用对偶单纯形法求解线性规划问题
管理运筹学多选 简答
管理运筹学多选 简答多选:3.对取值无约束的变量x j 通常令x j =x j ′- x j 〞,其中x j ′≥0,x j 〞≥0,在用单纯形法求得的最优解中,不可能出现的是最后的情形。
4.线性规划问题maxZ=X 1+CX 2其中4≤c≤6,一1≤a≤3,10≤b≤12,则当c=6 a=-1 b=10和c=4 a=3 b=12时,该问题的最优目标函数值分别达到上界或下界。
9.下列数学模型,只有B 为非线性规划模型(模型中a .b .c 为常数;θ为可取某一常数值的参变量,x ,Y 为变量),因为它所表达的列变量是不够的。
10.下列模型中,不属于线性规划问题的标准形式的是前三个模型,只有最后一个才是标准的。
4.在下图中,根据(a ) 生成的支撑树有三个b 、c 、d ,如下:7.在下图各边中,平行边有e 1 、 e 2、 e 5 、 e 6, e 1等边则是非平行边。
下列知识点可出简答题1. 简答:运筹学的数学模型有哪些优点?答:(1)通过模型可以为所要考虑的问题提供一个参考轮廓,指出不能直接看出的结果。
(2)节省时间和费用。
(3)模型使人们可以根据过去和现在的信息进行预测,可用于教育训练,训练人们看到他们决策的结果,而不必作出实际的决策。
( 4)数学模型有能力揭示一个问题的抽象概念,从而能更简明地揭示出问题的本质。
(5)数学模型便于利用计算机处理一个模型的主要变量和因素,并易于了解一个变量对其他变量的影响。
这些都是使得运筹学能够快速发展的有利条件。
2. 简答:运筹学的系统特征是什么?答:运筹学的系统特征可以概括为以下四点:(1)用系统的观点研究功能关系(2)应用各学科交叉的方法(3)采用计划方法(4)为进一步研究揭露新问题。
新发现的问题,可能要求用修正过去的模型、输入新的数据以及调整以前类似项目的解,获得解决。
6.简答:根据已知条件建立线性规划数学模型某工厂生产A 、B 、C 三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。
管理运筹学多选 简答
管理运筹学多选 简答多选:3.对取值无约束的变量x j 通常令x j =x j ′- x j 〞,其中x j ′≥0,x j 〞≥0,在用单纯形法求得的最优解中,不可能出现的是最后的情形。
4.线性规划问题maxZ=X 1+CX 2其中4≤c≤6,一1≤a≤3,10≤b≤12,则当c=6 a=-1 b=10和c=4 a=3 b=12时,该问题的最优目标函数值分别达到上界或下界。
9.下列数学模型,只有B 为非线性规划模型(模型中a .b .c 为常数;θ为可取某一常数值的参变量,x ,Y 为变量),因为它所表达的列变量是不够的。
10.下列模型中,不属于线性规划问题的标准形式的是前三个模型,只有最后一个才是标准的。
4.在下图中,根据(a ) 生成的支撑树有三个b 、c 、d ,如下:7.在下图各边中,平行边有e 1 、 e 2、 e 5 、 e 6, e 1等边则是非平行边。
下列知识点可出简答题1. 简答:运筹学的数学模型有哪些优点?答:(1)通过模型可以为所要考虑的问题提供一个参考轮廓,指出不能直接看出的结果。
(2)节省时间和费用。
(3)模型使人们可以根据过去和现在的信息进行预测,可用于教育训练,训练人们看到他们决策的结果,而不必作出实际的决策。
( 4)数学模型有能力揭示一个问题的抽象概念,从而能更简明地揭示出问题的本质。
(5)数学模型便于利用计算机处理一个模型的主要变量和因素,并易于了解一个变量对其他变量的影响。
这些都是使得运筹学能够快速发展的有利条件。
2. 简答:运筹学的系统特征是什么?答:运筹学的系统特征可以概括为以下四点:(1)用系统的观点研究功能关系(2)应用各学科交叉的方法(3)采用计划方法(4)为进一步研究揭露新问题。
新发现的问题,可能要求用修正过去的模型、输入新的数据以及调整以前类似项目的解,获得解决。
6.简答:根据已知条件建立线性规划数学模型某工厂生产A 、B 、C 三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。
用对偶单纯形法求解线性规划问题
用对偶单纯形法求解线性规划问题对偶单纯形法是一种常用于求解线性规划问题的方法。
它通过对原始线性规划问题进行对偶化,将原问题转化为对偶问题,并通过迭代的方式逐步优化,最终得到最优解。
本文将详细介绍对偶单纯形法的基本原理和步骤,并通过一个实例来演示其具体应用。
对偶单纯形法的基本原理是基于线性规划的对偶性理论。
根据对偶性理论,对于原始线性规划问题的最优解,一定存在一个对偶问题,其最优解与原问题的最优解相等。
因此,我们可以通过求解对偶问题来得到原问题的最优解。
对偶问题的形式如下:最大化 W = b'y约束条件为:A'y ≤ c其中,A是原始线性规划问题的约束矩阵,b是原始问题的目标函数系数矩阵,c是原始问题的约束条件矩阵,y是对偶问题的变量向量。
对偶单纯形法的步骤如下:步骤1: 初始化将原始线性规划问题转化为标准型,并初始化基变量和非基变量的初始解。
步骤2: 计算对偶变量值根据对偶问题的约束条件,计算对偶变量的初始值。
步骤3: 计算对偶目标函数值根据对偶问题的目标函数,计算初始的对偶目标函数值。
步骤4: 检验最优性判断当前解是否为最优解。
如果是,则终止算法;否则,进入下一步。
步骤5: 选择入基变量和出基变量根据当前解,选择一个入基变量和一个出基变量。
步骤6: 更新解通过列生成法或其他方法,更新当前解。
步骤7: 更新对偶变量和对偶目标函数值根据更新后的解,更新对偶变量和对偶目标函数值。
步骤8: 转至Step 4重复步骤4至步骤7,直到找到最优解。
下面以一个具体的线性规划问题为例来演示对偶单纯形法的应用。
假设有以下线性规划问题:最大化 Z = 3x1 + 5x2约束条件为:2x1 + x2 ≤ 10x1 + 3x2 ≤ 15x1, x2 ≥ 0首先,将原始问题转化为标准型:最大化 Z = 3x1 + 5x2约束条件为:2x1 + x2 + s1 = 10x1 + 3x2 + s2 = 15x1, x2, s1, s2 ≥ 0初始化基变量和非基变量的初始解为:x1 = 0, x2 = 0, s1 = 10, s2 = 15根据对偶问题的约束条件,计算对偶变量的初始值:y1 = 0, y2 = 0根据对偶问题的目标函数,计算初始的对偶目标函数值:W = 0检验最优性,发现当前解不是最优解,需要进入下一步。
线性规划的对偶与对偶单纯形法
x1 x 2 x3 3 s.t . x1 4 x 2 7 x3 9 x 0, x 0, x 0 2 3 1
min Z c1 x1 c2 x2 cn xn
对 偶 问 题 的 定 义
a11 a12 a21 a22 s.t . a m1 a m 2 x1 , x2 , , xn
将最优解 y1 , y 2的值代入约束条件,得第3个约束为严格 不等式,由互补松弛性得 x3 0, 又由于 y1 , y 2的值均大于 零,因此原问题的两个约束条件应取等式,故有
3 x1 x2 x3 1 x1 2 x2 3 x3 2
求解后得到 x1 4/7, x2 5 / 7, 故原问题的最优解为 x ( x1 , x2 , x3 )T (4 / 7, 5 / 7, 0) T f min 23 / 7
max z b1 y1 b2 y2 bm y m
a11 y1 a21 y 2 am1 y m ( , )c1 a12 y1 a22 y 2 am 2 y m ( , )c2 a y a y a y (, )c 2n 2 mn m n 1n 1 y j 0(符号不限 , 或 0)i 1 ~ m
1616231381514141521232172152723215245211524min682680038100016100106000min682680038100016100106000261383161610031800012000380001500x2060160000523000051000021000005600x2013540至此右端项的所有分量都已非负当前的迭代点已是一个对偶可行的饿基本可行解因而也是最优解即最优解为相应的目标函数值为100540单纯形法是在基本可行解中寻找满足最优性条件简约价值系数非负的最优解对偶单纯形法则是在所有满足最优性条件简约价值系数非负的最优解中寻找满足可行的最优解单纯形法与对偶单纯形法对偶的经济解释1原始问题是利润最大化的生产计划问题称为m种资源的影子价格shadowprice原始和对偶问题都取得最优解时最大利润maxzmin3资源影子价格的性质影子价格越大说明这种资源越是相对紧缺影子价格越小说明这种资源相对不紧缺如果最优生产计划下某种资源有剩余这种资源的影子价格一定等于0种资源的边际利润4产品的机会成本机会成本表示减少一件产品所节省的资源可以增加的利润增加单位资源可以增加的利润减少一件产品可以节省的资源在利润最大化的生产计划中1边际利润大于0的资源没有剩余2有剩余的资源边际利润等于03安排生产的产品机会成本等于利润4机会成本大于利润的产品不安排生产
应用运筹学基础:线性规划(4)-对偶与对偶单纯形法
应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。
引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。
现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。
但假如现在我们不⽣产产品,⽽是要把原料都卖掉。
设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。
对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。
第二章 线性规划习题(附答案)
x1
x2
x3
x4
x5
x6
RHS
z
1
0
2
0
1/5
3/5
-1/5
27
x1
3
1
-1/3
0
1/3
-1/3
2
5
x3
4
0
1
1
-1/5
2/5
-4/5
3
由于增加决策变量 后求得的最优单纯形表为:
z
x1
x2
x3
x4
x5
x6
RHS
z
1
1/10
89/30
0
7/30
17/30
0
55/2
x6
3
1/2
-1/6
0
1/6
-1/6
习题
2-1判断下列说法是否正确:
(1)任何线性规划问题存在并具有惟一的对偶问题;
(2)对偶问题的对偶问题一定是原问题;
(3)根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解;
(4)若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优解;
(8)已知yi为线性规划的对偶问题的最优解,若yi>0,说明在最优生产计划中第i种资源已经完全耗尽;若yi=0,说明在最优生产计划中的第i种资源一定有剩余。
2-2将下述线性规划问题化成标准形式。
解:(1)令 ,增加松弛变量 ,剩余变量 ,则该问题的标准形式如下所示:
(2)令 , , ,增加松弛变量 ,则该问题的标准形式如下所示:
则可知,最优解变为 ,最优值变为27。
(3)先将原问题最优解变量值代入,因有
对偶单纯形法
y1, y2 0
Min w 2 y1 3y2
解:
先将原问题化为下列形式
s.t.
2 y1 y1
y1 y2 y3 4 3y2 y4 6 y2 y5 3
y1, y2 , y3, y4 , y5 0
对偶单纯形法举例(例2-2) 则第一个基为B1=(P3,P4,P5)=I 基变量为y3,y4,y5 第一个对偶可行基对应的单纯形表如下
5
-w 8 -15 0 -1 -4 0
对偶单纯形法举例(例1-4)
T(B2) XB b Y1 Y2 Y3 Y4 Y5 Y2 1/3 0 1 1/6 -1/6 0
Y -1/3 -5 0
5
-w 8 -15 0
-2/3 -1/3 1 -1 -4 0
T(B3)
Y2 1/4 -5/4 1 Y3 1/2 15/2 0 -w 17/2 -15/2 0
5
w 0 -2 -3 0 0 0
Y3 -2 -5/3 0 Y2 2 1/3 1 Y5 -1 -2/3 0
1 -1/3 -1/3 0 -1/3 -1/3 0 -1/3 2/3
w 6 -1 0 0 -1 -1
对偶单纯形法举例(例3-1)
例3:用对偶单纯形法解下列线性规划
Min w x1 x2
3x1 x2 x3 1
s.t.
x1 x2 2x1 2x2
x4 2 x5 4
x j 0 j 1,2,3,4,5
解: 取B1=(P3,P4,P5)=I
为对偶可行基
因此其对应的单纯形表如下
对偶单纯形法举例(例3-2)
T(B1)
x1 x2 x3 x4
x5
x3 -1 3 -1 1 0 0
x4 -2 -1 1 0 1
运筹学作业2(清华版第二章部分习题)答案
运筹学作业2(第二章部分习题)答案2.1 题 (P . 77) 写出下列线性规划问题的对偶问题:(1)123123123123123m ax 224..34223343500,z x x x s t x x x x x x x x x x x x =++⎧⎪++≥⎪⎪++≤⎨⎪++≤⎪≥≥⎪⎩无约束,;解:根据原—对偶关系表,可得原问题的对偶规划问题为:123123123123123m ax 235..223424334,0,0w y y y s t y y y y y y y y y y y y =++⎧⎪++≤⎪⎪++≤⎨⎪++=⎪≥≤≤⎪⎩(2)1111m in ,1,,,1,,0,1,,;1,,m n ij ij i j n ij ij i j nij ij j j ij z c x c x a i m c x b j nx i m j n====⎧=⎪⎪⎪==⎪⎨⎪⎪==⎪⎪≥==⎪⎩∑∑∑∑ 解:根据原—对偶关系表,可得原问题的对偶规划问题为:11m ax 1,,;1,,m n i i j ji j i j ij i w a u b v u v c i m j n u ==⎧=+⎪⎪⎪+≤⎨⎪==⎪⎪⎩∑∑ j 无约束,v 无约束2.2判断下列说法是否正确,为什么?(1) 如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; 答:错。
因为:若线性规划的原问题存在可行解,且其对偶问题有可行解,则原问题和可行问题都将有最优解。
但,现实中肯定有一些问题是无最优解的,故本题说法不对。
例如原问题1212212m ax 31..30,0z x x x x s t x x x =++≥⎧⎪≤⎨⎪≥≥⎩有可行解,但其对偶问题1211212m in 33..10,0w y y y s t y y y y =+≥⎧⎪+≥⎨⎪≤≥⎩无可行解。
(2) 如果线性规划的对偶问题无可行解,则原问题也一定无可行解;答:错,如(1)中的例子。
介绍对偶单纯型算法
介绍对偶单纯型算法
对偶单纯形法是一种求解线性规划问题的算法。
它基于线性规划问题的对偶理论,从对偶可行性出发,通过迭代搜索,逐步找出原始问题的最优解。
在具体操作上,对偶单纯形法首先需要设定一个初始基和对应的最优解。
然后,它会根据对偶问题的约束条件进行迭代,每次迭代都会根据一定规则(如“进基”和“出基”规则)更新基和对应的最优解。
当无法找到能使目标函数值更优的可行解时,算法结束,此时得到的解即为原始问题的最优解。
对偶单纯形法具有一些优点。
例如,它可以处理一些不可行或无界的情况,这些情况可能会让原始单纯形法束手无策。
此外,对偶单纯形法还可以提供对偶问题的信息,这些信息可能有助于理解原始问题的性质。
然而,对偶单纯形法也有一些缺点。
例如,它需要处理的是对偶问题而非原始问题,这可能会导致一些计算上的复杂性。
此外,虽然对偶单纯形法可以找到最优解,但它不能提供任何关于解的可行性和最优性的证明。
总的来说,对偶单纯形法是一种有效的求解线性规划问题的算法,但使用时需要注意其可能存在的局限性。
对偶单纯形法
j1 n
c
j
0
n i 1, 2, , m a ij x j bi j1 x 0, j 1, 2, , n j
在引入松弛变量化为标准型之后,约束等 式两侧同乘-1,能够立即得到检验数全部非正 的原规划基本解,可以直接建立初始对偶单纯 形表进行求解,非常方便。
对偶单纯形法求解线性规划问题过程:
1.建立初始单纯形表,检查b列中的各分量,若都为非 负,且检验数均非正,则已得到最优解,若b列中至 少有一个负分量,检验数非正,则转2; 2.确定换出变量
min
(bi 0)
确定对应的基变量xi为出基变量,转3 3.在单纯形表中检查xi所在行的各系数,若所有 aij≥0,则原问题无可行解,停止;否则,若有aij<0 则选 =min{j/aij┃ aij<0}=k/aik 那么xk为进基变量,转4; 4.以aik为主元,进行迭代运算,得到新的单纯形表; 5.重复上述步骤,直到求得最优解。
(2) 影子价格表明资源增加对总效益产生 的影响。根据推论“设x0和y0分别为原规划(P) 和对偶规划(D)的可行解,当cx0=y0b时,x0、 y0 分别是两个问题的最优解”可知,在最优解 的情况下,有关系
Z w b y b2 y bm y
* * * 1 1 * 2
* m
因此,可以将z*看作是bi,i=1,2,… ,m的函数, 对bi求偏导数可得到
影子价格y2 0的经济意义:原料 的供应量b2增加 个单位 B 1 时,最大利润将不变化 .
影子价格y3 50的经济意义:原料 的供应量b2增加 个单位 C 1 时,最大利润将增加 个单位. 50
(3)设该厂将A, B, C三种原料的价格分别定 y1, y2 , y3 , 为
5、对偶单纯形法
5、对偶单纯形法在标准形式的线性规划问题中,如果σj =c j -C B P j ≤0,但b i 的值不一定为正,这时可用对偶单纯形法继续求解,直到所有b i ≥0。
对偶单纯形法的步骤:1、 确定出基变量存在小于零的b i 时,令b r =min{b i },其对应变量x r 为出基变量。
(先定出基变量)2、 确定入基变量在非基变量中找出a rj <0(j=m+1,….,n ),令θ=mjn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<0rj rj j a a σ=rss a σ 称a rs 为主元素,x s 为入基变量 3、 用入基变量替换出基变量,得到一个新的基。
用新的基再检查是否所有b i ≥0,如果是,找到了问题的最优解,否则,回到第一步再重复计算。
【例】求解线性规划问题min ω=12y 1+16y 2+15y 3s.t. ⎪⎩⎪⎨⎧≥≥+≥+0,,3522423213121y y y y y y y 【解】 转化为目标函数最大化,并化为标准形min (-ω)=-12y 1-16y 2-15y 3+0y 4+0y 5s.t. ⎪⎩⎪⎨⎧≥=-+=-+)5,4,3,2,1(0352242531421jy y y y y y y但这时没有单位矩阵,需要用大M 法或两阶段法求解,较麻烦。
但这时可用对偶单纯形法求解。
在约束条件的两边乘-1,得min (-ω)=-12y 1-16y 2-15y 3+0y 4+0y 5s.t. ⎪⎩⎪⎨⎧≥-=---=--)5,4,3,2,1(0352242531421jy y y y y y y 有单位矩阵,列出单纯形表,用对偶单纯形法求解,此时3)3,2min(-=--,y 5为出基变量,3515,212min =⎭⎬⎫⎩⎨⎧----,y 3为入基变量3416,26min =⎭⎬⎫⎩⎨⎧----,y 1为入基变量此时所有的σj =c j -C B P j ≤0,b i ≥0,有最有解得最优解 Y * = (1,0,1/5,0,0)最优值 ω =15注意最终单纯形表中剩余变量(y 4,y 5)的检验数所对应的值(符号相反),正好为原问题(常山机器厂)的最优解。
对偶单纯形法
3x2 2x2
x4 x5
x7 3
6
用单纯形 法求解
x1, x2 , x3 , x4 , x5 0
对偶单纯形法的优点:
1、不需要人工变量;
2、当变量多于约束时,用对偶单 纯形法可减少迭代次数;
3、在灵敏度分析中,有时需要用对 偶单纯形法处理简化。
注意:对偶单纯形法仅限于初始基B对应
X(0)为基本可行 解的X(条0)件为?最优解的 条件?
B-1b≥0 C CBB1 A 0
原问题最优解条件
令Y=CBB-1,代入原问题最优解条件,→YA≥C
min Yb
YA C Y无符号限制
取基本解X1 B1b,0
保证对偶问题的可行性,逐
步改进原问题的可行性,求
x1 x3 2
s.t
x2
2x3
5
x1,x2,x3 0
若取初始基B1 P4,P5
则关于B1的标准型为
max Z 4x1 3x2 8x3
不s可.t 行 x1x2
x3 2x3
x4
2 x5 5
x1,x2,x3 , x4 , x5 0
且由对偶理论知,Y0 CB B 1为(D)的最优解
对偶单纯形法步骤:
1. 列出初始单纯形表,检查b 列的数字若都为非负, 则已得到最优解,停止计算,若b列的数字中至少 有一个负分量,转第二步。
2. 确定出基变量
按 min B1b i B1b i 0 B1b l ,对应的基变量法: 求max Z x6 Mx9
2x2 x3 x4 x5
x9 1
对偶问题(三)——对偶单纯形法
1、确定出基变量: 设br =min{bi | bi <0} 则取br所在行的基变量 为出基变量 即取X4为出基变量 2、确定入基变量: 原则: 保持检验行系数≤0
λi λ i0 设 min | a ri < 0 = a ri a ri 0
1 21 3
X1 检 -2/3 X3 -5/3 X2 4/3 X5 -5/3 X3 X4 0 -1/3 1 0 0
max Z = −4 x1 − 3 x 2 − 8 x 3 − x1 − x 3 + x 4 = −2 不可行− x 2 − 2 x 3 + x 5 = −5 s.t x ,x ,x , x , x ≥ 0 1 2 3 4 5
若取初始基 B1 = (P4, P5 ) 则关于 B1的典则形式为
-1/3 0 -1/3 0 2/3 1
X1 检 0 X3 0 X2 0 X1 1
X3 X4 X5 0 -3/5 -2/5 Z+12/5 1 0 0 -1 -1 0 1/5 4/5 6/5 -2/5 -3/5 3/5
3 6 最优解X = ,,0, ( 0,0 ) 5 5 最优值Z = −12 5
则取xi0 为入基变量
a11x1 + a12x2 +L+ a1n xn ≥ b1 a x + a x +L+ a x ≥ b 21 1 22 2 2n n 2 s.t L L L am1x1 + am2 x2 +L+ amnxn ≥ bm x1 , x 2 L , x n ≥ 0
若 c j ≥ 0 ( j = 1, 2 , L , n )
max Z ′ = − 2 x 1 − x 2 3 x1 + x 2 − x 3 = 3 4x + 3x − x = 6 1 2 4 s .t 基B的典则形式 x1 + 2 x 2 + x 5 = 3 x1 , x 2 , x 3 , x 4 , x 5 ≥ 0
线性规划课后题答案(张干宗)
P11.3(1)将下列线性规划模型化成标准形式:⎩⎨⎧=+≤+--=10352..3max 212121x x x x t s x x z 解:令"2'22"1'11,,'x x x x x x z z -=-=-=,代入上面的线性规划,得标准形式⎪⎩⎪⎨⎧≥=-+-=+-++--++-=0,,,,1033522..33'min 3"2'2"1'1"2'2"1'13"2'2"1'1"2'2"1'1x x x x x x x x x x x x x x t s x x x x z P14:1、用图解法求解下列线性规划问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤-≤-≤+-≤++-=0,013721042242..23min 212121212121x x x x x x x x x x t s x x f 利用图解法:于是得最优解为(4,1),最优值为-10。
P15:2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥-≥+-=06063222..26max 21212121x x x x x x t s x x z 解:利用图解法于是最优解为(6,0),最优值为36。
P15.3⎪⎪⎩⎪⎪⎨⎧≥≥≥+≤+≤+--=0,0121272172..27min 21212121210x x x x x x x x t s x x x 解:利用图解法求得有无穷多最优解,都落在一个线段上,该线段的两个端点是:)3/7,3/7(),0,3()2()1(==x x于是全部的最优解可以表示成)1(x与)2(x的凸组合,即.10,)1()2()1(*≤≤-+=αααx x x最优值都是-21。
P16:1、 解:设ij x 表示第i 台机床加工第j 类产品的产量,于是可得数学模型⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤+≤+≤+≤++++++++++++++++=.6,5,4,3,2,1,0900600700850..)(80)(64)(72)(32)(28)(40max 464335322421161514131211461635152414431332122111j x x x x x x x x x x x x x t s x x x x x x x x x x x x f j P16:2、 解:设j x 表示第j 食品的采购量,于是可得数学模型13、某养鸡场有一万只鸡,用动物饲料和谷物饲料混合喂养,每天每只鸡平均吃混合饲料0.5公斤,其中动物饲料占的比例不得少于1/5。
对偶单纯形法(经典运筹学)
解:问题化为标准型 max Z 2 x1 x 2 5 x1 x 2 x3 2 x 2 x3 x 4 5 s.t 6x xx 9 xx 2 2 6 x3 3 5 5 9 44 x1 , x 2 , x3,x 4,x5 0
X1 X2 X3 X4 X 5
2 检 0 1 -1 1 2 -4 0 -2 1 1 -6 0 0 1 0 0 0 0 1
Z Z-10
X1 1 X4 0
5 5 -9
X5 0
4
14 13 X1 X 2 X 3
检
X1 X4
0 1 0 0 0 0 0 1
X4
X5
-1/4 Z-31/4 1/4 1/2 11/4 1/2
所在行的基变量出基 则取br
4、以ari0 为主元素进行换基迭代 ,得一新的单纯形表, 转2
例:用对偶单纯形法 求解下列问题 max Z 2 x1 x 2 x1 x 2 x3 5 2x x 5 11 9 2 3 最优解 X ( ,) s.t 4 4 4 x 6 x 9 2 3 31 x1 , x 2 ,Z x3 0 最优值
-1/2 0 -1/2 0 -2 3/2 1 0
X2
-1/4 9/4
11 9 1 最优解 X ( ,, 0, , 0 ) 4 4 2 初始基 B (P ) 1,P 4,P 5 31 最优值 Z 不是典则形式 4
注意:对偶单纯形法仅限于初始基B对应 可用对偶单 的典则形式中目标函数的系数(检 纯形法 验数)均≤0的情形。 B的典则形式
对偶单纯形法是求解对偶规划的一种方法 × 对偶单纯形法:利用对偶理论得到的一个 求解线性规划问题的方法
单纯形法(原始单纯形法)的两个条件:
用对偶单纯形法求解线性规划问题
例4-7 用对偶单纯形法求解线性规划问题Min z =5x 1+3x 2X 1 - 6 x 2 A 4在表4-17中,b=-16<0,而yA 0,故该问题无可行解. 注意:对偶单纯形法仍是求解原问题 ,它是适用于当原问题无可行基 ,且所有检验数均为负的情况.若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解.在计算机求解时,只有人工变量法,没有对偶单纯形法.3.对偶问题的最优解由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系 从求解原问题的最优单纯形表中,得到对偶问题的最优解.(1)设原问题(P)为Min z= exs.t.-2 X i + 3x 2 A 6A 0 (j=1,2 )解:将问题转化为 XjMax z = -5X 1 -3 x 2 s.t. 2x i - 3xX 3 = -6-3 x i + 6 X2+ x 4A -4Xj其中,X 3 , X 4 ,3,4 )A 0 (j=1,2 为松弛变量,可以作为初始基变量,单纯形表见表4-17.,可以根据这些关系,Xj > 0 (j=1,2 , 3,4 )则标准型 (LP) 为AX b s.t.X0Max z=CXAX b s.t.X0其对偶线性规划(D )为Max z=b T Y AX b s.t.X0用对偶单纯形法求解 时,有 Pj=-e i , c j =0 (LP ),得最优基B 和最优单纯形表 T ( B )。
对于(LP )来说,当j=n+iT (B )中,对于检验数,有(b n+1,b n+2・・・b n+m) = (C n+i , c n+2…,c n+m ) -C B B -1(Pn +1,Pn+2 …,Pn+m ) =- C B B -1(-I)于是,Y*= (b n+1,b n+2…b n+m T 。
可见,在(LP )的最优单纯形表中,剩余变 量对应的检验数就是对偶问题的最优解。
同时,在最优单纯形表 T ( B )中,由于剩余变量对应的系数 所以从而,在最优单纯形表b n +2 …bB 1 = ( -y n+1 , -y n+2 …-y n+m )例 4-8 求下列线性规划问题的对偶问题的最优解。
对偶单纯形法的条件
对偶单纯形法的条件对偶单纯形法是线性规划中一种重要的求解方法,主要用于解决线性规划问题的对偶问题。
它通过对原问题进行转化和运算,求解出对偶问题的最优解,从而得到原问题的最优解。
对偶单纯形法是基于单纯形法的扩展,具有更广泛的适用性和更高效的求解效果。
对于使用对偶单纯形法求解线性规划问题,需要满足以下条件:1. 原问题必须是标准形式的线性规划问题:目标函数为最小化形式,约束条件为等式形式,并且所有变量的取值范围为非负数。
2. 原问题必须存在可行基本解:可行基本解是指满足所有约束条件的解,可以通过单纯形法或其他方法求得。
3. 原问题的最优解必须有限:即原问题存在最优解,不是无界的。
在满足以上条件的基础上,使用对偶单纯形法求解线性规划问题的步骤如下:步骤一:建立对偶问题根据原问题的约束条件和目标函数,建立对偶问题的目标函数和约束条件。
对偶问题的目标函数为原问题的约束条件的系数构成的向量与对偶变量的乘积之和,约束条件为原问题的目标函数的系数构成的向量与对偶变量之和等于对偶约束条件的系数构成的向量。
步骤二:初始化给定初始对偶变量的取值,通常取为0,然后计算初始对偶解。
步骤三:判断最优性根据当前对偶解,判断原问题的最优性。
如果原问题的最优性条件满足,则停止计算,得到最优解;否则,进行下一步。
步骤四:选择换入变量根据当前对偶解,选择换入变量。
具体方法是在对偶约束条件中,选择不满足约束条件且对偶变量目标函数系数最小的变量作为换入变量。
步骤五:选择换出变量根据换入变量,选择换出变量。
具体方法是在换入变量所对应的约束条件中,选择满足约束条件且使对偶解最小的变量作为换出变量。
步骤六:更新对偶解根据换入、换出变量,更新对偶解。
具体方法是用换入变量替换对应的换出变量,计算新的对偶解。
重复步骤三到六,直到原问题的最优性条件满足为止。
最终得到原问题的最优解和对偶问题的最优解。
对偶单纯形法的优点在于它能够通过解决对偶问题来求解原问题,从而减少了计算量,提高了求解效率。
对偶单纯形法无界解的判断标准
对偶单纯形法无界解的判断标准在线性规划领域,对偶单纯形法是一种常用的方法,用于求解线性规划问题。
在实际应用中,我们经常会遇到线性规划问题的无界解情况,对偶单纯形法的无界解判断标准成为了至关重要的问题。
本文将从深度和广度的角度对对偶单纯形法无界解的判断标准进行全面评估和探讨,以便读者能够更全面、深刻地理解这一概念。
让我们对对偶单纯形法做一个简要的概述。
对偶单纯形法是一种基于单纯形法的线性规划算法,通过不断迭代求解对偶问题的最优解来间接地求解原始问题的最优解。
对于一个线性规划问题,若原始问题存在最优解,则其对偶问题也存在最优解,且二者的最优值相等。
对偶单纯形法在实际应用中具有重要的价值。
接下来,让我们探讨对偶单纯形法无界解的判断标准。
对于一个线性规划问题,首先需要构建对偶问题并利用对偶单纯形法求解最优解。
当对偶问题的最优解存在且对应的原始问题的解为无界时,我们称其为原问题存在无界解。
对偶单纯形法无界解的判断标准主要包括以下几点:1. 主对偶定理:根据主对偶定理,如果原始问题存在最优解,则对偶问题也存在最优解,且二者的最优值相等。
若对偶问题存在无界解,则原始问题解为无界。
2. 对偶单纯形表的检验数:在对偶单纯形法的迭代过程中,我们需要对对偶单纯形表的检验数进行检查。
若检验数中存在正值,则说明对偶问题的解并非最优解,同时也可以说明原问题的解为无界。
3. 对偶问题的最优解判断:在对偶单纯形法的迭代过程中,需要判断对偶问题是否存在最优解。
若对偶问题不存在最优解,则原问题的解必为无界。
4. 原始问题的去线性化:通过对原始问题进行去线性化处理,得到一个辅助问题。
若辅助问题的解为有界,则原问题的解也必为有界;若辅助问题的解为无界,则原问题的解为无界。
以上是对偶单纯形法无界解的判断标准的几个关键点,通过这些判断标准,我们能够更清晰地判断原始问题的解是否存在无界。
在个人观点方面,我认为对偶单纯形法无界解的判断标准是线性规划领域中的重要问题之一。
2、线性规划问题的对偶问题
3 y1 + y2 30
y 1, y 2 0
得到另外一个数学模型:
min s = 120 y1 + 50 y2
s.t. 4 y1 + 2y2 50 3 y1+ y2 30 (2.2)
y 1, y 2 0
模型(2.1)和模型(2.2) 既有区别又有 联系。联系在于它们都是关于家具 厂的模型并且使用相同的数据,区 别在于模型反映的实质内容是不同 的。模型(2.1)是站在家具厂经营者 立场追求销售收入最大,模型(2.2) 是则站在家具厂对手的立场追求所 付的租金最少。
max Z=2x1+3x2 s.t. 2x1+2x2 12 4x1 16 5x2 15 x1,x2 0
6 5 4 3 2 1 1 2 3 4 5 6 ① 2X+2y<=12 X=3 X=4
点(3,3)是最优解, z*=15 当A的资源变为13小 时,z*=16,说明A的边 际价格是1,即影子 价格是1。
约束条件右端项 目标函数变量的系数
目标函数变量的系数 约束条件右端项
• 例2-7:写出下列线性规划的对偶问题
min z=7x1+4x2-3x3 s.t. -4x1+2x2-6x3≤24 -3x1-6x2-4x3≥15 5x2+3x3=30 x1≤0,x2取值无约束,x3≥0
Max w=24y1+15y2+30y3
引入变量 y1 , y2’,y2” 写出对偶问题
max g = 5 y1+ 4y2’- 4y2” s.t. y1 +2y2’- 2y2” 2 y1 3 -y1 + y2’- y2” -5 y1, y2’,y2” 0
用对偶单纯形法求解线性规划问题
例4-7用对偶单纯形法求解线性计划问题.之五兆芳芳创作Min z =5x1x1 + 63x14Xj≥0(j=1,2)解:将问题转化为Max z = -5x1s.t. 2x13= -6-3x14≥-4Xj≥0(j=1,2,3,4)其中,x3,x4为松弛变量,可以作为初始基变量,单纯形表见表4-17.表4-17 例4-7单纯形表在表4-17中,b=-16<0,而y≥0,故该问题无可行解.注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有查验数均为负的情况.若原问题既无可行基,而查验数中又有小于0的情况.只能用人工变量法求解.在计较机求解时,只有人工变量法,没有对偶单纯形法.由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以按照这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解.(1)设原问题(p)为Min z=CX则尺度型(LP)为Max z=CX其对偶线性计划(D)为Max z=b T Y用对偶单纯形法求解(LP),得最优基B和最优单纯形表T (B).对于(LP)来说,当j=n+i时,有Pj=-e i,c j=0从而,在最优单纯形表T(B)中,对于查验数,有(σn+1,σn+2…σn+m)=(c n+1,c n+2…,c n+m)-C B B-1(Pn+1,Pn+2…,Pn+m)=-C B B-1(-I)于是,Y*=(σn+1,σn+2…σn+m)T .可见,在(LP)的最优单纯形表中,剩余变量对应的查验数就是对偶问题的最优解.同时,在最优单纯形表T(B)中,由于剩余变量对应的系数所以B-1 =(-y n+1,-y n+2…-y n+m)例4-8求下列线性计划问题的对偶问题的最优解.Min z =6x1s.t.x1 + 203x150Xj≥0(j=1,2)解:将问题转化为Max z =-6x1s.t.-x1—3=20-3x14 =50Xj≥0(j=1,2,3,4)用对偶单纯形法求解如表表4-18 例4-8单纯形表在引入松弛变量化为尺度型之后,约束等式两侧同乘-1,能够立即得到查验数全部非正的原计划根本解,可以直接成立初始对偶单纯形表进行求解,很是便利.对于有些线性计划模型,如果在开始求解时不克不及很快使所有查验数非正,最好仍是采取单纯形法求解.因为,这样可以免去为使查验数全部非正而作的许多任务.从这个意义上看,可以说,对偶单纯形法是单纯形法的一个弥补.除此之外,在对线性计划进行灵敏度阐发中有时也要用到对偶单纯形办法,可以简化计较.例4-9:求解线性计划问题:Min f = 2x1 + 3x2 + 4x3S.t. x1 + 2x2 + x3 ≥ 32x1 - x2 + x3 ≥ 4x1 , x2 , x3 ≥ 0尺度化:Max z = - 2x1 - 3x2 - 4x3s.t. -x1-2x2-x3+x4= -3-2x1+x2-3x3+x5= -4x1,x2,x3,x4,x5 ≥ 0表格对偶单纯形法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例4-7用对偶单纯形法求解线性规划问题.
Min z =5x1+3x
2
≥6
s.t. -2 x1 + 3x
2
≥4
3 x1 - 6 x
2
Xj≥0(j=1,2)
解:将问题转化为
Max z = -5 x1 - 3 x
2
+ x3 = -6
s.t. 2 x1 - 3x
2
-3 x1 + 6 x
+ x4≥-4
2
Xj≥0(j=1,2,3,4)
其中,x3 ,x4为松弛变量,可以作为初始基变量,单纯形表见表4-17.
在表4-17中,b=-16<0,而y≥0,故该问题无可行解.
注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况.
若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解.
在计算机求解时,只有人工变量法,没有对偶单纯形法.
3.对偶问题的最优解
由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解.
(1)设原问题(p)为
Min z=CX
s.t. ⎩⎨
⎧≥=0
X b
AX
则标准型(LP)为
Max z=CX
s.t. ⎩
⎨⎧≥=0X b
AX
其对偶线性规划(D )为
Max z=b T Y s.t. ⎩
⎨
⎧≥=0X b
AX
用对偶单纯形法求解(LP ),得最优基B 和最优单纯形表T (B )。
对于(LP )来说,当j=n+i 时,有Pj=-e i ,c j =0
从而,在最优单纯形表T (B )中,对于检验数,有
(σn+1,σn+2…σn+m )=(c n+1,c n+2…,c n+m )-C B B -1(Pn +1,Pn+2…,Pn+m )=- C B B -1 (-I)
于是,Y*=(σn+1,σn+2…σn+m )T 。
可见,在(LP )的最优单纯形表中,剩余变量对应的检验数就是对偶问题的最优解。
同时,在最优单纯形表T (B )中,由于剩余变量对应的系数 所以
B -1 =(-y n+1,-y n+2…-y n+m )
例4-8 求下列线性规划问题的对偶问题的最优解。
Min z =6x 1+8x 2 s.t. x 1 + 2x 2≥20
3 x 1 + 2x 2≥50
Xj ≥0(j=1,2)
解: 将问题转化为
Max z =-6x 1-8x 2
s.t. -x 1 — 2x 2 + x 3=20
-3 x 1 - 2x 2+ x 4 =50
Xj ≥0(j=1,2,3,4)
用对偶单纯形法求解如表
表4-18 例4-8单纯形表
在引入松弛变量化为标准型之后,约束等式两侧同乘-1,能够立即得到检验数全部非正的原规划基本解,可以直接建立初始对偶单纯形表进行求解,非常方便。
对于有些线性规划模型,如果在开始求解时不能很快使所有检验数非正,最好还是采用单纯形法求解。
因为,这样可以免去为使检验数全部非正而作的许多工作。
从这个意义上看,可以说,对偶单纯形法是单纯形法的一个补充。
除此之外,在对线性规划进行灵敏度分析中有时也要用到对偶单纯形方法,可以简化计算。
例4-9:求解线性规划问题:
Min f = 2x1 + 3x2 + 4x3
S.t. x1 + 2x2 + x3 ≥3
2x1 - x2 + x3 ≥4
x1 , x2 , x3 ≥0
标准化:Max z = - 2x1 - 3x2 - 4x3
s.t. -x1-2x2-x3+x4= -3
-2x1+x2-3x3+x5= -4
x1,x2,x3,x4,x5 ≥0。