对偶单纯形法(经典运筹学)

合集下载

运筹学-单纯形法灵敏度对偶

运筹学-单纯形法灵敏度对偶

若新增约束如下:
max z 50x1 100x2 x1 x2 300 2x1 x2 400 x2 250 10x1 30x2 5000(电力约束) x1, x2 , 0
x1 x2 s1
把最优解x1=50,x2 =250代入电力约束 1050+30 250=80005000 新约束不满足,最优解变化
例题:已知某线性规划初始可行基是(S1 S2 S3 a1), 最终单纯形表如下,求对偶价格不变时的△bi变化范围
x1 x2 s1
50 100 0
X1 50
1
0
0
S3 0
0
0
0
X2 100 0
1
0
s1 0
0
0
1
Zj
50 100 0
δj
0
0
0
(1) △b1的变化范围: ?
(2) △b2的变化范围:?
(3) △b3的变化范围: ? (4) △b4的变化范围:?
1 0 1 2 0.5
B1 p6'
2
1
1
0.5
2
0 0 1 1.5 1.5
Z6' 50 0.5 0 (2) 100 1.5 175
' 6
C6
Z6'
150 175
25
δ6´<0,最优解不变,即仍生产Ⅰ50件,Ⅱ100件。
2、变量xk系数列由pk变为pk´,在最终单纯形表 上xk是基变量
x1 x2 s1
50 100 0
X1 50 1
0
0
S3 0
0
0
0
X2 100 0
1
0
s1 0
0

运筹学 对偶单纯形法

运筹学 对偶单纯形法
3.若所有akj’≥0( j = 1,2,…,n ),则原问题 无可行解,停止;否则,若有akj’<0 则选
=min{j’ / akj’┃akj’<0}=r’/akr’那么 xr为进基变量,转4; 4.以akr’为转轴元,作矩阵行变换使其变为1,该
列其他元变为0,转2。
2.对偶单纯形法
例3.2:求解线性规划问题:
1.线性规划对偶问题
对称形式: (P) Max z = cT x s.t. Ax ≤ b x ≥0 “Max -- ≤ ”
互为对偶 (D) Min f = bT y s.t. AT y ≥ c y ≥0 “Min-- ≥”
线性规划的对偶模型
原问题(或对偶问题) 约束条件右端项 目标函数变量的系数 目标函数 max 约 束 条 件 m个 ≤ ≥ = n个 变 量 ≥0 ≤0 无约束 对偶问题(或原问题) 目标函数变量的系数 约束条件右端项 目标函数 min m个 ≥0 ≤0 无约束 n个 ≥ ≤ = 约 束 条 件 变 量

所有aik
计算
0


Hale Waihona Puke 0 bi be min aik 0 aik aek
计算
j min aej 0 k < aej aek
以为中心元素进行迭代
以为中心元素进行迭代
单纯形法和对偶单纯形法步骤
2.对偶单纯形法 对偶单纯形法的适用范围 对偶单纯形法适合于解如下形式 的线性规划问题
0 x4 0 1 0 0 0 1 0 0 0 1 0 0
0 x5 0 0 1 0 -1 -1 1 -100 -1 1 1 -50
I
θ i 300 400 250 50 75

运筹学及其应用4.3 对偶单纯形法

运筹学及其应用4.3 对偶单纯形法
3
min w= 2x1+3x2+4x3+0x4+0x5 x1+2x2+ x3-x4= 1 2x1- x2+3x3– x5=4 x1,x2,x3,x4,x5≥ 0
min w= 2x1+3x2+4x3+0x4+0x5 -x1-2x2- x3+x4= -1 -2x1+x2-3x3+x5= -4 x1,x2,x3,x4,x5≥ 0
4
234 000
0
x1 x2 x3 x4 -1 -2 -1
x4 x5 b 1 0 -1
max

2 −2
4 ,
−3

=
−1
0 x5 -2* 1 -3 0 1 -4
σ 234 000
0 x4 0 -2.5 0.5 1 -0.5 1
2 x1 1 -0.5 1.5 0 -0.5 2
σ 0 4 1 0 1 -4
步骤:(1)保持σj ≥ 0,j= 1,···,n,确定XB,建立计算表格; (2)判别XB = B-1b ≥ 0是否成立? ①若成立,XB为最优基变量; ②若不成立,转(3);
1
步骤:(1)保持σj ≥ 0,j= 1,···,n,确定XB,建立计算表格;
(2)判别XB = B-1b ≥ 0是否成立? ①若成立,XB为最优基变量; ②若不成立,转(3);
5
• 作业 • P81 1.12(1)
6
§3 对偶单纯形法
单纯形法:由 XB = B-1b ≥ 0,使σj ≥ 0,j = 1,···,m 对偶单纯形法:由σj ≥ 0(j= 1,···,n),使XB = B-1b ≥ 0 相同点:都用于求解原问题

应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。

引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。

现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。

但假如现在我们不⽣产产品,⽽是要把原料都卖掉。

设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。

对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。

对偶单纯形法

对偶单纯形法
2x1 x2 3x3 4 x1 , x2 , x3 0
1. 换出变量的确定原则
常数列中最小的负元素所在的行所对应的基变量为换出变量.
p11-1
§3.4 灵敏度分析
运筹学
灵敏度分析——研究系数变化对最优解的影响.
一、改变价值向量
在最终表内, cr的变化只引起检验数的变化, 需重新计算检验数.
§3.3 对偶单纯形法
运筹学
一、对偶单纯形法与单纯形法的区别
对 运用对偶单纯形法时, 不需要引入人工变量, 但必须先给 定原问题的一个对偶可行基本解.
二、对偶单纯形法的求解方法
▲ 以求解下述线性规划 问题为例
min z 2x1 3x2 4x3 s.t. x1 2x2 x3 3
二、改变资源向量
在最终表内, br的变化只引起右端项的变化, 需重新计算右端项. 利用B-1(b+b).
三、改变A中的一列
通常是非基变量所对应的列, 需重新计算检验数.
四、增加一个新的约束条件
五、增加一个新的变量
p11-2
运筹学
作业:P81第1.12题之(2); 第1.13题
p11-3

对偶单纯形法的计算步骤_实用运筹学:案例、方法及应用_[共3页]

对偶单纯形法的计算步骤_实用运筹学:案例、方法及应用_[共3页]

41第2章对偶理论与灵敏度分析即y 是对偶问题(D )的一个可行解。

条件式(2-21)称为对偶可行性条件,即最优性条件式(2-20)与对偶可行性条件式(2-21)是等价的,因此,如果一个原始可行基B 是原问题(P )的最优基,则1=B y c B -就是对偶问题(D )的一个可行解,此时对应的目标函数值1B w=yb =c B -,等于原问题(P )的目标函数值,可知1=B y c B -也是对偶问题(D )的最优解。

若原问题(P )的一个基本解1=0B b x ⎛⎞⎜⎟⎝⎠-对应的检验数向量满足条件式(2-20),即 =(,)=0,0B N N B σσσc c B N -1(-)≤则称x 为(P )的一个正则解。

于是可知,原问题(P )的正则解x 与对偶问题(D )的可行解y 是一一对应的,它们由同一个基B 所决定,我们称这一基为正则基。

因此,我们可以设想另一条求解思路,即在迭代过程中,始终保持对偶问题解的可行性,而原问题的解由不可行逐渐向可行性转化,一旦原问题的解也满足了可行性条件,也就达到了最优解。

也即在保持正则解的正则性不变条件下,在迭代过程中,使原问题解的不可行性逐步消失,一旦迭代到可行解时,即达到了最优解。

这正是对偶单纯形法的思路,这个方法并不需要把原问题化为对偶问题,利用原问题与对偶问题的数据相同(只是所处位置不同)这一特点,直接在反映原问题的单纯形表上进行运算。

2.3.2 对偶单纯形法的计算步骤求解如下标准形式线性规划问题:max =z cx s.t.0Ax =bx ⎧⎨⎩≥对偶单纯形法的计算步骤如下:(1)找一个正则基B 和初始正则解(0)x ;将原问题化为关于基B [不妨设12=(,,,)m B P P P ]的典式,列初始对偶单纯形表,如表2-5所示。

表2-5 对偶单纯形表12 1 2 12121c 1x 1'b 1 0 … 0 1+1'm a 1+2'm a … 1'n a 2c 2x 2'b 01 02+1'm a 2+2'm a … 2'n am c m x'm b 0…1 +1'mm a +2'mm a … 'mn a c j -z j0 0 0+1m σ+2m σ…n σ(2)若1=b'B b -≥0,则停止计算,当前的正则解1=x B b -,即为原问题的最优解;否则转下一步。

用对偶单纯形法求对偶问题的最优解

用对偶单纯形法求对偶问题的最优解

用对偶单纯形法求对偶问题的最优解(共7页)-本页仅作为预览文档封面,使用时请删除本页-用对偶单纯形法求对偶问题的最优解摘要:在线性规划的应用中,人们发现一个线性规划问题往往伴随着与之配对的另一个线性规划问题.将其中一个称为原问题,另一个称为对偶问题.对偶理论深刻揭示了原问题与对偶问题的内在联系.由对偶问题引申出来的对偶解有着重要的经济意义.本文主要介绍了对偶问题的基本形式以及用对偶单纯形法求解对偶问题的最优解.关键词:线性规划;对偶问题;对偶单纯形Using Dual Simplex Method To Get The Optimal Solution Of TheDual ProblemAbstract:In the application of the linear programming, people find that a linear programming problem is often accompanied by another paired linear programming problem. One is called original problem. Another is called the dual problem. Duality theory reveals the internal relationsbetween the dual problem and the original problem. The solution of the dual problem is of a great economic significance. In this paper,we mainly discuss the basic form of the dual problem and how to use dual simplex method to get the optimal solution of the dual problem. Key words: linear programming;dual problem;dual simplex method1 引言首先我们先引出什么是线性规划中的对偶问题.任何一个求极大化的线性规划问题都有一个求极小化的线性规划问题与之对应,反之亦然,如果我们把其中一个叫原问题,则另一个就叫做它的对偶问题,并称这一对互相联系的两个问题为一对对偶问题.每个线性规划都有另一个线性规划(对偶问题)与它密切相关,对偶理论揭示了原问题与对偶问题的内在联系.下面将讨论线性规划的对偶问题的基本形式以及用对偶单纯形法求最优解.在一定条件下,对偶单纯形法与原始单纯形法相比有着显著的优点.2 对偶问题的形式对偶问题的形式主要包括对称形对偶问题[]3和非对称性对偶问题.对称形对偶问题设原线性规划问题为Max1122...n nZ c x c x c x =+++()11112211211222221122...............0.1,2,...,n n n n m m mn n nj a x a x a x b a x a x a x b a x a x a x bx j n +++≤⎧⎪+++≤⎪⎪⎨⎪+++≤⎪≥=⎪⎩()则称下列线性规划问题 Max 1122...m m W b y b y b y =+++()11112211211222221122...............0.1,2,...,n n n n m m mn n nj a y a y a y c a y a y a y c a y a y a y cy j m +++≤⎧⎪+++≤⎪⎪⎨⎪+++≤⎪≥=⎪⎩()为其对偶问题,其中(1,2,...,)i y i m =称其为对偶变量,并称()和()式为一对对称型对偶问题.原始对偶问题()和对偶问题()之间的对应关系可以用表2-1表示.这个表从横向看是原始问题,从纵向看使对偶问题.用矩阵符号表示原始问题()和对偶问题()为 CX Z =max原问题 ⎩⎨⎧≥≤0X b AX ()Yb W =min对偶问题 ⎩⎨⎧≥≤0Y C YA () 其中()12,,...,m Y y y y =是一个行向量. 非对称对偶问题线性规划有时以非对称形式出现,那么如何从原始问题写出它的对偶问题,我们从一个具体的例子来说明这种非对称形式的线性规划问题的对偶问题的建立方法.例1 写出下列原始问题的对偶问题43214765max x x x x Z ++-=⎪⎪⎩⎪⎪⎨⎧=≥-≥++--≤-+--=--+)4,3,2,1(032417281473672432143214321j x x x x x x x x x x x x x j解: 第一约束不等式等价与下面两个不等式约束724321-≤--+x x x x 724321≤++--x x x x 第二个约束不等式照写147364321≤-+-x x x x 第三个不等式变成32417284321≤--+x x x x以 121123,,,y y y y 分别表示这四个不等式约束对应的对偶变量,则对偶问题为 32211131477min y y y y W +++-= ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥--+-≥-++--≥+--≥++-0,,,427746173225286322111322111322111322111322111y y y y y y y y y y y y y y y y y y y y令 12111y y y =-,则上式的对偶问题变为:3213147min y y y W ++-=12312312312323162852317647724,0,y y y y y y y y y y y y y y y ++≥⎧⎪-+≥-⎪⎪-+-≥⎨⎪---≥⎪≥⎪⎩无符号限制一般可以证明,若原问题中的某个变量无非负限制,则对偶问题中的相应约束为等式. 3 对偶单纯形法对偶问题求解具有重要的意义,有多种方法解决对偶问题.下面介绍用对偶单纯形法来解决线性规划的对偶问题.先介绍以下几个线性规划的基本概念[]6:基: 已知A 是约束条件的m n ⨯系数矩阵,其秩为m .若B 是A 中m m ⨯阶非奇异子矩阵(即可逆矩阵),则称B 是线性规划问题中的一个基.基向量:基B 中的一列即称为一个基向量.基B 中共有m 个基向量. 非基向量:在A 中除了基B 之外的一列则称之为基B 的非基向量. 基变量:与基向量相应的变量叫基变量,基变量有m 个.非基变量:与非基向量相应的变量叫非基变量,非基变量有n m -个. 由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个基,令这个基的非基变量为零,再求解这个m 元线性方程组就可得到唯一的解了,这个解我们称之为线性规划的基本解.首先重新回顾一下单纯形法的基本思想,其迭代的基本思路是:先找出一个基可行解,判断其是否为最优解,如果不是,则转换到另一更优的基可行解,并使目标函数值不断优化,直到找到最优解为止.我们可以用另一种思路,使在单纯形法每次迭代的基本解都满足最优检验,但不一定满足非负约束,迭代时使不满足非负约束的变量个数逐步减少.当全部基变量都满足非负约束条件时,就得到了最优解,这种算法就是对偶单纯形法.因此,单纯形法是从一个可行解通过迭代转到另一个可行解,直到检验数满足最优条件为止.对偶单纯形法是从满足对偶可行性条件出发通过迭代逐步搜索出最优解.在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失.现把对偶单纯形法的基本步骤总结如下[3]:第一,把所给的线性规划问题转化为标准型;第二,找出一个初始正则基0B ,要求对应的单纯形表中的全部检验数0j σ≤,但“右边”列中允许有负数;第三,若“右边”列中各数均非负,则0B 已是最优基,于是,已求得最优解,计算终止.否则转为第四步;第四,换基:“右边”列中取值最小(即负的最多)的数所对应的变量为出基变量.计算最小比值θ.最小比值出现在末列,则该列所对应的变量即为进基变量,换基后得新基1B ,以出基变量的行和进基变量列交点处的元素为主元进行单纯形迭代,再转入第三步.下面用一个例子具体说明用对偶单纯形法求线性规划问题最优解的步骤: 例1 求解线性规划问题 min 12315511W y y y =++;1231231233225524,,0y y y y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩添加松弛变量以后的标准型 min 12315511W y y y =++12341235123453225524,,,,0y y y y y y y y y y y y y ++-=⎧⎪++-=⎨⎪≥⎩ 将每个等式两边乘以-1,则上述问题转化为 min 12315511W y y y =++;12341235123453225524,,,,0y y y y y y y y y y y y y ---+=-⎧⎪---+=-⎨⎪≥⎩如果取()045,B Y y y =作为初试基变量,有如下初试单纯形表(表)由此可见,两个基变量45,y y 均取负值,所以,0B 所确定的基本解不是基可行解,从而也就不能用单纯形法求解.下面我们用一种新的方法对偶单纯形法求解此题,并通过例题来说明方法步骤.对偶单纯形法的基本思想:是保证检验数行全部非正的条件下,逐步使得“右边”一列各数变成非负.一旦“右边”一列各数均满足了非负条件(即可行性条件),则就获得最优解.现在,0B 不是可行基(称为正则基),为保证上述方法的实现,可按下面的方法确定出基变量和进基变量.出基变量的确定 可以取任意一个具有负值的基变量(一般可取最小的)为出基变量.在上例中,两个基变量()45,y y 都取负值,且45y =-最小,故 4y 为出基变量.现在考虑出基变量所对应的负所有元素 0ij a <,对每个这样的元素作比值jija σ',令 30min 0j ij j n ij ija a a σσθ≤≤⎧⎫⎪⎪'=≤=⎨⎬''⎪⎪⎩⎭ () 则 3x 为进基变量.在表2-4中,基变量 4y 所在的行有三个ij a '取负值,其值分别为-3,-2,-2.它们对应的检验数分别为-15,-5,-11. 于是212155115min ,,3222a σθ---⎧⎫===⎨⎬---⎩⎭ 由此可知, 2y 为进基变量.主元素为 2ija '=-,对表2-1进行一次迭代便得表2-2,在表2-2的(1)中,基变量 3y 所取之值 2302b '=-<,故 3y 为出基变量.又21215561522min ,,711722a σθ⎧⎫--⎪⎪-===⎨⎬'-⎪⎪--⎩⎭故 3y 是进基变量;,主元为 2172a '=-.对(1)再作单纯形变换,得表3-1之(2).由于它的“右边”已列出全部非负,故它就是最优表.最优解为:137y '=,2137y '=, 3450y y y '''===;最优值 1107w '=.然而在有些问题中,我们很容易找到初始基本解,因此使用对偶单纯形法求解线性规划问题是有一定条件的,其条件是:(1) 单纯形表的b列中至少有一个负数.(2) 单纯形表中的基本解都满足最优性检验.对偶单纯形法与原始单纯形法相比有两个显著的优点:(1) 初始解可以是不可行解,当检验数都非正时,即可进行基的变换,这时不需要引入人工变量,因此简化了计算.(2) 对于变量个数多于约束方程个数的线性规划问题,采用对偶单纯形法计算量较少.因此对于变量较少、约束较多的线性规划问题,可以先将其转化为对偶问题,然后用对偶单纯形法求解.对变量多于约束条件的线性规划问题,用对偶单纯形法进行计算可以减少计算的工作量.因此对变量较少,而约束条件很多的线性规划问题,可先将此问题转化为对偶问题,然后用对偶单纯形法求解.用对偶单纯形法求解线性规划问题的标准型,要求初始单纯形表检验数行的检验数必须全部非正,若不能满足这一条件,则不能运用对偶单纯形法求解.对偶单纯形法的局限性主要是,对大多数线性规划问题来说,很难找到一个初始可行基,因此这种方法在求解线性规划问题时,很少单独应用.参考文献:[1] 吴祈宗.运筹学学习指导及习题集[M] .北京:机械工业出版社,2006.[2] 孙君曼,冯巧玲,孙慧君,等.线性规划中原问题与对偶问题转化方法探讨[J].郑州:工业学院学报(自然科学版),2001,16(2):44~46.[3] 何坚勇.运筹学基础.北京:清华大学出版社,2000.[4] 周汉良,范玉妹. 数学规划及其应用.北京:冶金工业出版社.[5] 陈宝林.最优化理论与算法(第二版) .北京:清华大学出版社,2005.[6] 张建中,许绍吉. 线性规划. 北京:科学出版社,1999.[7] 姚恩瑜,何勇,陈仕平.数学规划与组合优化.杭州:浙江大学出版社,2001.[8] 卢开澄.组合数学算法与分析.清华大学出版社, 1982.[9] Even. Shimon. Algzithmic Combinatorial. The Macmillan Company, New York, 1973.[10] J.P.Tremblay, R.Manohar.Discrete Mathematical Structures with Applications to Computer Science, 1980.[11] 李修睦.图论.华中工学院出版社, 1982.[12] Pranava R G.Essays on optimization and incentive contracts[C].Massachusetts Institute of Technology, Sloan School of Management: Operations Research Center, 2007: 57- 65.[13] Schechter,M.A Subgradient Duality Theorem,J.Math Anal Appl.,61(1977),850-855.[14] Maxims S A. Note on maximizing a submodular set function subject to knap sack constraint[J]. Operations Research Letters,2004, 32 (5) : 41 - 43.[15] Schechter,M.More on Subgradient Duality,J.,71(1979),251-262.[16] Nemhauser GL, Wolsey L A, Fisher M L.An analysis of approximations formaximizing submodular set functionsII[J].Math.Prog.Study, 1978, 8: 73 - 87.[17] SviridenkoM.A note on maximizing a submodular set function subject to knap sack contraint[J].Operations Research Letters,2004, 32: 41 - 43.[18] 卢开澄.图论及其应用.北京:清华大学出版社,1981.[19] 张干宗.线性规划(第二版).武汉:武汉大学出版社,2007.[20] 周维,杨鹏飞.运筹学.北京:科学出版社,2008.[21] 宁宣熙.运筹学实用教程(第二版).北京:科学出版社发行处,2009.。

运筹学对偶单纯形法

运筹学对偶单纯形法
-5/2 -1/2
-4 x3
1/2 3/2
0 x4 1 0 0
0 x5
-1/2 -1/2
x4换出变量
CB 0
-2 x1 cj-zj
2
-4 8/5
-1
-1
min{σj/αlj|αlj<0}
2
x2换入变量
cj CB -3 -2 cj-zj XB x2 x1 b
2/5 11/5
-2 x1 0
-3 x2
1
当bl<0,而对所有j=1,…,n,有alj0,
则原问题无可行解。
证明:xl+al,m+1xm+1+…+al,nxn=bl
CB c1 … cl … cm 基 x1 ba x0(j=m+1, xl xm ,又 xm+1 1 因 … ,n) bl<0, lj …,0 1 <0 b 故有 x l
1
第三步 先确定换出变量 解答列(b 列)中的负元素对应的基变量出基, 相应的行为主元行。 一般选最小的负元素出基, 即若min { ( B -1 b )i| (B -1b )I < 0 } = ( B–1 b )l 则选取 x l 为换出变量.
检验第l 行中非基变量 xj 的系数 αlj , 若所有的αlj ≥ 0,则LP 问题 无可行解, (下面进行说明),此时计算结束。 否则转下步
cj
CB XB x4 x5 b -3 -4
-2 x1
-3 x2
-4 x3
0 x4
0 x5
x5换出变量
0
-1
-2 -2
2 1 2
-2
1 -3
-1
-3 -4

运筹学第2章 对偶理论01-对偶问题及影子价格、对偶单纯形法

运筹学第2章 对偶理论01-对偶问题及影子价格、对偶单纯形法

第2章对偶理论及灵敏度分析主要内容对偶理论⏹线性规划对偶问题⏹对偶问题的基本性质⏹影子价格⏹对偶单纯形法灵敏度分析⏹灵敏度问题及其图解法⏹灵敏度分析⏹参数线性规划线性规划的对偶问题⏹对偶问题的提出⏹原问题与对偶问题的数学模型⏹原问题与对偶问题的对应关系实例:某家电厂家利用现有资源生产两种产品,有关数据如下表:设备A设备B 调试工序利润(元)612521115时24时5时产品Ⅰ产品ⅡD一、对偶问题的提出如何安排生产,使获利最多?厂家设Ⅰ产量–––––Ⅱ产量–––––1x 2x ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=052426155 2max 212121221x x x x x x x s.t.x x z ,设设备A ——元/时设备B ––––元/时调试工序––––元/时1y 2y 3y 收购付出的代价最小,且对方能接受。

出让代价应不低于用同等数量的资源自己生产的利润。

设备A 设备B 调试工序利润(元)0612521115时24时5时ⅠⅡD ⏹厂家能接受的条件:⏹收购方的意愿:32152415min yy y w ++=单位产品Ⅰ出租收入不低于2元单位产品Ⅱ出租收入不低于1元出让代价应不低于用同等数量的资源自己生产的利润。

1252632132≥++≥+y y y y y52426155 2212121221⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=x x x x x x x s.t.x x z ,max ⎪⎩⎪⎨⎧≥≥++≥+++=0y 125265241532132132321y y y y y y y t s y y y w ,,.min 对偶问题原问题收购厂家一对对偶问题⎩⎨⎧≥≥=⇒⎩⎨⎧≥≤=00bY C YA s.t.Yb w X AX t s CX z min ..max ),(21c c C =⎪⎪⎫ ⎛=1x x X )(ij a A =()321,y ,y y Y =⎪⎪⎪⎫ ⎛=321b b b b 3个约束2个变量2个约束3个变量原问题对偶问题其它形式的对偶问题?特点:1.原问题的约束个数(不包含非负约束)等于对偶问题变量的个数;2.原问题的价值系数对应于对偶问题右端项;3.原问题右端项对应于对偶问题的价值系数;4.原问题约束矩阵转置就是对偶问题约束矩阵;5.原问题为求最大,对偶问题是求最小问题;6.原问题不等约束符号为“≤”,对偶问题不等式约束符号为“≥”;二、原问题与对偶问题的数学模型1.对称形式的对偶当原问题对偶问题只含有不等式约束时,称为对称形式的对偶。

对偶单纯形法(经典运筹学)

对偶单纯形法(经典运筹学)

解:问题化为标准型 max Z 2 x1 x 2 5 x1 x 2 x3 2 x 2 x3 x 4 5 s.t 6x xx 9 xx 2 2 6 x3 3 5 5 9 44 x1 , x 2 , x3,x 4,x5 0
X1 X2 X3 X4 X 5
2 检 0 1 -1 1 2 -4 0 -2 1 1 -6 0 0 1 0 0 0 0 1
Z Z-10
X1 1 X4 0
5 5 -9
X5 0
4
14 13 X1 X 2 X 3

X1 X4
0 1 0 0 0 0 0 1
X4
X5
-1/4 Z-31/4 1/4 1/2 11/4 1/2
所在行的基变量出基 则取br
4、以ari0 为主元素进行换基迭代 ,得一新的单纯形表, 转2
例:用对偶单纯形法 求解下列问题 max Z 2 x1 x 2 x1 x 2 x3 5 2x x 5 11 9 2 3 最优解 X ( ,) s.t 4 4 4 x 6 x 9 2 3 31 x1 , x 2 ,Z x3 0 最优值
-1/2 0 -1/2 0 -2 3/2 1 0
X2
-1/4 9/4
11 9 1 最优解 X ( ,, 0, , 0 ) 4 4 2 初始基 B (P ) 1,P 4,P 5 31 最优值 Z 不是典则形式 4
注意:对偶单纯形法仅限于初始基B对应 可用对偶单 的典则形式中目标函数的系数(检 纯形法 验数)均≤0的情形。 B的典则形式
对偶单纯形法是求解对偶规划的一种方法 × 对偶单纯形法:利用对偶理论得到的一个 求解线性规划问题的方法
单纯形法(原始单纯形法)的两个条件:

运筹学对偶单纯形法

运筹学对偶单纯形法
j = 1, 2 , … , n i = 1, 2 , … , m
8. 最优松紧性 设
= (XT, XTs) = ( x1 , x2 , … , xn , … , xn+m )T
T = (YT,Ys ) = ( y1 , y2 , … , ym , … , ym+n )T
分别是(P1) (D1)的可行解,那么 和 分别是(P1) (D1)最优解的充分必要条件是: ⑴ xj >0 → ym+j = 0 ⑵ ym+j>0 → xj = 0 ⑶ xn+i > 0 → yi = 0 ⑷ yi > 0 → xn+i = 0
关系3:一般对偶关系
对偶问题 目标要求
规范不等式 约束的式号
(P) max ≤ (aij)m×n
第 k 个约束 约束个数 第 k 个右端常数 (非)规范不等式约束 等式约束
(D) min ≥ (aji)n×m
第 k 个变量 变量个数 第 k 个价值系数 非负(正)变量 自由变量
系数阵 函数 约束 与 变量
(2) 对资源 i 现行分配量的评估。当资源 i 在市场上脱销时, 其总存量无法增加,但可酌情调整其在企业内部的现行分配量, 以便获得最佳经济效益。 二、 当 yi* 代表影子利润(即企业的目标是实现最大总利 润)时: (1) 对资源 i 总存量的评估。 (2) 对资源 i 现行分配量的评估。
对偶问题的经济解释
工时利润 (百元/工时) y1 y2 y3
产品 车间
单耗(工时/件)


最大生产能力 (工时/天)
A B C
单位利润 (百元/件)
1 0 2 3
0 2 3 2

运筹学对偶问题

运筹学对偶问题

例:写出下列问题的对偶问题
min Z 3x1 2x2 3x3 4x4 s.t. x1 2x2 3x3 4x4 3 x2 3x3 4x4 5 2x1 3x2 7x3 4x4 2 x1 0, x2, x3为自由变量, x4 0,
解:
那么它的对偶问题就是“在另外一些条件下, 使工作的消耗(浪费、成本等)尽可能的小”。
实际上是一个问题的两个方面。
例:某产品计划问题的
线性规划数学模型为
假设生产部门根据市场变化,
max F 2x1 x2 s.t. 3x1 5x2 15 (原料的约束) 5x1 2x2 10 (设备的约束) x1, x2 0
min W 20 y1 10 y2 5 y3 s.t.
3y1 4 y2 y3 4 2 y1 3y2 y3 5 2 y1 3y2 y3 5 y1 0, y2 0, y3为自由变量
合并
minW 20 y1 10 y2 5 y3 s.t. 3y1 4 y2 y3 4 2 y1 3y2 y3 5 2 y1 3y2 y3 5 y1 0, y2 0, y3为自由变量
min W 15 y1 10 y2
这样,就得到另一个线性规划模型:
minW 15y1 10y2 s.t. 3y1 5y2 2 5y1 2 y2 1 y1 0, y2 0
当原问题的约束条件的符号不完全相同时,也存在 对偶问题,这种对偶问题称为非对称对偶问题。

max Z 4x1 5x2 s.t.
3x1 2x2 20
4x1 3x2 10
x1 x2 5
x1

运筹学第4章 单纯形法的对偶问题

运筹学第4章 单纯形法的对偶问题

管理运筹学
3
§1 线性规划的对偶问题
如果我们把求目标函数最大值的线性规划问题看成原问题,则把求目标函数最小值的线 性规划问题看成对偶问题。下面来研究这两个问题在数学模型上的关系。
1 求目标函数最大值的线性规划问题中有n 个变量 m个约束条件,它的约束条件都是小于 等于不等式。而其对偶则是求目标函数为最小值的线性规划问题,有m个变量n个约束条件, 其约束条件都为大于等于不等式。
5x1 3x2 x3 200
管理运筹学
10
§1 线性规划的对偶问题
通过上面的一些变换,我们得到了一个和原线性规划等价的线性规划 问题:
max z 3x1 4x2 6x3
s.t. 2x1 3x2 6x3 440,
6x1 4x2 x3 100, 5x1 3x2 x3 200 5x1 3x2 x3 200 x1, x2 , x3 0
进一步,我们可以令y3

y
' 3

y
'' 3
,这时当
y
' 3

y
'' 3
时,y

0,当
y
' 3

y
'' 3
时, y3 0 。这也就是说,尽管
y
' 3
,
y
'' 3

0,
但 y3 的取值可以为正,可以为0,
可以为负,即 y3 没有非负限制。
这样我们把原规划的对偶问题化为
min f 440 y1 100 y2 200 y3
这样第二个约束条件也就符合要求。对于第三个约束条件,我们可以 用小于等于和大于等于两个约束条件来替代它。即有

对偶单纯形法(经典运筹学)

对偶单纯形法(经典运筹学)
基本解 X 0, 0, 3 , 6, 3
X1 X2 X3 X4 X5 检 X3 -2 -1 0 -3 -1 1 0 0 0 0 Z -3
X4
X5
-4 -3 0
1 2 0
1
0
0
1
-6
3
不 可 行
即max Z 2 x1 x2
3 3x1 x 2 x3 4 x 3x x4 6 1 2 s.t x5 3 x1 2 x 2 x1 , x 2 , x3 , x 4 , x5 0
-1/3 0 -1/3 0 2/3 1
X 3 X4 X5 0 -3/5 -2/5 Z+12/5 1 -1 -1 0
X2 0 X1 1
1 0
0 0
1/5 4/5 6/5 -2/5 -3/5 3/5
3 6 最优解X ( ,, 0, 0, 0 ) 5 5 最优值Z 12 5
则取xi0 为入基变量
1
1
令X N 0 得X B B b 0 得基本可行解 X 1 B b,0
1
1

1 、若所有的检验数 CN B 1 N 0 , 则X 1为最优解
2、检验数 C N C B B 1 N中存在一个分量 0, 且该分量对应的列 向量中所有的分量 0, 则目标函数值在可行解 域内无上界
1、确定出基变量: 设br =min{bi | bi <0} 则取br所在行的基变量 为出基变量 即取X4为出基变量 2、确定入基变量: 原则: 保持检验行系数≤0
i i0 设 min | a ri 0 a ri a ri 0
1 21 3
X1 检 -2/3 X3 -5/3 X2 4/3 X5 -5/3 X1 检 0 X3 0 X3 X4 0 -1/3 1 0 0

运筹学-3对偶单纯形法

运筹学-3对偶单纯形法

1.对偶单纯形法的应用条件; 2.出基与进基的顺序; 3.如何求最小比值; 4.最优解、无可行解的判断。 作业:教材P76 T2.7
The End of Section 3
灵敏度分析 Exit
即对偶问题具有无
界解,由性质2a知ik 原问a题Lj 无可行解。aik
§2.3 对偶单纯形法 The Dual Simplex Method
Ch2 Dual Problem
2020年6月20日星期六 Page 9 of 9
本节利用对偶性质6:原问题的检验数与对偶问题的基本 解的对应关系,介绍了一种特殊线性规划的求解方法—对 偶单纯形法。
0
-4
-1
0
-1
— 1.6 — —
2
x2
0.4
0
1 -0.2 -0.4 0.2
x1
2.2
1
0
1.4 -0.2 -0.4
检验数 5.6
0
0 -1.8 -1.6 -0.2
最优解: x2=0.4 x1=2.2
Max z = -5.6
§2.3 对偶单纯形法 The Dual Simplex Method
Ch2 Dual Problem
【解】先将约束不等式化为等式,再两边同乘以(-1), 得到
min z 2x1 3x2 4x3
x1 2x2 x3 x4 3
2x1 x2 3x3 x5 4
x
j
0,
j
1,2,
,5
用对偶单纯形法,迭代过程如下页或看演示(请启用宏)。
§2.3 对偶单纯形法 The Dual Simplex Method
问题中,λ≤j0分母aij<0,
j

管理运筹学--单纯形法的灵敏度分析与对偶对偶问题讲课讲稿

管理运筹学--单纯形法的灵敏度分析与对偶对偶问题讲课讲稿
2. 初始单纯表中的基变量Xs=b,迭代后的单 纯形表中为XB= B-1b
3. 初始单纯表中的约束系数矩阵为:
[A,I]=[B,N,I] 迭代后的单纯形表中约束系数矩阵为:
[B-1A, B-1I]=[B-1B, B-1N, B-1I]=[I , B-1N, B-1] 4. 若初始矩阵中变量xj的系数向量为Pj,迭代
x4
x5 值
0 x3
8
1
0
1
0
0
0 x4 12 0 2 0 1 0
0 x5 36 3 4 0 0 1
检验数j
3 50 0 0
• 最优基和最优基的逆
Cj
3 5 0 0 0比
CB XB
b
x1
x2 x3
x4
x5 值
0 x3 4 0 0 1 2/3 -1/3
5 x2 6 0 1 0 1/2 0
3 x1 4 1 0 0 -2/3 1/3
0
0
1

j
0
0 -50
0
-50
初始单纯形表为:
Cj
CB
CN
0
XB
XN
XS
0
X S
b
B
N
I
检验数j
CB
CN
0
当迭代若干步,基变量为X B时,新的单纯形表:
Cj
CB
CN
0
XB
XN
XS
CB
b X B
B-1
I
检验数j
0
B-1N CN- CB B-1N
B-1 - CB B-1
小结
1. 对应初始单纯表中的单位矩阵I,迭代后的 单纯形表中为B-1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对偶单纯形法的基本思路:
对 max z CX s.t AX b
X 0
取 B P 基 1 P 2 P m
m Z a C B B x 1 b (C N C B B 1 N )X N
XBB1bB1NN X
XB0,XN0
得 令XN 基 0 得 X1 X本 B B B1 b 解 1b,0
对问题maxz CX s.t AX b
X 0
取可行基
BP1 P2 Pm
令XN 0 得 XBB1b0
得基本X 可 1行 B1b,解 0
m Z a C B B x 1 b ( C N C B B 1 N )X N
XBB1bB1NN X
XB0,XN0
初始单纯形表:
XB XN
常数项
? 0 检验行 0 CN- CBB-1N
X1 检0
X3 0 X2 0 X1 1
X2 X3 X4 X5 0 0 -3/5 -2/5 Z+12/5 0 1 -1 -1 0
1 0 1/5 4/5 6/5 0 0 -2/5 -3/5 3/5
1、确定出基变量:
设br =min{bi | bi <0} 则取br所在行的基变量 为出基变量
即取X4为出基变量
x4 x5
6 3
引进人工变量x6,x7
x 1 , x 2 , x 3 , x 4 , x 5 0
max Z 2x1 x2 Mx6 Mx7
3x1 x2 x3 x6 3
s.t 4 x1x1
3x2 2x2
x4 x5
x7 3
6
用单纯形 法求解
x1, x2 , x3 , x4 , x5 0
6 3
x 1 , x 2 , x 3 , x 4 , x 5 0
即 mZ a x 2 x 1 x 2
3x1 x2 x3
3
s.tx41x1
3x2 2x2
x4 6 x5 3
x1,x2,x3,x4,x5 0
取 B 基 P 3 ,P 4 ,P 5 基X 本 0 , 0 , 解 3 , 6 , 3
X3 -3 -1 1 0 0 -3 X4 -4 -3 0 1 0 -6 X5 1 2 0 0 1 3
1 21 3
X1 X2 X3 X4 X5 检 -2/3 0 0 -1/3 0 Z+2
X3 -5/3 0 1 -1/3 0 -1 X2 4/3 1 0 -1/3 0 2 X5 -5/3 0 0 2/3 1 -1
X1 X2 X3 X4 X5 检 -2 -1 0 0 0 Z


X3 -3 -1 1 0 0 -3

X4 -4 -3 0 1 0 -6
X5 1 2 0 0 1 3
分析: 若X3或X4所在的行的aij均 非负,
则问题一定无可行解
否则,做换基迭代
X1 X2 X3 X4 X5 检 -2 -1 0 0 0 Z
单纯形法(原始单纯形法)的两个条件:
1、问题为标准型
2、有初始基本可行解
求 min Z 2 x 1 x 2
3x1 x2 3
s
.t
4 x1 x1
3x2 2x2
6 3
x 1 , x 2 0
标准型为
max Z 2 x 1 x 2
3 x1 x2 x3 3
s
.t
4 x1 3 x2 x1 2 x2
于A是 X b
B
N
XB XN
b
BX BNN Xb
B 可逆
XBB1bB1NN X
且ZCB CNXXNB CBXBCNXN
C B (B 1 b B 1 NN )X C N X N
C B B 1 b (C N C B B 1 N )X N
对问题maxz CX
m Z a C B B x 1 b ( C N C B B 1 N ) X N
最优对偶单纯形表的充 要条件:B1b0
例:求 min Z 2 x1 x 2
3x1 x2 3
s
.t
4 x1 x1
3x2 2x2
6 3
x1 , x 2 0
解:标准型为
检验行 ≤0
max Z 2 x 1 x 2
3 x1 x 2 x3 3
s
.t
4xx1基1 B2的3xx典22 则 x形x54 式
对偶单纯形法的优点:
1、不需要人工变量;
2、当变量多于约束时,用对偶单 纯形法可减少迭代次数;
3、在灵敏度分析中,有时需要用对 偶单纯形法处理简化。
原始单纯形法的基本思路:
对标准型 maxz CX s.t AXb X 0,b 0
AB,N
CCB CN
X
X X
B N
A P 1P 2 P m P m 1 P n 设 BP 1 P 2 P m是可
s.t AX b X 0
XBB1bB1NN X
取可行基
BP1 P2
XB0,XN0
Pm关于可行基B的典则形式
检验数
令XN 0 得 XBB1b0得基本X 可 1行 B1b,解 0
1、若所有的C 检N 验 B数 1N0 ,则X1为最优解
2、检C 验 NC 数 BB1N中存在一 0个 ,且分 该量 分量对 向量中所有 0,则 的目 分标 量函数域 值内 在无 可上 行界
Z- CBB-1b
XB
E B-1N
B-1b 0
0 X B (C N C B B 1 N )X N Z C B B 1 b
XBB1NN X B1b
若CNB1N0,X 1为最优解 否则,选定入基、出基 变量 对该单纯形表做行变换 直C 至 NB1N0, 得最优单纯形表
最优单纯形表的充要条 件:CN B1N0,
3、若检C验 N C 数 BB1N中至少有一0个 ,且分 该量 分量对 的列向量中至分少量 有 0,则 一存 个在更好的解基本
做换基:迭 在代 迭代过程中 持, 对始 应终 的保 基本解 即 XBB1b0
并使检C 验 N 数 CBB1N中0的分量 个数越来越少 CN, CB最 B1终 N0
原始单纯ቤተ መጻሕፍቲ ባይዱ法的迭代过程:
2、确定入基变量:
原则:
保持检验行系数≤0
设mi narii
|
ari
0 i0
ar0i
则取xi0 为入基变量
最优X解 (3, 6, 0, 0, 0)
若 C NC BB 1N0:
作对偶单纯形表:
若B1b0
,
X
为最优解
1
否则,换基迭代
选定入基、出基变量
对该单纯形表做行变换
XB XN
常数项
检验行 0 CN- CBB-1N 0 Z- CBB-1b
XB
E B-1N
? B-1b 0
(始终CN 保 B 持 1N0) 直至 B1b0, 得最优对偶单纯形表
相关文档
最新文档