运筹学-对偶单纯形法
运筹学-单纯形法灵敏度对偶
![运筹学-单纯形法灵敏度对偶](https://img.taocdn.com/s3/m/d91959a0168884868762d6df.png)
若新增约束如下:
max z 50x1 100x2 x1 x2 300 2x1 x2 400 x2 250 10x1 30x2 5000(电力约束) x1, x2 , 0
x1 x2 s1
把最优解x1=50,x2 =250代入电力约束 1050+30 250=80005000 新约束不满足,最优解变化
例题:已知某线性规划初始可行基是(S1 S2 S3 a1), 最终单纯形表如下,求对偶价格不变时的△bi变化范围
x1 x2 s1
50 100 0
X1 50
1
0
0
S3 0
0
0
0
X2 100 0
1
0
s1 0
0
0
1
Zj
50 100 0
δj
0
0
0
(1) △b1的变化范围: ?
(2) △b2的变化范围:?
(3) △b3的变化范围: ? (4) △b4的变化范围:?
1 0 1 2 0.5
B1 p6'
2
1
1
0.5
2
0 0 1 1.5 1.5
Z6' 50 0.5 0 (2) 100 1.5 175
' 6
C6
Z6'
150 175
25
δ6´<0,最优解不变,即仍生产Ⅰ50件,Ⅱ100件。
2、变量xk系数列由pk变为pk´,在最终单纯形表 上xk是基变量
x1 x2 s1
50 100 0
X1 50 1
0
0
S3 0
0
0
0
X2 100 0
1
0
s1 0
0
运筹学 对偶单纯形法
![运筹学 对偶单纯形法](https://img.taocdn.com/s3/m/689615c89ec3d5bbfd0a74a7.png)
=min{j’ / akj’┃akj’<0}=r’/akr’那么 xr为进基变量,转4; 4.以akr’为转轴元,作矩阵行变换使其变为1,该
列其他元变为0,转2。
2.对偶单纯形法
例3.2:求解线性规划问题:
1.线性规划对偶问题
对称形式: (P) Max z = cT x s.t. Ax ≤ b x ≥0 “Max -- ≤ ”
互为对偶 (D) Min f = bT y s.t. AT y ≥ c y ≥0 “Min-- ≥”
线性规划的对偶模型
原问题(或对偶问题) 约束条件右端项 目标函数变量的系数 目标函数 max 约 束 条 件 m个 ≤ ≥ = n个 变 量 ≥0 ≤0 无约束 对偶问题(或原问题) 目标函数变量的系数 约束条件右端项 目标函数 min m个 ≥0 ≤0 无约束 n个 ≥ ≤ = 约 束 条 件 变 量
否
所有aik
计算
0
否
是
Hale Waihona Puke 0 bi be min aik 0 aik aek
计算
j min aej 0 k < aej aek
以为中心元素进行迭代
以为中心元素进行迭代
单纯形法和对偶单纯形法步骤
2.对偶单纯形法 对偶单纯形法的适用范围 对偶单纯形法适合于解如下形式 的线性规划问题
0 x4 0 1 0 0 0 1 0 0 0 1 0 0
0 x5 0 0 1 0 -1 -1 1 -100 -1 1 1 -50
I
θ i 300 400 250 50 75
运筹学及其应用4.3 对偶单纯形法
![运筹学及其应用4.3 对偶单纯形法](https://img.taocdn.com/s3/m/cbe0acbc80eb6294dc886c67.png)
min w= 2x1+3x2+4x3+0x4+0x5 x1+2x2+ x3-x4= 1 2x1- x2+3x3– x5=4 x1,x2,x3,x4,x5≥ 0
min w= 2x1+3x2+4x3+0x4+0x5 -x1-2x2- x3+x4= -1 -2x1+x2-3x3+x5= -4 x1,x2,x3,x4,x5≥ 0
4
234 000
0
x1 x2 x3 x4 -1 -2 -1
x4 x5 b 1 0 -1
max
2 −2
4 ,
−3
=
−1
0 x5 -2* 1 -3 0 1 -4
σ 234 000
0 x4 0 -2.5 0.5 1 -0.5 1
2 x1 1 -0.5 1.5 0 -0.5 2
σ 0 4 1 0 1 -4
步骤:(1)保持σj ≥ 0,j= 1,···,n,确定XB,建立计算表格; (2)判别XB = B-1b ≥ 0是否成立? ①若成立,XB为最优基变量; ②若不成立,转(3);
1
步骤:(1)保持σj ≥ 0,j= 1,···,n,确定XB,建立计算表格;
(2)判别XB = B-1b ≥ 0是否成立? ①若成立,XB为最优基变量; ②若不成立,转(3);
5
• 作业 • P81 1.12(1)
6
§3 对偶单纯形法
单纯形法:由 XB = B-1b ≥ 0,使σj ≥ 0,j = 1,···,m 对偶单纯形法:由σj ≥ 0(j= 1,···,n),使XB = B-1b ≥ 0 相同点:都用于求解原问题
运筹学(对偶问题及性质)
![运筹学(对偶问题及性质)](https://img.taocdn.com/s3/m/6466e6db970590c69ec3d5bbfd0a79563c1ed4e0.png)
若初始矩阵中变量 xj的系数向量为Pj, 迭代后为P’j, 则有 P’j=B-1 Pj
2
当B为最优基时,应有
3
令Y=CBB-1, 则
项 目
基变量
非基变量
XB
XN Xs
CB XB B-1b
I
B-1N B-1
cj-zj
0 -Ys1
XB XN
Xs
0 Xs b
B N
I
cj-zj
CB CN
0
项 目
基变量
非基变量
XB
XN Xs
CB XB B-1b
I
B-1N B-1
cj-zj
0
CN-CBB-1N -CBB-1
02
对偶性质
对偶性质
例2.4 已知线性规划 的最优解是X*=(6,2,0)T,求其对偶问题的最优解Y*。 解:写出原问题的对偶问题,即 标准化
Y*=(1,1),最优值w=26。
解此线性方程组得y1=1,y2=1,从而对偶问题的最优解为:
对偶问题的第一、二个约束的松弛变量等于零,即y3=0,y4=0,带入方程中:
在市场竞争的时代,厂长的最佳决策显然应符合两条: 吃亏原则。即机时定价所赚利润不能低于加工甲、乙型产品所获利润。由此原则,便构成了新规划的不等式约束条件。 竞争性原则。即在上述不吃亏原则下,尽量降低机时总收费,以便争取更多用户。
设A、B、C、D设备的机时价分别为y1、y2、y3、y4,则新的线性规划数学模型为:
原问题的松弛变量
x1
x2
x3
x4
x5
x3
15/2
0
0
1
5/4
-15/2
x1
7/2
应用运筹学基础:线性规划(4)-对偶与对偶单纯形法
![应用运筹学基础:线性规划(4)-对偶与对偶单纯形法](https://img.taocdn.com/s3/m/0aa2fc9370fe910ef12d2af90242a8956becaa8d.png)
应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。
引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。
现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。
但假如现在我们不⽣产产品,⽽是要把原料都卖掉。
设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。
对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。
运筹学02对偶理论(2)对偶单纯形法,灵敏度与参数分析
![运筹学02对偶理论(2)对偶单纯形法,灵敏度与参数分析](https://img.taocdn.com/s3/m/bf50362cfad6195f312ba6d3.png)
3.3 对偶单纯形法 Dual Simplex Method
Chapter3 对偶理论 Dual Theory
注:当模型的数据发生变化后,不必对线性规划问题
重新求解,而用灵敏度分析方法直接在原线性规划取
得的最优结果的基础上进行分析或求解 . 线性规划的参数分析(Parametric Analysis)是研究和分
析目标函数或约束中含有的参数μ在不同的波动范围内 最优解和最优值的变化情况.这种含有参数的线性规划
3.3 对偶单纯形法 Dual Simplex Method
Chapter3 对偶理论 Dual Theory
X XB σ
b
B-1A B-1b C-CBB-1A -CBB-1b 若上表为最优单纯形表,则下列两个式子同时成立:
(1) B1b 0 (可行性条件,又叫对偶最优性条件)
(2) C CB B 1 A 0 (最优性条件,又叫对偶可行性条件)
4.最优解、无可行解的判断。
作业:教材P81 1.12 (2)
下一节:灵敏度分析与参数分析
3.4 灵敏度与参数分析
Sensitivity and Parametric Analysis
3.4 灵敏度与参数分析 Sensitivity and Parametric Analysis
Chapter3 对偶理论 Dual Theory
3.3 对偶单纯形法 Dual Simplex Method
max z 7 x1 3x 2
对偶单纯形法的计算步骤_实用运筹学:案例、方法及应用_[共3页]
![对偶单纯形法的计算步骤_实用运筹学:案例、方法及应用_[共3页]](https://img.taocdn.com/s3/m/2b3f6b0576a20029bc642d90.png)
41第2章对偶理论与灵敏度分析即y 是对偶问题(D )的一个可行解。
条件式(2-21)称为对偶可行性条件,即最优性条件式(2-20)与对偶可行性条件式(2-21)是等价的,因此,如果一个原始可行基B 是原问题(P )的最优基,则1=B y c B -就是对偶问题(D )的一个可行解,此时对应的目标函数值1B w=yb =c B -,等于原问题(P )的目标函数值,可知1=B y c B -也是对偶问题(D )的最优解。
若原问题(P )的一个基本解1=0B b x ⎛⎞⎜⎟⎝⎠-对应的检验数向量满足条件式(2-20),即 =(,)=0,0B N N B σσσc c B N -1(-)≤则称x 为(P )的一个正则解。
于是可知,原问题(P )的正则解x 与对偶问题(D )的可行解y 是一一对应的,它们由同一个基B 所决定,我们称这一基为正则基。
因此,我们可以设想另一条求解思路,即在迭代过程中,始终保持对偶问题解的可行性,而原问题的解由不可行逐渐向可行性转化,一旦原问题的解也满足了可行性条件,也就达到了最优解。
也即在保持正则解的正则性不变条件下,在迭代过程中,使原问题解的不可行性逐步消失,一旦迭代到可行解时,即达到了最优解。
这正是对偶单纯形法的思路,这个方法并不需要把原问题化为对偶问题,利用原问题与对偶问题的数据相同(只是所处位置不同)这一特点,直接在反映原问题的单纯形表上进行运算。
2.3.2 对偶单纯形法的计算步骤求解如下标准形式线性规划问题:max =z cx s.t.0Ax =bx ⎧⎨⎩≥对偶单纯形法的计算步骤如下:(1)找一个正则基B 和初始正则解(0)x ;将原问题化为关于基B [不妨设12=(,,,)m B P P P ]的典式,列初始对偶单纯形表,如表2-5所示。
表2-5 对偶单纯形表12 1 2 12121c 1x 1'b 1 0 … 0 1+1'm a 1+2'm a … 1'n a 2c 2x 2'b 01 02+1'm a 2+2'm a … 2'n am c m x'm b 0…1 +1'mm a +2'mm a … 'mn a c j -z j0 0 0+1m σ+2m σ…n σ(2)若1=b'B b -≥0,则停止计算,当前的正则解1=x B b -,即为原问题的最优解;否则转下一步。
对偶单纯形法(经典运筹学)
![对偶单纯形法(经典运筹学)](https://img.taocdn.com/s3/m/9328ddc4fe4733687e21aac7.png)
对标准型 maxz CX s.t AXb X 0,b 0
AB,N
CC B CN
X
X X
B N
A P 1P 2 P m P m 1 P n 设 BP 1 P 2 P m是可
于A是 X b
B
N
XB XN
b
BX BNN Xb
B 可逆
XBB1bB1NN X
且ZCB CNXXNB CBXBCNXN
C B (B 1 b B 1 NN )X C N X N
0 1 -1 -1 0
1 0 1/5 4/5 6/5 0 0 -2/5 -3/5 3/5 .
1、确定出基变量:
设br =min{bi | bi <0}
则取br所在行的基变量 为出基变量
即取X4为出基变量
2、确定入基变量: 原则: 保持检验行系数≤0
C B B 1 b (C N C B B 1 N )X N
.
对问题maxz CX
m Z a C B B x 1 b ( C N C B B 1 N ) X N
s.t AX b X 0
XBB1bB1NN X
取可行基
BP1 P2
XB0,XN0
Pm关于可行基B的典则形式
检验数
令XN 0 得 XBB1b0得基本X 可 1行 B1b解 ,0
3x1 x2 x3
3
s.tx41x1 2x32x2
x4 6 x5 3
x1,x2,x3,x4,x5 0
取 B 基 P 3 ,P 4 ,P 5 基X 本 0 , 0 , 解 3 , 6 , 3
X1 X2 X3 X4 X5 检 -2 -1 0 0 0 Z
不
可
X3 -3 -1 1 0 0 -3
(运筹学大作业)单纯性法与对偶单纯性法的比较
![(运筹学大作业)单纯性法与对偶单纯性法的比较](https://img.taocdn.com/s3/m/36f65046c850ad02de804166.png)
对偶单纯形法与单纯形法对比分析1.教学目标:通过对偶单纯形法的学习,加深对对偶问题的理解2.教学内容:1)对偶单纯形法的思想来源 2)对偶单纯形法原理3.教学进程:1)讲述对偶单纯形法解法的来源:所谓对偶单纯形法,就是将单纯形法应用于对偶问题的计算,该方法是由美国数学家C.莱姆基于1954年提出的,它并不是求解对偶问题解的方法,而是利用对偶理论求解原问题的解的方法。
2)为什么要引入对偶单纯形法:单纯形法是解线性规划的主要方法,对偶单纯形法则提高了求解线性规划问题的效率,因为它具有以下优点: (1)初始基解可以是非可行解, 当检验数都为负值时, 就可以进行基的变换, 不需加入人工变量, 从而简化计算; (2)对于变量多于约束条件的线性规划问题,用对偶单纯形法可以减少计算量,在灵敏度分析及求解整数规划的割平面法中,有时适宜用对偶规划单纯形法。
由对偶问题的基本性质可以知道,线性规划的原问题及其对偶问题之间存在一组互补的基解,其中原问题的松弛变量对应对偶问题的变量,对偶问题的剩余变量对应原问题的变量;这些互相对应的变量如果在一个问题的解中是基变量,则在另一问题的解中是非基变量;将这对互补的基解分别代入原问题和对偶问题的目标函数有z=w 。
据此可知,用单纯形法求解线性规划问题时,在得到原问题的一个基可行解的同时,在检验数行得到对偶问题的一个基解,并且将两个解分别代入各自的目标函数时其值相等。
我们知道,单纯形法计算的基本思路是保持原问题为可行解(这时一般其对偶问题为非可行解)的基础上,通过迭代,增大目标函数,当其对偶问题的解也为可行解时,就达到了目标函数的最优值。
那么对偶单纯形法的基本思想可以理解为保持对偶问题为可行解(这时一般原问题为非可行解)的基础上,通过迭代,减小目标函数,当原问题也达到可行解时,即达到了目标函数的最优值。
其实对偶单纯形法本质上就是单纯形法, 只不过在运用时需要将单纯形表旋转一下而已。
管理运筹学单纯形法的灵敏度分析与对偶对偶问题课件
![管理运筹学单纯形法的灵敏度分析与对偶对偶问题课件](https://img.taocdn.com/s3/m/35ea856adc36a32d7375a417866fb84ae45cc3f0.png)
参数灵敏度分析的方法包括局部灵敏度分析和全局灵敏度 分析。局部灵敏度分析关注单个参数的小幅度变化对最优 解的影响,而全局灵敏度分析则考虑多个参数同时变化对 最优解的影响。
结合的必要性
解决复杂优化问题
单纯形法在处理线性规划问题时具有高效性,而灵敏度分析和对偶问题则提供了分析和解决非线性规划问题的 工具。将两者结合,可以更好地解决复杂的优化问题。
提高决策准确性
通过灵敏度分析,可以对决策变量的微小变化对最优解的影响进行量化分析,从而更准确地预测和应对各种情 况。对偶问题则提供了从另一个角度审视问题的机会,有助于发现潜在的优化空间。
灵敏度分析与对偶对偶问题的概述
灵敏度分析是线性规划中研究最优解的敏感性的分析方法。它主要关注当模型参数发生变化时,最优 解和最优值的变化情况。通过灵敏度分析,可以了解模型参数对最优解的影响程度,从而更好地理解 和预测实际问题的变化趋势。
对偶对偶问题是线性规划中的一类重要问题。它主要研究原问题和对偶问题的关系,以及如何利用对 偶理论求解原问题。对偶对偶问题在理论研究和实际应用中都具有重要的意义,如资源分配、投资组 合优化等问题。
感谢您的观看
THANKS
通过建立线性规划模型,将物流配送 路径问题转化为求取最小成本的问题 。约束条件包括车辆路径限制、运输 成本限制等,目标函数为最小化总成 本。
灵敏度分析与对偶对 偶问题应用
在物流配送路径调整过程中,需要考 虑客户需求变化、运输成本变化等因 素对最优解的影响。通过灵敏度分析 ,可以确定最优解对不同因素变化的 敏感性,从而制定出更加合理的配送 路径。同时,通过对偶对偶问题的研 究,可以更好地理解配送路径的性质 和结构,进一步优化配送路径。
大学运筹学经典课件第六章单纯形法的灵敏度分析与对偶
![大学运筹学经典课件第六章单纯形法的灵敏度分析与对偶](https://img.taocdn.com/s3/m/0b776bccdc88d0d233d4b14e852458fb770b38a5.png)
12
§1 单纯形表的灵敏度分析
三、约束方程系数矩阵A灵敏度分析
下面分两种情况讨论
1.在初始单纯形表上的变量Xk的系数列Pk改变为P’k经过迭代后,在最终单纯 形表上Xk是非基变量。由于单纯形表的迭代是约束方程的增广矩阵的行变换, Pk变成Pk’仅仅影响最终单纯形表上第k列数据,包括Xk的系数列、Zk以及 k, 这时最终单纯形表上的Xk的系数列就变成了B-1Pj’,而Zk就变成CBB-1Pk’,新的检 验数 k=Ck-CBB-1Pk’。若 k≤0,则原最优解仍然为最优解。若 k 〉0,则继续进 行迭代以求出最优。
这个约束条件的对偶价格就和这个剩余变量的 有关了。这将使得最优目
标值特别“恶化”而不是改进,故这时约束条件z j的对偶价格应取 值的相反
数- 。
zj
对z j于含有等于号的约束条件,其约束条件的对偶价格就和该约束方
程的人工变量有关了。其约束条件的对偶价格就等于此约束方程的人工变
量的 值。
zj
管理运筹学
成了Ck+ Ck。这时 K= Ck-Zk就变成了Ck+ Ck- Zk= K+ Ck。要使原来的最优解 仍为最优解,只要 K+ Ck≤0即可,也就是Ck的增量 Ck≤- K。
2.在最终的单纯形表中, X k是基变量 当Ck变成Ck+ Ck时,最终单纯形表中约束方程的增广矩阵不变,但是基变量的目 标函数的系数CB变了,则ZJ(J=1,2,…..,N)一般也变了,不妨设CB=(CB1, CB2。。。, Ck, …, CBm),当CB变成=(CB1, CB2。。。,Ck+ Ck,…,CBm),则:
如要使XB成为可行解,只要使上述等式的右边>0,就可求出
b
运筹学第8讲:对偶单纯形法及灵敏度分析简介
![运筹学第8讲:对偶单纯形法及灵敏度分析简介](https://img.taocdn.com/s3/m/44b3082e4b35eefdc8d33368.png)
② 原问题有可行解(b≥0), 对偶问题无可行解(存在δj>0),采 用单纯形法继续求解
③ 原问题无可行解(存在bi<0), 对偶问题有可行解( δ≤0 ), 采用对偶单纯形法继续求解
④ 原问题无可行解(存在bi<0), 对偶问题无可行解(存在δj>0), 设法使bi>0,并引入人工变量,采用大M 法继续求解
P38:例3.6
某公司生产甲、乙、丙、丁四种产品,已知制造单件产品时分
别占用的设备A、B的台时,设备A、B每天可用于生产的能力 以及单件产品的收益情况如下表所示。问该公司应该如何制定 最优生产计划? 项目 甲 乙 丙 丁 每天可用能力
设备A(h) 设备B(h)
单件利润(元)
3 2
4
2 3
3
1 2
上式两边左乘B-1,得到
题的最优基B不变,我们可以直接 求出新问题的最优解
X B B1b B1NX N
(1)
运筹学
第8讲:对偶单纯形法及灵敏度分析简介
设 Pj
为初始单纯形表中的第j 列列向量,
设 Pj’为最终单纯形表中的第j 列列向量 例如: 3 P 1 2 我们不难得到:
运筹学
第8讲:对偶单纯形法及灵敏度分析简介
同时,
Pj ' B1Pj
(3)
例如:
3 5 2 5 3 1 B P 1 1 2 0 P ' 2 5 3 5
1
再考察式(1),由于XN=[0, 0]T,因而
X B * B1b
(2) 解:设乙的收益c2直接反映到原问题的最终单纯形表中,得到
为使最优生产计划不变,则δ3, δ4 ,δ5, δ6 ≤0,得到
对偶单纯形法(经典运筹学)
![对偶单纯形法(经典运筹学)](https://img.taocdn.com/s3/m/687dfc04581b6bd97f19eaa1.png)
解:问题化为标准型 max Z 2 x1 x 2 5 x1 x 2 x3 2 x 2 x3 x 4 5 s.t 6x xx 9 xx 2 2 6 x3 3 5 5 9 44 x1 , x 2 , x3,x 4,x5 0
X1 X2 X3 X4 X 5
2 检 0 1 -1 1 2 -4 0 -2 1 1 -6 0 0 1 0 0 0 0 1
Z Z-10
X1 1 X4 0
5 5 -9
X5 0
4
14 13 X1 X 2 X 3
检
X1 X4
0 1 0 0 0 0 0 1
X4
X5
-1/4 Z-31/4 1/4 1/2 11/4 1/2
所在行的基变量出基 则取br
4、以ari0 为主元素进行换基迭代 ,得一新的单纯形表, 转2
例:用对偶单纯形法 求解下列问题 max Z 2 x1 x 2 x1 x 2 x3 5 2x x 5 11 9 2 3 最优解 X ( ,) s.t 4 4 4 x 6 x 9 2 3 31 x1 , x 2 ,Z x3 0 最优值
-1/2 0 -1/2 0 -2 3/2 1 0
X2
-1/4 9/4
11 9 1 最优解 X ( ,, 0, , 0 ) 4 4 2 初始基 B (P ) 1,P 4,P 5 31 最优值 Z 不是典则形式 4
注意:对偶单纯形法仅限于初始基B对应 可用对偶单 的典则形式中目标函数的系数(检 纯形法 验数)均≤0的情形。 B的典则形式
对偶单纯形法是求解对偶规划的一种方法 × 对偶单纯形法:利用对偶理论得到的一个 求解线性规划问题的方法
单纯形法(原始单纯形法)的两个条件:
运筹学对偶单纯形法
![运筹学对偶单纯形法](https://img.taocdn.com/s3/m/445b7f186c175f0e7cd137e5.png)
8. 最优松紧性 设
= (XT, XTs) = ( x1 , x2 , … , xn , … , xn+m )T
T = (YT,Ys ) = ( y1 , y2 , … , ym , … , ym+n )T
分别是(P1) (D1)的可行解,那么 和 分别是(P1) (D1)最优解的充分必要条件是: ⑴ xj >0 → ym+j = 0 ⑵ ym+j>0 → xj = 0 ⑶ xn+i > 0 → yi = 0 ⑷ yi > 0 → xn+i = 0
关系3:一般对偶关系
对偶问题 目标要求
规范不等式 约束的式号
(P) max ≤ (aij)m×n
第 k 个约束 约束个数 第 k 个右端常数 (非)规范不等式约束 等式约束
(D) min ≥ (aji)n×m
第 k 个变量 变量个数 第 k 个价值系数 非负(正)变量 自由变量
系数阵 函数 约束 与 变量
(2) 对资源 i 现行分配量的评估。当资源 i 在市场上脱销时, 其总存量无法增加,但可酌情调整其在企业内部的现行分配量, 以便获得最佳经济效益。 二、 当 yi* 代表影子利润(即企业的目标是实现最大总利 润)时: (1) 对资源 i 总存量的评估。 (2) 对资源 i 现行分配量的评估。
对偶问题的经济解释
工时利润 (百元/工时) y1 y2 y3
产品 车间
单耗(工时/件)
甲
乙
最大生产能力 (工时/天)
A B C
单位利润 (百元/件)
1 0 2 3
0 2 3 2
运筹学第4章 单纯形法的对偶问题
![运筹学第4章 单纯形法的对偶问题](https://img.taocdn.com/s3/m/9bda768a7c1cfad6195fa7aa.png)
管理运筹学
3
§1 线性规划的对偶问题
如果我们把求目标函数最大值的线性规划问题看成原问题,则把求目标函数最小值的线 性规划问题看成对偶问题。下面来研究这两个问题在数学模型上的关系。
1 求目标函数最大值的线性规划问题中有n 个变量 m个约束条件,它的约束条件都是小于 等于不等式。而其对偶则是求目标函数为最小值的线性规划问题,有m个变量n个约束条件, 其约束条件都为大于等于不等式。
5x1 3x2 x3 200
管理运筹学
10
§1 线性规划的对偶问题
通过上面的一些变换,我们得到了一个和原线性规划等价的线性规划 问题:
max z 3x1 4x2 6x3
s.t. 2x1 3x2 6x3 440,
6x1 4x2 x3 100, 5x1 3x2 x3 200 5x1 3x2 x3 200 x1, x2 , x3 0
进一步,我们可以令y3
y
' 3
y
'' 3
,这时当
y
' 3
y
'' 3
时,y
0,当
y
' 3
y
'' 3
时, y3 0 。这也就是说,尽管
y
' 3
,
y
'' 3
0,
但 y3 的取值可以为正,可以为0,
可以为负,即 y3 没有非负限制。
这样我们把原规划的对偶问题化为
min f 440 y1 100 y2 200 y3
这样第二个约束条件也就符合要求。对于第三个约束条件,我们可以 用小于等于和大于等于两个约束条件来替代它。即有
对偶单纯形法(经典运筹学)
![对偶单纯形法(经典运筹学)](https://img.taocdn.com/s3/m/687dfc04581b6bd97f19eaa1.png)
X1 X2 X3 X4 X5 检 X3 -2 -1 0 -3 -1 1 0 0 0 0 Z -3
X4
X5
-4 -3 0
1 2 0
1
0
0
1
-6
3
不 可 行
即max Z 2 x1 x2
3 3x1 x 2 x3 4 x 3x x4 6 1 2 s.t x5 3 x1 2 x 2 x1 , x 2 , x3 , x 4 , x5 0
-1/3 0 -1/3 0 2/3 1
X 3 X4 X5 0 -3/5 -2/5 Z+12/5 1 -1 -1 0
X2 0 X1 1
1 0
0 0
1/5 4/5 6/5 -2/5 -3/5 3/5
3 6 最优解X ( ,, 0, 0, 0 ) 5 5 最优值Z 12 5
则取xi0 为入基变量
1
1
令X N 0 得X B B b 0 得基本可行解 X 1 B b,0
1
1
1 、若所有的检验数 CN B 1 N 0 , 则X 1为最优解
2、检验数 C N C B B 1 N中存在一个分量 0, 且该分量对应的列 向量中所有的分量 0, 则目标函数值在可行解 域内无上界
1、确定出基变量: 设br =min{bi | bi <0} 则取br所在行的基变量 为出基变量 即取X4为出基变量 2、确定入基变量: 原则: 保持检验行系数≤0
i i0 设 min | a ri 0 a ri a ri 0
1 21 3
X1 检 -2/3 X3 -5/3 X2 4/3 X5 -5/3 X1 检 0 X3 0 X3 X4 0 -1/3 1 0 0
运筹学-3对偶单纯形法
![运筹学-3对偶单纯形法](https://img.taocdn.com/s3/m/0d48ae0e6bec0975f465e2a0.png)
1.对偶单纯形法的应用条件; 2.出基与进基的顺序; 3.如何求最小比值; 4.最优解、无可行解的判断。 作业:教材P76 T2.7
The End of Section 3
灵敏度分析 Exit
即对偶问题具有无
界解,由性质2a知ik 原问a题Lj 无可行解。aik
§2.3 对偶单纯形法 The Dual Simplex Method
Ch2 Dual Problem
2020年6月20日星期六 Page 9 of 9
本节利用对偶性质6:原问题的检验数与对偶问题的基本 解的对应关系,介绍了一种特殊线性规划的求解方法—对 偶单纯形法。
0
-4
-1
0
-1
— 1.6 — —
2
x2
0.4
0
1 -0.2 -0.4 0.2
x1
2.2
1
0
1.4 -0.2 -0.4
检验数 5.6
0
0 -1.8 -1.6 -0.2
最优解: x2=0.4 x1=2.2
Max z = -5.6
§2.3 对偶单纯形法 The Dual Simplex Method
Ch2 Dual Problem
【解】先将约束不等式化为等式,再两边同乘以(-1), 得到
min z 2x1 3x2 4x3
x1 2x2 x3 x4 3
2x1 x2 3x3 x5 4
x
j
0,
j
1,2,
,5
用对偶单纯形法,迭代过程如下页或看演示(请启用宏)。
§2.3 对偶单纯形法 The Dual Simplex Method
问题中,λ≤j0分母aij<0,
j
管理运筹学--单纯形法的灵敏度分析与对偶对偶问题讲课讲稿
![管理运筹学--单纯形法的灵敏度分析与对偶对偶问题讲课讲稿](https://img.taocdn.com/s3/m/702498b1f9c75fbfc77da26925c52cc58bd690c9.png)
3. 初始单纯表中的约束系数矩阵为:
[A,I]=[B,N,I] 迭代后的单纯形表中约束系数矩阵为:
[B-1A, B-1I]=[B-1B, B-1N, B-1I]=[I , B-1N, B-1] 4. 若初始矩阵中变量xj的系数向量为Pj,迭代
x4
x5 值
0 x3
8
1
0
1
0
0
0 x4 12 0 2 0 1 0
0 x5 36 3 4 0 0 1
检验数j
3 50 0 0
• 最优基和最优基的逆
Cj
3 5 0 0 0比
CB XB
b
x1
x2 x3
x4
x5 值
0 x3 4 0 0 1 2/3 -1/3
5 x2 6 0 1 0 1/2 0
3 x1 4 1 0 0 -2/3 1/3
0
0
1
表
j
0
0 -50
0
-50
初始单纯形表为:
Cj
CB
CN
0
XB
XN
XS
0
X S
b
B
N
I
检验数j
CB
CN
0
当迭代若干步,基变量为X B时,新的单纯形表:
Cj
CB
CN
0
XB
XN
XS
CB
b X B
B-1
I
检验数j
0
B-1N CN- CB B-1N
B-1 - CB B-1
小结
1. 对应初始单纯表中的单位矩阵I,迭代后的 单纯形表中为B-1