4.2线段、射线、直线(1)

合集下载

人教版2020-2021学年七年级数学上册4.2直线、射线、线段(第一课时)课件

人教版2020-2021学年七年级数学上册4.2直线、射线、线段(第一课时)课件
409、:0桃敏57花而.1潭好2.水学20深,20千不09尺耻:0,下57不问.1及。2.汪。20伦72.10送20.9我2:0情250。797.:10.1252.:20.20302720.10279..:2100252.02090:20905:00597:0.1520:0.923:0025900:095:0:053:0309:05:03
小试牛刀
2.下列写法正确的是( A.直线A,B相交于点M C.直线a,b相交于点M
C) B.过a,b两点画直线l D.直线a,b相交于点n
3.按下列语句画出图形:
(1) 直线 EF 经过点C; (2) 点 A 在直线 l 外.
解: (1)
E
F (2)
A
l
C
合作探究
探究1. 射线和线段都是直线的一部分,类比直
这醉人春芬去芳春的又季回节,,新愿桃你换生旧活符像。春在天那一桃样花阳盛光开,的心地情方像,桃在 54、少海不壮内要不存为努知它力已的,结老天束大涯而徒若哭伤比,悲邻应。当为Su它nd的ay开, J始u而ly 笑12。, 270.2102J.2u0ly20270.S1u2n.2d0a2y0, 0J9u:l0y51029,:200520097:0/152:0/230290:05:03 这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃 65、莫吾愁生生前命也路的有无成涯知长,已而,需知天要也下吃无谁饭涯人,。不还识需9时君要5。吃分苦99时时,55吃分分亏91时2。-5JSu分ul-n12d20a-7Jy.u1,l2J-2.u20ly0721.1022,.2020July 20Sunday, July 12, 20207/12/2020
A B
F
E
D
C

4.2直线、射线、线段(1)

4.2直线、射线、线段(1)

4.2线段射线直线(1)学习目标1. 能从现实情境中抽象出线段、射线、直线,并掌握它们的表示方法.2. 理解点与直线的位置关系.3. 掌握“两点确定一条直线”的基本事实.体验学习一、新知探究阅读教材第117~119页的内容,自主探究,回答下列问题:1. 教材117页的“观察”中,你能找到哪些可近似看做线段、射线、直线的事物或现象?2. 从以上发现中,你能看出线段、射线、直线有什么区别与联系?3. 试一试,将线段、射线和直线的相关知识总结在下表中:名称图形表示方法端点个数长度是否可度量线段射线直线A BaBABAlBA4. 当两条不同的直线只有一个公共点时,这两条直线有什么位置关系?这个点叫什么点?5. 将一根木条固定在墙上需要几颗钉子?确定一条直线需要几个点,你能得到什么事实?二、基础演练根据以上的探究,自主解决下列问题,并与小组成员交流分享你的学习成果:1. 下列关于直线的表示方法正确的是 ( )2. 如图,下列说法正确的是 ( ) A. 点O 在线段AB 上 B. 点B 是直线AB 的一个端点C. 射线AO 和射线OA 是同一条射线D. 点O 在射线AB 上3、按照下列语句分别画出图形.(1)点P 在直线l 外;A CB D B a a 直线b a ab 直线B A AB 直线A 直线A B OA(2)以O为端点的三条射线OA,OB,OC;(3)点C在线段AB上.三、综合提升先尝试独立解决,再与小组成员合作交流,解决下列问题:1. 下列说法正确的个数是()①线段CD和线段DC是同一条线段②延长射线MN到点C③延长线段MN到点A④画一条长为20cm的直线A.1个B.2个C.3个D.4个2. 过一点可以画多少条直线?过两个点,三个点,四个点呢?由此,你能总结出什么呢?.3. 在平面内任意四个点所确定的直线可能有多少条?请在下面画出你能想到的可能情况.。

人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

4.2 直线、射线、线段1.直线(1)概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始的概念,直线常用“一根拉得很紧的细线”,“一张纸的折痕”等实际事物进行描述.(2)特点:直线向两方无限延伸,不可度量,没有粗细;并且同一平面内的两条相交直线只有一个交点.(3)直线的基本性质:经过两点有一条直线,并且只有一条直线.即“两点确定一条直线”.(4)直线的两种表示法:一是用一个小写字母表示:如直线a,b,c或直线l等.另一个是用直线上两个点的大写字母表示,如:直线AB或直线BA.如图:表示为直线l或直线AB(点的字母位置可以交换).(5)直线与点的位置关系:一是点在直线上,也叫做直线经过这点;另一种是点在直线外,也叫做直线不经过这个点.【例1-1】下面几种表示直线的写法中,错误的是().A.直线a B.直线MaC.直线MN D.直线MO解析:直线的表示法有两种,一种是用一个小写字母表示,另一种是用直线上两个点的大写字母表示,所以直线Ma这种表示法不正确,故选B.答案:B【例1-2】如图,下列说法错误的是().A.点A在直线m上B.点A在直线l上C.点B在直线l上D.直线m不经过B点解析:点与直线有两种位置关系,一是点在直线上,也称作直线过这点,另一种是点在直线外.所以C错误.答案:C2.射线(1)定义:直线上一点和它一旁的部分,叫做射线.它是直线的一部分.如图就是一条射线,其中O是射线的端点.(2)表示法:同直线一样,射线也有两种表示方法,一种是用一个小写字母表示:如射线a,b,c或射线l等,另一个是用射线上两个点的大写字母表示,其中前面的字母表示的点必须是端点.如图:表示为射线l或射线OA.注意:表示射线端点的字母一定要写在前面.(3)特点:射线只有1个端点,向一方无限延伸,因此不可度量.【例2-1】如图,若射线AB上有一点C,下列与射线AB是同一条射线的是().A.射线BA B.射线ACC.射线BC D.射线CB解析:端点相同,在同一条直线上,且方向一致,就是同一条射线,所以B正确.答案:B3.线段(1)定义:直线上两点和它们之间的部分,叫做线段.它是直线的一部分.(2)特点:有两个端点,不能向两方无限延伸,因此它有长度,有大小.(3)表示法:同直线一样,线段也有两种表示法,一种是用一个小写字母表示,如线段a,b,c.另一种是用线段两个端点的大写字母表示.如图:可以表示为:线段AB或线段BA,或线段a.(4)线段的基本性质:两点的所有连线中,线段最短,简单的说成:“两点之间,线段最短.”意义:选取最短路线的原则和依据.(5)两点间的距离:连接两点的线段的长度,叫做这两点间的距离.破疑点线段的表示表示线段的两端点的字母可以交换,如线段AB也是线段BA,但端点字母不同线段就不一样.【例3】如图有几条直线?几条射线?几条线段?并写出.分析:直线主要看有几条线向两方无限延伸,图中只有一条;射线主要看端点,再看延伸方向,3个端点,所以有6条,线段主要是看端点,3个端点,所以有3条.解:有一条直线AB(或AC,AD,AE,BE,BD,CD,…);射线有6条:CA,CB,DA,DB,EA,EB.线段有3条:CD,CE,DE.4.线段的画法(1)画一条线段等于已知线段画法:①测量法:用刻度尺先量出已知线段的长度,画一条等于这个长度的线段;②尺规法:如图:画一条射线AB,在这条射线上截取(用圆规)AC=a.(2)画线段的和差测量法:量出每一条线段的长度,求出它们的和差,画一条线段等于计算结果的长度.如:已知线段a,b(a>b),画线段AB=a-b,就是计算出a-b的长度,画出线段AB等于a-b 的长度即可.尺规法:如图,已知线段a,b,画一条线段,使它等于2b-a.画法:如图,①画一条射线AB,在这条射线上连续截取(用圆规)AC=2b,②再以A为一个端点,截取AD=a,那么DC=2b-a.【例4】如图,已知线段a,b,c,画一条线段,使它等于a+b-c(用尺规法).画法:如图,①画射线(直线也可)AB,在射线AB上分别截取AC=a,CD=b.②以D为一个端点在AD上截取DE=c,线段AE即为所求.5.线段的比较(1)测量法:就是用刻度尺测量出两条线段的长度,再比较它们的大小.(2)叠合法:把两条线段的一端对齐,放在一起进行比较.如图:①若C 点落在线段AB 内,那么AB >AC ;②若C 点落在线段AB 的一个端点上,那么AB =AC ;③若C 点落在线段AB 外(准确的说是AB 的延长线上),那么AB <AC .谈重点 线段的比较 用叠合法比较两条线段的大小,一端一定要对齐,看另一个端点的落点,测量法要注意单位的统一.【例5】 已知:如图,完成下列填空:(1)图中的线段有________、________、________、________、________、________共六条.(2)AB =________+________+________;AD =________+________;CB =_______+__________.(3)AC =AB -__________;CD =AD -__________=BC -__________;(4)AB =__________+__________.解析:根据图形和线段间的和差关系填空,注意(4)题有两种可能.答案:(1)AC AD AB CD CB DB(2)AC CD DB AC CD CD DB(3)CB AC DB(4)AD DB 或AC CB6.线段中点、线段等分点(1)定义:点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点.(2)拓展:把一条线段分成相等的三条线段的点叫做这条线段的三等分点….(3)等量关系:在上图中:AM =BM =12AB ;2AM =2BM =AB . 【例6】 如图,点C 是线段AB 的中点.(1)若AB =6 cm ,则AC =__________cm.(2)若AC =6 cm ,则AB =__________cm.解析:若AB =6 cm ,那么AC =12AB =3(cm). 若AC =6 cm ,那么AB =2AC =2×6=12(cm).答案:3 127.关于延长线的认识延长线是重要的,也是应用较多的几何术语,是初学者最易错,最不好理解的地方,下面介绍几种关于延长线的术语:如图(1)延长线段AB ,就是由A 往B 的方向延长,并且延长线一般在作图中都用虚线表示;如图(2)叫做反向延长线段AB ,就是由B 向A 的方向延长;如图(3)延长AB 到C ,就是到C 不再延长;如图(4)延长AB 到C ,使AB =BC ;如图(5)点C 在AB 的延长线上等.几种常见的错误,延长射线AB 或延长直线AB ,都是错误的,图(6)中只能反向延长射线AB .【例7-1】 若AC =12AB ,那么点C 与AB 的位置关系为( ). A .点C 在AB 上 B .点C 在AB 外C .点C 在AB 延长线上D .无法确定答案:D【例7-2】 画线段AB =5 cm ,延长AB 至C ,使AC =2AB ,反向延长AB 至E ,使AE =13CE ,再计算: (1)线段AC 的长;(2)线段AE ,BE 的长.分析:按要求画图.由画图过程可知:AC =2AB ,且C 在AB 的延长线上,所以AB =BC =12AC ,E 在AB 的反向延长线上,且AE =13CE ,所以AB =BC =AE =5 c m.解:如图:(1)因为AC =2AB ,所以BC =AB =5 cm ,所以AC =AB +BC =5+5=10 (cm).(2)因为AE =13CE ,所以AE =AB =BC =5 cm , 所以BE =AB +AE =5+5=10 (cm).8.线段的计数公式及应用一条直线上有n 个点,如何不重复不遗漏地数出该直线上分布着多少条线段呢?以下图为例:为避免重复,我们一般可以按以下方法来数线段的条数:即A →AB ,AC ,AD ,B →BC ,BD ,C →CD ,线段总数为3+2+1=6,若是更多的点,由以A 为顶点的线段的条数可以看出,每个点除了自身以外,和其他任何一个点都能组成一条线段,因此当有n 个点时,以A 为顶点的线段就有(n -1)条,同样以B 为顶点的线段也有(n -1)条,因此n 个顶点共有n (n -1)条线段;但由A 到B 得到的线段AB 和由B 到A 得到的线段BA 是同一条,而每条线段的数法都是如此,这样对于每一条线段都数了2次,所以除以2就是所得线段的实际条数,即当一条直线上有n 个点时,线段的总条数就等于12n (n -1). 【例8-1】 从秦皇岛开往A 市的特快列车,途中要停靠两个站点,如果任意两站之间的票价都不相同,那么有多少种不同的票价?有多少种车票?分析:这个问题相当于一条直线上有4个点,求这条直线上有多少条线段.因为任意两站之间的票价都不相同,因此有多少条线段就有多少种票价,根据公式我们很快可以得出有6种不同的票价,因为任意两站往返的车票不一样,所以,从秦皇岛到达目的地有12种车票.解:当n =4时,有n (n -1)2=4×(4-1)2=6(种)不同的票价.车票有6×2=12(种).答:有6种不同的票价,有12种车票.【例8-2】 在1,2,3,…,100这100个不同的自然数中任选两个求和,则不同的结果有多少种?分析:本题初看似乎和线段条数的计数规律无关,但事实上,若把每个数都看成直线上的点,而把这两个数求和得到的结果看成是1条线段,则其中的道理就和直线上线段的计数规律是完全一致的,因而解法一样,直接代入公式计算即可求出结果.解:不同的结果共有:12n (n -1)=12×100×(100-1)=4 950(种). 答:共有4 950种不同的结果. 9.与线段有关的计算和线段有关的计算主要分为以下三种情况:(1)线段的和差及有关计算,一般比较简单,根据线段间的和差由已知线段求未知线段.(2)有关线段中点和几等分点的计算,是本节的重点,其中以中点运用最多,这也是用数学推理的方式进行运算的开始.(3)综合性的运算,既有线段的和差,也有线段的中点,综合运用和差倍分关系求未知线段.解技巧 线段的计算 有关线段的计算都是由已知,经过和差或中点进行转化,求未知的过程,因此要结合图形,分析各段关系,找出它们的联系,通过加减倍分的运算解决.【例9-1】 如图,线段AB =8 cm ,点C 是AB 的中点,点D 在CB 上且DB =1.5 cm ,求线段CD 的长度.分析:根据中点关系求出CB ,再根据CD =CB -DB 求出CD .解:CB =12AB =12×8=4(cm),CD =CB -DB =4-1.5=2.5(cm). 答:线段CD 的长度为2.5 cm.【例9-2】 如图所示,线段AB =4,点O 是线段AB 上一点,C ,D 分别是线段OA ,OB 的中点,求线段CD 的长.解:由于C ,D 分别是线段OA ,OB 的中点,所以OC =12OA ,OD =12OB ,所以CD =12(OA +OB )=12AB =12×4=2. 答:线段CD 的长为2.10.直线相交时的交点数两条直线相交有1个交点,三条直线两两相交最多有3个交点,那么n 条直线两两相交最多有多少个交点?下面以5条直线两两相交最多有多少个交点为例研究:如图,当有5条直线时,每条直线上有4个交点,共计有(5-1)×5个交点,但图中交点A ,既在直线e 上也在直线a 上,因而多算了一次,其他交点也是如此,因而实际交点数是(5-1)×5÷2=10个,同样的道理,当有n 条直线时,在没有共同交点的情况下,每条直线上有(n -1)个交点,共有n 条直线,交点总数就是n (n -1)个,但由于每一个点都数了两次,所以交点总数是12n (n -1)个. 【例10-1】 三条直线a ,b ,c 两两相交,有__________个交点( ).A .1B .2C .3D .1或3解析:三条直线a ,b ,c 两两相交的情形有两种,如图.答案:D【例10-2】 同一平面内的12条直线两两相交,(1)最多可以有多少个交点?(2)是否存在最多交点个数为10的情况?分析:(1)将n =12代入12n (n -1)中求出交点个数.(2)交点个数为10,也就是12n (n -1)=10,即n (n -1)=20,没有两个相邻整数的积是20,所以不存在最多交点个数是10的情况.解:(1)12条直线两两相交,最多可以有:12n (n -1)=12×12×(12-1)=66(个)交点. (2)不存在最多交点个数为10的情况.11.最短路线选择“两点之间,线段最短”是线段的一条重要性质,运用这个性质,可以解决一些最短路线选择问题.这类问题一般分两类:一类是选择路线,选择从A 到B 的最短路线,连接AB 所得到的线段就是;另一类是选择一个点,使这个点到A ,B 的距离之和最小,根据“两点之间,线段最短”这条线段上的任一点到A 到B 的距离之和都等于这条线段的长度,所以这条线段上的任一点都符合要求.但这类问题往往还有附加条件,如:这点还要在某条公路上,某条河上等,所以要满足所有条件.解技巧 求最短路线 对于第一类问题,只要将A ,B 放到同一个平面上,连接AB 即可得到所需线路.对于第二类问题,连接AB ,它们的交点一般就是所求的点.【例11】 如图(1),一只壁虎要从圆柱体A 点沿着表面尽可能快的爬到B 点,因为B 点处有它要吃的一只蚊子,则它怎样爬行路线最短?分析:要想求最短路线,必须将AB 放置到一个平面上,根据“两点之间,线段最短”,连接AB ,所得路线就是所求路线,因此将圆柱体的侧面展开如图(2)所示,连接AB ,则AB 是壁虎爬行的最短路线.解:在圆柱上,标出A ,B 两点,将圆柱的侧面展开(如图(2)),连接AB ,再将圆柱复原,会得到围绕圆柱的一条弧线,这条线就是所求最短路线.析规律 立体图形中的最短路线 在立体图形中研究两点之间最短路径问题时,通常把立体图形展开成平面图形,转化为平面图形中的两点间的距离问题,再用平面内“两点之间,线段最短”求解.。

精品教案:4.2直线、射线、线段(第1课时)

精品教案:4.2直线、射线、线段(第1课时)

直线、射线、线段(第1课时)教学目标1.学生通过动手实践自主探索得出基本事实,理解“确定”含义中的存在性与唯一性:经过两点肯定有一条直线,且经过两点只有一条直线.能举出一些实例,说明这一事实在生产生活中的应用.2.学生能够根据表示方法正确画出直线、射线、线段,能够恰当选择大写或小写字母表示直线、射线、线段,并认识表示方法的合理性.3.学生能够根据图形选择恰当的文字或符号,准确描述点与直线、直线与直线的位置关系,能够理解文字或符号所表达的图形及关系.教学重点难点重点:理解并掌握“两点确定一条直线”的基本事实,会用字母表示直线、射线、线段及根据语言描述画出图形.难点:用字母表示图形,根据语言描述画出图形.课前准备直尺,墨盒,多媒体课件教学过程导入新课导入一:图片展示,探究生活中的平面图形:绷紧的琴弦、手电筒射出的光线、笔直的铁轨等生活中常见的与线段、射线、直线有关的图形.图1导入二:1.出示墨盒,让学生动手演示使用墨盒弹出一条直线的过程.2.为什么拉出的线是直的其关键是什么师生活动让学生回答,根据回答的情形,教师引出:如何确定一条直线,怎样来表示直线、射线、线段.探究新知问题1 我们在小学学过直线、射线、线段,你能说出它们的联系与区别吗师生活动学生独立思考后交流.问题2 探究并回答下面的问题:图2(1)如图2所示,经过一点O画直线,能画几条经过两点A,B呢动手试一试.(2)对比两个结果,你发现经过两点画直线有什么现象怎样用简练的语言概括呢师生活动学生画图后在小组内讨论交流,然后派学生代表在全班交流,教师点评.师生共同归纳:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.(3)如果经过两点任意画曲线或折线,试一试能画几条想一想这又说明什么师生活动学生画图后相互交流.(4)怎样理解“确定”一词的含义师生活动学生独立思考后讨论交流,并尝试阐述.教师明确:“确定”可以解释为“有且仅有”,“有”意味着存在,“仅有”意味着唯一.(5)想一想,生产生活中还有哪些应用“两点确定一条直线”原理的例子,与同学交流一下.图3师生活动教师参与学生讨论交流,举出生活中的实例:用两个钉子可以将木条固定在墙上;把墨盒两端固定,木工师傅就可以弹出一条笔直的墨线;植树时只要定出两个树坑的位置,就能使同一行树坑在一条直线上……问题3 为了便于说明和研究,几何图形一般都要用字母来表示.用字母表示图形,要符合图形自身的特点,并且要规范.通过以往的学习,我们知道可以用一个大写字母表示点.那么结合直线自身的特点,请同学们想一想,该怎样用字母表示一条直线呢图4师生活动结合以上问题,请同学们阅读教科书,然后独立完成下面的任务:(1)用不同的方法表示如图4所示的直线.(2)判断下列语句是否正确,并把错误的改正过来.①一条直线可以表示为“直线A”;②一条直线可以表示为“直线ab”;③一条直线既可以记为“直线AB”,又可以记为“直线BA”,还可以记为“直线m”.(3)归纳出直线的表示方法.学生独立完成后,进行小组内讨论、纠正,教师参与学生讨论,并明确直线的表示方法.(4)想一想,用两个点表示直线合理吗为什么师生活动学生独立思考后讨论交流,并尝试阐述:用两个点表示直线符合“两点确定一条直线”的基本事实,所以表示方法是合理的.教师:学习图形与几何知识,不仅要认识图形的形状,还要学习图形之间的位置关系.问题4 (1)观察图5,然后选择恰当的词语填空:①点O在直线l (上,外);直线l (经过,不经过)点O.②点P在直线l (上,外);直线l (经过,不经过)点P.总结点与直线的位置关系,与同学交流一下.图5师生活动学生完成后尝试回答,教师点评纠正,并明确点与直线的位置关系.练一练:根据下列语句画出图形:①直线EF经过点C;②点A在直线l外.(2)如图6所示,尝试描述直线a和直线b的位置关系,与同学交流一下.图6师生活动学生讨论交流,教师在点评的基础上明确:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点.(3)根据下列语句画出图形:①直线AB与直线CD相交于点P;②三条直线m,n,l相交于一点E.师生活动学生完成画图并相互纠正,教师板书示范.练一练:用恰当的语句描述图7中直线与直线的位置关系.图7问题5 射线和线段都是直线的一部分,类比直线的表示方法,想一想应怎样表示射线、线段师生活动学生阅读教科书,自主探索射线、线段的表示方法,然后回答下列问题:(1)用适当的方法表示图8中的射线和线段.图8(2)“一条射线既可以记为射线AB,又可以记为射线BA”的说法对吗为什么(3)如图9所示,怎样由线段AB得到射线AB和直线AB图9教师检查学生学习情况,强调表示射线时应注意字母的顺序.注意:(1)表示直线、射线、线段时,都要在字母的前面写上“直线”“射线”“线段”.(2)用两个大写英文字母表示直线或线段时,两个字母可以交换位置;表示射线的两个大写字母不能交换位置,必须把端点字母写在前面.(3)线段可看作是直线上两点及其中间的部分.(4)线段向一个方向无限延伸可得到射线,向两个方向无限延伸可得到直线.小拓展:关于线段、射线、直线,进行综合比较如下表:新知应用(1)判断下列说法是否正确:①线段AB与射线AB都是直线AB的一部分;②直线AB与直线BA是同一条直线;③端点相同的两条射线一定是同一条射线;④把线段向一个方向无限延伸可得到射线,把线段向两个方向无限延伸可得到直线.(2)按下列语句画出图形:①点A在线段MN上;②射线AB不经过点P;③经过点O的三条线段a,b,c;④线段AB,CD相交于点B.课堂练习(见导学案“当堂达标”)参考答案1.经过一点能画无数条直线两点确定一条直线解析:设直线有n条,交点有m个.有以下规律:直线条数交点个数2 13 1+24 1+2+3……n m=1+2+3+…+(n-1)=n(n−1)2=45(个). 所以十条直线相交,交点最多有10(10−1)26.略7.无数 1 1或3 1或4或6课堂小结1.你掌握了关于直线的哪一个基本事实2.列表对比一下直线、射线、线段.布置作业教材第129页习题第2,3,4题板书设计教学反思在教学过程中,教师主要是结合生活实际情况让学生理解直线、射线、线段的有关知识.利用绷紧的琴弦、手电筒射出的光线、笔直的铁轨等生活中的实例引入新课,给学生一种亲切感.而在引出线段、射线、直线的概念时,更是以生活中的物体形象地展出,让学生在处理相关的事实时,以生活中显而易见的事实来验证,这比要求学生以逻辑推理的角度来理解更容易些.对直线性质的理解及运用上,借助日常生活中钉木条、植树等,从学生熟知的事实出发,让学生感受到知识的亲切,增强了学生的学习兴趣,使学生能以数学的眼光来观察问题.教学过程环环相扣,突出了本节课的重点和难点,学生学的轻松,知识掌握的也较扎实.。

2024年秋新湘教版七年级上册数学课件 第4章 图形的认识 4.2 第1课时 线段、射线、直线

2024年秋新湘教版七年级上册数学课件 第4章  图形的认识 4.2 第1课时 线段、射线、直线
尊心,平等待人、说话办事公道、有耐心、不轻易发脾气等。 教师要放下架子,把学生放在心上。“蹲下身子和学生说话,走下讲台给学生讲课”;关心学生情感体验,让学生感受到被
关怀的温暖;自觉接受学生的评价,努力做学生喜欢的老师。 教师要学会宽容,宽容学生的错误和过失,宽容学生一时没有取得很大的进步。苏霍姆林斯基说过:有时宽容引起的道德
生活中有哪些事物可以作为直线、射线、线 段的原型?试举例说明.
伸向远方的火车铁轨 (可看作直线)
激光灯 (可看作射线)
筷子 (可看作线段)
线段、射线、M
Al B
1.判断下列说法是否正确:
(1)直线、射线、线段都有两个端点;
(×)
(2)直线和射线可以延伸,线段不能延伸;
2.请观察图形作出判断:
一个是从A到B的方向,一个是从B到A的方向.
A
B
例如,把一条笔直的自行车专用道看成一 条直线,那么自行车专用道就有两个互为相反的 方向(如图).
做一做
任意画一个点和一条直线,你能发现,点与直线有哪几种位置关系? 点与直线有两种位置关系:点在直线上或点在直线外,
也可以说直线经过这个点或直线不经过这个点.
第4章 图形的认识
4.2 线段、射线、直线
第1课时 线段、射线、直线
1.在现实情境中理解线段、射线、直线的概念及它 们的区别与联系.(重点) 2.会用不同的方法表示线段、射线、直线.(难点) 3.了解“两点确定一条直线”的基本事实.
观察 图中可以近似地看作线段、射线、直线的分别有哪些?
绷紧的钢拉索、笔直的路灯杆等实物都给我 们以线段的形象,线段有两个端点.线段向一端 无限延长形成了射线,射线有一个端点.线段向 两端无限延长形成了直线,直线没有端点.

《4.2 直线、射线、线段》测试卷(1)

《4.2 直线、射线、线段》测试卷(1)

《4.2 直线、射线、线段》测试卷(1)一.选择题(共10小题)1.下列各图中所给的线段、射线、直线能相交的是()A.B.C.D.2.如图两条直线相交,最多有一个交点,三条直线相交,最多有三个交点,四条直线相交最多有()个交点,如果是100条直线相交最多有()个交点.A.4,4950B.4,5050C.6,4950D.6,50503.在下列现象中,体现了基本事实“两点确定一条直线”的有()A.1个B.2个C.3个D.4个4.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山5.如图,在公路MN两侧分别有A1,A2…A7,七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③6.如图,已知线段AB=10cm,点C是AB上任一点,点M、N分别是AC和CB的中点,则MN的长度为()A.6cm B.5cm C.4cm D.3cm7.在开会前,工作人员进行会场布置,他们在主席台上拉了一条绳子,然后以“准绳”为参考摆放整齐的茶杯,这样做的数学原理是()A.拉紧的绳子是直的B.过一点可以画无数条直线C.两点确定一条直线D.一个点不能确定一条直线8.如图,C、D是线段AB上两点,且CD=3AD﹣2BC,则AC与BD的关系是()A.AC=BD B.2AC=BD C.3AC=2BD D.4AC=3BD 9.如图,小华的家在A处,书店在B处,星期日小华到书店买书,他想尽快地赶到书店,则最近的路线是()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B 10.如图,体育课上,四名同学从同一起点起跳,点A,B,C,D分别是小阳、小月、小红、小常的落点,则表现最好的同学是()A.小阳B.小月C.小红D.小常二.填空题(共5小题)11.如图,四点A、B、C、D在一直线上,若AC=12cm,BD=8cm,且AD=3BC,则AB =cm,BC=cm,CD=cm.12.如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如果MC比NC长2cm,AC比BC长.13.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有(只填写序号).14.经过平面上的4个点,可以画条直线.15.用一根钉子钉木条时,木条会来回晃动,用数学知识说明理由;;用两根钉子钉木条时,木条会被固定不动,用数学知识说明理由;;“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是.三.解答题(共5小题)16.如图,DB=3,AC=18,D为线段AC的中点,求线段BC的长度.17.已知线段AB=12,CD=6,线段CD在直线AB上运动(A在B、C左侧,C在D左侧).(1)M、N分别是线段AC、BD的中点,若BC=4,求MN;(2)当CD运动到D点与B点重合时,P是线段AB延长线上一点,下列两个结论:①是定值;②是定值,请作出正确的选择,并求出其定值.18.(1)如图1,从A到C有两条路,你会选择哪条?请说明理由.(2)如图2,从A到C还是有两条路,这次你会选择哪条,请说明理由.19.按要求作图,如图,在同一平面内有四个点A、B、C、D.①画射线CD②画直线AD③连接AB④直线BD与直线AC相交于点O.20.平面上有五个点,过其中任意两点画一条直线,最多能得到多少条直线?请画出图形.分析:五个点有四种不同的关系:①五个点在同一条直线上;②有四个点在同一条直线上;③有三个点在同一条直线上;④五个点中任意三个点都不在同一条直线上.。

《4.2 直线、射线、线段》同步训练卷(1)

《4.2 直线、射线、线段》同步训练卷(1)

《4.2 直线、射线、线段》同步训练卷(1)一、选择题1.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.2.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段3.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚4.A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不对5.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段6.如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个7.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是()①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.①③B.②④C.①④D.②③8.下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM等于线段BM,则点M是线段AB的中点;⑤连接两点的线段叫做这两点之间的距离.其中正确的个数为()A.1个B.2个C.3个D.4个9.如图,从A地到B地有四条路线,由上到下依次记为路线①、②、③、④,则从A地到B地的最短路线是路线()A.①B.②C.③D.④10.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm二、填空题11.已知点B在直线AC上,AB=8cm,AC=18cm,P、Q分别是AB、AC的中点,则PQ 为cm.12.如图,点C、D在线段AB上,点C为AB中点,若AC=5cm,BD=2cm,则CD=cm.13.如图,用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是.14.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.15.开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为.三、解答题16.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.17.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.18.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=AB+BC;(4)在线段BD上取点P,使P A+PC的值最小.19.已知平面上点A,B,C,D(每三点都不在一条直线上).(1)经过这四点最多能确定条直线.(2)如图这四点表示公园四个地方,如果点B,C在公园里湖对岸两处,A,D在湖面上,要从B到C筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?20.如图,在四边形ABCD内找一点O,使它到四边形四个顶点的距离的和(OA+OB+OC+OD)最小,并说出理由.。

4.2.1第1课时 直线、射线、线段的概念

4.2.1第1课时 直线、射线、线段的概念
2.三维数字课堂:89页
3.整理并背诵知识点
课后反思
通过练习,让学生熟练掌握直线、射线、线段,并能画出图形.
1.提出问题:下图中,有几条直线?几条射线?几条线段?说出它们的名称.
2.根据语句画出图形.
例:读下列语句,并按照语句画出图形:
(1)直线l经过A,B两点,点B在点A的左边.
(2)直线AB,CD都经过点O,点B在点A的左边.
3.完成课本第126页练习.
注:此题在学生完成后,教师再进行讲评,并对学生的完成情况作出适当、肯定的评价.
注:此例让学生独立完成后在小组中交流和自我评价,然后教师进行讲评.
板书设计
直线、射线、线段的概念
1直线定义表示方法
2射线定义表示方法
3线段定义表示方法
作业设计
必做题:三维数字课堂:88页
选做题:1.习题4.2第1,2,3,4题.
想一想:日常生活中有哪些现象是应用的直线的性质?
3.点与直线的位置关系
①点O在直线l上(直线l经过点O)②点O在直线l外(直线l不经过点O)
4.直线的交点
当两条直线有一个公共点时,我们称这两条直线相交,这个公共点叫做它们的交点.
两直线相交,只有一个交点.
5.直线、射线、线段的表示方法.
活动3:巩固练习
2.提出问题:为什么这样拉出的线是直的?其关键是什么?
活动2:探究新知
学生经过小组交流后,总结出结论:经过两点有一条直线,并且只有一条直线.即:两点确定一条直线.其关键在于先固定墨盒中墨线上两个点.
1.探究直线性质.
学生完成课本第125页思考题,学生动手按要求画图,并进行小组交流,总结出课题结论.
2.寻找生活中直线性质应用的例子.

4.2直线射线线段第一课时课件

4.2直线射线线段第一课时课件

应大写英文字母表示,直线
AB(或直线BA)
l 表示:②也可以 用一个小
写英文字母表示 ,直线 l
判断下列语句是否正确,并把错 误改正过来:
• 1、一条直线可以表示为“直线A” • 2、一条直线可以表示为“直线ab ” • 3、一条直线既可以记为为“直线AB” 又
可以记为“直线BA” ,还可以记为“直 线l”
问题4
• 观察图形,然后选择适当的词语填空: ①点O在直线a_上_(上,外);直线a_经_过(经过,
不经过)点O ; ②点P在直线a_外_(上,外);直线a不_经_过(经过,
不经过)点P ;
O
P a
总结
点与直线的位置关 点B在直线a上 直线 a 不经过点 A 直线 a 经过点 B
延伸方向
可不可度量
有2个端点 不向任何一方延伸
可度量
有1个端点 向一个方向无限延伸
不可度量
无端点
向两个方向无限延伸
不可度量
问题2
(1)经过一点O可以画几条直线? (2)经过两点A、B可以画直线吗?可
以画几条?
·o
·A ·B
对比以上两个结果,你发现经 过两点画直线有什么现象?用 怎样简练的语言概括呢?
经过点O的三条直线a、b、c;
a
b
O
c
问题5
射线和线段都是直线的一部分,类比直线的表示 方法,想一想应怎样表示射线、线段?
线段、射线的表示方法。
A
B 表示:线段 AB(或线段BA)
a
表示:线段 a
O
A
表示:射线 OA
b
表示:射线b
线段: ①用两个端点的字母来表示,无先后顺序.
②用一个小写字母表示.

4.2.1直线射线线段(1)

4.2.1直线射线线段(1)

②平面上有三个点,过其中任意两个点画直线, 最多可以画几条直线?
③平面上有四个点,最多可画几条直线 ?
④有n个点呢?最多可以画多少条直线?
同一平面上有n个点,过其中任意两个点 n ( n 1 ) 画直线,最多可画 条线段。
2
探究与思考
两条直线相交,有一个交点。 三条直线相交,最多有多少个交点?四条直线呢? 你能发现什么规律?
2、直线a、b相交于点A 3、延长线段AB,反向延长线段AB
画一画
如图,已知A、B、C、D四点,分别按下列 A 要求画出图形。
C
(1)连接BD (2)画射线AB (3)画直线AD、BC相交于点O;
B
D
1.画直线BC射线AB,线段AC 2.连接AD与直线BC相交于点E 3.连接CD,BD延长CD及反向延长BD
1、直线EF经过点C;
E
C
F
2、点A在直线a外;
A
a
3、经过点O的三条线段a、b、c;
a O b c
4、线段AB、CD相交于点B。
C
A B
D
两条不同的直线,能有几个公共点? a O
b 当两条不同的直线有一个公共点时,我 们就称这两条直线相交,这个公共点就 叫做它们的交点。
直线a、b相交于点O,点O是它们的交点。
2
点与直线的位置关系:
O
A l
点O在直线l上,或者说直线l经过点O; 点A不在直线l上,或者说直线l不过点A .
点和直线的位置关系:
点在直线上,(线经过点);
点不在直线 上,(直线不经过点).
选一选
l
如图下列说法错误的是( C
A、点A在直线m上
B

A

4.2 直线、射线、线段(第一课时) 导学案

4.2 直线、射线、线段(第一课时) 导学案

4.2.1 直线、射线、线段(1)一、学习目标1.掌握“两点确定一条直线”的基本事实.2.掌握直线、射线、线段的表示方法.3.能根据几何语言作出相应的几何图形.4.体会类比的数学思想.二、探索活动探索活动一:动手实践,温故知新.1.过点O画一条直线。

2.画直线,使这条直线经过图中的点A和点B。

3.画一条线段,使这条线段的两个端点为图中的点C和点D。

4.画一条射线,使这条射线的端点为C,并且经过点E。

基本事实:经过两点有条直线,并且只有条直线。

(经过两点一条直线)简单说成:两点确定条直线。

探索活动二:自学看书,学习新知.1.自学看书,完成下表。

2.如图,A,B,C三点在一条直线上,(1)图中有条直线,它可以表示为 .(2)图中以点B为端点的射线有条,它们表示为;图中一共有条射线.(3)射线AB和射线AC (填“是”或者“不是”)同一条射线.(4)图中有条线段,它们分别表示为 .3.观察下图,完成下列填空。

探索活动三:例题精析,突破重点.例1.用适当的语句表述下图中点与直线的关系:例2.按下列语句画出图形(1)直线EF经过点C (2)点在直线l外(3)经过点O的三条线段,b,c (4)线段AB,CD相交于点B例3. 如图,在平面上有四个点A,B,C,D ,根据下列语句画图:(1) 作射线BC;(2) 作直线AB;(3) 连接AD;(4) 作线段AC与直线BD交于点F.探索活动四:延伸训练,拓展思维。

(5)在直线BD上,能用字母表示的线段有条,分别是 .(6)若在直线BD上再取一个点E(不与B、D、F重合),则在直线BD上,以点D为端点的线段有条,以点F为端点的线段有条,能用字母表示的线段有条。

变式训练1.火车往返于A、B两个城市,中途经过5个站点(共7个站点),各站之间距离均不相等,不同的车站间往返均需要不同的车票,则有种不同的票价,要准备种不同的车票。

三、小结反思:你有什么收获?有什么反思?四、作业布置:必做《作业手册》105、106页的第1到15题,选做第16题.。

4.2 直线、射线、线段(1)

4.2 直线、射线、线段(1)

A
B
D
C C C D D
(六)课堂小结,自我完善
【问题7】本节课你学到了哪些知识? 数学知识: • 两点确定一条直线.
• 直线、射线、线段的联系与区别.
• 直线、射线、线段的表示方法.
• 不同几何语言(文字语言、符号语言、图 形语言)的相互转化.
数学思想及方法: • 分类思想,转化思想,有序思考.
(3)画直线AD、BC相交于点O; (4)连结CA并延长交DB的延长线于点E O. C. A. B. D. E.
(五)阶段巩固,深化新知
4.平面上有A、B、C三个点,过其中的任两点作直线, 小敏说能作三条;小聪说只能作一条;小真说都有可 能;你认为他们三人谁的说法对? A
. .. .. .
B C A B C
A
a
1.线段AB B (或线段BA) 2.线段a
不可延伸
2个
可度量
(五)阶段巩固,深化新知
【问题 6】按下列语句画出图形: (1)点 A 在线段 MN 上; (2)线段 AB 不经过点 P; (3)经过点 O 的三条线段 a、b、c; (4)射线 AB 和线段 CD 交于点 C.
(五)阶段巩固,深化新知
问题 & 探索 一个点与其余三个点可组成三条线段 共有4×3条 · C 条射线, 0 条射线, 1 条射线, 3 条射线, 6
· A
·
O
· B
这儿为什 么写“6”? a 条线段; 条线段; 条线段; 条线段;
1、当直线a上标出一个点时,可得到 2 2、当直线a上标出二个点时,可得到 4 3、当直线a上标出三个点时,可得到 6 4、当直线a上标出四个点时,可得到 8
1.下列给线段取名正确的是:( B ) (A)线段M (B)线段m

人教版数学七年级上册4.2《 直线、射线、线段(1)》教学设计

人教版数学七年级上册4.2《 直线、射线、线段(1)》教学设计

人教版数学七年级上册4.2《直线、射线、线段(1)》教学设计一. 教材分析人教版数学七年级上册4.2《直线、射线、线段(1)》是学生在学习了平面几何基本概念的基础上进一步深入学习直线、射线、线段的性质和特点。

本节内容通过实例让学生理解直线、射线、线段的定义,掌握它们之间的联系和区别,能够正确地识别和运用直线、射线、线段解决实际问题。

二. 学情分析学生在小学阶段已经接触过直线、射线、线段的概念,但对其本质特征和应用可能理解不深。

因此,在教学过程中,教师需要从学生的实际出发,通过生动形象的实例,引导学生深入理解直线、射线、线段的内涵和外延,提高他们的空间想象能力和解决问题的能力。

三. 教学目标1.了解直线、射线、线段的定义,掌握它们之间的联系和区别。

2.能够识别和运用直线、射线、线段解决实际问题。

3.培养学生的空间想象能力和解决问题的能力。

四. 教学重难点1.直线、射线、线段的定义及其特性。

2.直线、射线、线段在实际问题中的应用。

五. 教学方法1.采用实例教学法,通过生动的实例让学生理解直线、射线、线段的定义和特性。

2.采用问题驱动法,引导学生运用直线、射线、线段解决实际问题。

3.采用小组合作学习法,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.准备相关的实例和图片,用于讲解直线、射线、线段的概念和特性。

2.准备一些实际问题,让学生练习运用直线、射线、线段解决。

3.准备黑板和粉笔,用于板书重点内容。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如交通指示灯、射线枪等,引导学生思考直线、射线、线段的概念和特点。

2.呈现(10分钟)讲解直线、射线、线段的定义和特性,用图片和实例进行说明,让学生清晰地理解它们之间的联系和区别。

3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,运用直线、射线、线段解决。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)选取一些实际问题,让学生独立解决,检验他们对直线、射线、线段的理解和运用能力。

人教版数学七年级上册4.2《直线、射线、线段(1)》名师教案

人教版数学七年级上册4.2《直线、射线、线段(1)》名师教案

直线、射线、线段〔张祖全〕第一课时一、教学目标〔一〕学习目标1.理解直线的根本领实:两点确定一条直线;掌握该性质在生活实际中的应用.2.掌握点与直线的位置关系;两条直线相交及交点个数.3.理解直线、射线、线段的概念及它们的联系与区别;掌握它们的表示方法.〔二〕学习重点1.理解直线、射线、线段的概念、表示方法及它们的联系与区别;2.直线性质:两点确定一条直线,以及在生活中的应用.〔三〕学习难点直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.二、教学设计〔一〕课前设计〔1〕经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.〔2〕当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点.〔3〕点与直线的位置关系有两种:点在直线上和点在直线外. 2.预习自测〔1〕如下图,点A 、B 、C 在直线l 上,那么图中共有____条直线,___条射线,____条线段.【知识点】直线、射线、线段.【解题过程】解:直线有1条;射线有6条;线段有3条.【思路点拨】直线有1条,射线由端点和方向确定有6条;线段有两个端点确定. 【答案】1;6;3.〔2〕在校园大路两旁栽种树木,先在两端立桩拉线,然后沿线开挖,这样做的目的是使栽的树成一直线,其中的道理是__________________.【知识点】直线、射线、线段.【解题过程】解:“两点确定一条直线〞.【思路点拨】由“两点确定一条直线〞解答.【答案】“两点确定一条直线〞.〔3〕以下说法中正确的选项是( )【知识点】直线、射线、线段.【解题过程】解:直线、射线不可度量,不能比拟大小,A、B、C错误,应选D.【思路点拨】直线、射线不可度量,不能比拟大小.【答案】D.〔4〕如下图,同一平面上的两图形,以下说法正确的选项是( )A.射线BA与线段CD一定相交;B.直线AB与射线CD一定相交;C.射线BA与射线CD一定相交;D.线段AB与射线CD一定相交.【知识点】直线、射线、线段.【解题过程】解:直线、射线具有延伸性,直线可向两端无限延伸,射线可向一端无限延伸,线段不能延伸,故B正确,其余错误.【思路点拨】直线、射线具有延伸性.【答案】B.〔二〕课堂设计〔1〕画出一条直线、射线、线段.〔2〕过一点A可以画几条直线?过两点B、C可以画几条直线?试一试.探究一探究直线性质★●活动①学生自主学习125、126页.师问:过一点A可以画几条直线?过两点B、C可以画几条直线?请动手试一试.学生举手抢答,并抽1名学生到黑板画图,其余学生在练习本上画图.师问:请在小组中交流,所画图形及你得出的结论是否与其他同学一致?学生举手答复.总结:得到直线的根本领实:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.师问:你能列举“两点确定一条直线〞的生活实例吗?学生举手抢答.对于不会举例的同学,可以阅读课本中的例子,鼓励学生多举其他实例.【设计意图】通过学生动手画图,比拟自然得出直线的根本领实,鼓励学生多举用“两点确定一条直线〞的生活实例,这样学生更易理解和掌握直线的性质.探究二探究新知★▲●活动①探究点与直线的位置关系师问:点与直线的位置关系有几种情况?请结合文字与图形描述.学生举手抢答.学生活动:要求学生动手画图,小组交流,引导不会的同学看书找答案.总结:点与直线的位置关系有2种,如下图:【设计意图】引导学生动手画图表示、语言描述,在掌握知识的同时,实现文字语言、图形语言、符号语言的相互转化.●活动②探究两条直线相交师问:什么叫两条直线相交?两条直线相交有几个交点?学生举手抢答.学生活动:要求学生动手画图,小组交流,引导不会的同学看书找答案.总结:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点.【设计意图】引导学生动手画图表示、语言描述,在掌握知识的同时,实现文字语言、图形语言、符号语言的相互转化.●活动③探究直线、射线、线段的相关问题师问:你能完成以下表格吗?名称图形表示方法端点个数有无延伸性直线射线线段学生活动:学生在练习本上写出答案.师问:谁来展示一下你的答案?学生活动:学生展示、交流,师生共同完善.师问:你能指出直线、射线、线段的区别与联系吗?学生举手抢答.总结:直线、射线、线段的表示方法:都可以用两个大写字母或一个小写字母表示,表示射线时,端点写在前面;直线、射线具有延伸性,不能度量,线段可度量.【设计意图】通过学生尝试完成填空,小组交流,学生看书等方式,师生共同完善表格内容,让学生掌握直线、射线、线段的概念、表示方法,了解三种图形的区别与联系,掌握本节的重点知识.探究三运用知识解决问题★▲●活动①例1.如图:A、B、C、D四个点〔1〕画直线AB、CD相交于点P;〔2〕连接AC和BD相交于点O;〔3〕连接AD、BC并延长AD,反向延长CB相交于点Q.【知识点】直线、射线、线段.【解题过程】解:所画图形如下图:【思路点拨】根据直线、射线、线段的概念、延长线的方向确定画图.【答案】所画图形如下图:练习:以下语句中正确的个数是( )①延长线段AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使BC =AB.【知识点】直线、射线、线段.【解题过程】解:只有①③正确,应选B.【思路点拨】线段可向两端延长;射线可反向延长;直线不能延长.可画图判断.【答案】B.【设计意图】通过例1和练习题,加强直线、射线、线段的概念理解和画图训练,加深对延长线的概念及画法掌握,实现文字、图形、符号三种语言转化.●活动2例2.我们知道,假设线段上取一个点〔不与两个端点重合,以下同〕,那么图中线段的条数为1+2=3条;假设线段上取两个点,那么图中线段的条数为1+2+3=6条;假设线段上取三个点,那么图中线段的条数为1+2+3+4=10条…请用你找到的规律解决以下实际问题:杭甬铁路〔即杭州﹣﹣宁波〕上有萧山,绍兴,上虞,余姚4个中途站,那么车站需要印制的不同种类的火车票为〔 〕 A .6种 B .15种C .20种D .30种【知识点】直线、射线、线段.【解题过程】解:车票需要考虑往返情况,故有2〔1+2+3+4+5〕=30.应选D .【思路点拨】相当于一条线段上有4个点,根据规律计算的同时,还要注意火车票需要考虑 往返情况. 【答案】D .练习:乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么A 、B 两站之间需要制定_____种不同的票价.【知识点】直线、射线、线段.【解题过程】解:从A 到B 共有AC 、AD 、AE 、AB 、CD 、CE 、CB 、DE 、DB 、EB 共10条,因往返同一段路的票价一样,故票价数即为线段的条数.故需制定10种不同的票价.【思路点拨】画出图形,表示出线段的条数,就可以知道票价的种数. 【答案】10.【设计意图】此题是计算线段的条数,但车票种类与票价种类有区别,学生要联系生活实际,不可死记知识. ●活动3例3. 平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内不同的六个点最多可确定多少条直线?不同的n 个点最多可确定多少条直线? 【知识点】直线、射线、线段.【解题过程】解:当平面内有n 个点〔任意三点都不共线〕时,经过其中的每一个点,可与其他的〔n -1〕个点确定〔n -1〕条直线,那么经过n 个点共确定n 〔n -1〕条直线,又因为每条直线重复计算一次,故n 个点确定直线的条数为)1(21-n n ,当n =6时,即可计算直线条数为15.【思路点拨】当平面内有n 个点〔任意三点都不共线〕时,经过其中的每一个点,可与其他的(1)n -个点确定一条直线,那么可以计算经过n 个点共确定直线的条数;又因为每条直线重复计算一次,故n 个点确定直线的条数为)1(21-n n ,当n =6时,即可计算直线条数.【答案】15,)1(21-n n .练习:观察以下图形,并阅读图形下面的相关文字:像这样,10条直线相交,最多有多少个交点?【知识点】直线、射线、线段.【解题过程】 解:要使交点最多,必须交点不重合;由此可知:设原有n 条直线,最多有m 个交点,此时增加一条直线,交点个数最多增加n 个.故可猜测,n 条直线相交,最多有1+2+3+…+〔n -1〕=)1(21-n n 个交点.将n =10代入)1(21-n n 得:m =45.【思路点拨】要使的交点最多,必须交点不重合;由此可知:设原有n 条直线,最多有m 个交点,此时增加一条直线,交点个数最多增加n 个.故可猜测,n 条直线相交,最多有1+2+3+…+(1)n -个交点,通过计算即可解答. 【答案】45.【设计意图】利用直线的性质,通过寻找规律,完成问题解答,重在培养学生的分析能力和推理能力.知识梳理〔1〕直线的性质:两点确定一条直线;两条直线相交,只有一个交点. 〔2〕点与直线的位置关系.〔3〕直线、射线、线段的概念、表示方法,区别与联系. 〔4〕文字、图形、符号三种语言转化. 重难点归纳〔1〕直线的性质:两点确定一条直线.〔2〕直线、射线、线段的概念、表示方法,区别与联系.〔三〕课后作业根底型 自主突破1.如下图,以O 为端点的射线 共有_____条射线,它们分别是_______、_______、_______.【知识点】直线、射线、线段.【数学思想】【解题过程】解:以O为端点的射线有射线OA、OB、OC共3条. 【思路点拨】确定射线方法:定端点,定方向.【答案】3,射线OA,射线OB,射线OC.“反向延长线段CD〞这句话,以下图表示正确的选项是()【知识点】直线、射线、线段.【数学思想】【解题过程】解:由线段反向延长线的概念,C正确.【思路点拨】由线段延长线〔反向延长线〕的概念区分.【答案】C.3.以下写法中正确的选项是〔〕A.直线a、b相交于点nB.直线AB、CD相交于点MC.直线ab、cd相交于点M D.直线AB、CD相交于m【知识点】直线、射线、线段.【数学思想】【解题过程】解:直线可用两个大写字母或一个小写字母表示,一个点只能用一个大写字母表示;只有“直线AB,CD相交于点M〞正确;应选B.【思路点拨】根据直线的表示法的规定,直接选取答案.【答案】B.4.如下图,以下图中共有_________条线段.【知识点】直线、射线、线段.【数学思想】【解题过程】解:以A为端点有5条,下面有1+2+3+4=10条,共15条.【思路点拨】按线段寻找方法和计算规律解答.【答案】15.5.乘火车从A站出发,沿途经过4个站可到达B站,需要安排________种不同的车票.【知识点】直线、射线、线段.【数学思想】数形结合.【解题过程】解:画出线段图,计算线段数量:1+2+3+4+5=15,车票为30种.【思路点拨】画出线段图,计算线段数量,注意车票是线段条数的2倍.【答案】30.6.平面上有三个点,假设过两点画直线,那么可以画出直线的条数为条.【知识点】直线、射线、线段.【数学思想】分类讨论.【解题过程】解:当三点在同一条直线上时,可以画1条直线;当三点不在同一直线上时,可以画3条.故平面上有三个点,假设过两点画直线,那么可以画出直线的条数为1或3条.【思路点拨】分平面内的三点可能在一条直线上,也可能不在一条直线上进展讨论解答.【答案】1或3条.能力型师生共研1.平面内两两相交的三条直线,如果它们最多有a个交点,最少有b个交点,那么a b+=.【知识点】直线、射线、线段.【数学思想】分类讨论.【解题过程】解:平面内两两相交的三条直线,它们最多有3个交点,最少有1个交点,∴a b+=4;【思路点拨】根据直线两两相交的情况,先求出a、b的值,再代入求解.【答案】4.2.如下图,以O为端点画六条射线OA、OB、OC、OD、OE、OF后,再从射线OA上某点开场按逆时针方向依次在射线上描点并连线,假设将各条射线所描的点依次记为1、2、3、4、5、6、7、8…,那么所描的第2021个点在射线___________上.【知识点】直线、射线、线段.【数学思想】【解题过程】解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2021÷6=336…2,∴所描的第2021个点所在射线和2所在射线一样,∴所描的第2021个点在射线OB上.【思路点拨】根据规律得出每6个数为一周期.用2021除以6,根据余数来决定数2021在哪条射线上.【答案】OB.探究型多维突破1.平面内有A、B、C、D四个点,可以画___________条直线.【知识点】直线、射线、线段.【数学思想】分类讨论.【解题过程】解:假设A、B、C、D共线,那么可画1条直线;假设四点中有3点共线,那么可画4条直线;假设四点中至多只有2点在同一条直线上,那么可画6条直线.【思路点拨】由A、B、C、D四点的位置关系确定.【答案】1或4或6.2.为了探究n条直线能把平面最多分成几局部,我们从最简单的情形入手:〔1〕一条直线把平面分成2局部;〔2〕两条直线最多可把平面分成4局部;〔3〕三条直线最多可把平面分成7局部…;把上述探究的结果进展整理,列表分析:直线条数把平面分成局部数 写成和形式 12 1+1 24 1+1+2 37 1+1+2+3 411 1+1+2+3+4 … … …〔1〕当直线条数为5时,把平面最多分成__________局部,写成和的形式______________; 〔2〕当直线为n 条时,把平面最多分成__________局部.【知识点】直线、射线、线段.【数学思想】有【解题过程】解:〔1〕根据探究的结果知:当直线条数为5时,把平面最多分成1+1+2+3+4+5=16局部,故答案为:16,1+1+2+3+4+5.〔2〕通过探究结果,当直线为n 条时,把平面最多分成:2(1)21123122n n n n n ++++++++=+=.故答案为:222n n ++. 【思路点拨】〔1〕根据探究的结果可以算出当直线条数为5时,把平面最多分成16局部;(3)通过探究结果,写出一般规律,当直线为n 条时,把平面最多分成1123n +++++,求和即可.【答案】〔1〕16,1+1+2+3+4+5.〔2〕222n n ++.自助餐1.如图,能用图中字母表示的射线有〔 〕条.【知识点】直线、射线、线段.【数学思想】【解题过程】解:用图中字母可以表示的射线有:射线AC、BD、CB、CD、DB,共5条.【思路点拨】结合图形,根据射线的概念和表示方法进展分析.【答案】D.2.以下说法错误的选项是〔〕A.过一点可以作无数条直线;B.过三点可以画一条直线;C.一条直线通过无数个点;D.两点确定一条直线.【知识点】直线、射线、线段.【数学思想】【解题过程】解:当三点不共线时,不能画直线,应选B.【思路点拨】根据“两点确定一条直线〞进展判断.【答案】B.3.用适当的语言描述以下图形.①___________________________________.②___________________________________.③___________________________________.【知识点】直线、射线、线段.【数学思想】【解题过程】〔1〕直线AB、CD交于点O;〔2〕直线AB、BD、AC两两相交,交点分别为A、B、C;〔3〕直线MN与射线PQ交于点P〔或直线MN经过射线PQ的端点P〕.【思路点拨】根据直线与直线、直线与点的位置关系加以判断.【答案】〔1〕直线AB、CD交于点O;〔2〕直线AB、BC、AC两两相交,交点分别为A、B、C;〔3〕直线MN与射线PQ交于点P〔或直线MN经过射线PQ的端点P〕.4.如下图,填空:〔1〕点C在直线AB______;〔2〕点O在直线BD________,点C是直线_______的交点;〔3〕过点A的直线共有____条,它们分别是.【知识点】直线、射线、线段.【数学思想】【解题过程】解:〔1〕外;〔2〕上,直线AC、BC〔或直线AC、DC或直线BC、DC〕;〔3〕3,直线AB,直线AC,直线AD.【思路点拨】根据直线与点的位置关系和直线的表示方法进展解答.【答案】〔1〕外;〔2〕上,直线AC、BC〔或直线AC、DC或直线BC、DC). 〔3〕3,直线AB,直线AC,直线AD.5.如图,数轴的原点为O,点A表示5.1-,点B表示1.5.问:〔1〕数轴是什么图形?〔2〕数轴上原点O右边的局部〔包括原点〕是什么图形?怎样表示?〔3〕射线OA上的点表示什么数?端点表示什么数?〔4〕数轴上表示不小于5.1-且不大于1.5的局部是什么图形?怎样表示?【知识点】直线、射线、线段.【数学思想】数形结合.【解题过程】解:〔1〕直线;〔2〕射线,射线OB;〔3〕非正数〔0和负数〕,0;〔4〕线段,线段AB.【思路点拨】根据直线、射线、线段的概念结合图形解答.【答案】〔1〕直线;〔2〕射线,射线OB;〔3〕非正数〔0和负数〕,0;〔4〕线段,线段AB.6.直线上有2021个点,我们进展如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,求直线上共有多少个点?【知识点】直线、射线、线段.【数学思想】【解题过程】解:第一次:2021+〔2021﹣1〕=2×2021﹣1,第二次:2×2021﹣1+2×2021﹣1﹣1=4×2021﹣3,第三次:4×2021﹣3+4×2021﹣3﹣1=8×2021﹣7.∴经过3次这样的操作后,直线上共有8×2021﹣7=16137个点.故答案为:16137.【思路点拨】根据题意分析,关键是找对规律,规律是每次增加的点比原有的点少1. 【答案】16137.。

直线、射线、线段-【通用,经典教学资料】

直线、射线、线段-【通用,经典教学资料】

4.2直线、射线、线段(一)教学设计本课题是人教版九年义务教育初中代数第一册第四章第二节“直线、射线、线段”的第一课时,下面我从教材分析、学情分析、教学方法及教学手段、教学过程、教学预测、板书展示、课后反思这些方面谈谈我对这节课的理解和教学设想。

一、教材分析(一)教材的地位和作用。

本节教材是初中数学七年级上册第四章第二节内容,本节课的主要内容是直线、射线、线段的表示方法以及直线的基本性质,它是今后学习几何知识的基础,具有承上启下的作用。

特别是直线的基本性质,它在人们的生活中有着广泛的应用。

因此,本节课看似简单,但在教材中却处于重要的地位。

对于学生来说,无论在知识上,还是在解决实际问题的能力上,都起着不容忽视的作用。

(二)教学目标[知识与技能]1、进一步理解线段、射线、直线2、掌握线段、射线、直线的表示方法3、理解两点确定一条直线的事实。

[过程与方法]经历在现实情境中理解线段、射线、直线;及两点确定一条直线的探究的过程,体会抽象化,符号化的数学思维过程。

[情感与态度]通过实际操作得出结论,培养学生合作交流的意识和自主探索的精神。

(三)教学重点、难点[重点]线段、射线、直线的进一步理解及表示方法;掌握“两点确定一条直线”的基本事实。

[难点]线段、射线、直线的表示方法,两点确定一条直线的应用.二、学情分析学生之前的学习对简单的几何图形的点、线、面有了初步的认识。

已具有一定的形象思维能力,能够通过直观感受来认识理解几何图形,参与意识、合作意识较强,并具有初步的观察、分析、概括能力,但对于几何语言的书写还是会产生一定的障碍,因此我对本节课的习题设计原则是分层次降低难度,变式训练巩固新知。

三、教学方法及教学手段本课采用“情景导入-建立模型-解释运用与拓广”的教学模式.教师的教法:突出活动的组织设计与探究方法的引导。

本节课我将采用多媒体辅助教学。

以多媒体手段为驱动、以问题为载体,给学生创设一个宽松愉悦的学习氛围,引导学生积极探索、体验成功。

4.2直线射线线段第1课时教案

4.2直线射线线段第1课时教案

4.2 直线、射线、线段(第一课时)课型新授单位主备人教学目标:1.知识与技能:(1)能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,•能用几何语言描述直线性质.(2)会用字母表示直线、射线、线段,会根据语言描述画出图形.2.过程与方法:(1)能在现实情境中,进行抽象的数学思考,提高抽象概括能力.(2)经历画图的数学活动过程,提高学生的动手操作与实践能力.3.情感、价值观:体验通过实验获得数学猜想,得到直线性质的过程.重点、难点:教学重点:理解并掌握直线性质,•会用字母表示图形和根据语言描述画出图形.教学难点:根据语言描述画出图形,理解画图语言,建立图形与语言之间的联系.教学准备:PPT课件和微课等。

教学过程一、创设情景、引入新课同学们,你们注意过吗,建筑工人在砌墙时经常会在墙的两头分别固定两根木桩,然后在木桩之间拉一条细绳,沿着细绳砌砖。

这样做有什么道理呢?学完本节知识后,请同学们做以回答二、自主学习、合作探究探究:画一画:(1)经过一点O可以画几条直线?(2)经过两点A、B可以画直线吗?可以画几条?·o A l结论:经过一点可以画无数条直线经过两点能画直线,只能画一条。

师:如果你想将一根小木条固定在木板上,至少需要几个钉子?如果将细木条抽象成直线,将钉子抽象为点,你可以得出什么结论?直线的性质直线: ① 用直线上两个点来表示,无先后顺序. ② 用一个小写字母来表示.四、巩固训练、深化提高1.如下图(1)所示,点A 在直线L______,点B 在直线L________.2.如下图(2)所示,直线_______和直线______相交于点P ;直线AB 和直线EF•相交于点______;点R 是直线________和直线________的交点.3.如下图(3)所示,图中共有_____条线段,它们是________;共有______条射线,它们是________.4.根据下列语句画出图形:(1)直线L 经过A 、B 、C 三点,点C 在点A 与点B 之间; (2)两条直线m 与n 相交于点P ;(3)线段a 、b 相交于点O ,与线段c 分别交于点P 、Q .设计意图:培养学生的动手操作能力,加深对直线射线线段的认识.5、难点突破判断直线交点的个数观察下列图形,并阅读图形下面的相关文字:两条直线相交,最多有一个交点;三条直线相交,最多有3个交点; 四条直线相交,最多有6个交点;猜想:(1)5条直线相交最多有几个交点? (2)6条直线相交最多有几个交点? (3)n 条直线相交最多有几个交点?解析:先观察图形,找出交点的个数与直线的条数之间的关系,然后进行计算即可. 解:(1)5条直线相交最多有5×(5-1)2=10个交点; (2)6条直线相交最多有6×(6-1)2=15个交点;(3)n 条直线相交最多有n ×(n -1)2个交点.方法总结:解题关键是观察图形,找出规律,总结出同一平面内n 条直线相交最多有n ×(n -1)2个交点.线段条数的确定如图所示,图中共有线段( )A .8条B .9条C .10条D .12条解析:可以根据线段的定义写出所有的线段即可得解;也可以先找出端点的个数,然后利用公式n ×(n -1)2进行计算.解:方法一:图中线段有:AB 、AC 、AD 、AE ;BC 、BD 、BE ;CD 、CE ;DE ;共4+3+2+1=10条; 方法二:共有A 、B 、C 、D 、E 五个端点,则线段的条数为5×(5-1)2=10条.故选C.方法总结:找线段时要按照一定的顺序,做到不重不漏,如果记住公式会更加简便准确.五、总结升华、反思提升归纳:直线的表示有两种:一个小写字母或两个大写字母.但前面必须加“直线”两字,如:直线l ;直线m ,直线AB ;直线CD .射线的表示同样有两种:一个小写字母或端点的大写字母和射线上的一个大写字母,前面必须加“射线”两字.如:射线a ;射线OA .线段的表示也有两种表示方法:用表示端点的大写字母表示,如线段AB ;用一个小写字母表示,如线段a .作业设计基础题1. 三条直线两两相交,则交点有_______________个.2.图1中共有________条线段.3.下列图形中,能够相交的是( ).4.我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________.5.在直线AB 上取C 、D 、E 三个点,则图中共有射线__________条.最佳解决方案 个课下学生独立完成图11.作业答案:1.1或3 2.10 3.D 4.两点确定一条直线5.6 6.C 7.3次 6次 10次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
.
C
.
A B
. .
D
E
.
.
做一做
1.指出下图中线段、射线、直线分别 有多少条?
A B C
答: 有3条线段,是线段 AB、线段 AC、 线段 BC 有6条射线 只有一条直线,是直线 AB
做一做
2、分别用两种方式表示图1中的线段和图2 中的直线。
A b c C a 图1 n O
第一种:线段 AB、线段 BC、 线段 AC 第二种:线段 a、线段 b、线段 c
A、点A在直线m上
B、点A在直线 l 上
C、点B在直线 l 上
D、直线m不经过B点 答案:C
B A
l
m
选一选
3、下列说法正确的是( ) A、两点确定两条直线 B、三点确定一条直线 C、过一点只能作一条直线 D、过一点可以作无数条直线
答案:D
选一选
4、如图,射线PA与PB是同一条射线,则 符合题意的图为( )
课堂小结
1、经过两点有一条直线并且只有一条 直线。
2、直线、射线、线段三者的区别与联 系。 3、不同几何语言(文字语言、符号语 言、图形语言)的相互转化。
作业
P132-134页:2、4
课课练P64页
怎样才能射中?
线段:
绷紧的琴弦、人行横道都可以近 似地看做线段。 将线段向一个方向无限延长就形 成了射线。
将线段向两个方向无限延长就形 成了直线。
想一想:线段、射线、直线 之间有何区别?
想一想
指出直线、射线、线段三者的区别与联系:
类型 直线 射线 线段 端点数 无端点 1个 2个 延伸 向两个方向无限 延伸 向一个方向无限 延伸 不向任何方向延伸 度量 不可度量 不可度量 可度量 图形
B
m
第一种:直线 AO、直线 BO
B
A
图2
第二种:直线 m、直线 n
选一选
1、如图所示,下列说法正确的是( ) A 直线OM与直线MN是同一直线 B 射线MO与射线MN是同一射线 C 射线OM与射线MN是同一射线 D 射线NO与射线MO是同一射线
答案:A
O
M
N
选一选
2、如图下列说法错误的是( )
射线、线段都是直线的一部分。直线、射线、线段的 表示方法如下:
线段、射线、直线的表示方法
A a O A B
表示:线段 AB(或线段BA)
表示:线段 a
l
B
表示:射线 OA或射线l 表示:直线 AB(或直线BA) 表示:直线 l
A
l
当两条不同的直线有一个公共点时,称这两条直线相交。这个 公共点叫做它们的交点。
(2)经过两点A、B可以画几条直线?
· A
一句话概括:
· O
· B
经过两点有一条直线,并且只有一条直线。 简述为:两点确定一条直线.(直线公理)
我们可以用下列方式表示直线:
A B 表示:① 用直线上的两个点 表示,直线 AB(或直线BA) 表示:② 用一个小写英文 字母表示 , 直线 l
l
点和直线的位置关系: (1)点在直线上;(直线经过点) (2)点在直线外.(直线不经过点)
画几条直线 ?有n个点呢?
探究与思考
2、在线段AB上取一个点C时,共有几条线段?
在线段AB上取两个点C、D时,共有几条线段?
在线段AB上取三个点C、D、E时,共有几条线 段?在线段AB上取n个点(包括A和B两个端点 时,共有几条线段?
请欣赏下列图案
挑战:你能用线段、射线或直线 创造出美丽的图案B
P
A
C
D
答案:C
选一选
5、如图所示的直线、射线、线段能相交的是(
C D C

D
A B B A
A B A
A
B
D
C C D D
B
C
答案:C
探究与思考
1、过一个点、过两个点分别可以画几条直线?
如果平面上有三个点,过其中任意两个点画直线,
共可以画几条直线?如果平面上有四个点,共可
.A .B
两点确定一条直线的应用:
1、植树时,只要定出两个树坑的位置 就能确定同一行的树坑所在的直线。
讨论
排队
1、一人固定则可以排几个队列? 2、两人固定则又可以排几个队列? 3、三个人、……呢?
想一想:
经过两点有一条直线,并且只 有一条直线可以用来说明生活 中的哪些现象?
1、建筑工人在砌墙时会在墙的两头分别固 定两枚钉子,然后在钉子之间拉一条绳子, 定出一条直的参照线,这样砌出的墙就是直 的。
请欣赏下列图案
议一议、算一算
• 学校总务处为解决下雨天学生的雨衣的 存放问题,决定在每个班级教室外钉一 根2米长的装有挂钩的木条。本校有26个 班,问至少需要买几颗钉子? • 你能帮总务处的师傅算一算吗?
大写英文字母 点通常用_____________表示
直线 : (1)经过一点O画直线,能画几条?
画一画(学生板演)
• 2、按下列语句画出图形: • (1)直线EF经过点C; • (2)点A在直线l外;
• (3)经过点O的三条线段a、b、c; • (4)线段AB、CD相交于点B。
画一画(学生板演)
2、如图,已知A、B、C、D四点, 分别按下列要求画出图形。 (1)画线段BD;(2)画射线AB (3)画直线AD、BC相交于点O; (4)连结CA并延长交DB的延长线于点E
相关文档
最新文档