)1、22112()[()2]()i i ii i s s v t n n n n n n'∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =.于是 111()nnni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑取极值,得说明:进一步体会“以不变代变”和“逼近”的思想. 2、223km. 说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48) 2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =. 习题1.5 A 组(P50)1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰. 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=作和式 11()nni i i b af x b a nξ==-∆==-∑∑, 从而 11lim nba n ib adx b a n→∞=-==-∑⎰, 说明:进一步熟悉定积分的概念.4、根据定积分的几何意义,0⎰表示由直线0x =,1x =,0y =以及曲线y =面积,因此4π=⎰.5、(1)03114x dx -=-⎰.由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得10133311011044x dx x dx x dx --=+=-+=⎰⎰⎰.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积. (3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=⎰⎰⎰ 由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积. 说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx -⎰化为023310x dx x dx -+⎰⎰,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx -⎰,230x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义. 习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m. 说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程.2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m );不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)409.81tdt ⎰; 409.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n l l n -, 记第i 个区间为(1)[,]i l iln n-(1,2,i n =),其长度为 (1)il i l l x n n n-∆=-=.把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作: 12,,,n m m m ∆∆∆,则细棒的质量1ni i m m ==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]i i l iln nξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l il n n -上质量 2()i i i l m x nρξξ∆≈∆=(1,2,i n =). (3)求和得细棒的质量 2111()nnni i i i i i lm m x nρξξ====∆≈∆=∑∑∑.(4)取极限细棒的质量 21lim ni n i l m nξ→∞==∑,所以20lm x dx =⎰.. 1.6微积分基本定理 练习(P55)(1)50; (2)503; (353-; (4)24; (5)3ln 22-; (6)12; (7)0; (8)2-.说明:本题利用微积分基本定理和定积分的性质计算定积分.习题1.6 A 组(P55)1、(1)403; (2)13ln 22--; (3)9ln 3ln 22+-; (4)176-; (5)2318π+; (6)22ln 2e e --. 说明:本题利用微积分基本定理和定积分的性质计算定积分.2、3300sin [cos ]2xdx x ππ=-=⎰. 它表示位于x 轴上方的两个曲边梯形的面积与x 轴下方的曲边梯形的面积之差. 或表述为:位于x 轴上方的两个曲边梯形的面积(取正值)与x 轴下方的曲边梯形的面积(取负值)的代数和. 习题1.6 B 组(P55)1、(1)原式=221011[]222x e e =-; (2)原式=4611[sin 2]224x ππ=-;(3)原式=3126[]ln 2ln 2x =.2、(1)cos 1sin [][cos cos()]0mx mxdx m m m mππππππ--=-=---=⎰; (2)sin 1cos [sin sin()]0mx mxdx m m m mππππππ--=|=--=⎰; (3)21cos 2sin 2sin []224mx x mx mxdx dx mπππππππ----==-=⎰⎰;(4)21cos 2sin 2cos []224mx x mx mxdx dx mπππππππ---+==+=⎰⎰. 3、(1)0.202220()(1)[]49245245tkt kt t kt t g g g g g gs t e dt t e t e t e k k k k k k ----=-=+=+-=+-⎰. (2)由题意得 0.2492452455000t t e -+-=.这是一个超越方程,为了解这个方程,我们首先估计t 的取值范围.根据指数函数的性质,当0t >时,0.201t e -<<,从而 5000495245t <<, 因此,500052454949t <<. 因此50000.2749245 3.3610e-⨯-≈⨯,52450.2749245 1.2410e -⨯-≈⨯, 所以,70.271.2410245 3.3610t e ---⨯<<⨯.从而,在解方程0.2492452455000t t e -+-=时,0.2245t e -可以忽略不计.因此,.492455000t -≈,解之得 524549t ≈(s ). 说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7定积分的简单应用 练习(P58) (1)323; (2)1. 说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程. 练习(P59)1、52533(23)[3]22s t dt t t =+=+=⎰(m ).2、424003(34)[4]402W x dx x x =+=+=⎰(J ).习题1.7 A 组(P60)1、(1)2; (2)92.2、2[]b b aa q q q qW k dr k k k r r a b==-=-⎰. 3、令()0v t =,即40100t -=. 解得4t =. 即第4s 时物体达到最大高度.最大高度为 4240(4010)[405]80h t dt t t =-=-=⎰(m ). 4、设t s 后两物体相遇,则 200(31)105t tt dt tdt +=+⎰⎰, 解之得5t =. 即,A B 两物体5s 后相遇.此时,物体A 离出发地的距离为 523500(31)[]130t dt t t +=+=⎰(m ). 5、由F kl =,得100.01k =. 解之得1000k =.所做的功为 0.120.10010005005W ldl l ==|=⎰(J ). 6、(1)令55()501v t t t=-+=+,解之得10t =. 因此,火车经过10s 后完全停止. (2)1021000551(5)[555ln(1)]55ln1112s t dt t t t t =-+=-++=+⎰(m ). 习题1.7 B 组(P60)1、(1)22aa a x dx --⎰表示圆222x y a +=与x 轴所围成的上 半圆的面积,因此2222aa a a x dx π--=⎰(2)120[1(1)]x x dx ---⎰表示圆22(1)1x y -+=与直线y x =所围成的图形(如图所示)的面积,因此,2120111[1(1)]114242x x dx ππ⨯---=-⨯⨯=-⎰. 2、证明:建立如图所示的平面直角坐标系,可设抛物线的 方程为2y ax =,则2()2b h a =⨯,所以24h a b =.从而抛物线的方程为 224hy x b=.于是,抛物线拱的面积232202204422()2[]33b bh h S h x dx hx x bh b b =-=-=⎰. 3、如图所示.解方程组223y x y x⎧=+⎨=⎩得曲线22y x =+与曲线3y x =交点的横坐标11x =,22x =.于是,所求的面积为122201[(2)3][3(2)]1x x dx x x dx +-+-+=⎰⎰.4、证明:2[]()R hR h R R Mm Mm MmhW Gdr G G r r R R h ++==-=+⎰. 第一章 复习参考题A 组(P65)1、(1)3; (2)4y =-.2、(1)22sin cos 2cos x x xy x +'=; (2)23(2)(31)(53)y x x x '=-+-; (3)22ln ln 2x xy x x '=+; (4)2422(21)x x y x -'=+. 3、32GMmF r'=-.4、(1)()0f t '<. 因为红茶的温度在下降.(2)(3)4f '=-表明在3℃附近时,红茶温度约以4℃/min 的速度下降. 图略.5、因为32()f x x =,所以32()3f x x'=.y xO1(第1(2)题)y x h bO(第2题)当()0f x '=>,即0x >时,()f x 单调递增;当()0f x '=<,即0x <时,()f x 单调递减.6、因为2()f x x px q =++,所以()2f x x p '=+.当()20f x x p '=+=,即12px =-=时,()f x 有最小值.由12p-=,得2p =-. 又因为(1)124f q =-+=,所以5q =.7、因为2322()()2f x x x c x cx c x =-=-+,所以22()34(3)()f x x cx c x c x c '=-+=--.当()0f x '=,即3c x =,或x c =时,函数2()()f x x x c =-可能有极值. 由题意当2x =时,函数2()()f x x x c =-有极大值,所以0c >. 由于所以,3c x =当时,函数2()()f x x x c =-有极大值. 此时,23c=,6c =.8、设当点A 的坐标为(,0)a 时,AOB ∆的面积最小.因为直线AB 过点(,0)A a ,(1,1)P ,所以直线AB 的方程为001y x a x a --=--,即1()1y x a a=--. 当0x =时,1a y a =-,即点B 的坐标是(0,)1aa -. 因此,AOB ∆的面积21()212(1)AOB a a S S a a a a ∆===--.令()0S a '=,即2212()02(1)a aS a a -'=⋅=-. 当0a =,或2a =时,()0S a '=,0a =不合题意舍去. 由于所以,当2a =,即直线AB 的倾斜角为135︒时,AOB ∆的面积最小,最小面积为2. 9、D .10、设底面一边的长为x m ,另一边的长为(0.5)x +m. 因为钢条长为14.8m.所以,长方体容器的高为14.844(0.5)12.88 3.2244x x xx --+-==-.设容器的容积为V ,则32()(0.5)(3.22)2 2.2 1.6V V x x x x x x x ==+-=-++,0 1.6x <<.令()0V x '=,即26 4.4 1.60x x -++=.所以,415x =-(舍去),或1x =. 当(0,1)x ∈时,()0V x '>;当(1,1.6)x ∈时,()0V x '<.因此,1x =是函数()V x 在(0,1.6)的极大值点,也是最大值点.所以,当长方体容器的高为1 m 时,容器最大,最大容器为1.8 m 3.11、设旅游团人数为100x +时,旅行社费用为2()(100)(10005)5500100000y f x x x x ==+-=-++(080)x ≤≤. 令()0f x '=,即105000x -+=,50x =.又(0)100000f =,(80)108000f =,(50)112500f =. 所以,50x =是函数()f x 的最大值点.所以,当旅游团人数为150时,可使旅行社收费最多. 12、设打印纸的长为x cm 时,可使其打印面积最大. 因为打印纸的面积为623.7,长为x ,所以宽为623.7x,打印面积623.7()(2 2.54)(2 3.17)S x x x=-⨯-⨯ 23168.396655.9072 6.34x x =--,5.0898.38x <<. 令()0S x '=,即23168.3966.340x-=,22.36x ≈(负值舍去),623.727.8922.36≈. 22.36x =是函数()S x 在(5.08,98.38)内唯一极值点,且为极大值,从而是最大值点.所以,打印纸的长、宽分别约为27.89cm ,22.36cm 时,可使其打印面积最大.13、设每年养q 头猪时,总利润为y 元.则 21()20000100300200002y R q q q q =--=-+-(0400,)q q N <≤∈.令0y '=,即3000q -+=,300q =.当300q =时,25000y =;当400q =时,20000y =.300q =是函数()y p 在(0,400]内唯一极值点,且为极大值点,从而是最大值点.所以,每年养300头猪时,可使总利润最大,最大总利润为25000元.14、(1)2; (2)22e -; (3)1;(4)原式=22222000cos sin (cos sin )[sin cos ]0cos sin x x dx x x dx x x x xπππ-=-=+=+⎰⎰; (5)原式=22001cos sin 2[]224x x x dx πππ---==⎰. 15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2.17、由F kl =,得0.0490.01k =. 解之得 4.9k =.所做的功为 20.30.30.10.14.9 4.90.1962l W ldl ==⨯|=⎰(J )第一章 复习参考题B 组(P66)1、(1)43()10210b t t '=-⨯. 所以,细菌在5t =与10t =时的瞬时速度分别为0和410-.(2)当05t ≤<时,()0b t '>,所以细菌在增加;当55t <<+时,()0b t '<,所以细菌在减少.2、设扇形的半径为r ,中心角为α弧度时,扇形的面积为S .因为212S r α=,2l r r α-=,所以2l rα=-.222111(2)(2)222l S r r lr r r α==-=-,02l r <<.令0S '=,即40l r -=,4lr =,此时α为2弧度.4l r =是函数()S r 在(0,)2l内唯一极值点,且是极大值点,从而是最大值点.所以,扇形的半径为4l、中心角为2弧度时,扇形的面积最大.3、设圆锥的底面半径为r ,高为h ,体积为V ,那么222r h R +=.因此,222231111()3333V r h R h h R h h ππππ==-=-,0h R <<.令22103V R h ππ'=-=,解得3h R =.容易知道,3h R =是函数()V h 的极大值点,也是最大值点.。

相关文档
最新文档