4.2(2)直线、射线、线段

合集下载

直线、射线、线段(知识点总结、例题解析)

直线、射线、线段(知识点总结、例题解析)

第四章 几何图形初步4.2 直线、射线、线段一、知识考点知识点1【直线】1、直线:把线段向两端无限延伸形成的图形叫做直线。

2、特点:是直的;无粗细之分;无端点;不可以度量;不可以比较长短,无限长。

3、基本性质:经过两点有且只有一条直线(两点确定一条直线);4、直线有两种表示方法:(1)用直线上任意两点的大写字母,如:表示为直线AB 或直线BA 。

(2)也可以用一个小写字母表示,如:直线l5、直线和点的位置关系:(1)在直线上:点O 在直线l 上,或者说说直线l 经过点O(2)点在直线外:点P 在直线l 外,或者说说直线l 不经过点P6、交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做他们的交点。

O Pl知识点2【射线】1、射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。

2、特点:是直的,有一个端点,不可以度量,不可以比较长短,无限长。

3、射线有两种表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意的一点,端点写在前面。

(如图:可以记作射线OM,但不能记作射线MO) (2)可以用一个小写英文字母表示,比如:射线OM也可以记为射线l。

4、射线的画法:画射线一要画出射线端点,二要画出射线经过一点,并向一旁延伸的情况。

知识点3【线段】1、线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。

2、特点:线段是直的,它有两个端点,他的长度是有限的,可以度量的,可以比较长短。

3、基本性质:(1) 线段公理:两点之间的所有连线中,线段最短(两点之间,线段最短)(2) 两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

注意:两点间的距离是指线段的长度,是一个数值,而不是指线段本身。

(3) 线段的中点到两端点的距离相等。

(4) 线段的大小关系和它们的长度的大小关系是一致的4、线段有两种表示方法:(1)可以用它的两个端点的大写英文字母来表示,如线段AB(或线段BA)(2)可以用一个小写字母来表示,如线段a5、线段的画法:用直尺和尺规作图(尺规作图)已知:线段a(如图所示),用直尺和圆规画一条线段,使它等于已知线段a第一步:任意画一条射线AC第二步:用圆规量取已知线段a的长度。

人教版七年级上数学第4章:4.2直线、射线、线段(含答案)

人教版七年级上数学第4章:4.2直线、射线、线段(含答案)

4.2直线、射线、线段知识要点:1.定义:一点在空间沿着一个方向及它的相反方向运动,所形成的图形就是直线.2.直线性质(1)经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.(2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了3.定义:直线上的一点和它一旁的部分叫做射线.4.特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长5.定义:直线上两个点和它们之间的部分叫做线段.6.特征:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.一、单选题1.如图所示,已知线段AD>BC,则线段AC与BD的关系是()A.AC>BD B.AC=BD C.AC<BD D.不能确定2.下列说法:①过一点可以作无数条直线;②两点确定一条直线;③两直线相交,只有一个交点;④过平面内三点只能画一条直线.其中正确的个数是( )A.4个B.3个C.2个D.1个3.下列画图语句中正确的是()A.画射线OP=5cm B.画射线OA的反向延长线C.画出A、B两点的中点D.画出A、B两点的距离4.已知点P在直线a上,也在直线b上,但不在直线c上,且直线a,b,c两两相交.符合以上条件的图形是()A. B. C. D.5.若点B在直线AC上,AB=10,BC=5,则A、C两点间的距离是()A.5 B.15 C.5或15 D.不能确定6.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=7cm,那么BC的长为()A.3cm B.3.5cm C.4cm D.4.5cm7.下列说法错误的是()A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.同一个平面上,经过一点有且只有一条直线与已知直线垂直8.下列说法正确的是( )A.射线PA和射线AP是同一条射线B.射线OA的长度是12cmC.直线ab、cd相交于点MD.两点确定一条直线9.下列表示线段的方法中,正确的是( )A.线段A B.线段AB C.线段ab D.线段Ab10.在开会前,工作人员进行会场布置,如图为工作人员在主席台上由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线二、填空题11.如图,使用直尺作图,看图填空:延长线段______ 到______,使BC=2AB.12.已知线段AB与直线CD互相垂直,垂足为点O,且AO=5 cm,BO=3 cm,则线段AB 的长为______________.13.下列说法中①两点之间,直线最短;②经过直线外一点,能作一条直线与这条直线平行;③和已知直线垂直的直线有且只有一条;④在平面内过一点有且只有一条直线垂直于已知直线.正确的是__________.(只需填写序号)14.如图,线段AB的长为8厘米,C为线段AB上任意一点,若M为线段AC的中点,N 为线段CB的中点,则线段MN的长是________三、解答题15.已知:线段a、b.求作:线段AB,使AB=2b-a.16.已知∠1和线段a,b,如图(1)按下列步骤作图(不写作法,保留作图痕迹)①先作∠AOB,使∠AOB=∠1.②在OA边上截取OC,使OC=a.③在OB边上截取OD,使OD=b.(2)利用刻度尺比较OC+OD与CD的大小.17.如图.B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.18.如图,已知线段AB,反向延长AB到点C,使AC=12AB,D是AC的中点,若CD=2,求AB的长.答案1.A2.B3.B4.D5.C6.A7.B8.D9.B10.B11.AB, C.12.8 cm或2 cm.13.②、④.14.4cm15.解:在直线l上顺次截取AD=b,DC=b,在线段AC上截取CB=a,则线段AB为所求作的线段.16.解:(1)根据以上步骤可作图形,如图,(2)通过利用刻度尺测量可知OC+OD>CD.17.设AB=3x,则BC=2x,CD=5x,∵E、F分别是AB、CD的中点,∴BE=32x,CF=52x,∵BE+BC+CF=EF,且EF=24,∴32x+2x+52x=24,解得x=4,∴AB=12,BC=8,CD=20.18.∵D是AC的中点,∴AC=2CD,∵CD=2cm,∴AC=4cm,∵AC= 12 AB,∴AB=2AC,∴AB=2×4 cm =8cm。

线段、射线、直线(课件)人教版四年级上册数学(共23张PPT)

线段、射线、直线(课件)人教版四年级上册数学(共23张PPT)

()
(4)、从一点出发可以画一条射线 ( )
当堂检测:
2、猜三个几何名词。 什么有始有终?什么有始无终?什么无始
无终?
四、巩固知识,扩大延伸
在线段AB上任取D、E、F三点,那么这 个图中共有几条线段?如果取四点呢?取n个 点呢?
五、知识应用、能力提升:
1、 在小组内完成,点和线有怎样的位置 关系(请同学们画图说明,并用几何语言描 述)
2、 请同学们任意过A、 B 、C三点。画线 段 AB,画射线AC,画直线BC。
六、课堂小结: 请同学们自由发言,小结
本节课收获并提出困惑,当堂 解决。
4.2 线段、射线、直线
请用数学词汇表达你 看到的数学对象
直线
射线
线段
4.2 线段、射线、直线
学习目标: 1、在现实情境中感受线段、射线、直线等 简单平面图形的广泛应用。 2、在了解线段概念的基础上,理解射线和 直线的意义,会用字母表示线段、射线、 直线,掌握其表示方法,并能理解它们的 区分和联系。 3、鼓励自己敢于说出自己的见解、勤于视 察思考、善于合作交流。
A
B
a
有两个端点

射线
将线段向一个 方向无限延伸 就得到了射线
A B
有一个端点

表示方法
线段 AB(BA) 或线段a
射线AB
直线
将线段向两个 方向无限延伸 就形成了直线
AB
l
无端点

直线AB(BA) 或直线l
三、当堂检测:
1、判断
(1)、直线比射线长
()
(2)、射线的长度是直线的一半 ( )
(3)、线段是直线的一部分
注意: 表
1.没有端点 2. 向两方无限延伸

人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

4.2 直线、射线、线段1.直线(1)概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始的概念,直线常用“一根拉得很紧的细线”,“一张纸的折痕”等实际事物进行描述.(2)特点:直线向两方无限延伸,不可度量,没有粗细;并且同一平面内的两条相交直线只有一个交点.(3)直线的基本性质:经过两点有一条直线,并且只有一条直线.即“两点确定一条直线”.(4)直线的两种表示法:一是用一个小写字母表示:如直线a,b,c或直线l等.另一个是用直线上两个点的大写字母表示,如:直线AB或直线BA.如图:表示为直线l或直线AB(点的字母位置可以交换).(5)直线与点的位置关系:一是点在直线上,也叫做直线经过这点;另一种是点在直线外,也叫做直线不经过这个点.【例1-1】下面几种表示直线的写法中,错误的是().A.直线a B.直线MaC.直线MN D.直线MO解析:直线的表示法有两种,一种是用一个小写字母表示,另一种是用直线上两个点的大写字母表示,所以直线Ma这种表示法不正确,故选B.答案:B【例1-2】如图,下列说法错误的是().A.点A在直线m上B.点A在直线l上C.点B在直线l上D.直线m不经过B点解析:点与直线有两种位置关系,一是点在直线上,也称作直线过这点,另一种是点在直线外.所以C错误.答案:C2.射线(1)定义:直线上一点和它一旁的部分,叫做射线.它是直线的一部分.如图就是一条射线,其中O是射线的端点.(2)表示法:同直线一样,射线也有两种表示方法,一种是用一个小写字母表示:如射线a,b,c或射线l等,另一个是用射线上两个点的大写字母表示,其中前面的字母表示的点必须是端点.如图:表示为射线l或射线OA.注意:表示射线端点的字母一定要写在前面.(3)特点:射线只有1个端点,向一方无限延伸,因此不可度量.【例2-1】如图,若射线AB上有一点C,下列与射线AB是同一条射线的是().A.射线BA B.射线ACC.射线BC D.射线CB解析:端点相同,在同一条直线上,且方向一致,就是同一条射线,所以B正确.答案:B3.线段(1)定义:直线上两点和它们之间的部分,叫做线段.它是直线的一部分.(2)特点:有两个端点,不能向两方无限延伸,因此它有长度,有大小.(3)表示法:同直线一样,线段也有两种表示法,一种是用一个小写字母表示,如线段a,b,c.另一种是用线段两个端点的大写字母表示.如图:可以表示为:线段AB或线段BA,或线段a.(4)线段的基本性质:两点的所有连线中,线段最短,简单的说成:“两点之间,线段最短.”意义:选取最短路线的原则和依据.(5)两点间的距离:连接两点的线段的长度,叫做这两点间的距离.破疑点线段的表示表示线段的两端点的字母可以交换,如线段AB也是线段BA,但端点字母不同线段就不一样.【例3】如图有几条直线?几条射线?几条线段?并写出.分析:直线主要看有几条线向两方无限延伸,图中只有一条;射线主要看端点,再看延伸方向,3个端点,所以有6条,线段主要是看端点,3个端点,所以有3条.解:有一条直线AB(或AC,AD,AE,BE,BD,CD,…);射线有6条:CA,CB,DA,DB,EA,EB.线段有3条:CD,CE,DE.4.线段的画法(1)画一条线段等于已知线段画法:①测量法:用刻度尺先量出已知线段的长度,画一条等于这个长度的线段;②尺规法:如图:画一条射线AB,在这条射线上截取(用圆规)AC=a.(2)画线段的和差测量法:量出每一条线段的长度,求出它们的和差,画一条线段等于计算结果的长度.如:已知线段a,b(a>b),画线段AB=a-b,就是计算出a-b的长度,画出线段AB等于a-b 的长度即可.尺规法:如图,已知线段a,b,画一条线段,使它等于2b-a.画法:如图,①画一条射线AB,在这条射线上连续截取(用圆规)AC=2b,②再以A为一个端点,截取AD=a,那么DC=2b-a.【例4】如图,已知线段a,b,c,画一条线段,使它等于a+b-c(用尺规法).画法:如图,①画射线(直线也可)AB,在射线AB上分别截取AC=a,CD=b.②以D为一个端点在AD上截取DE=c,线段AE即为所求.5.线段的比较(1)测量法:就是用刻度尺测量出两条线段的长度,再比较它们的大小.(2)叠合法:把两条线段的一端对齐,放在一起进行比较.如图:①若C 点落在线段AB 内,那么AB >AC ;②若C 点落在线段AB 的一个端点上,那么AB =AC ;③若C 点落在线段AB 外(准确的说是AB 的延长线上),那么AB <AC .谈重点 线段的比较 用叠合法比较两条线段的大小,一端一定要对齐,看另一个端点的落点,测量法要注意单位的统一.【例5】 已知:如图,完成下列填空:(1)图中的线段有________、________、________、________、________、________共六条.(2)AB =________+________+________;AD =________+________;CB =_______+__________.(3)AC =AB -__________;CD =AD -__________=BC -__________;(4)AB =__________+__________.解析:根据图形和线段间的和差关系填空,注意(4)题有两种可能.答案:(1)AC AD AB CD CB DB(2)AC CD DB AC CD CD DB(3)CB AC DB(4)AD DB 或AC CB6.线段中点、线段等分点(1)定义:点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点.(2)拓展:把一条线段分成相等的三条线段的点叫做这条线段的三等分点….(3)等量关系:在上图中:AM =BM =12AB ;2AM =2BM =AB . 【例6】 如图,点C 是线段AB 的中点.(1)若AB =6 cm ,则AC =__________cm.(2)若AC =6 cm ,则AB =__________cm.解析:若AB =6 cm ,那么AC =12AB =3(cm). 若AC =6 cm ,那么AB =2AC =2×6=12(cm).答案:3 127.关于延长线的认识延长线是重要的,也是应用较多的几何术语,是初学者最易错,最不好理解的地方,下面介绍几种关于延长线的术语:如图(1)延长线段AB ,就是由A 往B 的方向延长,并且延长线一般在作图中都用虚线表示;如图(2)叫做反向延长线段AB ,就是由B 向A 的方向延长;如图(3)延长AB 到C ,就是到C 不再延长;如图(4)延长AB 到C ,使AB =BC ;如图(5)点C 在AB 的延长线上等.几种常见的错误,延长射线AB 或延长直线AB ,都是错误的,图(6)中只能反向延长射线AB .【例7-1】 若AC =12AB ,那么点C 与AB 的位置关系为( ). A .点C 在AB 上 B .点C 在AB 外C .点C 在AB 延长线上D .无法确定答案:D【例7-2】 画线段AB =5 cm ,延长AB 至C ,使AC =2AB ,反向延长AB 至E ,使AE =13CE ,再计算: (1)线段AC 的长;(2)线段AE ,BE 的长.分析:按要求画图.由画图过程可知:AC =2AB ,且C 在AB 的延长线上,所以AB =BC =12AC ,E 在AB 的反向延长线上,且AE =13CE ,所以AB =BC =AE =5 c m.解:如图:(1)因为AC =2AB ,所以BC =AB =5 cm ,所以AC =AB +BC =5+5=10 (cm).(2)因为AE =13CE ,所以AE =AB =BC =5 cm , 所以BE =AB +AE =5+5=10 (cm).8.线段的计数公式及应用一条直线上有n 个点,如何不重复不遗漏地数出该直线上分布着多少条线段呢?以下图为例:为避免重复,我们一般可以按以下方法来数线段的条数:即A →AB ,AC ,AD ,B →BC ,BD ,C →CD ,线段总数为3+2+1=6,若是更多的点,由以A 为顶点的线段的条数可以看出,每个点除了自身以外,和其他任何一个点都能组成一条线段,因此当有n 个点时,以A 为顶点的线段就有(n -1)条,同样以B 为顶点的线段也有(n -1)条,因此n 个顶点共有n (n -1)条线段;但由A 到B 得到的线段AB 和由B 到A 得到的线段BA 是同一条,而每条线段的数法都是如此,这样对于每一条线段都数了2次,所以除以2就是所得线段的实际条数,即当一条直线上有n 个点时,线段的总条数就等于12n (n -1). 【例8-1】 从秦皇岛开往A 市的特快列车,途中要停靠两个站点,如果任意两站之间的票价都不相同,那么有多少种不同的票价?有多少种车票?分析:这个问题相当于一条直线上有4个点,求这条直线上有多少条线段.因为任意两站之间的票价都不相同,因此有多少条线段就有多少种票价,根据公式我们很快可以得出有6种不同的票价,因为任意两站往返的车票不一样,所以,从秦皇岛到达目的地有12种车票.解:当n =4时,有n (n -1)2=4×(4-1)2=6(种)不同的票价.车票有6×2=12(种).答:有6种不同的票价,有12种车票.【例8-2】 在1,2,3,…,100这100个不同的自然数中任选两个求和,则不同的结果有多少种?分析:本题初看似乎和线段条数的计数规律无关,但事实上,若把每个数都看成直线上的点,而把这两个数求和得到的结果看成是1条线段,则其中的道理就和直线上线段的计数规律是完全一致的,因而解法一样,直接代入公式计算即可求出结果.解:不同的结果共有:12n (n -1)=12×100×(100-1)=4 950(种). 答:共有4 950种不同的结果. 9.与线段有关的计算和线段有关的计算主要分为以下三种情况:(1)线段的和差及有关计算,一般比较简单,根据线段间的和差由已知线段求未知线段.(2)有关线段中点和几等分点的计算,是本节的重点,其中以中点运用最多,这也是用数学推理的方式进行运算的开始.(3)综合性的运算,既有线段的和差,也有线段的中点,综合运用和差倍分关系求未知线段.解技巧 线段的计算 有关线段的计算都是由已知,经过和差或中点进行转化,求未知的过程,因此要结合图形,分析各段关系,找出它们的联系,通过加减倍分的运算解决.【例9-1】 如图,线段AB =8 cm ,点C 是AB 的中点,点D 在CB 上且DB =1.5 cm ,求线段CD 的长度.分析:根据中点关系求出CB ,再根据CD =CB -DB 求出CD .解:CB =12AB =12×8=4(cm),CD =CB -DB =4-1.5=2.5(cm). 答:线段CD 的长度为2.5 cm.【例9-2】 如图所示,线段AB =4,点O 是线段AB 上一点,C ,D 分别是线段OA ,OB 的中点,求线段CD 的长.解:由于C ,D 分别是线段OA ,OB 的中点,所以OC =12OA ,OD =12OB ,所以CD =12(OA +OB )=12AB =12×4=2. 答:线段CD 的长为2.10.直线相交时的交点数两条直线相交有1个交点,三条直线两两相交最多有3个交点,那么n 条直线两两相交最多有多少个交点?下面以5条直线两两相交最多有多少个交点为例研究:如图,当有5条直线时,每条直线上有4个交点,共计有(5-1)×5个交点,但图中交点A ,既在直线e 上也在直线a 上,因而多算了一次,其他交点也是如此,因而实际交点数是(5-1)×5÷2=10个,同样的道理,当有n 条直线时,在没有共同交点的情况下,每条直线上有(n -1)个交点,共有n 条直线,交点总数就是n (n -1)个,但由于每一个点都数了两次,所以交点总数是12n (n -1)个. 【例10-1】 三条直线a ,b ,c 两两相交,有__________个交点( ).A .1B .2C .3D .1或3解析:三条直线a ,b ,c 两两相交的情形有两种,如图.答案:D【例10-2】 同一平面内的12条直线两两相交,(1)最多可以有多少个交点?(2)是否存在最多交点个数为10的情况?分析:(1)将n =12代入12n (n -1)中求出交点个数.(2)交点个数为10,也就是12n (n -1)=10,即n (n -1)=20,没有两个相邻整数的积是20,所以不存在最多交点个数是10的情况.解:(1)12条直线两两相交,最多可以有:12n (n -1)=12×12×(12-1)=66(个)交点. (2)不存在最多交点个数为10的情况.11.最短路线选择“两点之间,线段最短”是线段的一条重要性质,运用这个性质,可以解决一些最短路线选择问题.这类问题一般分两类:一类是选择路线,选择从A 到B 的最短路线,连接AB 所得到的线段就是;另一类是选择一个点,使这个点到A ,B 的距离之和最小,根据“两点之间,线段最短”这条线段上的任一点到A 到B 的距离之和都等于这条线段的长度,所以这条线段上的任一点都符合要求.但这类问题往往还有附加条件,如:这点还要在某条公路上,某条河上等,所以要满足所有条件.解技巧 求最短路线 对于第一类问题,只要将A ,B 放到同一个平面上,连接AB 即可得到所需线路.对于第二类问题,连接AB ,它们的交点一般就是所求的点.【例11】 如图(1),一只壁虎要从圆柱体A 点沿着表面尽可能快的爬到B 点,因为B 点处有它要吃的一只蚊子,则它怎样爬行路线最短?分析:要想求最短路线,必须将AB 放置到一个平面上,根据“两点之间,线段最短”,连接AB ,所得路线就是所求路线,因此将圆柱体的侧面展开如图(2)所示,连接AB ,则AB 是壁虎爬行的最短路线.解:在圆柱上,标出A ,B 两点,将圆柱的侧面展开(如图(2)),连接AB ,再将圆柱复原,会得到围绕圆柱的一条弧线,这条线就是所求最短路线.析规律 立体图形中的最短路线 在立体图形中研究两点之间最短路径问题时,通常把立体图形展开成平面图形,转化为平面图形中的两点间的距离问题,再用平面内“两点之间,线段最短”求解.。

4.2 直线、射线、线段

4.2 直线、射线、线段
A D C B
3、已知:点A、B、C在同一直线上,AB = 8cm,BC = 6cm,点M、N分 别是AB、BC的中点。 求:线段MN的长。
n
m
(2)在射线AM上顺次截取AB = m,BC = n。
A
B
C
M
则线段AC就是所求作的线段。
已知:线段m、n。(如图)
m
n
求作:线段AC,使AC = m - n。 (1)作射线AM; 作法: (2)在射线AM上截取AB = m。 (3)在线段AB上截取BC = n。
A
C
B
M
则线段AC就是所求作的线段。
A
B (2)
C
D
直线的表示方法
l
A B
方法1:用两个大写字母来表示,例如可表示成 直线AB(或直线BA) 方法2:用一个小写字母表示, 例如可以表示成 直线l 归纳:用两个大写字母表示的时候与字母的顺序 无关。此时的字母可以是任意的字母。
名称 概念 图形
线段
A

射线
将线段向一个 方向无限延长 就得到了射线
两条线段的大小(长短)关系:
(1)AB > CD; (2)AB = CD; (3)AB < CD;
合作学习:
怎样比较两根细木条的长短?
观察下列三组图形,你能看出每组图 形中线段a与b的长短吗? b
a b
(1) a (3)
b
(2)
a
第一种方法: 度量法
用一把尺子量出两根绳子的长度,再进行比较.
3.1cm 4.1cm
射线的表示方法
b
A
B
此时可以表 示成射线 BA吗?
方法1:用两个大写字母来表示,例如可表示成 射线AB 方法2:用一个小写字母表示, 例如可以表示成 射线b 归纳:射线必须由端点和射线上的一点表示出来,

4.2 直线、射线、线段

4.2 直线、射线、线段

事例四 射击的时候,你知道 是如何瞄准目标的吗?
二 直线、射线、线段的表示方法
A•
• ι B
ι (1)直线AB(或直线BA)
(2)直线
射线、线段的表示方法
A•
B•
ι (1)直线AB(或直线BA)
ι (2)直线
O•
A•
m (1)射线OA
(2)射线m
• ●

A aB
(1)线段AB(或线段BA) (2)线段a
5、(1)如图,共有几条射线、几条线段?

A
2
0
(2)如图,共有几条射线、几条线段?


A
B
4
1
(3)如图,共有几条射线、几条线段?



A
B
C
6
3
课堂留白 答疑解惑
基本事实
两点确定一条直线
直线 、射 线、 线段
表示方法
用一个小写字母表示 用两个大写字母表示
联系与区别
射线OA与射线AO 是不同的两条射线
有始有终—— 有始无终—— 无始无终—— 打一线的名称 打一线的名称 打一线的名称
线段
射线
直线
导入新课
情境引入
伸向远方的火车铁轨
激光灯
我们在小学已经学过线段、
射线和直线,它们可以分别和图
中的哪个事物相对应?结合图片
你能回忆起线段、射线和直线的
铁棒
哪些特征?
合作探究 精讲点拨
一 直线
问题1 过一点O可以画几条直线?过两 点A,B可以画几条直线?
练一练
按下列语句画出图形: (1) 经过点 O 的三条线段 a,b,c; (2) 线段 AB,CD 相交于点 B.

《直线、射线、线段》PPT课件

《直线、射线、线段》PPT课件

做A、B两点的距离
A
B
连接两点间的线段的长度,叫做这两点的距离.
想一想 绿地里本没有路,为什么大家都喜欢走捷径呢?
两点之间,线段最短.
想一想 公园里设计了曲折迂回的桥,这样做对游人观赏湖面 风光有什么影响?
两点之间,线段最短. 曲折迂回的桥增加了游人在桥上行走的路程, 便于游人欣赏风光.
典型例题
第四章 几何图形初步
4.2 直线、射线、线段
第2课时
学习目标

1. 会用尺规作图画一条线段等于已知线段,会比较两条线段的长短.
线

2. 理解线段等分点的意义.
线
3. 体会文字语言、符号语言和图形语言的相互转化.
线
4. 培养学生对几何图形的兴趣,提高学习几何的积极性.

情境引入 做手工时,在没有刻度尺的条件下,若想从较长的木棍上截 下一段,使其等于短木棒,我们常采用以下办法.
A
C
O DB
解:因为 C,D 分别是线段 OA,OB 的中点,
所以 OC=1 AO,OD= 1 BO.
所以
2
1
CD=OC+OD= 2
2 (OA+OB)=
1 2AB=
1 2
×
4=2.
随堂练习 估计下列图中线段AB与线段AC的大小关系,再检验你的估计.
刻度尺: AB<AC
随堂练习 估计下列图中线段AB与线段AC的大小关系,再检验你的估计.
探究
线段和射线都是直线的一部分,类比直线的表示方法, 线段和射线又如何表示呢?
图形
a
A
B
表示方法
线段a 线段AB 线段BA
l
O
A

人教版七年级数学上册4.2:直线、射线、线段

人教版七年级数学上册4.2:直线、射线、线段
(1)画直线AB;
(2)连接线段AC,并将其延长;
(3)连接线段AD,并将其反向延长; (4)作射线BC.
练习
1.下列给线段取名正确的是( C)
A.线段M B.线段Mm
C.线段m D.线段mn
2.用适当的语句表述图中 点与直线的关系
P A
l B
3.下面图形的表示方法是否正确?
若错误,请改正.
①a
在同一平面内有三个点 A,B,C,过其中任意两个点画直线,可以画出
条直线.
(3)点与直线的位置关系
②要准备多少种车票? 如图,其中线段有 条,
线段向一端无限延长形成射线,向两端无限延长形成直线
下面图形的表示方法是否正确?
解:画出示意图如下: 例2 如图,平面上有四个点A,B,C,D,根据下列语句画图:
直线、射线、线段的区别与联系:
射线、线段都是直线的一部分.
类型 端点数 延伸
度量
线段 2个
可度量
射线 直线
1个 无端点
向一个方 向无限延
不可度量
向两个伸方向无 限延伸
不可度量
联系:线段向一端无限延长形成射线,向两端无限延长形成直线
想一想
生活中有哪些物体可以近似 地看成线段、射线、直线?
直线
线段
掌握“两点确定一条直线”的基本事实,了解点和直线的位置关系. (4)直线与直线的位置关系
联系与区别吗? (2)如何由一条线段得到一条射线或一条直线?
认真看课本第125页、126页. (3)点与直线的位置关系 联系:
理解直线、射线、线段的区别与联系. 经过一个点能画几条直线?经过两个点呢?动手试一试. 认真看课本第125页、126页. 记作:射线PO ( ) (2)连接线段AC,并将其延长; 记作:线段BA ( ) 怎么样能保证我种的树都在一条直线上?

人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

4.2直线、射线、线段1.直线(1)观点:直线是最简单、最基本的几何图形之一,是一个不作定义的原始的观点,直线常用“一根拉得很紧的细线”,“一张纸的折痕”等实质事物进行描绘.(2)特色:直线向双方无穷延长,不行胸怀,没有粗细;而且同一平面内的两条订交直线只有一个交点.(3)直线的基天性质:经过两点有一条直线,而且只有一条直线.即“两点确立一条直线”.(4)直线的两种表示法:一是用一个小写字母表示:如直线a,b,c 或直线是用直线上两个点的大写字母表示,如:直线 AB 或直线 BA.如图:表示为直线l 的字母地点能够互换).l 等.另一个或直线 AB(点(5)直线与点的地点关系:一是点在直线上,也叫做直线经过这点;另一种是点在直线外,也叫做直线不经过这个点.【例 1- 1】下边几种表示直线的写法中,错误的选项是(A .直线 a B.直线 MaC.直线 MN D.直线 MO分析:直线的表示法有两种,一种是用一个小写字母表示,大写字母表示,所以直线Ma 这种表示法不正确,应选 B.答案: B ).另一种是用直线上两个点的【例 1- 2】如图,以下说法错误的选项是().A .点C.点A 在直线B 在直线m 上l 上B.点 A 在直线 l 上D.直线 m 不经过 B 点分析:点与直线有两种地点关系,一是点在直线上,也称作直线过这点,另一种是点在直线外.所以 C 错误.答案: C2.射线(1)定义:直线上一点和它一旁的部分,叫做射线.它是直线的一部分.如图就是一条射线,此中 O 是射线的端点.(2)表示法:同直线相同,射线也有两种表示方法,一种是用一个小写字母表示:如射线a,b,c 或射线 l 等,另一个是用射线上两个点的大写字母表示,此中前方的字母表示的点一定是端点.如图:表示为射线l 或射线 OA .(3)特色:射线只有 1 个端点,向一方无穷延长,所以不行胸怀.【例 2- 1】如图,若射线AB 上有一点C,以下与射线AB 是同一条射线的是() .A .射线BAB .射线ACC.射线BC D .射线CB分析:端点相同,在同一条直上,且方向一致,就是同一条射,所以 B 正确.答案: B3.段(1)定:直上两点和它之的部分,叫做段.它是直的一部分.(2)特色:有两个端点,不可以向双方无穷延长,所以它有度,有大小.(3)表示法:同直一,段也有两种表示法,一种是用一个小写字母表示,如段a,b, c.另一种是用段两个端点的大写字母表示.如:能够表示:段AB 或段 BA,或段 a.(4)段的基天性:两点的全部中,段最短,的成:“两点之,段最短.”意:取最短路的原和依照.(5)两点的距离:接两点的段的度,叫做两点的距离.破疑点段的表示表示段的两头点的字母能够交,如段 AB 也是段 BA,但端点字母不同段就不一.【例 3】如有几条直?几条射?几条段?并写出.剖析:直主要看有几条向双方无穷延长,中只有一条;射主要看端点,再看延长方向, 3 个端点,所以有 6 条,段主假如看端点, 3 个端点,所以有 3 条.解:有一条直AB(或 AC,AD,AE,BE,BD ,CD,⋯ );射有 6 条: CA,CB ,DA,DB ,EA,EB .段有 3 条: CD , CE, DE .4.段的画法(1)画一条段等于已知段画法:① 量法:用刻度尺先量出已知段的度,画一条等于个度的段;②尺法:如:画一条射AB,在条射上截取(用 )AC= a.(2)画段的和差量法:量出每一条段的度,求出它的和差,画一条段等于算果的度.如:已知段 a,b(a> b),画段 AB= a-b,就是算出 a- b 的度,画出段 AB 等于 a- b 的度即可.尺法:如,已知段a, b,画一条段,使它等于画法:如,①画一条射AB ,在条射上截取②再以 A 一个端点,截取AD= a,那么 DC=2 b- a.2b- a.(用)AC=2b ,【例4】如,已知段a, b,c,画一条段,使它等于a+b- c(用尺法).画法:如,①画射(直也可 )AB,在射AB 上分截取AC= a, CD= b.②以 D 一个端点在AD 上截取 DE= c,段 AE 即所求.5.段的比(1)量法:就是用刻度尺量出两条段的度,再比它的大小.(2)叠合法:把两条段的一端,放在一同行比.如:①若 C 点落在段AB 内,那么AB> AC;②若 C 点落在段AB 的一个端点上,那么AB= AC;③若 C 点落在段AB 外 (正确的是AB 的延上 ),那么 AB< AC.要点段的比用叠合法比两条段的大小,一端必定要,看另一个端点的落点,量法要注意位的一.【例 5】已知:如,达成以下填空:(1)中的段有 ________ 、 ________、 ________、 ________、 ________ 、 ________共六条.(2)AB= ________+ ________+________ ;AD= ________+ ________; CB= _______+__________.(3)AC= AB-__________ ; CD = AD-__________ = BC- __________ ;(4)AB=__________ + __________.注意 (4)有两种可能.分析:依据形和段的和差关系填空,答案: (1)AC AD AB CD CB DB(2)AC CD DB AC CD CD DB(3)CB AC DB(4)AD DB或AC CB6.段中点、段平分点(1)定:点 M 把段 AB 分红相等的两条段AM 与 MB ,点 M 叫做段 AB 的中点.(2)拓展:把一条段分红相等的三条段的点叫做条段的三平分点⋯.(3)等量关系:在上中:1AM= BM=2AB; 2AM =2BM = AB.【例 6】如,点 C 是段 AB 的中点.(1)若 AB= 6 cm, AC= __________cm.(2)若 AC= 6 cm, AB= __________cm.1分析:若 AB =6 cm,那么 AC=2AB = 3(cm).若 AC= 6 cm,那么 AB= 2AC= 2×6= 12(cm).答案: 3 127.对于延的延是重要的,也是用多的几何,是初学者最易,最不好理解的地方,下边介几种对于延的:如 (1)延段AB,就是由 A 往 B 的方向延,而且延一般在作中都用虚表示;如 (2) 叫做反向延段AB,就是由 B 向 A 的方向延;如(3) 延 AB 到 C,就是到 C 不再延;如(4)延 AB 到 C,使 AB= BC;如 (5)点 C 在 AB 的延上等.几种常有的错误,延长射线AB 或延长直线 AB ,都是错误的,图 (6) 中只好反向延长射线 AB.【例 7- 1】 若 AC =1AB ,那么点 C 与 AB 的地点关系为 ( ).2A .点 C 在 AB 上 B .点C 在 AB 外 C .点 C 在 AB 延长线上D .没法确立 答案: D【例 7- 2】 画线段 AB = 5 cm ,延长 AB 至 C ,使 AC =2AB ,反向延长 AB 至 E ,使 AE=1CE ,再计算:3(1)线段 AC 的长; (2) 线段 AE , BE 的长.剖析: 按要求绘图.由绘图过程可知:AC = 2AB ,且 C 在 AB 的延长线上,所以 AB = BC = 1AC ,E 在 ABAE =1CE ,所以 AB = BC =AE =5 c m. 2的反向延长线上,且3解: 如图: (1) 因为 AC = 2AB ,所以 BC = AB = 5 cm ,所以 AC =AB +BC =5+ 5= 10 (cm) .1(2)因为 AE = 3CE ,所以 AE = AB = BC = 5 cm ,8.线段的计数公式及应用一条直线上有 n 个点,如何不重复不遗漏地数出该直线上散布着多少条线段呢?以以下图为例:为防止重复,我们一般能够按以下方法来数线段的条数:即 A → AB ,AC ,AD ,B → BC , BD ,C → CD ,线段总数为 3+ 2+ 1=6,假如更多的点,由以 A 为极点的线段的条数能够看 出,每个点除了自己之外,和其余任何一个点都能构成一条线段,所以当有 n 个点时,以 A 为极点的线段就有 (n - 1)条,相同以 B 为极点的线段也有 (n - 1)条,所以 n 个极点共有 n(n- 1) 条线段;但由 A 到 B 获得的线段 AB 和由 B 到 A 获得的线段 BA 是同一条,而每条线段的数法都是这样,这样对于每一条线段都数了2 次,所以除以 2 就是所得线段的实质条数,即当一条直线上有 n 个点时,线段的总条数就等于 12n(n - 1).【例 8- 1】 从秦皇岛开往 A 市的特快列车,途中要停靠两个站点,假如随意两站之间 的票价都不相同,那么有多少种不同的票价?有多少种车票? 剖析:这个问题相当于一条直线上有 4 个点,求这条直线上有多少条线段. 因为随意两 站之间的票价都不相同, 所以有多少条线段就有多少种票价, 依据公式我们很快能够得出有 6 种不同的票价,因为随意两站来回的车票不相同,所以,从秦皇岛抵达目的地有 12 种车票.解: 当 n = 4 时,有 n(n - 1)= 4× (4-1)=6(种 )不同的票价.22票有 6× 2= 12(种) . 答: 有 6 种不同的票价,有 12 种 票. 【例 8- 2】 在 1,2,3,⋯, 100 100 个不同的自然数中任 两个乞降, 不同的 果有多 少种?剖析:本 初看仿佛和 段条数的 数 律没关, 但事 上, 若把每个数都当作直 上 的点,而把 两个数乞降获得的 果当作是1 条 段, 此中的道理就和直 上 段的 数 律是完整一致的,因此解法一 ,直接代入公式 算即可求出 果.解: 不同的 果共有: 1n(n - 1)=1× 100× (100- 1)= 4 950(种 ).2 2答: 共有 4 950 种不同的 果. 9.与 段相关的 算和 段相关的 算主要分 以下三种状况:(1) 段的和差及相关 算,一般比 ,依据 段 的和差由已知 段求未知 段.(2) 相关 段中点和几平分点的 算,是本 的要点,此中以中点运用最多, 也是用数学推理的方式 行运算的开始.(3) 合性的运算,既有 段的和差,也有 段的中点, 合运用和差倍分关系求未知段.解技巧 段的 算 相关 段的 算都是由已知, 和差或中点 行 化, 求未知的 程,所以要 合 形,剖析各段关系,找出它 的 系,通 加减倍分的运算解决.【例 9- 1】 如 , 段 AB = 8 cm ,点 C 是 AB 的中点,点 D 在 CB 上且 DB = 1.5 cm ,求 段 CD 的 度.剖析: 依据中点关系求出CB ,再依据 CD = CB - DB 求出 CD.1 1,CD = CB - DB = 4- 1.5= 2.5(cm) .解: CB = AB = ×8= 4(cm)2 2答: 段 CD 的 度 2.5 cm.【例 9- 2】 如 所示, 段 AB = 4,点 O 是 段 AB 上一点, C ,D 分 是 段 OA ,OB 的中点,求 段 CD 的 .解: 因为 C , D 分 是 段 OA ,OB 的中点,1 1111× 4=2. 所以 OC = OA ,OD =2OB ,所以 CD = (OA + OB)=AB = 222 2答: 段 CD 的 2.10. 直 订交 的交点数两条直 订交有1 个交点, 三条直 两两订交最多有 3 个交点,那么 n 条直 两两订交最多有多少个交点?下边以 5 条直 两两订交最多有多少个交点 例研究:如 ,当有 5 条直 ,每条直 上有 4 个交点,共 有 (5- 1)× 5 个交点,但 中交点 A ,既在直 e 上也在直 a 上,因此多算了一次,其余交点也是这样,因此 交点数是(5 - 1)× 5÷2= 10 个,同 的道理,当有 n 条直 ,在没有共同交点的状况下,每条直 上有 (n - 1)个交点,共有 n 条直 ,交点 数就是 n(n - 1)个,但因为每一个点都数了两次,所以交点总数是12n(n - 1)个.【例 10- 1】 三条直线 a , b , c 两两订交,有 __________个交点 ().A . 1B .2C . 3D .1或 3 分析: 三条直线 a ,b , c 两两订交的情况有两种,如图.答案: D【例 10- 2】 同一平面内的 12 条直线两两订交, (1)最多能够有多少个交点? (2)能否存在最多交点个数为 10 的状况?剖析: (1)将 n = 12 代入 1n(n - 1)中求出交点个数. (2)交点个数为 10,也就是1n(n - 1)22=10,即 n(n - 1)= 20,没有两个相邻整数的积是 20,所以不存在最多交点个数是 10 的情况.解: (1)1 2 条直线两两订交,最多能够有:1n(n - 1)= 1×12× (12- 1)=66(个) 交点.2 2 (2)不存在最多交点个数为 10 的状况. 11.最短路线选择“两点之间, 线段最短”是线段的一条重要性质,运用这个性质, 能够解决一些最短路线选择问题.这种问题一般分两类: 一类是选择路线, 选择从 A 到 B 的最短路线, 连结 AB 所获得的线段就是;另一类是选择一个点,使这个点到A ,B 的距离之和最小,依据“两点之间,线 段最短”这条线段上的任一点到A 到B 的距离之和都等于这条线段的长度,所以这条线段 上的任一点都切合要求.但这种问题常常还有附带条件,如:这点还要在 某条公路上,某 条河上等,所以要知足全部条件. 解技巧 求最短路线 对于第一类问题,只需将A ,B 放到同一个平面上,连结 AB 即 可获得所需线路.对于第二类问题,连结 AB ,它们的交点一般就是所求的点.【例 11】 如图 (1) ,一只壁虎要从圆柱体 A 点沿着表面尽可能快的爬到 B 点,因为 B点处有它要吃的一只蚊子,则它如何爬行路线最短?剖析:要 想求最短路线, 一定将 AB 搁置到一个平面上, 依据 “ 两点之间, 线段最短 ” ,连结 AB ,所得路线就是所求路线,所以将圆柱体的侧面睁开如图 (2)所示,连结 AB ,则 AB 是壁虎爬行的最短路线.解:在圆柱上, 标出 A ,B 两点, 将圆柱的侧面睁开 (如图 (2)),连结 AB ,再将圆柱还原, 会获得环绕圆柱的一条弧线, 这条线就是所求最短路线.析规律 立体图形中的最短路线 在立体图形中研究两点之间最短路径问题时, 往常把立体图形睁开成平面图形, 转变为平面图形中的两点间的距离问题, 再用平面内 “ 两点之间,线段最短 ”求解.。

4.2直线、射线、线段

4.2直线、射线、线段

4.2 直线、射线、线段
栏目索引
例4 已知,如图4-2-4,B、C两点把线段AD分成2∶4∶3的三部分,M是 AD的中点,CD=6,求线段MC的长. 图4-2-4
解析 设AB=2k,则BC=4k,CD=3k, AD=2k+3k+4k=9k. 因为CD=6,即3k=6,所以k=2, 所以AB=4,BC=8,AD=18. 因为M为AD的中点,
4.2 直线、射线、线段
例1 根据图4-2-1填空:
栏目索引
图4-2-1 (1)点B在直线AD (2)点E是直线 直线CD的交点; (3)过A点的直线有
;点C在直线AD
,直线CD过点
;
与直线
的交点,点
是直线AD与
条,分别是 .
解析 根据图形进行分析,即可完成各题,同一直线的表示方法不唯一.
答案 (1)上;外;E (2)AE;CD;D (3)3;直线AD、直线AE、直线AC
知识点三 线段
定义
表示 方法 线段的 中点
4.2 直线、射线、线段
栏目索引
内容
图例
直线上两点及两点间的部分
(1)用表示端点的两个大写字母表示; (2)用一个小写字母表示
线段AB或线段BA或线段a
把一条线段分成两条相等线段的点,叫做这条
线段的中点
点M是线段AB的中点,
AM=BM= 1 AB,即AB=2AM=2BM
重要 解读
(1)对直线的基本事实的理解,应抓住其中的“有”“只有”两个关键词,“有”表示存在,“只有”表示唯一,即 过两点一定能画出一条直线,并且这样的直线只有一条. (2)用两个大写字母表示直线时,这两个字母的位置可以交换,如直线AB和直线BA表示的是同一条直线;用小写字 母表示直线时,只能用一个小写字母表示,如“直线a”或“直线b”. (3)两条不同的直线不能有两个或两个以上的公共点,如果有两个公共点,那么这两条直线重合. (4)直线没有长短,不能说直线AB长为5 cm,直线也没有粗细

《直线、射线、线段》(优秀课件)

《直线、射线、线段》(优秀课件)

B、20
C、无数
3、直线的两种表示方法:
由于两点确定一条直线,我们可以用下列方式表示 直线:
A
B 表示:① 用两个大写英文字
母表示,无先后顺序。
直线 AB(或直线BA)
l 表示:② 用一个小写英文
字母表示 。
直线 l
线段、射线的表示方法
线段 A 射线 OO
B
用线段的两个端点的大写 字母表示,记作: 线段AB
4.智慧乐园
请你数一数下图中一共有(10)条线段。
4+3+2+1=10(条)
如果线段上有 8 个
点,那么应该有 ( )条线段。
7+6+5+4+3+2+1=28(条)
乐羊羊到增城看亚运龙舟赛事,往返广州、增城 两地的汽车,中途需要停靠镇龙、中新、朱村三个 站点,需要制定多少种不同的票价?(两地之间的 距离均不相同)需要制定多少种不同的车票?
2、建筑工人在砌墙时,这样拉出的参照线就是直的。
3、木工师傅先将墨线两端确定,在拉弹墨线, 这样弹出的墨线也是直的。
画一画
(1)过一点A可以画几条直线?(无数条)
(2)过已知两点A、B可以画几条直线?
(一条)
·A
·A
·B
画一画
(3)平面上有A、B、C三个点,
可以确定__一__条__或__三__条_条直线.(过两
点作一条直线)
..B
A
. ... C
AB C
(1)可以画三条直线 (2)只能画一条直线
巩固练习、深化概念
1、选择正确答案的番号填在括号里。
(1) 画一条长3厘米的 。
(C )
A、直线 B、射线 C、线段

人教版数学七年级上册4.2线段、直线、射线-课件

人教版数学七年级上册4.2线段、直线、射线-课件

AB是同一条射线的是(B )
(A)射线BA (B)射线AC A
(C )射线BC (D)射线CB
BC
3.图中的几何体有多 少条棱?请写出这些 表示棱的线段。
4.请写出图中以O为 端点的各条射线。
A
B
D
C
•A B•
O• C
5.用两种方式表示图中的两条直线。
m
o
A
n 第一种:直线 AO,
直线 BO
B
第二种:直线 m ,
⑴要把准备好的一根硬纸条固定在 硬纸板上,至少需要几个图钉?
两点确定一条直线
⑵ 经过一点O画直线,能画出几条? 经过两点A、B 呢?
O
A
B
经过两点有且只有一条直线
存在
唯一
生活中我们常常用到两点确定一条 直线,你能举几个例子吗?
两点确定一条直线的应用:
植树时,只要定出两个树坑的位置就 能确定同一行的树坑所在的直线。
练习
读下列语句,并分别画出图形:
(1)直线 l 经过A、B、C三点,
并且点C在点A与B之间; (2)两条线段m与n相交于点P; (3) p是直线外一点,过点p有一条
直线b与直线a相交于点Q;
n (4)直线 l、m、 相交于点Q。
l
A
C
B
m n
p
p
Q
b
a
l
m
Q
n
直线的基本性质:
. 经过两点有且只有一条直线 存在性 唯一性
(1)延长直线MN到点C (错)
(2)直线A与直线B交于一点M (错 ) (3)三点决定一条直线 ( 错 )
(4)无数条直线可能交于一点 (对)
2、下图(1)中的线段可表示为 线段AB 或 线段m 。 (2)中的直线可表示为 直线EF 或 直线n 。 (3)中的射线可表示为 射线HE 。

人教版-数学-七年级上册-4.2 直线、射线、线段 课件 比较线段的长短

人教版-数学-七年级上册-4.2 直线、射线、线段 课件   比较线段的长短
比较线段的长短
点滴记忆:
线段公理:
两点之间的所有连线中,线段最短。 即两点之间,线段最短
两点的距离
连接两点间的线段的长度,叫做这两点 的距离
1、作射线(直尺) 2、量线段(圆规) 3、画弧取线段(圆规)
4、∴线段即为所求.
见词想性:
中点的概念:
• 如图,点M把线段AB分成相等的
两条线段AM和BM,点M叫做线段
3.已知线段AB=2㎝,延长AB到C,使 BC=2AB,若D为AB的中点,E为AC的中点, 求线段CE的长.
本节课的主要内容:
• 1、线段的性质:两点之间的所有连线中,线 段最短。
• 2、连接两点之间线段的长度叫做这两点之间 的距离。
• 3、线段中点的定义和运用。 • 4、比较线段大小的方法:叠合法和度量法。
AB的A 中点。 M
B
AM = BM = -21 AB AB=2AM AB=2BM
判断:
• 若AM=BM,则M为线段AB的中点。
M
A
B
线段中点的条件:
1、在已知线段上。
2、把已知线段分成两条相等线段的点
用尺子度量 通过折绳找到中点。
自己画一条线段CD,想一想,你 用什!
例1. 在直线a上顺次截取A,B,C三点, 使得 AB=4cm,BC=3cm.如果o是 线段AC的中点,求线段OB的长。
递进式
在直线a上截取A,B,C三点,使得 AB=4cm,BC=3cm.如果o是线段AC 的中点,求线段OB的长。
回归训练
• 已知直线L上顺次三个点A、B、C,已知 AB=10cm,BC=4cm。
(1)如果D是AC的中点,那么AD= 7 cm. (2)如果M是AB的中点,那么MD= 5 cm.

4.2直线、射线、线段教案

4.2直线、射线、线段教案

直线、射线、线段教案一、教学目标1、通过动手画直线的数学活动过程,结合现实情境,让学生掌握基本事实:“两点确定一条直线”,培养学生的几何直观和应用意识;2、结合基本事实,让学生掌握用数学符号语言表述“直线、射线、线段”,培养学生的抽象能力和应用意识;3、通过直线表示方法的学习,让学生理解“点与直线的位置关系”和“直线与直线的位置关系”,培养学生的几何直观和空间观念二、教学重难点(一)教学重点1、掌握基本事实:两点确定一条直线;2、用数学符号语言表示直线、射线、线段,逐步懂得数学符号语言的意义,并能建立数学符号语言与图形之间的联系.(二)教学难点使学生懂得几何语句的意义,并能建立几何语句与图形之间的联系,把几何图形与几何语言表示、符号书写很好地联系起来.三、教学过程设计视频导入第一个视频呈现的是笔直向前无限延伸的铁轨,第二个视频呈现的是亚运会上的激光,第三个视频呈现的是竖琴的琴弦,那同学们思考以上视频里面的铁轨,激光,琴弦分别对应着小学学过的直线、射线、线段的哪一类图形?设计意图:通过生活中的例子,激发学生的兴趣,结合问题,引导学生从生活实际抽象出数学问题,引出本节课的学习课题,明确学习目标,培养学生的抽象能力.(一)旧知回顾在小学我们已经学过直线、射线、线段,那它们之间有怎样的联系与区别?设计意图:通过复习小学相关知识,让学生体会知识之间的连贯性,从而为后面的直线、射线、线段的转化做铺垫.(二)动手操作任务1:过点P画直线;任务2:过A、B两点画直线;过C、D两点画直线;过E、F两点画直线;过A、B两点画直线过C、D两点画直线过E、F两点画直线任务3:思考:过一个点可以画几条直线?过两个点可以画几条直线?任务4:总结归纳出基本事实:经过两点有一条直线,并且只有一条直线.任务5:教师解读基本事实并板书有:存在性只有:唯一性简单说成:两点确定一条直线在日常生活中,有很多应用这个基本事实的例子,请同学们举例说明.设计意图:学生通过自己动手操作,探索得到两点确定一条直线的基本事实,教师对基本事实关键词进行解读讲解,帮助学生对基本事实的理解,体会数学知识来源于生活,也应用于生活,培养学生的几何直观和应用意识;(三)自主学习1.直线、射线、线段的表示方法为了便于说明和研究,几何图形一般都要用字母来表示,接下来我们一起来学习直线、射线、线段的表示方法.浏览教材125页第7段“因为两点”——126页练习的上方,并完成以下任务:(1)找出直线、射线、线段的表示方法;(2)找出相交及交点的定义结合所看教材,尝试归纳直线的表示方法,学生展示,教师点拨类比直线的表示方法,尝试归纳射线、线段的表示方法,学生展示,教师点拨并总结直线、射线,线段的表示:都有两种表示方法:第一种是一个小写字母表示,第二种是两个大写字母表示.特别强调:在用两个字母表示射线时,字母有顺序,端点字母在前;在用两个字母表示直线、线段时字母没有顺序要求.2.直线、射线、线段的转化在课前回顾中知道,线段是直线的一部分也是射线的一部分,那么怎样由一条线段得到一条射线或一条直线?设计意图:学生根据思考任务浏览教材,培养学生自主学习能力,教师根据学生的学习情况,示范展示直线的表示方法,引导学生类比直线的表示方法表示尝试射线、线段的表示,学习三者的表示方法,从而过渡到三者之间的转化,达到向学生渗透类比思想和转化思想目的,培养学生的几何直观和应用意识,(四)新知探索学习图形与几何知识,不仅要认识图形的形状,还要学习图形之间的位置,接下来我们一起来学习点与直线,直线与直线的位置关系.1.点与直线的位置关系结合刚刚所看教材,同学们,你们知道点与直线有几种位置关系吗?如图:PlO(教师示范根据图形写出符号语言)符号语言:点O在直线l上(直线l经过点O)点P在直线l外(直线l不经过点P)现在,请同学们思考,如果没有以上图形,你能根据这些符号语言画出刚刚那个图形吗?(教师示范根据语句画图)2 .直线与直线的位置关系根据刚刚所看教材,同学们知道称怎样的两条直线是相交的吗?如图:a称只有一个公共点的两条不同直线是相交的,其公共点叫做交点(教师示范根据图形写出符号语言)符号语言:直线a和直线b相交于点O类比点与直线的位置关系里面,如果没有以上图形,你能根据这些符号语言画出刚刚那个图形吗?(教师示范根据语句画出图形)设计意图:让学生体会学习几何不仅要学习图形的形状还要学习图形的位置,通过学习位置可以得出新的数学语言,再将所学语言用于描述相应的图形,反过来,也要能在图形的基础上发展数学语言.另外,教师直接在知识的讲解过程中示范如何用符号语言描述图形以及如何根据图形用符号语言描述,不再累赘示范,便于给学生更充足的时间自主练习.在教学中渗透几何图形学习的基本方法,培养学生的几何直观和空间观念.(五)巩固练习学习几何既要理解几何语句的意义,又要将几个语句用图形直观的表示出来,接下来,请同学们根据下列语句分别画图.例1 读下列语句,分别画出图形(1)直线AB经过点M,点N在直线AB外;(2)直线AB与直线CD相交于点O;例2 用适当的语句表述图中点与直线的位置关系(1)l(2)aA cBCb思考:如图,已知三点(1)画直线AC(2)画射线(3)连接设计意图:通过以上例题来加深同学们对几何语句和图形的理解,让同学们感受到既能用语句描述相应的图形,也可以根据图形写出数学语言.(六)课堂小结1. 学习了基本事实:两点确定一条直线,同时能将其初步应用;2. 学习了直线、射线、线段的表示方法,并进一步理解了直线、射线、线段的联系与区别;3. 学习了点与直线的位置关系以及直线与直线相交这种位置关系,会用所学语句描述相应的图形,同时也能在在图形的基础上发展数学语言.设计意图:承上启下:因为本堂课知识点较多,通过小结,让学生思路清晰,从而加深对本堂课知识的理解;另外也让同学们有一种学几何知识的大致结构,即学习图形的形状,位置,大小,而这堂课只有线段有大小一说,所以很自然的引出下节课将展开对线段的大小的学习.(七)作业布置必做题:教材129页第1题——第4题选做题:教材130页12题设计意图:由于课堂上的时间有限,教师在上课没办法兼顾到所有学生的需求,所以需要落实双减政策下的分层作业布置,给基础较弱的同学布置一些较为基础的作业,帮助他们巩固基础,提高他们学习的信心,当然,也需要给基础较好的同学布置一些具有挑战性的问题,促进他们深入思考,从而实现因材施教.(八)板书设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AB = 2AM = 2BM
M N B M、N为线段AB的三等分点 AM = MN = NB =
1 AB; 3
A
AB = 3AM = 3MN = 3NB N M P B A M、N、P为线段AB的四等分点
1 AN = MN = MP = PB = 4 AB;
AB = 4AN = 4MN = 4NP= 4PB
A
C
D
B
如图,在线段AB上,有C,D两点,请完成 以下填空:
CD DB DB CB AB=AC+____+____=AD+____=AC+____.
CD CB CD –____. DB AC=AD–____=AB –____=AB –____
DB AC –____. DB AC CD=AD–____=BC –____=AB –____
如图:从A地到B地有四条道路,除它们外能否 再修一条从A地到B地的最短道路?如果能,请 你联系以前所学的知识,在图上画出最短路线. 怎样走最近
• A
• B
两点的所有连线中,线段最短. 即两点之间,线段最短
连接两点间的线段的长度,叫做这两点的距离
例题学习:
线段AB=8cm,点C是AB的中点,点D在CB上且DB= 1.5cm.求线段CD的长度。
变式训练:
A
C
D
B
在线段AB上,点C是AB的中点,点D在CB上,已知DB 为1.5cm,CD比DB长1cm.求线段AB的长度。
为什么有人要到马路对面时,不走人行横道?
再 见
如何比较两个人的身高?
从中你得到什么启发来比较 两条线段的长短?
C A D B
第一种方法是:叠合法 先把两条线段的一端重合,另一端 落在同侧,根据另一端落下的位置 来比较长短.
C ①A C D D
B
ABБайду номын сангаасCD
E ②A E
F B F
AB=EF
M
N B N
③M A
AB<MN
线段的比较:
第二种方法是:度量法, 即用一把尺量出两条线段的长度, 再进行比较。
3.1cm 4.1cm
00
11
22
33
44
55
66
77
88
可用圆规?
画在黑板上的两条线段是无法移动的,在没有度 量工具的情况下,请大家想想办法,如何来比较它们 的长短? ① 观察法 ② 借助某一物体,如铅笔、小木棒等。
P125练习:
先画一条线段,再画一条与它相等的线段, 怎么画?你能想出几种方法?
线段、射线、直线的本质区别 直线 没有端点,_____ 射线 只有 是_____ 线段 有两个端点。 一个端点,_____
直线的基本性质是: 经过两点有且只有一条直线 。 ____________________
线段可以 线段、射线、直线中____ 线段才可 度量长度,所以只有____ 以比较长短。

已知线段a(如图所示),用直尺和 圆规画出一条线段,使它等于已知线段a.
a
画法:
1. 任意画一条射线AC.
2. 用圆规量取已知线段a 的长度. A 3. 在射线AC上截取AB=a.
a
B
C
线段AB就是所求的线段a.
A
M
B
点M把线段AB分成相等的两条线段AM与MB,我 们把M点叫做线段AB的中点
1 AM = BM = AB; 2
相关文档
最新文档